古塔的变形-2013年数学建模大赛C题
2013数学建模——古塔的变形
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): C我们的参赛报名号为(如果赛区设置报名号的话):5339所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2013 年 09 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):古塔的变形数学模型摘要:本文是研究关于古塔变形类型以及变形分析的模型,用Matlab画出古塔的三维结构可以看出它是近似于正八边形的形状。
因此,问题一我们用每层各个测量点坐标的平均值作为塔每层的中心坐标,再用中心坐标的三个坐标值分别对时间t做回归来得到确定古塔各层中心位置的通用方法。
全国大学生数学建模竞赛历年赛题
全国大学生数学建模竞赛历年赛题1992:A?施肥效果分析 B?实验数据分解1993:A?非线性交调的频率设计 B?足球队排名次1994:A?逢山开路 B?锁具装箱1995:A?一个飞行管理问题 B?天车与冶炼炉的作业调度1996:A?最优捕鱼策略 B?节水洗衣机1997:A?零件参数 B?截断切割1998:A?投资的收益和风险 B?灾情巡视路线1999:A?自动化车床管理 B?钻井布局 C?煤矸石堆积 D?钻井布局2000:A?DNA序列分类 B?钢管购运 C?飞越北极 D?空洞探测2001:A?血管三维重建 B?公交车调度 C?基金使用2002:A?车灯线光源 B?彩票中数学 D?赛程安排2003:A?SARS的传播 B?露天矿生产 D?抢渡长江2004:A?奥运会临时超市网点设计 B?电力市场的输电阻塞管理C?饮酒驾车 D?公务员招聘2005:A 长江水质的评价和预测 B?DVD在线租赁C?雨量预报方法的评价 D?DVD在线租赁?2006:A出版社的资源配置 B 艾滋病疗法的评价及疗效的预测C易拉罐形状和尺寸的最优设计D 煤矿瓦斯和煤尘的监测与控制2007:A 中国人口增长预测 B 乘公交,看奥运C 手机“套餐”优惠几何D 体能测试时间安排2008:A 数码相机定位 B 高等教育学费标准探讨C 地面搜索D NBA赛程的分析与评价2009:A 制动器试验台的控制方法分析 B 眼科病床的合理安排C 卫星和飞船的跟踪测控 D会议筹备2010:A储油罐的变位识别与罐容表标定B 2010年上海世博会影响力的定量评估C输油管的布置D对学生宿舍设计方案的评价2011: A 城市表层土壤重金属污染分析B 交巡警服务平台的设置与调度C 企业退休职工养老金制度的改革D 天然肠衣搭配问题2012: A 葡萄酒的评价B 太阳能小屋的设计C 脑卒中发病环境因素分析及干预D 机器人避障问题2013: A 车道被占用对城市道路通行能力的影响B 碎纸片的拼接复原C 古塔的变形D 公共自行车服务系统2014: A 嫦娥三号软着陆轨道设计与控制策略B 创意平板折叠桌C 生猪养殖场的经营管理D 储药柜的设计2015: A ?太阳影子定位B?“互联网+”时代的出租车资源配置C? 月上柳梢头D? 众筹筑屋规划方案设计。
基于古塔变形问题的数学模型_大学生数学建模竞赛
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载).我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外地任何人(包括指导教师)研究、讨论与赛题有关地问题.我们知道,抄袭别人地成果是违反竞赛章程和参赛规则地,如果引用别人地成果或其他公开地资料(包括网上查到地资料),必须按照规定地参考文献地表述方式在正文引用处和参考文献中明确列出.我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛地公正、公平性.如有违反竞赛章程和参赛规则地行为,我们将受到严肃处理.我们授权全国大学生数学建模竞赛组委会,可将我们地论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等).我们参赛选择地题号是(从A/B/C/D中选择一项填写): C我们地参赛报名号为(如果赛区设置报名号地话): Y4904 所属学校(请填写完整地全名):杨凌职业技术学院参赛队员 (打印并签名) :1. 李策2. 路开3. 李延枫指导教师或指导教师组负责人 (打印并签名):张涛(论文纸质版与电子版中地以上信息必须一致,只是电子版中无需签名.以上内容请仔细核对,提交后将不再允许做任何修改.如填写错误,论文可能被取消评奖资格.)日期: 2013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于古塔变形问题地数学模型摘要本文主要通过建立数学模型来探讨古塔地变形情况以及未来地变形趋势.首先通过建立解读几何模型确定古塔各层地中心坐标,然后利用Matlab软件进行多项式拟合得到各层中心坐标地曲线方程,最后借助此曲线方程计算得倾斜、弯曲、扭曲等各个变形量,并绘制出各层地位移沉降折线图,通过这些图形地变化趋势并结合各个变形量之间地关系,我们预测出古塔未来地变形趋势.针对问题一:我们根据题中给出地数据和条件,结合对古塔实际观测点,通过Matlab绘图软件确定古塔形状为八角形,从而建立起解读几何模型,并用Excel电子表格计算每层八点坐标地平均值,进而确定各次测量地古塔各层中心坐标.针对问题二:首先由问题一中所计算出地各层中心坐标,对于各个测量年份而言,将三维曲线转换为二维曲线,利用matlab软件对各层中心点坐标进行多项式(曲线)拟合,根据拟合出地曲线,取得该曲线地xyz三个旋转角度,即倾斜(z轴与xy平面地夹角),弯曲(曲线地曲率),扭曲(绕z轴地旋转角度)等,记为α、K、β.针对问题三:利用题中所给数据,绘制各测量年份地各层位移沉降折线图,观察其倾斜趋势,并进行预测;结合问题二中曲线曲率和扭曲角度,联系测量年份,分别利用多项式拟合得到各自与测量年份地关系式,进而更好地预测出弯曲、扭曲地变形趋势.最后,综合分析各个变形量地趋势,并对模型进行评价推广.关键词:中心坐标 matlab软件多项式拟合一.问题重述古塔是一种在亚洲常见地,有着特定地形式和风格地东方传统建筑,是中国五千年文明史地载体之一,为祖国城市山林增光添彩,矗立在大江南北地古塔,被誉为中国古代杰出地高层建筑.[1]古塔由于长时间经过各种自然环境地影响,必然会产生变形.文物部门为了更好地保护古塔,必须对其进行适时地观测,确定各种变形量,根据变形量,预测古塔地变形趋势,最后制定必要地保护措施.因此,根据上述信息,我们讨论以下问题:1、建立数学模型,研究古塔各层中心位置地通用方法,并列表确定各次测量地古塔各层中心坐标.2、分析古塔倾斜、弯曲、扭曲等变形情况.3、综合各种变形情况,分析古塔未来地变形趋势.二.问题分析本文研究地是古塔地变形问题.题中古塔地变形主要包括倾斜、弯曲、扭曲.首先,根据题中给出地数据和条件,确定各次测量地古塔各层中心坐标;然后对各个测量年份依次分析,将三维曲线转换为二维曲线,利用matlab软件对各层中心点坐标进行多项式(曲线)拟合,根据拟合出地曲线,计算倾斜、弯曲、扭曲三个变形量地大小关系;最后绘制各测量年份地各层位移沉降折线图,并分别利用多项式拟合得到各自与测量年份地关系式,从而更好地预测古塔未来地变形趋势.三.模型建设1.假设每层各个点都在同一平面内;2.假设古塔在各种自然环境作用下,不发生破坏;3. 假设倾斜只受地基地沉降影响,忽略其他因素.四.符号说明五.模型建立与求解5.1关于问题一地模型建立与求解:根据题中给出地数据和条件,我们利用Matlab 绘图软件可以得出题中地古塔为八角形古塔:假设每层各个点都在同一个平面内,根据简单地解读几何地方法确定各次测量地古塔各层中心坐标.可得中心坐标(x,y,z )地通用公式:x=887654321x x x x x x x x +++++++y=887654321y y y y y y y y +++++++z=887654321z z z z z z z z +++++++根据上式,用Excel 电子表格计算每层八点坐标地平均值,确定各次测量地古塔各层中心坐标.如表1如下:5.2关于问题二地模型建立与求解:根据问题一,我们得出各次测量地古塔各层中心坐标),,(z y x ,如图1所示:图1由图1,可以看出图中后两点偏差较大,所以拟合时将其忽略.由于中心坐标为三维坐标,所以不能将各层中心坐标进行三维多项式拟合.[2]首先,我们要将三维转换成二维进行计算,令A=22y x +,进而让三维坐标),,(z y x 转换成二维坐标),(z A ;分别作Aoz 面地投影,然后将各层二维坐标进行多项式拟合.拟合程序见附录,拟合图像如图2所示:通过拟合得到:z= 21794.387 A 3-50411386.903A 2+38867927591.030A-9989249763219.082倾斜(z 轴与xy 平面地夹角):对z 求一阶导z '=65383.161A 2-100822773.806A+38867927591.030=tan(α)α=arctan(65383.161A 2-100822773.806A+38867927591.030)弯曲(曲线地曲率):对z 求二阶导z ''=130766.322A-100822773.806=1k 2/32,,,)1(y y + [3]=2/322])1.0303886792759+806A 100822773.- 65383.161A (1[806100822773.-A 130766.322+扭曲(绕z 轴地旋转角度):我们先做出古塔俯视图(即xoy 面地曲线),如图3所示:图3据观察可得出,前10个点基本在同一条直线上,受扭曲地影响较小,所以我们用这10个点可以拟合出一条直线函数作为不受扭曲地参照直线,再连接第一层塔心和塔尖地塔心得到另一条直线,两条直线所成地夹角即为扭曲角度.1986年前十组中心坐标拟合图如图4图4前10点拟合图方程:y= -0.6425x+886.7750同时,我们可以求出连接第一层塔心和塔尖地塔心所得到地另一条直线地方程: >> x=[566.6648,567.2473]。
【2013年高教社杯全国大学生数学建模竞赛赛题C】CUMCM2013C
【2013年高教社杯全国大学生数学建模竞赛赛题C】
CUMCM2013C
全国大学生数学建模竞赛真题试卷复习材料2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)
C题古塔的变形
由于长时间承受自重、气温、风力等各种作用,偶然还要受地震、飓风的影响,古塔会产生各种变形,诸如倾斜、弯曲、扭曲等。
为保护古塔,文物部门需适时对古塔进行观测,了解各种变形量,以制定必要的保护措施。
某古塔已有上千年历史,是我国重点保护文物。
管理部门委托测绘公司先后于1986年7月、1996年8月、2009年3月和2011年3月对该塔进行了4次观测。
请你们根据附件1提供的4次观测数据,讨论以下问题:
1. 给出确定古塔各层中心位置的通用方法,并列表给出各次测量的古塔各层中心坐标。
2. 分析该塔倾斜、弯曲、扭曲等变形情况。
3. 分析该塔的变形趋势。
利用曲线拟合分析古塔的变形
r e l e v a n t d e p a r t me n t s t o p r o t e c t t h e t o w e r .
关键词 :古塔变形; 曲线拟合 ; 空间曲线
Ke y wo r d s : d e f o r ma t i o n o f he t a n c i e n t p a g o d a ; c u ve r i f t t i n g ; s p a c A N G J i n - s h e n g ; ¥  ̄ 伟芳 Y A N G We i — f a n g ;  ̄德玉 Z O U D e — y u
( 海 口经济 学 院 , 海口 5 7 1 1 2 7 ) ( Ha i k o u C o l l e g e o f E c o n o mi c s , Ha i k o u 5 7 1 1 2 7 , C h i n a )
圃
塔尖 : 2 0 1 1 年 一至 五 层 、 2 0 1 1 年 五层 至 塔 尖 的 古 塔 中 心 的
坐标 系( 如图 1 ) 3 模型建立与求解
倾斜 度。结果如表 1 、 表2 。
表 1 古塔各层中心对应偏移距离
, ,
u s i n g c u r v e i f t t i n g t o e s t a b l i s h t h r e e
d i me n s i o n l a s p a c e ma t h e ma t i c l a mo d e l t o r e s e a r c h t h e t o we r d e f o r ma t i o n pr o b l e m t h e n we g e t t h e d e f o m a r t i o n s i t u a t i o n a n d t r e n d o f t h e p a g o d a mo r e e x a c t l y . T h i s p a p e r g i v e s a mo r e e x a c t q u a n t i t a t i v e a n ly a s i s o f he t d e f o m a r t i o n o f he t p a g o d a a n d c a n p r o v i d e s u p p o r t f o r t h e
全国大学生数学建模竞赛历年试题
全国大学生数学建模竞赛历年试题1.1992年A题:施肥效果分析;B题:试验数据分析;2.1993年A题:非线性交调的频率设计;B题:足球队拍名次;3.1994年A题:逢山开路;B题:锁具开箱;4.1995年A题:一个飞行管理问题;B题:天车与冶炼炉的作业调度;5.1996年A题:最优捕鱼策略;B题:节水洗衣机;6.1997年A题:零件的参数设计;B题:截断切割;7.1998年A题:投资的收益和风险B题:灾情巡视路线8.1999年A题:自动化车床管理B题:钻井布局C题:煤矸石堆积D题:钻井布局9.2000年A题:DNA序列分类B题:钢管订购和运输C题:飞越北极D题:空洞探测10.2001年A题:血管的三维重建B题:公交车调度C题:基金使用计划D题:公交车调度11.2002年A题:车灯线光源的优化设计B题:彩票中的数学C题:车灯线光源的计算D题:赛程安排12.2003年A题:SARS的传播B题:露天矿生产的车辆安排C题:SARS的传播D题:抢渡长江13.2004年A题:奥运会临时超市网点设计B题:电力市场的输电阻塞管理C题:饮酒驾车D题:公务员招聘14.2005年A题:长江水质的评价和预测B题:DVD在线租赁C题:雨量预报方法的评价D题:DVD在线租赁15.2006年A题:出版社的资源配置B题:艾滋病疗法的评价及疗效的预测C题:易拉罐形状和尺寸的最优设计D题:煤矿瓦斯和煤尘的监测与控制16.2007A题:中国人口增长预测;B题:乘公交,看奥运;C题:手机“套餐”优惠几何;D题:体能测试时间安排17.2008A题数码相机定位;B题高等教育学费标准探讨;C题地面搜索;D题NBA赛程的分析与评价.18.2009A题制动器试验台的控制方法分析B题眼科病床的合理安排C题卫星和飞船的跟踪测控D题会议筹备19.2010A题储油罐的变位识别与罐容表标定B题2010年上海世博会影响力的定量评估C题输油管的布置D题对学生宿舍设计方案的评价19.2011A题城市表层土壤重金属污染分析B题交巡警服务平台的设置与调度C题企业退休职工养老金制度的改革D题天然肠衣搭配问题20.2012A题葡萄酒的评价B题太阳能小屋的设计C题脑卒中发病环境因素分析及干预D题机器人避障问题21.2013 A题车道被占用对城市道路通行能力的影响B题碎纸片的拼接复原C题古塔的变形D题公共自行车服务系统。
2020数学建模-古塔的变形
2013数学建模-古塔的变形承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): C我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2013 年 9 月 13 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):对古塔变形问题的数学建模摘要中国古语有云,“救人一命胜造七级浮屠”,所谓浮屠也就是大众口中的“塔”。
在中国辽阔的大地上,古塔的踪影随处可见。
它们造型精美、结构巧妙,成为可多得的独特景观。
早起的古塔,主要是阁楼式的建筑,从唐朝经过两宋至辽、金,是我国古塔发展的高峰时期,特别是唐和两宋,古塔的建造达到了空前繁荣度,总量较以前大增,材料也更为丰富,除了木材和砖、石以外,还使用了铜、铁、琉璃等、材料上有木塔为主转为以石塔为主,平面则由四方形逐渐演变为六角和八角形。
数学建模--建筑变形问题
第十一届“创新杯〞大学生数学建模竞赛编号专用页论文编号(竞赛组织者编写):题号:C题—建筑物的变形问题XX:学号::学院:土木与交通学院专业:土木工程:建筑物的变形问题摘要论文编号:本文针对建筑体变形问题,将数据模型化,采用替代法,用控制点代表建筑整体,用控制点的中心代表整体建筑的中心。
通过对控制点及中心点的量化研究,分析整个建筑的各种变形情况。
对于问题1,给出确定此类建筑物各层中心位置的通用方法,并对题中的建筑物算出其各层中心的具体坐标。
我们采用CAD制图软件,先确定出建筑的大体形状,建立建筑物的模型,再对各层的变形进展分析,然后确定中心点应满足的条件,最后用数据求解。
对于问题2,分析该建筑物倾斜、弯曲、扭曲等变形情况,并对其变形趋势进展研究。
我们在问题1的根底上,将建筑的变形模型化,分为随各层中心点的平动及绕中心点的定轴转动。
其中,平动表现为倾斜,而绕中心的转动又分为绕中心轴的转动和绕平面上过中心点的轴的转动。
前者表现为扭曲,后者表现为弯曲。
通过的数据对模型进展定量计算,推测其未来的变形趋势。
在分析现有数据时,我们对明显错误的数据进展了舍弃,对建筑物的突然出现的大变形进展了合理假设。
在对以上两问题研究时,我们建立模型后,仅用Excel就完成了数据的分析和对变形的预测,并未动用其它数学软件。
关键词:〔3-5个〕替代平动定轴转动绕轴转动倾斜扭转弯曲第十一届_2021_“创新杯〞数学建模竞赛建筑物的变形问题2021年5月20日目录一、问题的重述 (2)二、问题的分析 (2)三、模型假设 (2)四、建模过程 (2)1)、问题一 (2)1、建立模型 (2)2、模型求解 (3)2)、问题二 (6)〔1〕倾斜 (6)1、定义符号说明 (6)2、建立模型 (6)3、模型求解 (10)〔2〕弯曲 (11)1、定义符号说明 (11)2、建立模型 (11)3、模型求解 (12)〔3〕扭曲 (12)1、定义符号说明 (12)2、建立模型 (12)3、模型求解 (12)五、变形趋势 (13)六、建模的优缺点 (13)七、参考文献 (13)一、问题的重述高层建筑物长期承受各种荷载,会发生下沉、倾斜、弯曲、扭曲等各种变形。
2013高教社杯全国大学生数学建模竞赛C题
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): C我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1. 劉華疆2.3.指导教师或指导教师组负责人(打印并签名):日期: 2013 年 8 月 29 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):有害物质存储地点选取和运输修路摘要本文对重金属汞、铅、砷在A,B,C,D四个地方分布,从中选出重金属含量最少的两地。
首先,对问题一,我们按照各地重金属含量与四个地方空间坐标分布,明显看出各点分布较为集中。
筛选出权重较高的影响M变质的数据,以及对M影响较重、中等等数据进行筛选,后进行整理,选出有效数据进行分析讨论,后做出合理猜想并进行验证结果。
其次,对问题二,重金属汞、铅、砷含量所对应的所有坐标与A,B,C,D四个地方在matlab中做出与之相关联的回归曲线。
分析各点与曲线分布关系,猜想出重金属含量最少的两地,并做出合理论证。
最后再进一步推论,用筛选出对M影响的权重数据,做出回归曲线,最终判断出猜想的两地为最优的两地。
最后,对问题三,运输修路要经过一条线段与一个半圆的一条路径,应画出相应的几何图形,给出多个方案,判断最短路径。
2013全国大学生数学建模山西赛区山西财经大学华商第43队论文----C题-古塔变形
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): C我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):山西财经大学华商学院参赛队员(打印并签名) :1. 胡珺怡2. 赵萌3. 陈茜指导教师或指导教师组负责人(打印并签名):张培强日期: 2013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):古塔的变形分析摘要本文针对古塔的变形这,由于长时间承受自重、气温、风力等各种作用,偶然还要受地震,飓风的影响,古塔会产生各种变形,为保护古塔,文物部门需要对古塔进行观测,了解古塔的变形情况。
因为当3个观测点位于一个圆周上时,可以用图解或解析的方法确定圆心的位置;当观测点数大于3时,可以用最小二乘进行曲线拟合,计算出圆心的坐标。
本文用最小二乘法进行曲线的拟合,得到古塔各层中心点坐标。
使用线性回归,曲线拟合法,梯度下降法得到各层中心所在的直线方程。
对直线进行投影,利用曲率对古塔的变形、弯曲、扭曲进行了研究。
通过对问题一所给数据的处理分析,用matlab对其中已知数据的作图发现所给的数据呈圆形,从而建立圆形塔模型,画出相应图形。
发现题设所给的数据所画的图形拟合程度极高。
2013数学建模——古塔的变形
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): C我们的参赛报名号为(如果赛区设置报名号的话):5339所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2013 年 09 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):古塔的变形数学模型摘要:本文是研究关于古塔变形类型以及变形分析的模型,用Matlab画出古塔的三维结构可以看出它是近似于正八边形的形状。
因此,问题一我们用每层各个测量点坐标的平均值作为塔每层的中心坐标,再用中心坐标的三个坐标值分别对时间t做回归来得到确定古塔各层中心位置的通用方法。
2013高社杯全国大学生数学建模竞赛C题
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): C我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):古塔的变形摘要:本文研究的古塔的变形问题,通过对问题背景及附件资料进行深入地分析,采用数据拟合、求平均值等方法整理出具有科学性的分析数据。
通过对建筑物位移监测数据处理方法的研究, 采用自回归模型对位移监测数据进行处理, 根据建立的模型对具体建筑物的监测点的位移变化量进行预报。
经过计算分析, 根据位移量之间变化的关系而建立的自回归预测模型具备较高的拟合及预测精度,运用三维坐标系和数学软件将古塔的模型以空间模型的形式表现出来,直观且科学,对于研究古塔的变形具有较高的科学性和说服性。
再通过三维坐标之间的回归和三维坐标与时间的回归而分析出古塔的倾斜,弯曲,扭曲等变形状况,通过数学软件的计算及列表列图的方法将结果直观体现,通过大量的计算与分析,运用几何和代数方法将古塔的变形量以数学的方式说明。
对于分析古塔变形趋势中,运用了位移差和位移残差平方公式等量及与时间的关系来说明其变形趋势。
古塔变形分析模型
古塔变形分析模型李静;张媛;顾忠;贺欣;王鹏【摘要】根据2013年全国大学生数学建模比赛C题中某古塔4年的观测数据,给出了确定古塔各层中心位置的通用方法,建立了最优化模型,用Lingo软件求得4次测量的古塔的各层中心坐标。
以斜率、曲率、投影、均方差、拟合等知识为基础,对倾斜度、弯曲度、扭曲度三个指标进行定义,结合使用Excel和Matlab软件对古塔变形情况进行量化分析,最后根据得到的数据对古塔的变形趋势进行预测。
%According to the 2013 national college students' mathematical modeling competition problem C a pa-goda four years of observation data, gives the general method of the ancient towers layers center position, the optimi-zation model is established, using Lingo software, obtained four times while hiking in the measurement of each layer center coordinates;And by slope, curvature, projection, the mean square error, fitting, such as knowledge, slope, bending and torsion degrees "define" the three indexes and combined with using Excel and Matlab software, the quantitative analysis of the deformation of the tower, and according to the data to predict the deformation trend of tower.【期刊名称】《郑州铁路职业技术学院学报》【年(卷),期】2016(028)004【总页数】6页(P15-20)【关键词】倾斜度;弯曲度;扭曲度;均方差;优化模型;曲率;拟合【作者】李静;张媛;顾忠;贺欣;王鹏【作者单位】郑州铁路职业技术学院,河南郑州450052;郑州铁路职业技术学院,河南郑州 450052;郑州铁路职业技术学院,河南郑州 450052;郑州铁路职业技术学院,河南郑州 450052;郑州市金水区教育体育局,河南郑州 450008【正文语种】中文【中图分类】O29由于古塔长时间受自身或外界因素影响,会发生各种变形,包括倾斜、弯曲、扭曲。
对“古塔变形”数学建模答卷的评议
作者: 朱文辉
作者机构: 南通职业大学基础部,江苏南通226007
出版物刊名: 南通职业大学学报
页码: 53-54页
年卷期: 2014年 第2期
主题词: 数学建模竞赛 变形 古塔 选题策划 栏目 大学生 碰撞
摘要:2013年岁末,本刊“数学与建模”栏目被评为江苏期刊“明珠奖·优秀选题策划”。
欣喜之余,深感要将这一已持续开设四年多的栏目办得更好、更具特色。
为此,本期以2013年全国大学生数学建模竞赛赛题之一---“古塔变形研究”为主题,刊发3篇相关论文,并邀请资深建模专家朱文辉教授撰写了题为《对“古塔变形”数学建模答卷的评议》的专稿,对在这项研究中一些颇具争议的热点、难点和疑点给出评述。
数学建模开放而不违科学、严谨而不失创新,充满了生机与魅力,吸引了无数高校师生倾心其中,本栏目将一如既往,努力办成广大数学建模爱好者智慧碰撞的乐园。
确定古塔中心坐标的通用方法及MATLAB程序
确定古塔中心坐标的通用方法及MATLAB程序【摘要】2013年全国大学生数学建模竞赛C题是借用文物部门的4次观测数据研究某古塔的倾斜、弯曲、扭曲等变形情况。
但是要研究其变形情况,必须先确定古塔各层的中心坐标。
本文首先对1986年和1996年缺失数据进行补充,其次,利用完整的数据拟合每层各测量点所在平面;最后,将各测量点投影到平面上,得到每层各中心点坐标的通用模型。
并且每一步都附有相应的MATLAB 计算成程序,这样做极大的减少了计算量,加快了运算速度。
【关键词】中心坐标;线性拟合;平面拟合一、问题提出2013年全国大学生数学建模竞赛已经结束了,但对竞赛题目的研究还在继续,其中C题是根据附件1提供的4次观测数据研究某古塔的倾斜、弯曲、扭曲等变形情况以及该塔的变形趋势。
但是要研究其变形情况,必须先确定古塔各层的中心坐标,那么中心坐标该如何确定,大量的数据计算又该如何处理呢?二、问题解决1.缺失数据补充附件1(参见2013年全国大学生数学建模竞赛C题)给出的数据中,1986 年和1996 年的第13层第5点的坐标是缺失的,要完整的讨论各层的中心坐标,我们需要补充缺失数据。
首先,提取1986年古塔前12层第5点的坐标,分别作x,y,z与层数t的散点图(如图1所示)。
程序如下:A=[567.941 517.407 1.772;567.995 517.563 7.306;568.048 517.716 12.741;568.091 517.838 17.064;568.136 517.969 21.705;568.18 518.095 26.189;568.172 518.346 29.791;568.164 518.59 33.305;568.156 518.834 36.809;568.148 519.068 40.171];t=(1:12)’;x=A(:,1);y=A(:,2);z=A(:,3);subplot(2,2,1);plot(t,x,’*’),grid onsubplot(2,2,2);plot(t,y,’o’),grid onsubplot(2,2,3);plot(t,z,’+’),grid on图1 1986年每层第5点的坐标分量散点图其次,再观察图1中x坐标发现:x与层数t呈现分段线性关系,我们所求的第13层坐标处于分段函数第三段上,所以我们只需对第三段用MATLAB进行数据拟合[1],程序如下:t1=[ones(3,1),(10:12)’];x=A(10:12,1);[b1,bint1,r1,rint1,stats1]=regress(y,t1)由该程序可得x坐标与层数t的第三段线性关系为:x=568.6932-0.0545t(t≥10)(1)第三,观察图1中y坐标与z坐标发现:y,z与层数t是线性关系,所以我们用MATLAB对坐标数据进行线性拟合,程序如下:t2=[ones(12,1),(1:12)’];y=A(:,2);[b2,bint2,r2,rint2,stats2]=regress (y,t2)t3=[ones(11,1),(2:12)’];z=A(2:12,3);[b3,bint3,r3,rint3,stats3]=regress (z,t3)由该程序可得y和z坐标与层数t的线性关系为:y=517.1185+0.1880t (2)z=0.8997+4.0044t(由于第1点是异常点,所以剔除掉)(3)最后,我们在(1)-(3)式中分别令t=13可得1986年第13层第5点的坐标为:(567.9847,519.5625,52.9569)。
古塔的变形情况及趋势研究
古塔的变形情况及趋势研究发表时间:2014-11-21T13:42:22.750Z 来源:《价值工程》2014年第5月上旬供稿作者:王飞[导读] 本文通过问题转化,建立初等数学模型研究古塔的倾斜程度、弯曲程度及扭曲程度。
Study on Deformation and Tendency of Old Pagoda王飞 WANG Fei;章茜 ZHANG Qian(浙江机电职业技术学院,杭州 310018)(Zhejiang Institute of Mechanical & Electrical Enginnering,Hangzhou 310018,China)摘要:依据2013年全国大学生数学建模竞赛C题所给的古塔各层中观测点坐标的信息,运用基于最小二乘法的椭圆拟合算法结合MATLAB软件,列表给出各次测量的古塔各层中心坐标。
利用古塔各层中心坐标,并将问题进行转化,采用初等数学模型研究古塔的倾斜程度、弯曲程度、扭曲程度,最后建立灰色预测模型GM(1,1),对上述引起古塔变形的三个因素进行拟合、预测,分析古塔的变形趋势。
Abstract: According to coordinates of points observed for each layer of ancient pagoda in problem C of Chinese Undergraduate Mathematical Contest in Modeling(2013), this article lists the measured coordinates of the center of each layer in old pagoda by using ellipse fitting method which based on least-square principle and MATLAB. The problem is transformed by using the coordinates of the center of old pagoda in each layer, when the tilting degree, bending degree, twisting degree of old pagoda can be studied through primary mathematics model. Finally, the paper establishes the gray prediction model GM(1,1), summarizes and predicts the three factors which caused the deformation of old pagoda, and analyzes its trend.关键词:古塔变形;中心坐标;倾斜角;灰色预测模型GM(1,1)Key words: deformation of old pagoda;central coordinate;inclination;the gray prediction model GM (1,1)中图分类号:TU196;O242.1 文献标识码:A 文章编号:1006-4311(2014)13-0212-030 引言目前现存数量不多的古塔是一种古代高层建筑,标志着古代人们征服自然的胜利。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): C我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):石家庄职业技术学院参赛队员(打印并签名) :指导教师或指导教师组负责人(打印并签名):陈佩宁(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:2013年9月16日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):C题:古塔的变形摘要古塔由于长时间承受自重、气温、风力等各种作用,偶然还要受地震、飓风的影响,古塔会产生各种变形,诸如倾斜、弯曲、扭曲等。
为保护古塔,文物部门需适时对古塔进行观测,了解各种变形量,以制定必要的保护措施。
对于第一个问题,求中心点坐标,采用的是均值法,由于前两次测量中第13层第5个点没有数据,要是采用均值法求中心坐标,会产生较大的误差,所以在求第13层中心坐标,采用的是拟合法。
对于第二个问题,分析古塔倾斜、弯曲、扭曲等变形情况。
这个问题可以分三个小问题考虑。
1、分析古塔的倾斜情况,先用Matlab软件绘制出,古塔的俯视图,观察古塔的倾斜情况,大致的倾斜方向,再用三角函数求出古塔的倾斜角度,再把四次算的倾斜角,做一下比较,观察古塔的倾斜状况。
2、分析古塔的弯曲情况,首先观察X-Z坐标系中心点坐标,用Matlab软件把X-Z坐标系中的中心坐标拟合成一条曲线,求出这条曲线的曲率,然后按照上述方法求出Y-Z坐标系中心点坐标的曲线方程,求出这条线的曲率,分别观察古塔在X轴方向的弯曲情况,和Y轴方向的弯曲情况。
3、分析古塔的扭曲情况,由于时间关系,没有分析古塔的扭曲。
对于第三个问题,分析古塔的变形趋势,可以根据第二问中的倾斜角,弯曲情况,进行简单的分析。
关键词:Matlab拟合,Matlab绘图,均值法,Matlab curve fitting软件,Matlab编程一、问题重述古塔由于长时间承受自重、气温、风力等各种作用,偶然还要受地震、飓风的影响,古塔会产生各种变形,诸如倾斜、弯曲、扭曲等。
为保护古塔,文物部门需适时对古塔进行观测,了解各种变形量,以制定必要的保护措施。
某古塔已有上千年历史,是我国重点保护文物。
管理部门委托测绘公司先后于1986年7月、1996年8月、2009年3月和2011年3月对该塔进行了4次观测。
请你们根据附件1提供的4次观测数据,讨论以下问题:1. 给出确定古塔各层中心位置的通用方法,并列表给出各次测量的古塔各层中心坐标。
2. 分析该塔倾斜、弯曲、扭曲等变形情况。
3. 分析该塔的变形趋势。
二、问题分析本文我们是根据相关人员对古塔的观测的数据来分析该古塔的倾斜与弯曲的程度,并且分析出未来古塔的趋势走向。
首先,我们利用均值法求出各层的中心点并且拟合出图形,然后我们对该塔构建了三角形,利用三角函数求出该塔的倾斜角度,并且利用曲率算出弯曲的程度。
最后,我们利用所求出的数据以及图表进行分析得到该塔未来的发展趋势。
三、模型假设1、假设古塔每层都是正八边形。
2、假设题目中提供的数据真实可靠。
3、假设地面平整。
4、假设每层的测量点在一个平面内。
四、符号说明S 塔身长度(1i108)X<<古塔测量的数据x坐标iY<<古塔测量的数据y坐标X中心点的x坐标(1i108)iX<<古塔测量的数据z坐标Y中心点的y坐标(1i108)iZ中心点的z坐标N 古塔每层的测量点的个数α塔的倾斜角五、 模型的建立与求解5.1 问题1模型的建立与求解正八边形的重心等于中心,所以可以用均值法求每个面的中心点,公式如下:根据每个面内点的坐标(X i ,Y i ,Z i ),可求得平面的中心坐标:1Nii XX N ==∑ 1Nii YY N ==∑ 1Nii ZZ N ==∑ 由于每个面都有八个测量点,所以在这里N=8。
在求第13层中心点时,由于缺失数据,用均值法得出的中心坐标有很大的偏差,所以在求13层中心点改用拟合法。
下面以求1996年古塔的中心点为例。
因为古塔的每层测量点都在一个平面内,所以13层的Z 轴坐标为7个测量点Z 轴坐标的平均值。
1352.83Z =Matlab curvefitting 软件对古塔X -Z 坐标系12层中心点和一个塔顶坐标进行拟合,结果如下图:Figure 1Linear model Poly1:Coefficients (with 95% confidence bounds): p1 = 93.06 (90.11, 96.01)p2 = -5.273e+04 (-5.44e+04, -5.106e+04) 拟合的公式为:Z = 93.06*X -52730将1352.83Z =代入拟合公式求得13567.1951X =同上用Matlab curvefitting软件对古塔Y-Z坐标系12层中心点和一个塔顶坐标进行拟合,结果如下图:Figure 2Linear model Poly1:f(x) = p1*x + p2Coefficients (with 95% confidence bounds):p1 = -114.5 (-133, -96.11)p2 = 5.987e+04 (5.025e+04, 6.95e+04)拟合公式:Z= -114.5*Y+59870将1352.83Z=代入拟合公式求得13522.2280Y=依据此方法,求出1986年的13层中心坐标。
5.2问题2模型的建立对于第二个问题,可以分成三个问题,倾角问题,弯曲问题,和扭曲问题。
5.2.1古塔的倾斜角图1图2图3图4图5图6图7图 8从上述八幅图中,不难看出,古塔已经向着X 轴的正方向,Y 轴的负方向发生了倾141cos Sα=进而求得倾斜角α的值:141arccos z zSα-=5.2.2古塔的弯曲Matlab curvefitting软件对古塔进行X-Z坐标系中心坐标曲线拟合,Y-Z坐标系中心坐标曲线拟合,结果如下图。
Figure 3General model Gauss1:f(x) = a1*exp(-((x-b1)/c1)^2)Coefficients (with 95% confidence bounds):a1 = 54.24 (50.25, 58.22)b1 = 567.3 (567.2, 567.3)c1 = 0.4135 (0.3546, 0.4723)拟合公式:2567.3()0.41554.24*XZ e--=然后代入曲率公式''3'22(1)ZKZ=+Figure 4General model Gauss1:f(x) = a1*exp(-((x-b1)/c1)^2) Coefficients (with 95% confidence bounds):a1 = 55.34 (53.18, 57.49) b1 = 522.3 (522.3, 522.3) c1 = 0.2665 (0.2421, 0.291)拟合公式:2522.3()0.266555.34*YZ e--=然后代入曲率公式''3'22(1)ZKZ=+5.2.3古塔的扭曲5.3分析古塔的变形趋势图9如图9所示,古塔的右下方的等高线比较密集,古塔左上方的等高线比较稀疏,说明古塔在X轴的正方向,Y轴的负方向已经有倾斜,在未来忽略不可抗力,古塔会一直沿着这个方向倾斜。
六、模型的推广与改进本模型简单易懂。
本模型解决了,古塔的各层中心点的确定,古塔倾斜角的求解。
改进建议,通过对倾斜角的取值,应该可以预测古塔的倒塌时间。
七、参考文献1、石宁刘竞刘青桂高等数学中国水利水电出版社2010年7月2、梁国业廖建平数学建模冶金工业出版社2004年9月八、附录1、求古塔倾斜角matlab程序function angle = angleacos(x,y,z)%UNTITLED5 Summary of this function goes here% Detailed explanation goes heres=sqrt((x(14)-x(1))^2+(y(14)-y(1))^2+(z(14)-z(1))^2);angle=acos((z(14)-z(1))/s);angle=180/pi*angle;end2、matlab画出古塔的3维图程序hold on;plot3(tower1986x, tower1986y, tower1986z);plot3(tower1986x, tower1986y, tower1986z,'g.');plot3(towercentre1986x, towercentre1986y, towercentre1986z,'r*');xlabel('X');ylabel('Y');zlabel('Z');grid on;hold off怎样写作数学建模竞赛论文一如何建立数学模型—建立数学模型的涉骤和方法建立数学模型没有固定的模式,通常它与实际问题的性质、建模的目的等有关。
当然,建模的过程也有共性,一般说来大致可以分以下几个步骤:1. 形成问题要建立现实问题的数学模型,首先要对所要解决的问题有一个十分明晰的提法。
只有明确问题的背景,尽量弄清对象的特征,掌握有关的数据,确切地了解建立数学模型要达到的目的,才能形成一个比较明晰的“问题”。
2. 假设和简化根据对象的特征和建模的目的,对问题进行必要的、合理的假设和简化。