小学奥数专题抽屉原理题库学生版

合集下载

五年级奥数专题 抽屉原理(学生版)

五年级奥数专题 抽屉原理(学生版)

抽屉原理 学生姓名授课日期 教师姓名授课时长 知识定位 1.充分理解和掌握抽屉原理的基本概念2.运用抽屉原理求解的较为复杂的组合计算与证明问题本讲的知识点必须让学生充分理解、吃透,因为所与这个知识点的变形很多,与其他知识点的结合类型也很多。

知识梳理一.抽屉原理的概念①举例:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

②定义:一般情况下,如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n +1或多于n +1个元素放到n 个集合中去,其中必定至少有一个集合里至少有两个元素。

我们称这种现象为抽屉原理。

集合:一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合。

元素:集合中各事物叫做集合的元素。

二. 抽屉原理的分类抽屉原理一:将n+1个元素放到n 个抽屉中去,则无论怎么放,必定有一个抽屉至少有两个元素.抽屉原理二:将nr+1个元素放到n 个抽屉中去,则无论怎么放,必定有一个抽 屉至少有r+1个元素.抽屉原理三:将m 个元素放到n 个抽屉中去(m ≥n),则无论怎么放,必定有一个抽屉至少有个元素.11m n -⎡⎤+⎢⎥⎣⎦例题精讲【试题来源】【题目】证明:在从1开始的前10个奇数中任取6个,一定有2个数的和是20.【试题来源】【题目】从1,2,3,…,2007,2008这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?【试题来源】【题目】从1至1993这1993个自然数中最多能取出多少个数,使得其中任意的两数都不连续且差不等于4?【试题来源】【题目】从1,2,3,4,5,6,7,8,9,10,11,12中最多能选出几个数,使得在选出的数中,每一个数都不是另一个数的2倍?【试题来源】【题目】从1,3,5,7,…,97,99中最多可以选出多少个数,使得选出的数中,每一个数都不是另一个数的倍数?【试题来源】【题目】证明:任给12个不同的两位数,其中一定存在着这样的两个数,它们的差是个位与十位数字相同的两位数.【试题来源】【题目】从1,2,3,…,49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?【试题来源】【题目】从1,2,3,…,99,100这100个数中任意选出51个数.证明:(1)在这51个数中,一定有两个数互质;(2)在这51个数中,一定有两个数的差等于50;(3)在这51个数中,一定存在9个数,它们的最大公约数大于1.【试题来源】【题目】求证:可以找到一个各位数字都是4的自然数,它是1996的倍数.【试题来源】【题目】某班有16名学生,每个月教师把学生分成两个小组.问最少要经过几个月,才能使该班的任意两个学生总有某个月份是分在不同的小组里?【试题来源】【题目】两个布袋各有12个大小一样的小球,且都是红、白、蓝各4个。

五年级数学思维《抽屉原理》专题训练

五年级数学思维《抽屉原理》专题训练

五年级数学思维《抽屉原理》专题训练一、填空题(每小题6分,共60分)1 某次考试,共有10000人参加,满分为150分,得分均为整数,其中得分在60分以上(包栝60分)的人数占全部考试人数的4,那5么在这些人中,至少有人得分相同.2 边长为1的正方形内,任意给出13个点,则必有个点,以它们为顶点的四边形的面积不超过1.43 某班50名同学,年龄最大的12岁,最小的11岁,在这个班中至少有名同学是同年同月出生的.4 库房里有一批篮球、排球、足球和手球(数量不限),每人任意搬运2个球,那么在101位搬运者中,至少有人搬运的球完全相同.5 某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人数为人.6 新年晚会上,老师让每位同学从一个装有许多玻璃球的口袋中摸出2个球,这些球给人的手感相同,只有红、黄、白、蓝、绿五色之分(摸时,看不到颜色),结果发现总有2个人取的球相同,由此可知,参加取球的至少有人.7 要保证在边长为1的正八边形中必有两点,使这两点间的距离小于1,那么至少要放置个点.28 要保证在半径为1的圆内(包括边界)必有两点,这两点制的距离小于1,那么至少要放置个点.9 在l,2,3,…,30这30个自然数中,最多能取出个数,使取出的这些数中,任意两个不同的数的和都不是9的倍数.10 现有红、黄、蓝、白4种颜色的袜子若干(足够多),若只要2只同色的袜子就可以配成1双,至少需要只袜了就一定能够配成10双袜子.二、解答题(每小题20分,共60分)11 如图,在个5行5列的方格表中,能否在每个空格中填上1、2、3中的一个数,使得每行、每列及两条对角线上的5个数字和互不相等?请说明理由.12 如图所示,剪去8×8棋盘的右上角和左下角的两个小方格,能否用31个2×l的矩形将此(缺角)棋盘盖住?13 从1,2,3,…,80这80个数中至少取出多少数,才能保证在取出的数中一定有两个数有倍数关系,即一个数是另一个数的倍数?。

小学六年级奥数题:抽屉原理

小学六年级奥数题:抽屉原理

十八 抽屉原理(2)一、填空题1.半步桥小学六年级(一)班有42人开展读书活动.他们从学校图书馆借了212本图书,那么其中至少有一人借 本书.2.今天参加数学竞赛的210名同学中至少有 名同学是同一个月出生的.3.学校五(一)班40名学生中,年龄最大的是13岁,最小的是11岁,那么其中必有 名学生是同年同月出生的.4.有红、黄、蓝、白四色小球各10个,混合放在一个暗盒里,一次至少摸出 个,才能保证有2个小球是同色的.5.有红、黄、蓝、白四色小球各10个,混合放在一个暗盒中,一次至少摸出 个,才能保证有6个小球是同色的.6.布袋中有60个形状、大小相同的木块,每6块编上相同的号码,那么一次至少取出 块,才能保证其中至少有三块号码相同.7.某商店有126箱苹果,每箱至少有120个苹果,至多有144个苹果.现将苹果个数相同的箱子算作一类.设其中箱子数最多的一类有n 个箱子,则n 的最小值为 .8.有形状、大小、材料完全相同的黑筷、白筷、红筷各4双,混杂在一起,要求闭着眼睛,保证从中摸出不同颜色的2双筷子,则至少要摸出 根.9.袋子里装有红色球80只,蓝色球70只,黄色球60只,白色球50只.它们的大小与质量都一样,不许看只许用手摸取,要保证摸出10对同色球,至少应摸出 只.10.有红笔、蓝笔、黄笔、绿笔各2支,让一位小朋友随便抓2支,这位小朋友至少抓 次才能确保他至少有两次抓到的笔的种类完全相同.(每抓一次后又放回再抓另一次)二、解答题11.某游旅团一行50人,随意游览甲、乙、丙三地,问至少有多少人浏览的地方完全相同.12.从一列数1,5,9,13,…,93,97中,任取14个数.证明:其中必有两个数的和等于102.13.在一个边长为1的正三角形内,任给5个点,证明:其中必有两个点之间的距离不大于1/2.14.设,,21x x …,12x 是任意互异的12个整数,试证明其中一定存在8个整数,,21x x …,8x ,使得:)()()()(87654321x x x x x x x x -⨯-⨯-⨯-恰是1155的倍数.———————————————答 案——————————————————————1. 6将42名同学看成42个抽屉,因为212=5⨯42+1,故至少有一个抽屉中有6本或6本以上的书.2. 18因210=17⨯12+16,故一定有18个或18个以上同学在同一月出生. 3. 2这40名同学的年龄最多相差36个月(三年)因40=1⨯36+4,故必有2人是同年、同月出生的.4. 5从极端考虑:即使先取走取的4个球都是不同色的,那么取第5个球时就必有二球同色了.5. 21将球按颜色分成4类,每次各取5个时,也无6球同色,故应取(6-1)⨯4+1=21(个)球,才能保证一定有6球同色. 6. 21将布袋中的木块按编号分成60÷6=10(类)要保证其中某一类至少有三个,至少应拿出(3-1)⨯10+1=21(块).7. 6每箱数目是120~144,共有25种可能.因126=5⨯25+1,故至少有5+1=6(个)装相同苹果数的箱子,即n 最小为6.8. 11当摸出10根时,可能是8根黑筷,白筷,红筷各一根,没有“不同颜色的二双”.当摸出11根时,至多有8根属于同一颜色,那么另3根中至少有二根是同色的.9. 23当摸出22只球时,可能有9对同色球,但剩余四球分别为红、蓝、黄、白各一只,达不到10对,另一方面,每摸出5个球,就会出现一对同色球,将这一对挪开,再摸出两个球,就必然会又出现一对红色球,如此下去,摸出23只球就能保证有10对同色球.10. 11两支笔的种类可分为同色与异色.同色的有4种,异色的有3+2+1=6种,为了保证至少有两次抓到笔的种类完全相同,至少要抓1⨯10+1=11(次).11. 浏览一个地方的,有3种,浏览二个地方的,有3种,浏览三个地方的,有1种,一个地方也不去的,有1种,共有8种方式.故至少有718150=+⎥⎦⎤⎢⎣⎡-(人).浏览的地方是完全相同的.12. 给出的数是一个等差数列,它一共有25个数,将这25个组分成13组:{}{}{}{}{}{}53,49,57,45,,89,13,93,9,97,5,1 . 在这25个数中任取14个数来,必有二数属于上述13组中的同一组,故这一组二数之和是102.13. 如图,将三角形三边中点连结起来,就将原三角形分成了四个小三角形, 其边长均为21,在原三角形内,任意给5个点,其中至少有两点在同一个小三角形内,这两点的距离小于小三角形的边长21.14. 对1155分解质因数得1155=3⨯5⨯7⨯11.在所给的12数中,必有2数除以11,余数相同,设这2数为x 1,x 2,则(x 1-x 2)是11的倍数.在剩下的数中,必有2数除以7,余数相同,设这2数为x 3,x 4,则(x 3-x 4)是7的倍数.在剩下的8数中,必有2数除以5,余数相同,设这2数为x 5,x 6,则(x 5-x 6)是5的倍数.在剩下的6数中,必有2数除以3,余数相同,设这二数为x 7,x 8,则(x 7-x 8)是3的倍数.故存在8个数x 1,x 2,…x 8,使(x 1-x 2) (x 3-x 4) (x 5-x 6) (x 7-x 8)是1155的倍数.阴影部分面积专题练习(单位:厘米)1、2、下图中长方形的长是6厘米,宽是5厘米,求阴影部分的面积。

四年级高思奥数之抽屉原理一含答案

四年级高思奥数之抽屉原理一含答案

第8讲抽屉原理一内容概述理解抽屉原理的基本含义,并能利用抽屉原理对一些简单问题进行说明,在考虑某些问题时,需要利用最不利原则进行分析.典型问题兴趣篇1. 学校周末要组织四个班的同学去春游,有三个地点可供选择:石景山游乐园、植物园和动物园,如果一个班只能去一个地点,试说明:一定有两个班要去同一个地点.2. 小悦,冬冬和阿奇到费步步家玩,费叔叔拿出许多巧克力来招待他们,他们一数,共有19块巧克力,如果把这些巧克力分给他们三人,试说明:一定有人至少拿到7块巧克力,但不一定有人拿到8块.3. 任意40个人中,至少有几个人属于同一生肖?4. 有红、黄、蓝、绿四种颜色的小珠子放在同一个口袋里,每种颜色的珠子都足够多,一次至少要取几颗珠子,才能保证其中一定有两颗颜色相同?5. 某校的小学生中,年龄最小的6岁,最大的13岁,从这个学校中至少选几个学生,就能保证其中一定有三个学生的年龄相同?6. 有红、黄、蓝、绿四种颜色的铅笔各10支,拿的时候不许看铅笔的颜色,那么一次至少要拿多少支,才能保证其中一定有4支是同一种颜色的铅笔?7. 口袋里装有红、黄、蓝、绿这4种颜色的球,且每种颜色的球都有4个,小华闭着眼睛从口袋里往外摸球,那么他至少要摸出多少个球,才能保证摸出的球中每种颜色的球都有?8. 一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张,那么:(1)至少从中摸出多少张牌,才能保证在摸出的牌中有黑桃?(2)至少从中摸出多少张牌,才能保证至少有3张牌是红桃?(3)至少从中摸出多少张牌,才能保证有5张牌是同一花色的?9. 把40块巧克力放入A、B、C、D四个盒子内,如图8-1,A盒中放的最多,放了13块,且四个盒子内装的巧克力的数量依次减少,那么:(1)D盒最少可以装几块?(2)D盒最多可以装几块?10. 圆桌周围恰好有12把椅子,现在已经有一些人在桌边就坐,当再有一人入座时,就必须和已就坐的某个人相邻,问:已就坐的最少有多少人?拓展篇1. 红领巾小学今年入学的一年级新生中有370人是在同一年出生的. 试说明:他们中一定有两个人是在同一天出生的.2.某公司决定派95名员工去8个不同的城市进行市场调查,是不是一定有12个人会去同一城市?“一定有13个人去同一城市”这个说法正确吗?3. 一个盒子内有四个格子,现在我们闭着眼睛,把棋子往格子里“瞎放”(没有放到格子外的),那么至少要放多少枚棋子,才能保证一定有两枚棋子放在同一格内?4. 一个鱼缸里有很多条鱼,共有5个品种,至少要捞出多少条鱼,才能保证其中有5条相同品种的鱼?5. 冬冬把一副围棋子混装在一个盒子中,然后每次从盒子中摸出4枚棋子,那么他至少要摸几次,才能保证其中有三次摸出棋子的颜色情况是相同的?(围棋子有黑、白两种颜色)6. 在一个盒子里装着形状相同的3种口味的果冻,分别是苹果口味的、草莓口味的和牛奶口味的,每种果冻都有20个,现在闭着眼睛从盒子里拿果冻. 请问:(1)至少要从中拿出多少个,才能保证拿出的果冻中有牛奶口味的?(2)至少要从中拿出多少个,才能保证拿出的果冻中至少有两种口味?7. 一个布袋里有大小相同颜色不同的一些木球,其中红色的有10个,黄色的有8个,蓝色的有3个,绿色的有1个,请问:(1)一次至少要取出多少个球,才能保证取出的球至少有三种颜色?(2)一次至少要取出多少个球,才能保证其中必有红球和黄球?8. 一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张,现在要从中随意取出一些牌,如果要保证在取出来的牌中至少包含三种花色,并且这三种花色的牌至少都有3张,那么最少要取出多少张牌?9. 黑色、白色、黄色、红色的筷子各有8根,混杂放在一起,在黑暗中取出一些筷子. 要使得这些筷子能够搭配出两双筷子(两根筷子颜色相同即为一双),那么最少要取多少根才能保证达到要求?10. 将1只白袜子、2只黑袜子、3只红袜子、8只黄袜子和9只绿袜子放入一个布袋里,请问:(1)一次至少要摸出多少只袜子才能保证一定有颜色相同的两双袜子?(2)一次至少要摸出多少只袜子才能保证一定有颜色不同的两双袜子?(两只袜子颜色相同即为一双)11. 31个同学围成一个圆圈,坐好后发现任何两个男生之间至少有两个女生,那么男生最多有多少人?12. 现有10 把钥匙分别能开10把锁,但是不知道哪把钥匙能开哪把锁. 最少要试验多少次才能保证使全部的钥匙和锁相匹配?超越篇1. 体育馆里有足球、篮球和排球3种球,一个班的50名学生去借球,每人最少借1个,最多可以借2个,请问:最少有多少名学生借到球的数量和种类完全一样?2. 把31个桃子分给若干只猴子,每只猴子分得的桃子不超过3个,那么至少有几只猴子得到的桃子一样多?3. 有37个数,每个数为0或1. 要求:当把这些数以任意的方式排列在圆周上时,总能找到6个1连排在一起,问:其中最少有多少个数是1?4. 有一个大口袋,里面装着许多球,每个球上写着一个数字,其中写0的有1个,写1的有2个,写2的有3个,……,写9的有10个. 如果闭着眼睛从袋中取球,那么至少要取出多少个球,才能保证取出的球中必有3个,它们上面的数字恰好组成678?(考虑“9”倒过来看是“6”)5. 一个袋子中有三种不同颜色的球共20个,其中红球7个,黄球5个,绿球8个,现在阿奇闭着眼睛从中取球,要保证有一种颜色的球不少于4个,则至少要取出多少个球才能满足要求?如果还要保证另一种颜色的球不少于3个,则至少要取出多少个球?6. 50个苹果分给8个小朋友,那么分到苹果最多的小朋友至少分到多少个?如果1号小朋友最多给2个,2号最多给4个,3号最多给6个,……8号最多给16个,那么得到苹果最多的小朋友至少分到多少个?7. 888名学生站成一个圆圈,如果任意连续32人中,至多有9名男生,那么男生的人数最多有多少人?8.新春佳节,商场举办抽奖活动,抽奖箱中有五种不同颜色的奖券,分别有32、30、28、26、24张,每次可以抽出任意多张,但每抽出一张就要付2元钱,奖励方式如下:用15张同色的奖券换一架相同颜色的飞机模型,用11张同色的奖券换一架相同颜色的坦克模型,用4张同色的奖券换一架相同颜色的摩托车模型. 请问:至少要付多少钱,才能保证可以换到三种模型,且三种模型之间颜色互不相同?第8讲抽屉原理一内容概述理解抽屉原理的基本含义,并能利用抽屉原理对一些简单问题进行说明,在考虑某些问题时,需要利用最不利原则进行分析.典型问题兴趣篇1. 学校周末要组织四个班的同学去春游,有三个地点可供选择:石景山游乐园、植物园和动物园,如果一个班只能去一个地点,试说明:一定有两个班要去同一个地点.答案:一定有两个班去同一个地点。

小学奥数专题—抽屉原理(一)

小学奥数专题—抽屉原理(一)

⼩学奥数专题—抽屉原理(⼀)⼩学奥数专题—抽屉原理(⼀)[专题介绍] 把4只苹果放到3个抽屉⾥去,共有4种放法(请⼩朋友们⾃⼰列举),不论如何放,必有⼀个抽屉⾥⾄少放进两个苹果。

同样,把5只苹果放到4个抽屉⾥去,必有⼀个抽屉⾥⾄少放进两个苹果。

……更进⼀步,我们能够得出这样的结论:把n+1只苹果放到n个抽屉⾥去,那么必定有⼀个抽屉⾥⾄少放进两个苹果。

这个结论,通常被称为抽屉原理。

利⽤抽屉原理,可以说明(证明)许多有趣的现象或结论。

不过,抽屉原理不是拿来就能⽤的,关键是要应⽤所学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。

[经典例题]【例1】⼀个⼩组共有13名同学,其中⾄少有2名同学同⼀个⽉过⽣⽇。

为什么?【分析与解答】每年⾥共有12个⽉,任何⼀个⼈的⽣⽇,⼀定在其中的某⼀个⽉。

如果把这12个⽉看成12个“抽屉”,把13名同学的⽣⽇看成13只“苹果”,把13只苹果放进12个抽屉⾥,⼀定有⼀个抽屉⾥⾄少放2个苹果,也就是说,⾄少有2名同学在同⼀个⽉过⽣⽇。

【例 2】任意4个⾃然数,其中⾄少有两个数的差是3的倍数。

这是为什么?【分析与解答】⾸先我们要弄清这样⼀条规律:如果两个⾃然数除以3的余数相同,那么这两个⾃然数的差是3的倍数。

⽽任何⼀个⾃然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把⾃然数分成3类,这3种类型就是我们要制造的3个“抽屉”。

我们把4个数看作“苹果”,根据抽屉原理,必定有⼀个抽屉⾥⾄少有2个数。

换句话说,4个⾃然数分成3类,⾄少有两个是同⼀类。

既然是同⼀类,那么这两个数被3除的余数就⼀定相同。

所以,任意4个⾃然数,⾄少有2个⾃然数的差是3的倍数。

想⼀想,例2中4改为7,3改为6,结论成⽴吗?【例3】有规格尺⼨相同的5种颜⾊的袜⼦各15只混装在箱内,试问不论如何取,从箱中⾄少取出多少只就能保证有3双袜⼦(袜⼦⽆左、右之分)?【分析与解答】试想⼀下,从箱中取出6只、9只袜⼦,能配成3双袜⼦吗?回答是否定的。

小学奥数抽屉原理习题及答案【三篇】

小学奥数抽屉原理习题及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。

愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣⼏篇。

学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。

以下是⽆忧考为⼤家整理的《⼩学奥数抽屉原理习题及答案【三篇】》供您查阅。

【篇⼀】【例 1】向阳⼩学有730个学⽣,问:⾄少有⼏个学⽣的⽣⽇是同⼀天? 【解析】⼀年最多有366天,可看做366个抽屉,730个学⽣看做730个苹果.因为,所以,⾄少有1+1=2(个)学⽣的⽣⽇是同⼀天. 【巩固】试说明400⼈中⾄少有两个⼈的⽣⽇相同. 【解析】将⼀年中的366天或天视为366个或个抽屉,400个⼈看作400个苹果,从最极端的情况考虑,即每个抽屉都放⼀个苹果,还有个或个苹果必然要放到有⼀个苹果的抽屉⾥,所以⾄少有⼀个抽屉有⾄少两个苹果,即⾄少有两⼈的⽣⽇相同.【篇⼆】【例 2】三个⼩朋友在⼀起玩,其中必有两个⼩朋友都是男孩或者都是⼥孩. 【解析】⽅法⼀: 情况⼀:这三个⼩朋友,可能全部是男,那么必有两个⼩朋友都是男孩的说法是正确的; 情况⼆:这三个⼩朋友,可能全部是⼥,那么必有两个⼩朋友都是⼥孩的说法是正确的; 情况三:这三个⼩朋友,可能其中男⼥那么必有两个⼩朋友都是⼥孩说法是正确的; 情况四:这三个⼩朋友,可能其中男⼥,那么必有两个⼩朋友都是男孩的说法是正确的.所以,三个⼩朋友在⼀起玩,其中必有两个⼩朋友都是男孩或者都是⼥孩的说法是正确的; ⽅法⼆:三个⼩朋友只有两种性别,所以⾄少有两个⼈的性别是相同的,所以必有两个⼩朋友都是男孩或者都是⼥孩.【篇三】【例 3】“六⼀”⼉童节,很多⼩朋友到公园游玩,在公园⾥他们各⾃遇到了许多熟⼈.试说明:在游园的⼩朋友中,⾄少有两个⼩朋友遇到的熟⼈数⽬相等. 【解析】假设共有个⼩朋友到公园游玩,我们把他们看作个“苹果”,再把每个⼩朋友遇到的熟⼈数⽬看作“抽屉”,那么,个⼩朋友每⼈遇到的熟⼈数⽬共有以下种可能:0,1,2,……,.其中0的意思是指这位⼩朋友没有遇到熟⼈;⽽每位⼩朋友最多遇见个熟⼈,所以共有个“抽屉”.下⾯分两种情况来讨论: (1)如果在这个⼩朋友中,有⼀些⼩朋友没有遇到任何熟⼈,这时其他⼩朋友最多只能遇上个熟⼈,这样熟⼈数⽬只有种可能:0,1,2,……,.这样,“苹果”数(个⼩朋友)超过“抽屉”数(种熟⼈数⽬),根据抽屉原理,⾄少有两个⼩朋友,他们遇到的熟⼈数⽬相等. (2)如果在这个⼩朋友中,每位⼩朋友都⾄少遇到⼀个熟⼈,这样熟⼈数⽬只有种可能:1,2,3,……,.这时,“苹果”数(个⼩朋友)仍然超过“抽屉”数(种熟⼈数⽬),根据抽屉原理,⾄少有两个⼩朋友,他们遇到的熟⼈数⽬相等. 总之,不管这个⼩朋友各遇到多少熟⼈(包括没遇到熟⼈),必有两个⼩朋友遇到的熟⼈数⽬相等.。

小学六年级奥数抽屉原理问题专项强化训练(中难度)

小学六年级奥数抽屉原理问题专项强化训练(中难度)

小学六年级奥数抽屉原理问题专项强化训练(中难度)例题1:在一个学校的教室里,有100个学生,每个学生只能选择一项俱乐部活动参加,而学校有5个俱乐部供学生选择。

证明至少有一个俱乐部的人数不少于20人。

解析:根据平均抽屉原理,如果将100个学生均匀分配到5个俱乐部,那么每个俱乐部最多只能有20个学生(100÷5=20)。

假设每个俱乐部都不满足至少有20个学生的条件,即每个俱乐部的人数都少于20人。

那么5个俱乐部的总人数最多是(20人×5个俱乐部=100人),但这与学校实际的总人数100人相等,因此假设不成立。

因此,根据反证法可知,至少有一个俱乐部的人数不少于20人。

专项练习题:1. 有20个学生参加3个不同的比赛,每个学生只参加一个比赛。

证明至少有一个比赛的参赛人数不少于8人。

2. 一个班级有30个学生,这些学生参加了3个不同的社团活动,每个学生只能参加一个活动。

证明至少有一个社团的人数不少于11人。

3. 在一个购物中心有60家店铺,每个店铺只能出售一种商品。

证明至少有一种商品在该购物中心中有超过12家店铺销售。

4. 有40个人参加了4个不同的研讨会,每个人只能参加一个研讨会。

证明至少有一个研讨会的参与人数不少于11人。

5. 在一个小区有80户居民,每户居民只能选择参加一个小区活动。

证明至少有一个小区活动的参与人数不少于17人。

6. 一辆巴士上有50个座位,有5个不同的旅游线路供乘客选择。

证明至少有一条旅游线路的乘7. 有30个人参加了3个不同的运动项目,每个人只能选择一个项目参加。

证明至少有一个运动项目的参赛人数不少于11人。

8. 在一个餐厅有40个座位,其中有4个不同的餐桌供客人选择。

证明至少有一个餐桌的客人数不少于11人。

9. 有50个人选择了5个不同的领域进行志愿服务,每个人只能选择一个领域。

证明至少有一个领域的志愿者人数不少于11人。

10. 在一个游乐园有100个游乐项目,每个游客只能选择一个项目玩。

小学六年级奥数抽屉原理含答案

小学六年级奥数抽屉原理含答案

小学六年级奥数抽屉原理含答案Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】抽屉原理知识要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。

它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。

(2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。

它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。

2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。

例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后背面朝上放。

一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。

如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。

点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。

点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。

解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。

解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。

(2)要保证有5人的属相相同的最少人数为4×12+1=49(人)不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。

抽屉原理练习题(打印版)

抽屉原理练习题(打印版)

抽屉原理练习题(打印版)# 抽屉原理练习题## 一、基础题目1. 题目一:有5个苹果,要分给4个孩子,至少有一个孩子能得到至少几个苹果?2. 题目二:一个班级有35名学生,如果他们每人至少参加一个兴趣小组,那么至少有多少名学生参加的是同一个兴趣小组?3. 题目三:有7个不同的球,要放入6个相同的盒子中,至少有一个盒子里至少有几个球?## 二、进阶题目4. 题目四:一个篮子里有100个鸡蛋,需要将它们分成9组,每组至少有几个鸡蛋?5. 题目五:有24个不同的球,要放入5个不同的盒子中,每个盒子至少有一个球,那么至少有一个盒子里至少有几个球?6. 题目六:有36个不同的球,要放入10个相同的盒子中,至少有一个盒子里至少有几个球?## 三、应用题目7. 题目七:一个学校有365名学生,如果他们每人至少参加一个课外活动,那么至少有多少名学生参加的是同一个课外活动?8. 题目八:一个图书馆有1000本书,要将它们平均分配给10个书架,每个书架至少有100本书,那么至少有一个书架上至少有多少本书?9. 题目九:有50个不同的球,要放入4个不同的盒子中,每个盒子至少有一个球,那么至少有一个盒子里至少有几个球?## 四、拓展题目10. 题目十:一个班级有40名学生,如果他们每人至少参加一个兴趣小组,那么至少有多少名学生参加的是同一个兴趣小组?11. 题目十一:有31个不同的球,要放入4个相同的盒子中,至少有一个盒子里至少有几个球?12. 题目十二:一个篮子里有200个鸡蛋,需要将它们分成5组,每组至少有几个鸡蛋?## 五、挑战题目13. 题目十三:有49个不同的球,要放入7个不同的盒子中,每个盒子至少有一个球,那么至少有一个盒子里至少有几个球?14. 题目十四:一个学校有400名学生,如果他们每人至少参加一个课外活动,那么至少有多少名学生参加的是同一个课外活动?15. 题目十五:有56个不同的球,要放入8个相同的盒子中,至少有一个盒子里至少有几个球?解题提示:抽屉原理,又称鸽巢原理,是数学中的一个基本概念,它指出如果有更多的物品(鸽子)需要放入较少的容器(巢穴)中,那么至少有一个容器必须包含多于一个的物品。

小学奥数专题---抽屉原理一

小学奥数专题---抽屉原理一

抽屉原理(1)
【例1】将三本书放入两个抽屉,有几种放法?
从上述的表格中我们可以发现:至少有一个抽屉放了两本或两本以上的书。

这就是抽屉原理的体现。

二、典例分析&随堂演练
【例2】实验小学今年招收学生730人,他们都是同一年出生的。

那么至少有几名同学同一天出生?
随堂练:
[1]铅笔盒中有4支圆珠笔和3支钢笔,若从笔盒中随意拿取笔,一次至少拿几只才能保证有一只是钢笔?
[2]六年级共用学生57人,至少有几人在同一个星期内过生日?
【例3】在一条长100米的小路旁种102棵树苗,你能说明不管怎样种,至少还有两棵树苗之间的距离不超过1米吗?
随堂练:
[3]一个阳台长10米,要摆放12盆花,不管怎样放,会有两盆花的距离不超过一米吗?
[4]体育室有篮球、足球和排球各7个。

现有7名学生来借球,每人任意借走两个,会有两名学生借的球相同吗?【例4】某旅行团一行50人,随意游览甲、乙、丙三地,问至少有多少人游览的地方完全相同?
随堂练:
[5]某班有37名小学生,他们都订阅了《小朋友》、《儿童时代》、《儿童故事画报》中的一种或几种。

那么其中至少有多少名学生定的报刊种类完全相同?
[6]一位运动员用11秒跑完了100米,在跑的过程中会有一秒钟跑的距离超过九米吗?
【例5】不透明的箱子中放有10只黑色球和10只白色球,如果要从箱子中随机摸出两只颜色相同的球,至少要摸几次才能符合要求?
随堂练:
[7]有红、黄、蓝、白四色小球各10只,混合放在一个不透明箱子中,一次至少摸出几个球,才能保证有两个小球是同色的?
[8]一把钥匙只能打开一把锁,现有10把锁和其中的8把钥匙,要保证将这8把钥匙都配上锁,至少要实验多少次?。

小学奥数抽屉原理与最不利原则专题练习

小学奥数抽屉原理与最不利原则专题练习

抽屉原理与最不利原则专题练习(1)
(1),有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

(2),六(2)班有学生46人,每人用数字1,2,3任意写一个没有重复数字的三位数,那么至少有几人人写的数是相同的。

(3),一个绘画班,最大的12岁,最小的6岁,最少从中挑选几名学生,就一定能找到两个学生年龄相同。

(4),给正方体的六个面图上不同的三种颜色,不论怎么涂,至少有几个面的颜色相同。

(5),某班学生去买数学书、语文书、美术书。

买书的情况是:有买一本的,有买两本的,也有买三本的。

至少要去几位学生才能保证一定有两位学生买到的书相同。

(6),一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球?
(7),口袋里有三种颜色的筷子各10根:
(1)至少取几根才能保证三种颜色的筷子都取到?
(2)至少取几根才能保证有两双颜色相同的筷子?
(3)至少取几根才能保证有两双颜色不同的筷子?。

六年级奥数:抽屉原理(附答案详解)

六年级奥数:抽屉原理(附答案详解)

六年级奥数:抽屉原理(附答案详解)一、填空题1.一个联欢会有100人参加,每个人在这个会上至少有一个朋友.那么这100人中至少有个人的朋友数目相同.2.在明年(即1999年)出生的1000个孩子中,请你预测:(1)同在某月某日生的孩子至少有个.(2)至少有个孩子将来不单独过生日.3.一个口袋里有四种不同颜色的小球.每次摸出2个,要保证有10次所摸的结果是一样的,至少要摸次.4.有红、黄、蓝三种颜色的小珠子各4颗混放在口袋里,为了保证一次能取到2颗颜色相同的珠子,一次至少要取颗.如果要保证一次取到两种不同颜色的珠子各2颗,那么一定至少要取出颗.5.从1,2,3…,12这十二个数字中,任意取出7个数,其中两个数之差是6的至少有对.6.某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有人的头发根数一样多.7.在一行九个方格的图中,把每个小方格涂上黑、白两种颜色中的一种,那么涂色相同的小方格至少有个.8.一付扑克牌共有54张(包括大王、小王),至少从中取张牌,才能保证其中必有3种花色.9.五个同学在一起练习投蓝,共投进了41个球,那么至少有一个人投进了个球.10.某班有37名小学生,他们都订阅了《小朋友》、《儿童时代》、《少年报》中的一种或几种,那么其中至少有名学生订的报刊种类完全相同.二、解答题11.任给7个不同的整数,求证其中必有两个整数,它们的和或差是10的倍数.12.在边长为1的正方形内任取51个点,求证:一定可以从中找出3点,以它们为顶点的三角形的面积不大于1/50.13.某幼儿园有50个小朋友,现在拿出420本连环画分给他们,试证明:至少有4个小朋友分到连环画一样多(每个小朋友都要分到连环画).14.能否在88的棋盘上的每一个空格中分别填入数字1,或2,或3,要使每行、每列及两条对角线上的各个数字之和互不相同?请说明理由.1.2因为每个人至少有1个朋友,至多有99个朋友,将有1个朋友的人,2个朋友的人,…,99个朋友的人分成99类,在100个人中,总有两个人属于同一类,他们的朋友个数相同.2.(1)3;(2)636因为1999年有365天,故在1999年出生的孩子至少有(个)孩子的生日相同;又因为1000-(365-1)=363,即至少有363个孩子将来不单独过生日.3.91当摸出的2个球颜色相同时,可以有4种不同的结果;当摸出的2个球颜色不同时,最多可以有3+2+1=6(种)不同结果.一共有10种不同结果.将这10种不同结果看作10个抽屉,因为要求10次摸出结果相同,故至少要摸910+1=91(次).4.4;7将三种不同颜色看作3个抽屉,对于第一问中为保证一次取到2颗相同颜色的珠子,一次至少要取13+1=4(颗)珠子.对于第二问为了保证一次取到两种不同颜色珠子各2颗,一次至少要取4+(12+1)=7(颗)珠子.5.1将1~12这十二个数组成这六对两数差为6的数组.任取7个数,必定有两个数差在同一组中,这一对数的差为6.6.267将4千万人按头发的根数进行分类:0根,1根,2根…,150000根共150001类.因为40000000=(266150001)+99743 266150001,故至少有一类中的人数不少于266+1=267(个),即该省至少有267个人的头发根数一样多.7.7将每10块颜色相同的木块算作一类,共3类.把这三类看作三个抽屉,而现在要保证至少有三块同色木块在同一抽屉中,那么至少要有23+1=7(块).8.29将4种花色看作4个抽屉,为了保证取出3张同色花,那么应取尽2个抽屉由的213张牌及大、小王与一张另一种花色牌.计共取213+2+1=29(张)才行.9.9将5个同学投进的球作为抽屉,将41个球放入抽屉中,至少有一个抽屉中放了9个球,(否则最多只能进58=40个球).10.6订阅报刊的种类共有7种:单订一份3种,订二份3种,订三分1种.将37名学生依他们订的报刊分成7类,至少有6人属于同一类,否则最多只有66=36(人).11.将整数的末位数字(0~9)分成6类:在所给的7个整数中,若存在两个数,其末位数字相同,则其差是10的倍数;若此7数末位数字不同,则它们中必有两个属于上述6类中的某一类,其和是10的倍数.A BC EF GH 12.将边长为1的正方形分成25个边条为的正方形,在51个点中,一定有(个)点属于同一个小正方形.不妨设A、B、C三点边长为的小正方形EFGH内,由于三角形ABC 的面积不大于小正方形面积EFGH的,又EFGH的面积为.故三角形ABC 的面积不大于.13.考虑最极端的情况,有3个小朋友分到1本,有3个小朋友分到2本,…,有3个小朋友分到16本,最后两个小朋友分到17本,那么一共至少要3(1+2+3+…+16)+217=442(本),而442 420,故一定有4个小朋友分了同样多的书.14.注意到8行、8列及两对角线共有18条"线",每条线上有8个数字,要使每条线上的数字和不同,也就是需要每条线上的数字和有18种以上的可能.但我们填入的数只有1、2、3三种,因此在每条线上的8个数字中,其和最小是8,最大是24,只有24-8+1=17(种).故不可能使得每行,每列及两条对角线上的各个数字之和互不相等.。

小学奥数----抽屉原理练习(学生版)

小学奥数----抽屉原理练习(学生版)

小学奥数---(抽屉原理)练习集锦模块一、利用抽屉原理公式解题(一)、直接利用公式进行解题(1)求结论【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【巩固】把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【巩固】三年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【巩固】数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样.【巩固】光明小学有367名2000年出生的学生,请问是否有生日相同的学生?【巩固】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【巩固】试说明400人中至少有两个人的生日相同.【例 3】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.【例 4】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.【巩固】五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多.【例 5】在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?【巩固】四个连续的自然数分别被3除后,必有两个余数相同,请说明理由.【例 6】证明:任取8个自然数,必有两个数的差是7的倍数.【巩固】证明:任取6个自然数,必有两个数的差是5的倍数。

【巩固】将全体自然数按照它们个位数字可分为10类:个位数字是1的为第1类,个位数(1)字是2的为第2类,…,个位数字是9的为第9类,个位数字是0的为第10类.任意取出6个互不同类的自然数,其中一定有2个数的和是10的倍数吗?(2)任意取出7个互不同类的自然数,其中一定有2个数的和是10的倍数吗?如果一定,请简要说明理由;如果不一定,请举出一个反例.【巩固】证明:任给12个不同的两位数,其中一定存在着这样的两个数,它们的差是个位与十位数字相同的两位数.【例 7】任给11个数,其中必有6个数,它们的和是6的倍数.【巩固】在任意的五个自然数中,是否其中必有三个数的和是3的倍数?【例 8】任意给定2008个自然数,证明:其中必有若干个自然数,和是2008的倍数(单独一个数也当做和).【巩固】20道复习题,小明在两周内做完,每天至少做一道题.证明:小明一定在连续的若干天内恰好做了7道题目.【例 9】求证:可以找到一个各位数字都是4的自然数,它是1996的倍数.【巩固】任意给定一个正整数n,一定可以将它乘以适当的整数,使得乘积是完全由0和7组成的数.【例 10】求证:对于任意的8个自然数,一定能从中找到6个数a,b,c,d,e,f,使得---是105的倍数.a b c d e f()()()【巩固】任给六个数字,一定可以通过加、减、乘、除、括号,将这六个数组成一个算式,使其得数为105的倍数.【巩固】(2008年中国台湾小学数学竞赛决赛(一)在100张卡片上不重复地编上1~100,至少要随意抽出几张卡片才能保证所抽出的卡片上的数之乘积可被12整除?【例 11】把1、2、3、…、10这十个数按任意顺序排成一圈,求证在这一圈数中一定有相邻的三个数之和不小于17.【巩固】圆周上有2000个点,在其上任意地标上0,1,2,,1999(每一点只标一个数,不同的点标上不同的数).证明必然存在一点,与它紧相邻的两个点和这点上所标的三个数之和不小于2999【例 12】证明:在任意的6个人中必有3个人,他们或者相互认识,或者相互不认识.【巩固】平面上给定6个点,没有3个点在一条直线上.证明:用这些点做顶点所组成的一切三角形中,一定有一个三角形,它的最大边同时是另外一个三角形的最小边.【巩固】假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色?【巩固】平面上有17个点,两两连线,每条线段染红、黄、蓝三种颜色中的一种,这些线段能构成若干个三角形.证明:一定有一个三角形三边的颜色相同.【例 13】上体育课时,21名男、女学生排成3行7列的队形做操.老师是否总能从队形中划出一个长方形,使得站在这个长方形4个角上的学生或者都是男生,或者都是女生?如果能,请说明理由;如果不能,请举出实例.【例 14】8个学生解8道题目.(1)若每道题至少被5人解出,请说明可以找到两个学生,每道题至少被过两个学生中的一个解出.(2)如果每道题只有4个学生解出,那么(1)的结论一般不成立.试构造一个例子说明这点.【巩固】试卷上共有4道选择题,每题有3个可供选择的答案.一群学生参加考试,结果是对于其中任何3人,都有一个题目的答案互不相同.问参加考试的学生最多有多少人?(2)求抽屉【例 15】把十只小兔放进至多几个笼子里,才能保证至少有一个笼里有两只或两只以上的小兔?【例 16】把125本书分给五⑵班的学生,如果其中至少有一个人分到至少4本书,那么,这个班最多有多少人?【巩固】某次选拔考试,共有1123名同学参加,小明说:“至少有10名同学来自同一个学校.”如果他的说法是正确的,那么最多有多少个学校参加了这次入学考试?【巩固】100个苹果最多分给多少个学生,能保证至少有一个学生所拥有的苹果数不少于12个.【例 17】某班有16名学生,每个月教师把学生分成两个小组.问最少要经过几个月,才能使该班的任意两个学生总有某个月份是分在不同的小组里?(3)求苹果【例 18】班上有50名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?【巩固】班上有28名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?【巩固】有10只鸽笼,为保证至少有1只鸽笼中住有2只或2只以上的鸽子.请问:至少需要有几只鸽子?【巩固】三年级二班有43名同学,班上的“图书角”至少要准备多少本课外书,才能保证有的同学可以同时借两本书?【例 19】海天小学五年级学生身高的厘米数都是整数,并且在140厘米到150厘米之间(包括140厘米到150厘米),那么,至少从多少个学生中保证能找到4个人的身高相同?【例 20】 一次数学竞赛出了10道选择题,评分标准为:基础分10分,每道题答对得3分,答错扣 1分,不答不得分。

小学奥数五年级抽屉原理练习题及答案【三篇】

小学奥数五年级抽屉原理练习题及答案【三篇】

小学奥数五年级抽屉原理练习题及答案【三篇】【第一篇】夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。

规定每人必须参加一项或两项活动。

那么至少有几名营员参加的活动项目完全相同?把活动项目当成抽屉,营员当成物品。

营员数已经有了,现在的问题是应当搞清有多少个抽屉。

因为“每人必须参加一项或两项活动”,共有3项活动,所以只参加一项活动的有3种情况,参加两项活动的有爬山与参观、爬山与海滩游玩、参观与海滩游玩3种情况,所以共有3+3=6(个)抽屉。

2000÷6=333......2,根据抽屉原理2,至少有一个抽屉中有333+1=334(件)物品,即至少有334名营员参加的活动项目是相同的。

【第二篇】把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人?这道题一下子不容易理解,我们将它变变形式。

因为是把书分给学生,所以学生是抽屉,书是物品。

本题可以变为:125件物品放入若干个抽屉,无论怎样放,至少有一个抽屉中放有4件物品,求最多有几个抽屉。

这个问题的条件与结论与抽屉原理2正好相反,所以反着用抽屉原理2即可。

由125÷(4-1)=41......2知,125件物品放入41个抽屉,至少有一个抽屉有不少于4件物品。

也就是说这个班最多有41人。

【第三篇】从1,3,5,7,...,47,49这25个奇数中至少任意取出多少个数,才能保证有两个数的和是52。

首先要根据题意构造合适的抽屉。

在这25个奇数中,两两之和是52的有12种搭配:{3,49},{5,47},{7,45},{9,43},{11,41},{13,39},{15,37},{17,35},{19,33},{21,31},{23,29},{25,27}。

将这12种搭配看成12个抽屉,每个抽屉中有两个数,还剩下一个数1,单独作为一个抽屉。

这样就把25个奇数分别放在13个抽屉中了。

因为一共有13个抽屉,所以任意取出14个数,无论怎样取,至少有一个抽屉被取出2个数,这两个数的和是52。

小学六年级奥数 抽屉原理(含答案)

小学六年级奥数 抽屉原理(含答案)

抽屉原理知识要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。

它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。

(2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。

它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。

2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。

例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点, (13)点牌各一张),洗好后背面朝上放。

一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。

如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。

点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。

点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。

解 (1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内?点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。

解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。

(2)要保证有5人的属相相同的最少人数为4×12+1=49(人)不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。

例3 有一副扑克牌共54张,问:至少摸出多少张才能保证:(1)其中有4张花色相同?(2)四种花色都有?点拨首先我们要弄清楚一副扑克牌有2张王牌,四种花色,每种有13张。

抽屉原理练习题 学生版

抽屉原理练习题 学生版

抽屉原理练习题1、光明小学有名年出生的学生,请问是否有生日相同的学生?36720002、用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.3、三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.4、试说明400人中至少有两个人的生日相同.5、证明:任取6个自然数,必有两个数的差是5的倍数。

6、从1,4,7,10,…,37,40这14个数中任取8个数,试证:其中至少有2个数的和是41.7、从,,,,这个数中任意挑出个数来,证明在这个数中,123 1001005151一定有两个数的差为。

508、从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12.9、有只鸽笼,为保证至少有只鸽笼中住有只或只以上的鸽子.请问:10122至少需要有几只鸽子?10、三年级二班有名同学,班上的“图书角”至少要准备多少本课外书,才能43保证有的同学可以同时借两本书?11、篮子里有苹果、梨、桃和桔子,现有若干个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友才能保证有两个小朋友拿的水果是相同的?12、学校里买来数学、英语两类课外读物若干本,规定每位同学可以借阅其中两本,现有位小朋友前来借阅,每人都借了本.请问,你能保证,他们之中42至少有两人借阅的图书属于同一种吗?13、11名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本.试说明:必有两个学生所借的书的类型相同14、有一个布袋中有5种不同颜色的球,每种都有20个,问:一次至少要取出多少个小球,才能保证其中至少有3个小球的颜色相同?15、有红、黄、白三种颜色的小球各个,混合放在一个布袋中,一次至少摸10出个,才能保证有个小球是同色的?516、把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.17、证明:任取8个自然数,必有两个数的差是7的倍数.18、袋中有外形安全一样的红、黄、蓝三种颜色的小球各10个,每个小朋友只能从中摸出1个小球,至少有______个小朋友摸球,才能保证一定有两个人摸的球颜色一样.19、班上有名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少28有一个小朋友能得到不少于两本书?20、一次测验共有10道问答题,每题的评分标准是:回答完全正确,得5分;回答不完全正确,得3分,回答完全错误或不回答,得0分.至少____人参加这次测验,才能保证至少有3人得得分相同.21、在一只口袋中有红色与黄色球各4只,现有4个小朋友,每人从口袋中任意取出2个小球,请你证明:必有两个小朋友,他们取出的两个球的颜色完全一样.22、证明:在从1开始的前10个奇数中任取6个,一定有2个数的和是20.23、有形状、长短都完全一样的红筷子、黑筷子、白筷子、黄筷子、紫筷子和花筷子各25根。

奥数四年级 抽屉原理练习题

奥数四年级 抽屉原理练习题

奥数四年级抽屉原理练习题1.★某班37名同学至少有几个同学在同一个月过生日?2.★42只鸽子飞进5个笼子里可以保证有一个笼子中至少有几只鸽子?3.★饲养员给10只猴子分苹果其中至少要有一只猴子得到7个苹果饲养员至少要拿来多少个苹果?4.★一个班有40名同学现在有课外书125本。

把这些书分给同学是否有人会得到4本或4本以上的课外书?5.★五个同学在一起练习投篮,共投进了41个球,那么有一个人至少投进了多少个球?6 ★★某班有个小书架40个同学可以任意借阅小书架上至少要有多少本书才能保证至少有一个同学能借到两本或两本以上的书?7 ★★某班有49个学生最大的12岁最小的9岁是否一定有两个学生他们是同年同月出生的?8 ★★某校五年级学生共有380人年龄最大的与年龄最小的相差不到1岁我们不用去查看学生的出生日期就可断定在这380个学生中至少有两个是同年同月同日出生的你知道为什么吗?9 ★★★在100米的路段上栽树至少要栽多少棵树才能保证至少有两棵树之间的距离小于10米?(两端各栽一棵)10 ★★★将150个玩具分给三年级一班的学生如果其中至少有1人分到至少6个玩具那么这个班最多有多少人?结束语1、同学们,老师相信,在你们当中一定有未来的高斯、笛卡儿,只要积极动脑,做生活的有心人,你们一定会为人类的发展做出巨大的贡献,创造出巨大的财富,有信心吗?2、同学们,科学的殿堂美不胜收,只要大家以勤为径,每个人都能领略到无限美好的风光。

3、一分耕耘,一分收获,同学们,体验到成功的喜悦了吗?4、珍惜时间就等于珍惜生命。

让我们每个热爱生命的人都去珍惜每分、每秒,好吗?5、同学们,大家想过吗?为什么人民币的面值只有1分、2分、5分、1角、2角、5角、1元、2元、5元……而没有3分、4分、6分、7分呢?这虽然是个小问题,老师相信,聪明的你们一定能研究出大学问!6、同学们,生活中时时刻刻有数学,事事有数学,因此,我们应该爱数学、学数学、用数学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8-2抽屉原理教学目标抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。

本讲的主要教学目标是:1.理解抽屉原理的基本概念、基本用法;2.掌握用抽屉原理解题的基本过程;3. 能够构造抽屉进行解题;4. 利用最不利原则进行解题;5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

知识点拨一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个,要把这十个苹果放到九个里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=x ()()11x n -p p , 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里(二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.模块一、利用抽屉原理公式解题(一)、直接利用公式进行解题(1)求结论 【例 1】 6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【巩固】 把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.【巩固】 教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业 试说明:这5名学生中,至少有两个人在做同一科作业.【巩固】 年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【巩固】 数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样.【巩固】 光明小学有367名2000年出生的学生,请问是否有生日相同的学生?【巩固】 用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.【例 2】 向阳小学有730个学生,问:至少有几个学生的生日是同一天?【巩固】 试说明400人中至少有两个人的生日相同.【例 3】 三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.【例 4】 “六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.【巩固】 五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多.【例 5】 在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?【巩固】 四个连续的自然数分别被3除后,必有两个余数相同,请说明理由.【例 6】 证明:任取8个自然数,必有两个数的差是7的倍数.【巩固】 证明:任取6个自然数,必有两个数的差是5的倍数。

【巩固】 (第八届《小数报》数学竞赛决赛)将全体自然数按照它们个位数字可分为10类:个位数字是1的为第1类,个位数字是2的为第2类,…,个位数字是9的为第9类,个位数字是0的为第10类.(1)任意取出6个互不同类的自然数,其中一定有2个数的和是10的倍数吗?(2)任意取出7个互不同类的自然数,其中一定有2个数的和是10的倍数吗?如果一定,请煎药说明理由;如果不一定,请举出一个反例.【巩固】 证明:任给12个不同的两位数,其中一定存在着这样的两个数,它们的差是个位与十位数字相同的两位数.知识精讲【例 7】任给11个数,其中必有6个数,它们的和是6的倍数.【巩固】在任意的五个自然数中,是否其中必有三个数的和是3的倍数?【例 8】任意给定2008个自然数,证明:其中必有若干个自然数,和是2008的倍数(单独一个数也当做和).【巩固】20道复习题,小明在两周内做完,每天至少做一道题.证明:小明一定在连续的若干天内恰好做了7道题目.【例 9】求证:可以找到一个各位数字都是4的自然数,它是1996的倍数.【巩固】任意给定一个正整数n,一定可以将它乘以适当的整数,使得乘积是完全由0和7组成的数. 【例 10】求证:对于任意的8个自然数,一定能从中找到6个数a,b,c,d,e,f,使得()()()a b c d e f---是105的倍数.【巩固】任给六个数字,一定可以通过加、减、乘、除、括号,将这六个数组成一个算式,使其得数为105的倍数.【巩固】(2008年中国台湾小学数学竞赛决赛(一)在100张卡片上不重复地编上1~100,至少要随意抽出几张卡片才能保证所抽出的卡片上的数之乘积可被12整除?【例 11】把1、2、3、…、10这十个数按任意顺序排成一圈,求证在这一圈数中一定有相邻的三个数之和不小于17.L(每一点只标一个数,不同的点标上不【巩固】圆周上有2000个点,在其上任意地标上0,1,2,,1999同的数).证明必然存在一点,与它紧相邻的两个点和这点上所标的三个数之和不小于2999【例 12】证明:在任意的6个人中必有3个人,他们或者相互认识,或者相互不认识.【巩固】平面上给定6个点,没有3个点在一条直线上.证明:用这些点做顶点所组成的一切三角形中,一定有一个三角形,它的最大边同时是另外一个三角形的最小边.【巩固】假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色?【巩固】平面上有17个点,两两连线,每条线段染红、黄、蓝三种颜色中的一种,这些线段能构成若干个三角形.证明:一定有一个三角形三边的颜色相同.【例 13】上体育课时,21名男、女学生排成3行7列的队形做操.老师是否总能从队形中划出一个长方形,使得站在这个长方形4个角上的学生或者都是男生,或者都是女生?如果能,请说明理由;如果不能,请举出实例.【例 14】8个学生解8道题目.(1)若每道题至少被5人解出,请说明可以找到两个学生,每道题至少被过两个学生中的一个解出.(2)如果每道题只有4个学生解出,那么(1)的结论一般不成立.试构造一个例子说明这点.【巩固】试卷上共有4道选择题,每题有3个可供选择的答案.一群学生参加考试,结果是对于其中任何3人,都有一个题目的答案互不相同.问参加考试的学生最多有多少人?(2)求抽屉【例 15】把十只小兔放进至多几个笼子里,才能保证至少有一个笼里有两只或两只以上的小兔?【例 16】把125本书分给五⑵班的学生,如果其中至少有一个人分到至少4本书,那么,这个班最多有多少人?【巩固】某次选拔考试,共有1123名同学参加,小明说:“至少有10名同学来自同一个学校.”如果他的说法是正确的,那么最多有多少个学校参加了这次入学考试?【巩固】100个苹果最多分给多少个学生,能保证至少有一个学生所拥有的苹果数不少于12个.【例 17】某班有16名学生,每个月教师把学生分成两个小组.问最少要经过几个月,才能使该班的任意两个学生总有某个月份是分在不同的小组里?(3)求苹果【例 18】班上有50名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?【巩固】班上有28名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?【巩固】有10只鸽笼,为保证至少有1只鸽笼中住有2只或2只以上的鸽子.请问:至少需要有几只鸽子?【巩固】三年级二班有43名同学,班上的“图书角”至少要准备多少本课外书,才能保证有的同学可以同时借两本书?【例 19】海天小学五年级学生身高的厘米数都是整数,并且在140厘米到150厘米之间(包括140厘米到150厘米),那么,至少从多少个学生中保证能找到4个人的身高相同?【例 20】一次数学竞赛出了10道选择题,评分标准为:基础分10分,每道题答对得3分,答错扣 1分,不答不得分。

问:要保证至少有4人得分相同,至少需要多少人参加竞赛?【巩固】(第十届《小数报》数学竞赛决赛)一次测验共有10道问答题,每题的评分标准是:回答完全正确,得5分;回答不完全正确,得3分,回答完全错误或不回答,得0分.至少____人参加这次测验,才能保证至少有3人得得分相同.(二)、构造抽屉利用公式进行解题【例 21】在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样.你能说明这是为什么吗?【巩固】在一只口袋中有红色与黄色球各4只,现有4个小朋友,每人从口袋中任意取出2个小球,请你证明:必有两个小朋友,他们取出的两个球的颜色完全一样.【巩固】篮子里有苹果、梨、桃和桔子,现有若干个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友才能保证有两个小朋友拿的水果是相同的?【巩固】学校里买来数学、英语两类课外读物若干本,规定每位同学可以借阅其中两本,现有4位小朋友前来借阅,每人都借了2本.请问,你能保证,他们之中至少有两人借阅的图书属于同一种吗?【巩固】11名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本.试说明:必有两个学生所借的书的类型相同【巩固】幼儿园买来许多牛、马、羊、狗塑料玩具,每个小朋友任意选择两件,但不能是同样的,问:至少有多少个小朋友去拿,才能保证有两人所拿玩具相同?【巩固】体育用品的仓库里有许多足球、排球和篮球,有66个同学来仓库拿球,要求每个人至少拿一个,最多拿两个球,问至少有多少名同学所拿的球的种类是完全一样的?【巩固】幼儿园买来很多玩具小汽车、小火车、小飞机,每个小朋友任意选择两件不同的,那么至少要有几个小朋友才能保证有两人选的玩具是相同的?【巩固】篮子里有苹果、梨、桃和桔子,现有若干个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友才能保证有两个小朋友拿的水果是相同的?【例 22】红、蓝两种颜色将一个25方格图中的小方格随意涂色(见下图),每个小方格涂一种颜色.是否存在两列,它们的小方格中涂的颜色完全相同?【例 23】将每一个小方格涂上红色、黄色或蓝色.(每一列的三小格涂的颜色不相同),不论如何涂色,其中至少有两列,它们的涂色方式相同,你同意吗?【例 24】从2、4、6、8、L、50这25个偶数中至少任意取出多少个数,才能保证有2个数的和是52?【巩固】证明:在从1开始的前10个奇数中任取6个,一定有2个数的和是20.【巩固】从1,4,7,10,…,37,40这14个数中任取8个数,试证:其中至少有2个数的和是41. 【巩固】从1,2,3,L,100这100个数中任意挑出51个数来,证明在这51个数中,一定有两个数的差为50。

相关文档
最新文档