第二章载流子输运现象.
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
输运:载流子的净流动过程称为输运。
两种基本输运体制:漂移运动、扩散运动。 载流子的输运现象是最终确定半导体器件电流-电压特 性的基础。 假设:虽然输运过程中有电子和空穴的净流动,但是 热平衡状态不会受到干扰。 涵义:n、p、EF的关系没有变化。(输运过程中特 定位置的载流子浓度不发生变化) 热运动的速度远远超过漂移或扩散速度。(平均的 统计的效果)
半导体材料与器件
第二章
载流子输运现象
本章学习要点: 了解载流子漂移运动的机理以及在外电场作用下的漂移电 流; 了解载流子扩散运动的机理以及由于载流子浓度梯度而引 起的扩散电流; 了解连续性方程以及其中所含的产生与复合成分。 了解并掌握半导体材料中霍尔效应的基本原理及其分析方 法;
半导体材料与器件
* p
半导体材料与器件
同理,电子的平均漂移速度为:
e cn vdn * E mp
e cn n * mn
根据迁移率和速度以及电场的关系,知道:
可以看到迁移率与有效质量有关。有效质量小,在相同的平 均漂移时间内获得的漂移速度就大。 迁移率还和平均漂移时间有关,平均漂移时间越大,则载流 子获得的加速时间就越长,因而漂移速度越大。 平均漂移时间与散射几率有关。
半导体材料与器件
我们用有效质量来描述空穴的加速度与外力(电场力) 之间的关系
dv F m eE dt
* p
v表示电场作用下的粒子速度(漂移速度,不包括热运 动速度)。假设粒子的初始速度为0,则可以积分得到:
eEt v * mp
半导体材料与器件
用гcp来表示在两次碰撞之间的平均漂移时间。
半导体材料与器件
§2.1 载流子的漂移运动
漂移电流密度:载流子在外加电场作用下的定向运动称为 漂移运动,由载流子的漂移运动所形成的电流称为漂移电 流。
欧姆定律:
V I R
I
R=V/I
l R s
1
V s l
普通的欧姆定律不能表示出不同位置的电流分布
半导体材料与器件
电流密度:
I
半导体材料与器件
漂移电流密度
J drf
I eNAvt Nev A At
E
v V
平均定向漂移速度
A
eN
载流子浓度 单位电量
半导体材料与器件
J drf eNv E
一般说来,在弱场情况下,载流子的定向漂移速度与外 加电场强度成正比,即:
v E
J drf eNv eN E
I J s
对于一段长为l,截面面积为s,电阻率为ρ 的均匀导体,若施加
以电压V,则导体内建立均匀电场E,电场强度大小为:
对于这一均匀导体,有电流密度:
V E l
El I V J /s / s E l s R s
将电流密度与该 处的电导率以及 电场强度联系起 来,称为欧姆定 律的微分形式
半导体材料与器件
在弱场下,主要的散射机制:
晶格散射,电离杂质散射 单纯由晶格振动散射所决定的载流子迁移率随温 度的变化关系为:
L T 3/ 2
随着温度的升高,晶格振动越为剧烈,因而对载流子的散射 作用也越强,从而导致迁移率越低
半导体材料与器件
半导体材料与器件
电离杂质散射
碰撞:载流子的散射;即载流子速度的改变。 经典碰撞。实际的接触为碰撞。 类比:堵车时,汽车的移动速度和方向,不断由于 其它汽车的位置变化而变化。尽管没有实际接触,但 由于阻碍车的存在,造成了汽车本身速度大小和方向 的改变。这类似于载流子的散射,也即碰撞。
半导体材料与器件
其中μ 称作载流子的迁移率。 因而有电导率和迁移率的关系:
eN
半导体材料与器件
半导体中电子和空穴的运动
外场条件下空穴的热运动和定向运动
4 1 1 3 2 电场E 4 3
2
无外场条件下载流子的无规则热运动
1 2
4
3
半导体材料与器件
半导体中电子的热运动 散射:在实际晶体中,存在各种晶格缺陷,晶格本 身也不断进行着热振动,它们使实际晶格势场偏离 理想的周期势,这相当于在严格的周期势场上叠加 了附加的势场。这个附加的势场作用于载流子,将 改变载流子的运动状态,即引起载流子的“散射”。
散射的影响 热平衡情况
散射使载流子的运动紊乱化。例如,假设某一时刻晶体 中的某些载流子的速度具有某一相同的方向,在经过一 段时间以后,由于碰撞,将使这些载流子的速度机会均 等地分布在各个方向上。这里“紊乱化”是相对于“定 向”而言的,与这些载流子具有沿某一方向的初始动量 相比,散射使它们失去原有的定向运动动量,这种现象 称为“动量驰豫”。正是上述散射过程导致平衡分布的 确定,在平衡分布中,载流子的总动量为零,在晶体中 不存在电流。
半导体材料与器件
有外场的情况 在晶体中存在电场时,电场的作用在于使载流子获得 沿电场方向的动量(定向运动动量),每个载流子单位时 间内由电场获得的定向运动动量为eE,但是由于散射,载 流子的动量不会像在理想晶体中那样一直增加;它们一方 面由电场获得定向运动动量,但另一方面又通过碰撞失去 定向运动动量,在一定的电场强度下,平均来说,最终载 流子只能保持确定的定向运动动量,这时,载流子由电场 获得定向运动动量的速度与通过碰撞失去定向运动动量的 速度保持平衡。 此时晶体中的载流子将在无规则热运动的基础上叠加 一定的定向运动。
载流子和晶格振动的相互作用,则不但可以改
变载流子的运动方向,而且可以改变它的能量, 我们也常把散射事件称为“碰撞”。
半导体材料与器件
晶格散射
晶格原子热振动导致势场的周期性遭 到破坏,相当于增加了一个附加势
Ec
理想晶格原子排列 以一定模式振动的晶格原子
Leabharlann BaiduEv
晶格原子振动以格波来描述。格波能量量子化,格波 能量变化以声子为单位。电子和晶格之间的作用相当 于电子和声子的碰撞。
电场E 4 1 1 2 3 2 3 4
则在弱场下,电场所导致的定向漂移速度和热运动速 度相比很小(~1%),因而加外场后空穴的平均漂移 时间并没有明显变化。利用平均漂移时间,可求得平 均最大漂移速度为: eE
v
m
cp * p
半导体材料与器件
vdp
因而有:
e cp m
* p
E
p
e cp m