苏教版八年级下册数学压轴题主要是四边形和反比例函数(非常好的题目)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压轴题精选
1、如图,在平面直角坐标系xOy 中,矩形OEFG 的顶点E 坐标为(4,0),顶点G 坐标为(0,2).将矩形OEFG 绕点O 逆时针旋转,使点F 落在轴的点N 处,得到矩形OMNP ,OM 与GF 交于点A .
(1)判断△OGA 和△OMN 是否相似,并说明理由; (2)求过点A 的反比例函数解析式;
(3)设(2)中的反比例函数图象交EF 于点B ,求直线AB 的解析式;
(4)请探索:求出的反比例函数的图象,是否经过矩形OEFG 的对称中心,并说明理由.
2、如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE .
⑴ 求证:CE =CF ;
⑵ 在图1中,若G 在AD 上,且∠GCE =45°,则GE =BE +GD 成立吗?为什么? ⑶ 运用⑴⑵解答中所积累的经验和知识,完成下题: 如图2,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC =12,E
是AB 上一点,且∠DCE =45°,BE =4,求DE 的长.
B C E 图1
图
2 B C A D E
3、如图,已知直线1l 的解析式为63+=x y ,直线1l 与x 轴、y 轴分别相交于A 、B 两点,直线2l 经过B 、C 两点,点C 的坐标为(8,0),又已知点P 在x 轴上从点A 向点C 移动,点Q 在直线2l 从点C 向点B 移动。点P 、Q 同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t 秒(101< (2)设△PCQ 的面积为S ,请求出S 关于t 的函数关系式。 (3)试探究:当t 为何值时,△PCQ 为等腰三角形? 4、已知:如图①,在Rt ACB △中,90C ∠=,4cm AC =,3cm BC =,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为(s)t (02t <<),解答下列问题: (1)当t 为何值时,PQ BC ∥? (2)设AQP △的面积为y (2cm ),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使线段PQ 恰好把Rt ACB △的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由; (4)如图②,连接PC ,并把PQC △沿QC 翻折,得到四边形PQP C ',那么是否存在某一时刻t ,使四边形PQP C '为菱形?若存在,求出此时菱形的边长;若不存在,说明理由. A Q C P A Q P B 5、已知反比例函数y = 8 m x -(m 为常数)的图象经过点A (-1,6). (1)求m 的值; (2)如图,过点A 作直线AC 与函数y =8 m x -(x<0)的图象交于点B ,与x 轴交于点C ,且AB =2BC ,求点C 的坐标. (3)求△AOB 的面积。(9分) 6、在△ABC 中,AB=BC ,∠ABC=90°,在△ADE 中,AD=DE ,∠ADE=90°连结EC ,取EC 中点M ,连结DM 和BM . (1)若点D 在边AC 上,点E 在边AB 上且与点B 不重合,如图1,证明:BM=DM 且BM ⊥DM ; (2)若将图1中的△ADE 绕点A 逆时针旋转45°的角,如图2,那么(1)中的结论是否成立?如果成立,请给予证明;如果不成立,请举出反例; (3)若将图1中的△ADE 绕点A 逆时针旋转小于45°的角,如图3,那么(1)中的结论是否仍成立?如果成立,请给予证明;如果不成立,请举出反例. A C B D E M 图2 A B C D E M 图1 M A B C E D 图3 F E C B A B' C'7、如图,点O 是边为2的正方形ABCD 的中心,点E 从A 点开始沿AD 边运动,点F 从D 点开始沿AD 边运动,并且AE=DE 。 (1) 求正方形ABCD 的对角线AC 的长; (2) 若点E 、F 同时运动,连结OE 、OF ,请你探究:四边形DEOF 的面积S 与正方形ABCD 的面积关系,并求出四边形DEOF 的面积S ; (3) 在(2)的基础上,设AE=x ,△EOF 的面积为y ,求y 与x 之间的函数关系式,写出 自变量x 的取值范围,并利用图象说明当x 在什么范围时,y 5 8 。 8、如图,已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG . (1)求证:EG=CG ; (2)将图①中△BEF 绕B 点逆时针旋转45°,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由; (3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明) F B C E G 图① F B A C E G 图② F B A C E 图③ D