第4章离子型聚合
高分子化学与物理习题(自编)
![高分子化学与物理习题(自编)](https://img.taocdn.com/s3/m/ae7a9275783e0912a2162a61.png)
第二章 缩聚及其它逐步聚合反应
14、 由1mol丁二醇和1mol己二酸合成数均分子量为5000的聚酯, 试作下列计算: (1)两基团数完全相等,忽略端基对分子量的影响,求终止聚合 时的反应程度? (2)在缩聚过程中,如果有0.5%(摩尔分数)丁二醇脱水生成 乙烯而损失,求到达同一反应程度的数均分子量? (3)如何补偿丁二醇脱水损失,才能获得同一分子量的缩聚物? (4)假定原始混合物中羧基的总浓度为2mol,其中1.0%为醋酸, 无其他因素影响两基团数比,求获得同一数均聚合度所需的总 反应程度? 15、AA-BB-A3混合体系进行缩聚NA0=NB0=3.0,A3中A基团数占混 合物中A总数的10%,试求p=0.970时的聚合度以及聚合度为 200的p。
第五章 自由基共聚合
11、说明竞聚率r1、r2的定义,指明理想共聚、 交替共聚、恒比共聚、恒比非理想共聚、嵌段 共聚时竞聚率数值的特征。
13、考虑r1=r2=1,r1=r2=0,r1>0且r2=0,r1r2=1 等情况,说明F1=f(f1)的函数关系和图像特征。
第五章 自由基共聚合
15、根据下图的二元组分的自由基共聚反应关系形状, 判断竞聚率值、共聚反应特征、共聚物组成与原料 组成的关系,以及共聚物两组分排列的大致情况。
第三章 自由基聚合反应
名词解释:引发效率、自动加速现象、阻聚和缓聚、动力学链长、链转移常数 1、下列单体只能进行自由基聚合的是( )。 A、苯乙烯 B、ClCH=CHCl C、CH2=C(CH3)C2H5 D、氯乙烯 2、下列单体不能进行自由基聚合的是( )。 A、CH2=CHOCOCH3 B、CH2=C(CH3)C00CH3 C、CH3CH=CHCOOCH3 D、CF2=CFCl 3、在乙酸乙酯的自由基聚合反应中加入少量苯乙烯,会发生( )。 聚合反应加速 B、聚合反应停止 C、相对分子量降低 D、相对分子质量增加 4、在自由基聚合反应中,若初级自由基与单体的引发速率最慢,则最终聚合速 率与单体浓度呈( )级关系。 A、1 B、1.5 C、2 D、不能确定 5、典型乳液聚合,主要引发地点在( )。 A、单体液滴 B、胶束 C、水相 D、单体液滴和胶束 6、过硫酸钾属于( )。 水溶性引发剂 B、油溶性引发剂 C、氧化还原引发剂 D、阴离子引发剂
第4章 离子聚合与配位聚合生产工艺
![第4章 离子聚合与配位聚合生产工艺](https://img.taocdn.com/s3/m/e7ddc92458fb770bf78a5596.png)
二、阳离子聚合反应的工业应用 1. 聚异丁烯 异丁烯在阳离子引发剂AlCl3、BF3等作用下,由于聚 合反应条件、反应温度、单体浓度、是否具有链转移剂等 的不同而得到不同分子量的产品,因而具有不同的用途。 低分子量聚异丁烯(分子量<5×104),于273-233K聚合 而得,为高粘度流体,主要用作机油添加剂、粘合剂等。 高分子量聚异丁烯为弹性体,用作密封材料和蜡的添加剂 或作为屋面油毡。
三、配位阴离子聚合的引发剂 1. 第一代Ziegler—Natta引发剂 Ⅳ一Ⅷ族过渡金属化合物和有机金属化合物组成的引 发剂称为Ziegler—Natta引发剂。 主引发剂:Ⅳ~Ⅷ族的过渡金属化合物。广泛使用的主引 发剂是+3价Ti盐,如TiCl3。 TiCl3有4种晶型:α-TiCl3、 β-TiCl3、γ-TiCl3和δ-TiCl3,其中α-, γ-,δ -三种晶型是 有效成分。 助引发剂:有机金属化合物。工业上常用的有机金属化台 物是Al(C2H5)3、 Al(C2H5)2Cl 和AlC2H5Cl2 。 第三组分:是为了提高Ziegler-Natta引发剂的引发活性 而加入的。包括含有给电子元素N、P、O和S等的化合物, 如叔丁胺((C4H9)3N)、乙醚(C2H5OC2H5)、硫醚 C2H5SC2H5和N,N-二甲基磷化氧([(CH3)2N]3P=O)等。
②合成AB型,ABA型以及多嵌段、星形、梳形等不同形 式的嵌段共聚物。
③合成某些具有适当功能团端基的聚合物。
4.2.3、配位聚合反应及其工业应用
一、配位聚合反应 由过渡金属卤化物与有机金属化合物组成的络 合型聚合引发剂体系引发乙烯基单体、二烯烃单体 进行的空间定向聚合反应,称为配位(阴离子)聚合反 应。配位聚合反应属于特殊的离子聚合反应,有时 也称为插入聚合反应(Insertion Polymerization)。 配位聚合的单体 凡是可以进行聚合的烯类单体都可以在配位阴 离子引发剂的作用下转变为聚合物。
第4章 离子聚合生产工艺
![第4章 离子聚合生产工艺](https://img.taocdn.com/s3/m/13fdd940a8956bec0975e302.png)
(4)SBS的脱气 SBS的脱气段实际上只需脱除溶剂。
SBS的脱气可采用SBS胶液的干法脱气和湿法脱气两种方式:
① 干法脱气 含20%的嵌段共聚物胶液,首先进入以蒸气夹套加热,并在 装有搅拌装置的卧式浓缩器中,浓缩至聚合物含量约26%。 然后进入双辊脱气箱。该箱分为上下两室,当共聚物胶液落
到热辊上后.即均匀地分布在整个辊上,从而在脱气箱上室中 初步脱除溶剂,而在下室的工作辊上彻底脱气。
第4章 离子聚合生产工艺
1 阳离子聚合的单体
阳离子聚合要求单体的特性: 单体易于被阳离子引发,并持续增长,不易终止。 单体必须是亲核性的电子给予体。
如(1)双键上带有强供电子取代基的α—烯烃(异丁烯)
(2)具有共轭效应基团的单体(苯乙烯、丁二烯、异戊二烯) (3)含氧、氮杂原子的不饱和化合物或环状化合物(甲醛、四氢 呋喃、乙烯基醚、环戊二烯)等。
第4章 离子聚合生产工艺
2 阳离子聚合过程
链引发
链增长
链转移与终止:可以向单体或溶剂进行链转移
向单体链转移
第4章 离子聚合生产工艺
3 阳离子聚合的引发剂或催化剂
共性:阳离子聚合所用的催化剂为“亲电试剂”。 作用:提供氢质子或碳阳离子与单体作用完成链引发过程。
类型 化合物 特点
含氢酸
Lewis酸
HClO4、H2SO4、H3PO4、 CH3COOH
③ 回收 来自干燥系统的未反应单体和溶剂进入精馏分离系统。 工业上的闪蒸气脱水干燥可兼用乙二醇吸收和固体吸附干燥 两种方法。 乙二醇干燥脱水的流程为:在操作压力170-340kPa(表 压)、温度40-50℃下,乙二醇吸收闪蒸气中大部分的水和 部分毒物及少量氯中烷和从塔底排出。解析再生。而塔顶出 来的物料含水量小于50ppm,送往固体吸附干燥塔进一步脱 水。固体吸附干燥塔采用活性氧化铝或沸石、分子筛作为吸 附剂。
高分子化学第四章(离子聚合)
![高分子化学第四章(离子聚合)](https://img.taocdn.com/s3/m/9cc7c03979563c1ec5da71aa.png)
(2)Lewis酸
这类引发剂包括AlCl3、BF3、SnCl4、SnCl5、ZnCl2和TiCl4 等金属卤化物,以及 RAlCl2,R2AlCl 等有机金属化合物,其中 以铝、硼 、钛、锡的卤化物应用最广。
Lewis 酸引发阳离子聚合时,可在高收率下获得较高分子量 的聚合物,因此从工业上看,它们是阳离子聚合的主要引发剂。
(5)聚合方法
自由基聚合可以在水介质中进行,但水对离子聚合的引发剂和 链增长活性中心有失活作用,因此离子聚合一般采用溶液聚合, 偶有本体聚合,而不能进行乳液聚合和悬浮聚合。
4.2 阳 离 子 聚 合
4.2.1 阳离子聚合单体
阳离子聚合单体必须是有利形成阳离子的亲核性烯类单体,包 括以下三大类:
(1)带给电子取代基的烯烃如:
Lewis 酸引发时常需要在质子给体(又称质子源)或正碳离 子给体(又称正碳离子源)的存在下才能有效。
质子给体或正碳离子给体是引发剂,而 Lewis 酸是助引发剂 (或称活化剂),二者一起称为引发体系。
质子给体 一类在 Lewis 酸存在下能析出质子的物质,如水、卤 化氢、醇、有机酸等;以 BF3 和 H2O引发体系为例:
阳离子聚合反应过程中的异构化反应
碳阳离子可进行重排形成更稳定的碳阳离子,在阳离子聚合 中也存在这种重排反应,如 β-蒎烯的阳离子聚合:
4.2.2.3 链转移和链终止 链转移反应 链转移反应是阳离子聚合中常见的副反应,有以下几种形式:
(1)向单体链转移: 增长链碳阳离子以 H+ 形式脱去 β-氢给单体,这是阳离子聚
(Ph)3C+ClO4- + OR
Ph Ph
Ph
CH2 CH ClO4OR
(4)卤素 卤素 I2 也可引发乙烯基醚、苯乙烯等的聚合,其引发反应被认
材料化学-第四章高分子材料化学习题及答案
![材料化学-第四章高分子材料化学习题及答案](https://img.taocdn.com/s3/m/6a89f7dc846a561252d380eb6294dd88d0d23db2.png)
第四章高分子材料化学习题:1、高聚物相对分子质量有哪些测试方法?分别适用于何种聚合物分子,获得的相对分子质量有何不同?(10分)答:测定高聚物相对分子质量的方法:渗透压、光散射、粘度法、超离心法、沉淀法和凝胶色谱法等。
这些方法中,有些方法偏向于较大的聚合物分子,有的方法偏向于较小的聚合物分子。
聚合物相对分子质量实际是指它的平均相对分子质量。
(1)数均相对分子质量( Mn ) 采用冰点降低、沸点升高、渗透压和蒸气压降低等方法测定的数均相对分子质量,即总质量除以样品中所含的分子数。
(2)质均相对分子质量( Mω) 采用光散射等方法测定质均相对分子质量。
(3)粘均相对分子质量( Mη) 采用粘度法测定粘均相对分子质量。
2、详述高分子聚合物的分类及各自的特征并举例。
(20分)答:高分子化合物常以形状、合成方法、热行为、分子结构及使用性能进行分类。
1、按高聚物的热行为分类(1) 热固性高聚物高聚物受热变成永久固定形状的高聚物(有些不需加热)。
不可再熔融或再成型。
结构:加热时,线型高聚物链之间形成永久的交联,产生不可再流动的坚硬体型结构,继续加热、加压只能造成链的断裂,引起性质的严重破坏。
利用这一特性,热固性高聚物可作耐热的结构材料。
典型的热固性高聚物有环氧树脂、酚醛树脂、不饱和聚酯树脂、有机硅树脂、聚氨酯等。
(2) 热塑性高聚物熔融状态下使它成型(塑化),冷却后定型,但是可以再加热又形成一个新的形状,可以多次重复加工。
结构:没有大分子链的严重断裂,其性质也不发生显著变化,称为热塑性高聚物。
根据这一特性,可以用热塑性高聚物碎屑进行再生和再加工。
聚乙烯、聚氯乙烯、ABS树脂、聚酰胺等都属于热塑性高聚物。
2、按高聚物的分子结构分类(1) 碳链高聚物大分子主链完全由碳原于组成,绝大部分烯类聚合物属于这一类。
如聚乙烯、聚苯乙烯、聚丁二烯等。
(2) 杂链高聚物大分子主链中除碳原子外,还有氧、氮、硫等杂原子。
如聚醚、聚酯、聚硫橡胶等。
离子聚合与配位聚合生产工艺
![离子聚合与配位聚合生产工艺](https://img.taocdn.com/s3/m/c7e5f476ce84b9d528ea81c758f5f61fb636286b.png)
一、离子聚合生产工艺特点
选择溶剂的原则 <1>应考虑溶剂极性大小,对离子活性中心的溶剂化能 力; <2>可能与引发剂产生的作用以及熔点或沸点高低; <3>是否容易精制提纯; <4>与单体、引发剂和聚合物的相容性等因素.
由于引发剂和增长链对水和杂质很灵敏.所以要求 溶剂应为高纯度、反应器及其辅助设备和溶剂要经过 充分干燥.
第四章 离子聚合与配位聚合工艺
本章内容
一、离子聚合生产工艺特点 二、配位聚合生产工艺特点 三、生产工艺过程
1、原料准备 2、催化剂制备 3、聚合工艺过程 4、后处理
概述
离子聚合与配位聚合都使用相应的催化剂‘或 称为引发剂进行催化聚合反应,由于有些催化剂对 H2O 的作用是灵敏的.或由于反应过程中生成的碳正 离子增长链〔-C+X-、碳负离子增长链〔-C - M+、阴离子配位键对H2O 的作用是灵敏的,所以不 能采用H 2O 为反应介质.因此与游离基聚合不同,不 能采用以H2O 为反应介质的悬浮聚合生产方法和乳 液聚合生产方法进行生产.而采用无反应介质的本体 聚合方法,包括气相法和液相法;或有反应介质存在 的溶液聚合方法,包括淤浆法和溶液法进行工业生产.二、配位聚合生产工艺特点
5、产品分子量分布: 配位聚合所得聚合物分子量分布宽,分布指数通
常大于10.共聚反应所得共聚物的非均一性也很大. 对此现象的解释是活性中心的活性度不一致,而且扩 散效应限制了单体向活性中心的传递所致.
三、生产工艺过程
离子聚合与配位聚合生产工艺过程一般包括原 料准备、催化剂制备、聚合、分离、有的生产过程 中还有溶剂回收与后处理等工序.
一、离子聚合生产工艺特点
2、反应温度:聚合反应温度影响收率、聚合度、 聚合反应速度、副反应、聚合物空间结构规整度 以及共聚反应的竟聚率等.
4第四章 聚合方法
![4第四章 聚合方法](https://img.taocdn.com/s3/m/4600bcdd76a20029bd642d95.png)
自由基聚合的基元反应 链引发 链增长 链终止 链转移 慢引发、快增长、速终止
自动加速现象(凝胶效应) 阻聚(有诱导期)和缓聚
1
2
主要内容: 4.1 引言(重点) 4.2 本体聚合
4.3 溶液聚合
4.4 悬浮聚合(难度系数:***) 4.5 乳液聚合(难度系数:*****) 4.6 四种聚合方法的比较(重点)
后聚合:
透明粘稠的预聚体流入聚合塔,可以热聚合或加少量 低活性引发剂,料液从塔顶缓慢流向塔底,温度从 100 ℃增至200 ℃,聚合转化率99%以上。
采用上述同一设备,还可生产HIPS(耐冲击性聚苯乙
烯)、SAN(苯乙烯丙烯腈)、ABS(丙烯腈-苯乙烯丁二烯共聚物)等。
16
4.3 溶液聚合
----单体和引发剂溶于适当溶剂中进行的聚合反应。 大多数情况下,生成的聚合物也溶于同一溶剂。
1 考虑用途 2 考虑产品特点 3 兼顾经济效费比
12
4.2 本体聚合
何谓本体聚合?
----不加任何其它介质(如溶剂、稀释剂或分散介 质),只有单体本身,在引发剂、热、光或辐射源 等作用下进行的聚合反应。 包括气态、液态和固态单体 单体
基本组分
引发剂 一般为油溶性 有哪些?
色料
助剂
增塑剂
悬浮聚合 (Suspensin)
物料起始状态
乳液聚合 (Emulsion)
单体在水中以乳液状态进行的 溶液聚合 聚合,体系主要由单体、引发 (Solution Polymerization) 剂、水及乳化剂等组成 将单体和引发剂溶于适当溶剂 中进行的聚合
6
(二)按单体和聚合物的溶解状态分类
《高分子化学》第4章 自由基共聚合
![《高分子化学》第4章 自由基共聚合](https://img.taocdn.com/s3/m/f5dd72c0760bf78a6529647d27284b73f3423665.png)
6
第四章 自由基共聚合
由一段M1链段与一段M2链段构成的嵌段共聚物, 称为AB型嵌段共聚物。如苯乙烯—丁二烯(SB)嵌 段共聚物。由两段M1链段与一段M2链段构成的嵌段 共聚物,称为ABA型嵌段共聚物。如苯乙烯—丁二 烯—苯乙烯(SBS)嵌段共聚物。由n段M1链段与n 段M2链段交替构成的嵌段共聚物,称为(AB)n型嵌 段共聚物。
1, 2-二苯乙烯也不能均聚,但能与马来酸酐共聚, 产物严格交替。
13
第四章 自由基共聚合
(3)理论研究 共聚合反应可用于研究单体、自由基、阴
离子和阳离子的活性,了解单体活性与聚合 物结构之间的关系。
14
第四章 自由基共聚合
4.2 二元共聚物的组成与序列分布
4.2.1 共聚组成的特点 两种单体进行共聚时,由于化学结构不同,反应
R iM1
k
21[M
. 2
][M
1
]
k12
[M1.
][M
2
]
R
t11
R t12
0
d[M
. 2
]
dt
R iM2
k
12
[M
. 1
][M
2
]
k
21[M
. 2
][M
1
]
R
t22
R t12
0
(4—4) (4—5)
因为自由基总浓度不变,即
R iM1 R t11 R t12 0 R iM2 R t22 R t12 0
W2
W1 r1KW1 W2
dW2
W2
r2 W2
W1
m2 m1
W2 r2W2 KW1
(4—15)
K m2
第4章 自由基聚合反应的实施方法
![第4章 自由基聚合反应的实施方法](https://img.taocdn.com/s3/m/5c5400bff121dd36a32d8274.png)
工业上溶液聚合多用于聚合物溶液直接使用的 场合,例如:涂料、胶粘剂、浸渍剂、 场合,例如:涂料、胶粘剂、浸渍剂、合成纤维纺 丝的溶液、继续进行化学反应等。 丝的溶液、继续进行化学反应等。 1 溶液聚合的优缺点
优点: 优点: (i)聚合热易扩散,聚合反应温度易控制; 聚合热易扩散,聚合反应温度易控制; ii)体系粘度低,自动加速作用不明显; (ii)体系粘度低,自动加速作用不明显;反应物 料易输送; 料易输送; iii)体系中聚合物浓度低, (iii)体系中聚合物浓度低,向高分子的链转移 生成支化或交联产物较少,因而产物分子量易控制, 生成支化或交联产物较少,因而产物分子量易控制, 分子量分布较窄; 分子量分布较窄; iv)可以溶液方式直接成品。 (iv)可以溶液方式直接成品。
聚合方法是为完成聚合反应而确立的, 聚合方法是为完成聚合反应而确立的,聚合机 理不同,所采用的聚合方法也不同。 理不同,所采用的聚合方法也不同。 由于自由基相对稳定,自由基聚合反应的实 由于自由基相对稳定, 施方法主要有本体聚合 溶液聚合、悬浮聚合、 本体聚合、 施方法主要有本体聚合、溶液聚合、悬浮聚合、 乳液聚合。 乳液聚合。 离子聚合则由于活性中心对杂质的敏感性而多 采用溶液聚合或本体聚合 溶液聚合或本体聚合。 采用溶液聚合或本体聚合。 熔融缩聚、 逐步聚合采用的聚合方法主要有熔融缩聚 逐步聚合采用的聚合方法主要有熔融缩聚、溶 液缩聚、界面缩聚和固相缩聚。 液缩聚、界面缩聚和固相缩聚。
本体聚合工业生产实例
聚合物 聚甲基丙烯酸 甲酯 引发 BPO 或 AIBN 工艺过程 产品特点与用途
第一段预聚到转化率10%左 左 第一段预聚到转化率 光学性能优于无机玻 右的粘稠浆液, 璃可用作航空玻璃、 右的粘稠浆液 , 浇模升温聚 璃可用作航空玻璃、 高温后处理, 脱模成材。 光导纤维、标牌等。 合 , 高温后处理 , 脱模成材 。 光导纤维、标牌等。
第四章离子聚合知识
![第四章离子聚合知识](https://img.taocdn.com/s3/m/a5ec98f127d3240c8547ef2b.png)
第四章离子聚合习题参考答案1.与自由基聚合相比,离子聚合活性中心有些什么特点?解答:离子聚合和自由基聚合的根本不同就是生长链末端所带活性中心不同。
离子聚合活性中心的特征在于:离子聚合生长链的活性中心带电荷,为了抵消其电荷,在活性中心近旁就要有一个带相反电荷的离子存在,称之为反离子,当活性中心与反离子之间得距离小于某一个临界值时被称作离子对。
活性中心和反离子的结合,可以是极性共价键、离子键、乃至自由离子等多种形式,彼此处于平衡状态:BA B+A B+A B +A +I II III IVⅠ为极性共价物种,它通常是非活性的,一般可以忽略。
Ⅱ和Ⅲ为离子对,引发剂绝大多数以这种形式存在。
其中,Ⅱ称作紧密离子对,即反离子在整个时间里紧靠着活性中心。
Ⅲ称作松散离子对,即活性中心与反离子之间被溶剂分子隔开,或者说是被溶剂化。
Ⅳ为自由离子。
通常在一个聚合体系中,增长物种包括以上两种或两种以上的形式,它们彼此之间处于热力学平衡状态。
反离子及离子对的存在对整个链增长都有影响。
不仅影响单体的的聚合速度,聚合物的立体构型有时也受影响,条件适当时可以得到立体规整的聚合物。
2.适合阴离子聚合的单体主要有哪些,与适合自由基聚合的单体相比的些什么特点?解答:对能进行阴离子聚合的单体有一个基本要求:①适合阴离子聚合的单体主要有:(1)有较强吸电子取代基的烯类化合物主要有丙烯酸酯类、丙烯腈、偏二腈基乙烯、硝基乙烯等。
(2)有π-π共轭结构的化合物主要有苯乙烯、丁二烯、异戊二烯等。
这类单体由于共轭作用而使活性中心稳定。
(3)杂环化合物②与适合自由基聚合的单体相比的特点:(1)有足够的亲电结构,可以为亲核的引发剂引发形成活性中心,即要求有较强吸电子取代基的化合物。
如VAc,由于电效应弱,不利于阴离子聚合。
(2)形成的阴离子活性中心应有足够的活性,以进行增长反应。
如二乙烯基苯,由于空间位阻大,可形成阴离子活性中心,但无法增长。
(3)不含易受阴离子进攻的结构,如甲基丙烯酸,其活泼氢可使活性中心失活。
第四章 自由基共聚合(2)
![第四章 自由基共聚合(2)](https://img.taocdn.com/s3/m/0c18ad3accbff121dd3683d9.png)
d [ M 1 ] [ M 1 ] r1[ M 1 ] [ M 2 ] d [ M 2 ] [ M 2 ] r2 [ M 2 ] [ M1 ]
P
1 r1 1 r2
r2 的测定值。 与直线交点法一样,作 r1 ~ r2 图,直线的交点就是 r1 ,
积分法实验简单,但估算繁琐。
d [ M 1 ] [ M 1 ] r1[ M 1 ] [ M 2 ] d [ M 2 ] [ M 2 ] r2 [ M 2 ] [ M1 ]
重排
几组单体配比,[M1]/[M2]→对
应几组共聚物组成d[M1]/d[M2],代 入上式,不同的r2 ~r1直线 直线交点或交叉区域重心的座 标即为r1、r2。 交叉区域大小与实验准确度有关。
若 r1<1,表示 k11< k12,即 E11> E12。式右边为正值,温度上 升,r1也上升,趋于1。 若 r1>1,表示 k11> k12,即 E11< E12。式右边为负值,温度上 升,r1下降,也趋于1。总的结果,温度上升,r1r2 1,共聚反应 向理想共聚方向发展。
由于各种烯类单体的增长活化能相差不大( 21 ~ 34kJ/mol), E11 -E12数值很小,因此温度对竟聚率的影响度不大。
极性效应
极性效应:又称交替效应:
带有推电子取代基的单体往往易与另一带有吸电 子取代基的单体发生共聚,并有交替倾向,这种效应 称为极性效应。
推电子基使烯类单体双键带负电性,而吸电子基则使
其带正电性,极性相反的单体易共聚,有交替倾向。
H2C CH R
H2C
+
CH
R
一些难均聚的单体,如马来酸酐、反丁烯二酸二乙酯, 能与极性相反的单体如苯乙烯、乙烯基醚类共聚。
第四章作业答案
![第四章作业答案](https://img.taocdn.com/s3/m/04e3a9335727a5e9856a61be.png)
8. 进行阴离子聚合反应或配位聚合反应时预先要对原料及 聚合容器进行怎样的处理?为什么?试写出相关的反应式。 因为离子聚合和配位聚合的引发剂及活性链均很活泼, 许多杂质及空气中的水、O2、CO2均可破坏引发剂使活性中 心失活,因此,需预先将原料和聚合容器净化、干燥、除 去空气并在密封及N2保护条件下进行。
7. 化学计量聚合:
阴离子的活性聚合由于其聚合度可由单体和引发剂的浓 度定量计算确定,因此也称为化学计量聚合。 8 立构规整度: 立构规整聚合物的质量占总聚合物质量的分率。 9 遥爪聚合物: 是一种分子两端带有反应性官能团的低分子量聚合物。 10. 热塑弹性体: 常温下具有橡胶的弹性,高温下具有可塑化成型的一类 弹性体。既具备传统交联硫化橡胶的高弹性、耐老化、耐 油性各项优异性能,同时又具备普通塑料加工方更、加工 方式广的特点。
很少短支链 强度高,熔 低压配位聚 点较高 合(Z-N) 8/1000C (130-135)
短支链 (可控) 介于上面两 低压配位聚 种之间 合(Z-N)
7. 配位聚合反应实施方法有哪几种?与自由基反应有何不 同?为什么? 配位聚合常用的实施方法有: 1.淤浆聚合(溶液聚合);2.气相聚合;3.本体聚合 由于配位聚合必须在无水、无氧条件下进行,所以不能采 用自由基聚合通常采用的悬浮聚合及乳液聚合这两种以水 为介质的实施方法。
3. 苯乙烯在萘钠的四氢呋喃溶液中聚合为典型的(9) 阴离 子 聚合,其产物的特点是(10) 分子量分布窄 ,当用0.002 摩尔的萘钠引发208克苯乙烯单体聚合,转化率达到100%时, 所得聚苯乙烯的分子量为(11) 2.08x105。 4. 合成顺丁橡胶的聚合反应式(12) ,工业上最常采用 的引发体系为(Ziegler-Natta引发剂,烯丙基过渡金属型引 发剂,烷基锂引发剂),顺丁橡胶因为其高顺式含量也属于 (13) (全同聚合物,立构规整聚合物,结晶聚合物)。
第四章烯烃-2
![第四章烯烃-2](https://img.taocdn.com/s3/m/c69b2f4d2e3f5727a5e962ab.png)
H C C R C H C R −H C C R
消去H 消去H
亲电试剂为 正碳离子
碳正离子的 来源之一
H C C
H H C C H
烯烃的二聚(正离子型) 烯烃的二聚(正离子型)
外消旋体
单纯的S 单纯的SN2或SN1机理 不能解释上述立体专一性
50%构型全保持 % 50%构型全翻转 %构型全
用环正离子机理解释
CH3 H H CH3 Br OH H Br H H CH3 CH3 Br OH2 H3C OH2 H a Br H H3C Br Br CH3 a H b Br b H3C H H Br CH3 Br H3C H H H CH3 CH3 Br Br CH3 H H Br
Ni + NaAlO2 + H2 ) 骨架镍
催化氢化机理
H H H H C C H H C C
过渡金属 催化剂
氢气吸附在 催化剂表面
H
烯烃与催 化剂络合
C H C
C H
C H
+
催化剂再生 无催化剂 有催化剂 可能多步骤) (可能多步骤)
H2
势 能
+
C C
催化剂作用: 催化剂作用: 降低反应的活 化能, 化能,对逆向反应 同样有效( 同样有效(催化剂 的可逆性)。 的可逆性)。
Br
δ−
Br
CH3
CH3 Br2 Br H H Br CH3 CH3 Br2 CH3 Br Br CH3 H H + H Br
CH3 Br H CH3
关于顺或 反式烯烃加 卤素的立体 化学
高分子化学 第四章 自由基共聚合(2)-精选文档
![高分子化学 第四章 自由基共聚合(2)-精选文档](https://img.taocdn.com/s3/m/1293cc4d48d7c1c709a14527.png)
1
三元(Tri-Component)共聚:
三种单体参加反应,共聚物由三个单体单元组成。
3种自由基;3个引发反应;9个增长反应;6个终止
反应;6个竞聚率
二元共聚: 2个引发反应;4个增长反应;3个终止反应;2个竞聚率
6个竞聚率:
M1-M2
r12 k 11 k 12
M2-M3
r 23 k 22 k 23
Valvassori-Sartori的稳态假定:
三元共聚物组成比为:
若三种单体的两两竞聚率已知,可估算其三元 共聚物组成。
4.6
一、竞聚率的测定 1、曲线拟合法
将多组组成不同的 单体配料(f1)进行共聚, 控制低转化率,共聚物分 离精制后,测定其组成F1, 作 F1 ~ f1 图,根据其图形 由试差法求得r1、r2。
13
4.7 单体和自由基的活性
回顾:
在均聚反应中,无法比较单体和自由 基的活性, 如
St St PS
k p 145
VAc VAc PVAc
单体活性 St>>VAc ????
k p 2300
原因:
1) 增长反应的kp的大小,不仅取决于M还 取决于M *; 2) 缺少比较的标准,参考体系不一致。
但这并不表示醋酸乙烯酯及其单体的活性 大于苯乙烯,因为均聚过程中,苯乙烯和醋酸 乙烯酯都只与自身的自由基进行共聚,因此相 互之间没有可比性。 事实上,苯乙烯的活性大于醋酸乙烯酯, 而它们的自由基的活性正好相反。 两种单体或两种自由基的活性只有与同种 自由基或单体反应才能比较。竟聚率可以用以 判别单体或自由基的相对活性。
d [ M ] [ M ] r [ M ] [ M ] 1 2 1 1 1 d [ M ] [ M ] r [ M ] [ M ] 2 2 2 2 1
高分子化学 第四章__自由基共聚合
![高分子化学 第四章__自由基共聚合](https://img.taocdn.com/s3/m/c8a4beeaaeaad1f346933f7e.png)
4.1 概 述-2、意义
例如马来酸酐是1,2取代单体,不能均聚。 但与苯乙烯或醋酸乙烯能很好共聚,是优良的 织物处理剂和悬浮聚合分散剂。 /p-21194446.html 1,2-二苯乙烯也不能均聚,但能与马来酸酐共 聚。产物严格交替。 理论研究:通过共聚反应研究可了解不同单体 和链活性种的聚合活性大小、有关单体结构与 聚合活性之间的关系、聚合反应机理多方面的 信息等,完善高分子化学理论体系。
Poly(A-co-B):A-B共聚物 Poly(A-alt-B):A-B交替共聚物
A-b-B copolymer:A-B嵌段共聚物
Poly(A)-g-poly(B):聚A接枝聚B
4.2 二元共聚物的组成
共聚物性能
密切相关
共聚物组成
不相等 但相关
单体组成
共同决定
单体单元含量与 连接方式
单体相对活性
r1表征了单体M1和M2分别与末端为M1*的增长链 反应的相对活性,它是影响共聚物组成与原料单体混 合物组成之间定量关系的重要因素。
4.2 二元共聚物的组成-1、组成方程
r1 = k11/k12, r2 = k22/k21
r1 = 0,表示M1的均聚反应速率常数为0,不能 进行自聚反应,M1*只能与M2反应; r1 > 1,表示M1*优先与M1反应发生链增长; r1 < 1,表示M1*优先与M2反应发生链增长; r1 = 1,表示当两单体浓度相等时,M1*与M1和 M2反应发生链增长的几率相等; r1 = ∞,表明M1*只会与M1发生均聚反应,不会 发生共聚反应。
该类例子很多,如丁二烯—苯乙烯体系( r1=1.35, r2=0.58,50℃);氯乙 烯—醋酸乙烯酯体系( r1=1.68, r2=0.23 );甲基丙烯酸甲酯—丙烯酸甲酯体 系( r1=1.91, r2=0.5 )。 苯乙烯—醋酸乙烯酯体系也属此类( r1 = 55, r2 = 0.01 ),但因r1>> 1, r2 << 1,故实际上聚合前期得到的聚合物中主要是苯乙烯单元,而后期的聚合 物中主要是醋酸乙烯酯单元,产物几乎是两种均聚物的混合物。
第4章 习题及答案
![第4章 习题及答案](https://img.taocdn.com/s3/m/223166db89eb172ded63b73d.png)
以苯乙烯的聚合反应为例,各引发剂的链引反应式如下: 注意:链引发反应包括两个基本反应,即引发活性种的产生及其和单体的 加成,引发活性种与单体加成时,其加成方式应使生成的单体活性种能得到 取代基的共振稳定作用,即引发活性种进攻双键中不带取代基的 C)
注意:离子聚合不 要漏掉抗衡离子
3、在离子聚合反应过程中,能否出现自动加速效应?为什么? 在离子聚合反应过程中不会出现自动加速现象。 自由基聚合反应过程中出现自动加速现象的原因是:随着聚合
引发剂:
(1) 为过氧化苯甲酰,属过氧化物自由基引发剂;(2)为过氧化物+低价 盐,属自由基聚合的氧化还原引发体系;(3)钠-萘属电子间接转移阴离子 聚合引发剂;(4)n-C4H9Li属烷基金属化合物阴离子聚合引发剂;(5) BF3+H2O为Lewis酸阳离子聚合引发体系;(5)为碳阳离子源阳离子聚合引 发体系,其中t-BuCl为碳阳离子源,是引发剂,AlCl3为Lewis酸活化剂。
反应的进行,体系的粘度不断增大。当体系粘度增大到一定程度时,
双基终止受阻碍,因而kt明显变小,链终止速度下降;但单体扩散 速度几乎不受影响,kP下降很小,链增长速度变化不大,因此相对 提高了聚合反应速度,出现了自动加速现象。在离子聚合反应过程 中由于相同电荷互相排斥不存在双基终止,因此不会出现自动加速
乙二醇二甲醚是溶剂化能力很强的溶剂,可使金属离子溶剂化。 金属反离子的半径越小,其溶剂化程度越大,因而紧密离子对活性 种的浓度越小,疏松离子对和自由离子活性种的浓度越大,链增长
速度也越大。碱金属原子半径的顺序是:Li < Na < K, 所以苯乙烯
在乙二醇二甲醚中的聚合速度顺序是:RLi > RNa >RK。
第4章 习题及答案
高分子化学(潘祖仁)教案-第4章-聚合方法
![高分子化学(潘祖仁)教案-第4章-聚合方法](https://img.taocdn.com/s3/m/55c870736c175f0e7cd137ad.png)
1. 溶剂的活性
溶剂对聚合的影响:溶剂是介质,不参加反应,但溶 剂对引发剂有诱导分解作用,链自由基对溶剂有链转 移反应。
2. 溶剂对聚合物的溶解性能及凝胶效应的影响
选用良溶剂时,有可能消除凝胶效应(gel effect),而选 用沉淀剂时,则凝胶效应显著,劣溶剂的影响介于两者 之间。
乳化剂种类(Type of Emulsifier)
根据极性基团的性质可分: ➢阴离子型(anionic):羧酸盐类(RCOOM)、硫酸盐类 (ROSO 3 M) 、 磺 酸 盐 类 (RSO 3 M) 、 磷 酸 盐 类 (ROPO(OM) );
2
➢阳离子型(cationic):季铵盐类(RN + (CH3)3Cl-)、其他 铵的盐类(RNH2 ·HCl);
➢ 聚合初期:转化率和粘度不大,易散热。 ➢ 当转化率提高(10~30%):体系粘度增大,加上凝胶效应, 放热加剧。
如散热不良,轻则造成局部过热,使分子量分布变宽,影 响产品性能;重则温度失控,引起爆聚(implosion)。
改进的方法:分段聚合
第一阶段:低转化率和低粘,可在搅拌釜中进行; 第二阶段:高粘,在特殊反应器中进行。(如有机玻璃板的制造)。 本体聚合示例:MMA、苯乙烯、氯乙烯、乙烯。
亲水的极性基团 hydrophilic polar group
亲油的非极性基团 hydrophobic nonpolar group
例:硬脂酸钠(sodium stearate):C17H35COONa
亲油的非极性基团
亲水的极性基团
5.2 乳化作用(Emulsification)及乳化剂(Emulsifier)——乳化剂
《高分子化学》教案第4章自由基聚合实施
![《高分子化学》教案第4章自由基聚合实施](https://img.taocdn.com/s3/m/5a283ed00722192e4436f632.png)
第四章自由基链式聚合实施方法本章要点:1.自由基链式聚合的实施:通常有本体聚合、溶液聚合、悬浮聚合和乳液聚合,它们有不同的适用场合,有着各自的优缺点;2.本体聚合:为解决散热问题,采用分段聚合;3.溶液聚合:溶剂的选择性是关键;4.悬浮聚合:聚合机理同常规的本体或溶液聚合,分散剂起到关键作用,产物的粒径达到mm级;5.乳液聚合:具有特殊的聚合机理和聚合规律,通过增加乳化剂用量可同时提高聚合速率和产物的分子量;6.大品种高分子:低密度聚乙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚乙酸乙烯酯和丁苯橡胶等等,宜采取适当方法生产。
本章难点:1.乳液聚合的聚合场所:增溶胶束和乳胶粒为乳液聚合的主要差所;2.乳液聚合的聚合过程:根据聚合速率,乳液聚合分为三个阶段;聚合过程中单体和乳化剂的物料转移由单体液滴、至水相、再至乳胶粒;聚合过程中分散相(胶束、单体液滴和乳胶粒)按一定规律变化;3.乳液聚合动力学:经典的乳液聚合包含许多理想条件。
4.1 聚合方法和聚合体系4.1.1 单体在反应介质中的分散状态本体聚合没有反应介质,溶液聚合中单体以分子状态溶解在反应介质,悬浮聚合中单体以mm级的分散相悬浮于反应介质中,在乳液聚合中单体主要存在于分散相的单体液滴和乳胶粒中。
4.1.2. 按聚合体系的相态单体及其聚合物以分子状态溶解在反应介质中,聚合体系成为一相,此时为均相聚合;反之,单体或/和聚合物不溶于反应介质,聚合体系具有多个相,此时为非均相聚合。
4.1.3. 按单体的物理状态分类分为气相聚合、液相聚合和固相聚合。
4.2 本体聚合4.2.1 本体聚合的组成和特点本体聚合体系由单体、引发剂和少量助剂组成。
除用引发剂进行聚合以外,还可用光和辐照来进行聚合。
本体聚合的聚合速率高,产物纯度大,但是散热和搅拌困难。
4.2.2 本体聚合的适用场合产物纯度高,特别适用于生产板材和型材等透明制品,且所用设备比较简单。
本体聚合反应,也特别适合于实验室研究。
离子聚合资料
![离子聚合资料](https://img.taocdn.com/s3/m/382003f7fc0a79563c1ec5da50e2524de418d061.png)
离子聚合简介离子聚合是一种重要的化学反应过程,指的是带电物质,即离子,在适当条件下相互吸引形成聚集体的过程。
离子聚合在化学、生物学、材料科学等领域都有广泛的应用,是一种重要的合成策略。
基本原理离子聚合是在溶液中,带电的阳离子和阴离子相互吸引而结合成大分子的过程。
通常情况下,这种反应是在水或有机溶剂中进行。
在离子聚合过程中,通常会产生水或其他小分子作为副产物。
离子聚合的应用1.聚合物合成:离子聚合在合成高分子材料中起着重要作用。
通过离子聚合,可以合成具有特定性质的聚合物,如聚合物胶体、聚合物微胶粒等。
2.生物医学领域:在药物传递、基因治疗等领域,离子聚合也有着重要的应用。
通过调控离子聚合过程,可以实现药物或基因的高效传递和释放。
3.智能材料:离子聚合还可以用于制备智能材料,如响应性聚合物、水凝胶等,在传感、控释等领域有着广泛的应用。
离子聚合的影响因素1.溶液pH值:pH值是影响离子聚合反应的重要因素。
在不同pH值下,离子会有不同的电荷状态和相互作用方式。
2.温度:温度对离子聚合反应的速率和产物结构也有显著影响。
3.溶剂:不同溶剂对离子聚合反应的溶剂化和分子运动等方面有影响。
离子聚合的发展趋势随着材料科学、医学、生物学等领域的不断发展,离子聚合作为一种重要的合成策略,其应用范围也在不断扩大。
未来,随着合成方法和材料设计的不断改进,离子聚合的性能和应用也将得到进一步提升。
总结离子聚合作为一种重要的合成策略和化学反应过程,在各个领域都有着广泛的应用。
通过调控离子聚合反应条件,可以合成具有特定性质和功能的聚合物材料,为材料科学、生物医学等领域的发展提供重要支撑。
随着科学技术的不断进步,离子聚合在未来的发展前景十分广阔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章离子型聚合
6.1 离子型聚合与自由基聚合反应的比较
自由基聚合与阴、阳离子型聚合同属链式聚合,但由于活性中心的性质不同,其聚合过程特征有很大区别。
现归纳比较如下。
(1) 引发剂种类
自由基聚合常采用过氧化物、偶氮化合物等容易热分解产生自由基的物质作引发剂,引发剂的性质只影响引发反应。
离子型聚合则采用容易产生活性离子的物质作引发剂。
阳离子引发剂是亲电试剂,主要是Lewis酸。
阴离子引发剂是亲核试剂,主要是碱金属及其有机化合物。
(2) 多种增长物种共存
对于离子型引发剂而言,不仅包括阴离子或阳离子的活性中心,而且在活性中心的旁边始终存在着一个带有相反电荷的反离子。
反离子的存在对聚合反应速度和聚合物的微观结构都有影响,其影响大小取决于反离子性质及其与活性中心的相对位置
BA B+A-B+//A- B+ + A- (5-1)
ⅠⅡⅢⅣ
式(5-1)中,I为共价的物种,它通常是非活性的,一般可以忽略。
Ⅱ和Ⅲ为离子对,引发剂绝大多数以这种形式存在。
其中,Ⅱ称作紧密离子对,即反离子在整个增长时间里紧靠着活性中心。
Ⅲ称作松散离子对,即活性中心与反离子之间被溶剂分子隔开,或者说是溶剂化。
Ⅳ为自由离子。
通常在一个聚合体系中,增长物种包括以上两种或两种以上的形式,它们彼此之间处于热力学平衡状态。
(3) 单体结构
离子型聚合对单体有较高的选择性。
具有推电子基的乙烯基单体,双键上电子云密度增加,有利于阳离子聚合。
具有吸电子基团的乙烯基单体,则容易进行阴离子聚合。
带有弱吸电子基的乙烯基单体,适于自由基聚合。
共轭烯类单体能以三种机理聚合。
环状单体和羰基化合物由于极性较大,一般不能自由基聚合,只能进行离子型聚合或逐步聚合。
(4) 溶剂的影响
自由基聚合时,溶剂只参与链转移反应,并可影响引发剂分解速率。
离子型聚合时,溶剂的极性和溶剂化能力,对引发和增长活性中心的状态有很大的影响,使之可分别处于共价结合、紧密离子对、松散离子对、直到自由离子。
如增加溶剂的极性,可使式(5-1)的平衡向右移动,改变增长物种的状态及相对含量,从而影响聚合反应速度和聚合物的微观结构。
离子型聚合除了用非极性烃类溶剂外,对其它溶剂是有选择性的:阳离子聚合可用卤代烷、CS2、液态S02、C02等溶剂,而阴离子聚合则可用液氨、液氯和醚类等,它们不能颠倒使用,否则会产生链转移或链终止。
(5) 聚合温度
自由基聚合温度取决于引发反应的需要,通常在50qC-80~C左右,甚至更高。
离子
型聚合引发反应活化能很低,为防止链转移、重排等副反应的发生,有的在低温(-78℃~ -100℃)下进行,反应仍能快速进行。
(6) 聚合机理
自由基聚合机理的特征是慢引发、快增长、速终止,并且多是双基终止。
离子型聚合时,相同电荷不能双基终止,因此,阳离子聚合时快引发、快增长、易转移、难终止,通常是通过向单体、溶剂等转移而终止,也有比较难的自发终止。
阴离子聚合一般是快引发、慢增长、难终止,甚至不终止,需补加终止剂终止。
(7) 阻聚剂的类型
自由基聚合阻聚剂一般为氧、苯醌、稳定的自由基等物质,通常对离子型聚合无阻聚作用。
极性物质,如水、醇等是离子型聚合的阻聚剂。
酸类是阴离子聚合的阻聚剂,碱类则是阳离子聚合的阻聚剂。