基于STM32单片机的智能温度控制系统的设计

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 引言
温度是表征物体冷热程度的物理量,是工农业生产过程中一个普遍应用的参数。

因此,温度控制是提高生产效率和产品质量的重要保证。

温度控制的发展引入单片机后,可以降低对某些硬件电路的要求,实现对温度的精确控制。

本文设计的温度控制系统主要目标是实现温度的设定值显示、实际值实时测量及显示,通过单片机连接的温度调节装置由软件与硬件电路配合来实现温度实时控制;显示可由软件控制在LCD1602中实现;比较采集温度与设定阈值的大小,然后进行循环控制调控,做出降温或升温处理;同时也可根据判断发出警报,用以提高系统的安全性[1-5]。

图1 系统总体框图 1 系统总体设计
本设计以STM32F103RTC6单片机为核心对温度进行控制,使被控对象的温度应稳定在指定数值上,允许有
1℃的误差,按键输入设定温度值,LCD1602显示实际温度值和设定温度值。

2 系统硬件设计
图2 系统硬件电路图
display , PTC heater and semiconductor cooler, and realizes the temperature control on the hardware equipment of the self-made analog small constant temperature box� Experimental results show that the design has the advantages of convenient operation, accurate temperature control and intelligence�Keywords: Temperature control ; STM32;Intelligent
基金项目:湖北省教育厅科学技术研究项目(B2018448)。

之间有一个点距的间隔,两行之间也有间隔,起到了字符间距和行间距的作用。

由于LCD1602所需电压为5V,因此它与3.3V 的单片机连接需要将STM32设置为开漏输出,且连接5V 的上拉电阻提高电平。

2.4 温度控制模块
温度控制模块是由TC4427A、PTC 热敏电阻、半导体制冷片以及N 沟道MOS 管构成。

TC4437A 的功能是电平转换,用以控制N 沟道MOS 管是否通断。

当单片机给出3.3V 高电平,TC4427A 输出端会转换为12V 高电平,然后连接到场效应管的栅极,此时场效应管处于导通状态,漏极会和源极接地连接并且连接到接线端子,与其 12V 的电压形成一个完整通路,则器件启动。

反之当单片机给出0V 低电平,TC4427A 输出端也为0V 低电平,然后连接到场效应管的栅极上,于是场效应管处于断开状态(漏极和源极断开),此时接线端子的12V 电压和场效应管的漏极不能形成完整通路,则器件关闭。

2.5 电源模块
由于单片机供电电压为3.3V,而LCD1602为5V,其余器件所需电压皆为12V,故而电源模块主要是有适配器输出12V 的电压,然后通过7805转换的5V 电压以及AMS1117转换的3.3V 电压。

3 系统软件设计
围绕该系统设计要求,软件主控制模块流程图如图3所示,具体工作如下:首先系统先查找温度采集模块是否安装好,查询无误即可显示当前温度值,然后根据上述硬件设计要求按下开关键一打开设定的温度控制程序,开关键二和开关键三是设定上升温度还是下降温度,支持连续按下,开关
图3 温控系统软件设计主控制流程图
4 系统测试
图4 系统测试结果曲线图
在升温测试过程中,单片机上电后,当前温度读取环境为19℃,其设定温度为22℃,由于当前温度低于系统设定值,当按下开关键四,红色灯亮起,代表PTC 在工作,系统升温。

当升高到一定温度,红灯熄灭,彩灯亮起且蜂鸣器发出警报,说明温度已进入温度控制系统的设定值;但是由于PTC 与DS18B20之间有一段距离,温度随着PTC 关闭后剩余热量
(下转第140页)
电动车上应用的现状[J].能源工程,2002,3:17~19.[5]侯献军,颜伏伍.燃料电池电动汽车中的加湿技术
研究[J].武汉理工大学学报(信息与管理工程版)2004,4:52~55.
[6]谢康,卢青春等.燃料电池发动机测试系统的开发[J].车
用发动机,2003,10:22~29.[7]张洁萍,张逸成,姚勇涛.燃料电池电动汽车用DC/DC 变
换器方案[J].低压电器,2002,NO.5.
[8]吴兵,陈沛,冷宏祥等.车载供氢系统[J].上海汽车,2007
(9):9-11.
[9]MICHANEL R S.Hydrogen fuel leak simulation[R].
[S.1]:University of Miami Coral Cables,2008.
[10]司戈.氢能源应用的消防安全初探[J].消防技术与产品
信息,2008(1):44-48.
[11]刘延雷,秦永泉,盛水平等.燃料车内氢气泄漏扩散数
值模拟烟机[J].中国安全生产可行技术,2009,5(5):5-8.
(上接第120页)
(上接第35页)
继续散热,导致温度略高于22℃;之后温度略高于设定值半导体制冷器开始工作降低温度,彩灯熄灭且蓝灯亮起,温度降低到等于设定值,蓝灯熄灭彩灯亮起且蜂鸣器再次报警,如此循环保证系统一直处于设定值范围以内,如图4红色升温曲线所示。

降温测试过程与升温过程类同,其设定温度为18℃,其测试结果如图4蓝色降温曲线所示,可知系统工作累计的最大误差为1℃,达到其设计要求。

5 结束语
本系统采用STM32主控制模块、温度控制模块、DS18B20温度采集模块、显示及报警模块等制作智能化温度控制装置。

结果表明,该系统实现了对温度测量、显示及自动控制等功能,具有功耗低,稳定性好,可操作性强,构建简单,成本低
廉等特点,并且系统扩展型强,具有较好的推广应用前景。

参考文献
[1]张祥,蔡景,林海彬,刁海飞.基于STM32的温湿度监
测系统设计[J].中国仪器仪表, 2013(7): 62-65.
[2]陈玉敏,谢玮,孟宪民.基于STM32的温度控制实验设
计[J].现代电子技术,2016,39(12): 37-40.
[3]李玮瑶,王小辉.基于DS18B20的关联型温度检测系统
的设计与实现[J].电子设计工程,2015(15): 93-95.[4]刘映宏.基于STM32的温湿度测量系统设计[J].电子技
术与软件工程,2015(10):104-105.
[5]张蓉蓉.基于STC89C52的智能温度控制系统硬件设计
[J].机电信息,2014(15):130-131.。

相关文档
最新文档