_受迫振动_共振_演示实验的研究与改进

合集下载

受迫振动与共振现象的研究

受迫振动与共振现象的研究

受迫振动与共振现象的研究振动是自然界中一种常见的物理现象,无论是机械系统、电子电路还是分子结构,都可以发生振动。

受迫振动是其中一种特殊的振动形式,它在受到外界周期性激励后产生的振动。

共振现象则是在受迫振动中常见的一种现象,它描述了系统在外界激励频率与系统固有频率相匹配时的特殊状态。

本文将探讨受迫振动与共振现象的研究。

受迫振动是一种非平衡状态下的振动,不同于自由振动。

在受迫振动中,外界施加的周期性力或位移使系统产生周期性的响应。

例如,在机械系统中,一个悬挂在弹簧上的质点受到周期性的外力作用,就会引起该质点的受迫振动。

受迫振动通常可以通过线性微分方程来描述。

假设一个简谐振子受到一个周期性外力的作用,其运动方程可以表示为:\[m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = F_0\cos(\omega t)\]其中,m是振子的质量,x是振子的位移,b是阻尼系数,k是弹性系数,F0是外力振幅,ω是外力的角频率。

在进行受迫振动的研究时,共振现象是一个重要的现象。

共振是指当外界激励的频率与系统固有频率相等或接近时,系统会表现出极大的响应。

这是因为在共振状态下,外界激励与振动系统内部的自由振动频率相匹配,从而使得能量在系统内部得到最大的传递。

共振现象具有许多实际应用。

在建筑工程中,共振现象被广泛应用于减震器的设计,用于减少地震或风力对建筑物产生的振动影响。

在电子电路中,共振现象可以用于选择性放大或滤波,将特定频率信号从混杂的信号中提取出来。

此外,共振现象还存在于许多其他领域,如天文学、生物学和音乐等。

为了研究受迫振动和共振现象,科学家和工程师采用了许多不同的方法和技术。

在实验室中,他们可以使用震动台或其他类型的振动装置来模拟外界激励,并测量系统的响应。

通过改变激励频率、幅度或相位,研究者可以确定共振频率以及共振响应的特性。

此外,数值模拟也是研究受迫振动和共振现象的重要手段。

音叉的受迫振动与共振实验报告

音叉的受迫振动与共振实验报告

音叉的受迫振动与共振实验报告音叉的受迫振动与共振实验报告引言:共振是物理学中一个重要的现象,它在各个领域都有广泛的应用。

本次实验旨在通过研究音叉的受迫振动与共振现象,深入理解其原理和特性。

实验目的:1. 研究音叉在受迫振动下的振动特性;2. 探究音叉共振的条件和特点;3. 分析共振现象的应用领域。

实验装置:1. 音叉:选用频率可调的音叉,以便观察不同频率下的振动现象;2. 电磁振子:用于受迫振动实验,通过电流激励产生振动;3. 示波器:用于观察和记录振动信号。

实验步骤:1. 将音叉固定在支架上,并调整其频率为初始状态;2. 将电磁振子的线圈与音叉相对应的位置,通过电流激励使音叉振动;3. 通过示波器观察和记录音叉的振动信号;4. 逐渐调整电磁振子的频率,观察音叉的振动情况;5. 记录共振出现的频率,并进行数据分析。

实验结果与分析:通过实验观察和记录,我们得到了音叉在受迫振动下的振动特性。

当电磁振子的频率与音叉的固有频率相同时,音叉共振现象明显,振幅增大。

而当频率偏离音叉的固有频率时,振幅逐渐减小,最终趋于平衡。

我们进一步分析了共振现象的条件和特点。

首先,共振现象发生的条件是电磁振子的频率与音叉的固有频率相等。

其次,共振时音叉的振动幅度最大,能量传递最为有效。

最后,共振现象在不同频率下都会出现,但只有在频率接近音叉的固有频率时,共振效应才会显著。

共振现象在实际生活中有广泛的应用。

例如,共振现象在桥梁工程中起到重要作用。

当桥梁受到外力作用时,如果外力频率与桥梁固有频率相近,就会引发共振,导致桥梁振幅增大,甚至发生破坏。

因此,在桥梁设计中需要考虑共振现象,以避免潜在的危险。

结论:通过本次实验,我们深入了解了音叉的受迫振动与共振现象。

我们通过观察和记录音叉的振动信号,研究了共振现象的条件和特点。

同时,我们也了解到共振现象在桥梁工程等领域的应用。

通过这次实验,我们对共振现象有了更深入的认识,也增加了我们对物理学原理的理解。

受迫振动共振实验报告

受迫振动共振实验报告

一、实验目的1. 了解受迫振动的基本原理和共振现象。

2. 通过实验验证受迫振动共振的条件,并观察共振现象。

3. 研究不同频率、阻尼和激励力对受迫振动共振的影响。

4. 掌握实验数据采集和分析方法,提高实验技能。

二、实验原理受迫振动是指在外力作用下,物体发生的振动现象。

当外力的频率与物体的固有频率相同时,会发生共振现象,此时物体的振幅达到最大值。

实验原理基于牛顿第二定律,物体的运动方程可表示为:\[ m\ddot{x} + c\dot{x} + kx = F(t) \]其中,\( m \) 为物体的质量,\( c \) 为阻尼系数,\( k \) 为弹簧劲度系数,\( x \) 为物体的位移,\( F(t) \) 为外力。

当外力为简谐振动时,即 \( F(t) = F_0 \cos(\omega t) \),则运动方程可简化为:\[ m\ddot{x} + c\dot{x} + kx = F_0 \cos(\omega t) \]三、实验仪器与设备1. 波尔共振仪2. 信号发生器3. 数字示波器4. 阻尼器5. 连接线四、实验步骤1. 将波尔共振仪的摆轮与阻尼器连接,并调整阻尼器,使摆轮处于自由振动状态。

2. 打开信号发生器,设置合适的频率和幅度,产生简谐振动信号。

3. 将信号发生器的输出信号连接到波尔共振仪的输入端,开始实验。

4. 使用数字示波器观察波尔共振仪的振动信号,记录振幅和频率。

5. 调整信号发生器的频率,观察共振现象,记录共振频率和振幅。

6. 改变阻尼器的阻尼系数,观察阻尼对共振现象的影响。

7. 改变激励力的幅度,观察激励力对共振现象的影响。

五、实验结果与分析1. 实验结果表明,当信号发生器的频率与波尔共振仪的固有频率相同时,发生共振现象,振幅达到最大值。

2. 随着阻尼系数的增加,共振频率逐渐降低,振幅逐渐减小。

3. 随着激励力幅度的增加,共振现象更加明显,振幅达到最大值。

六、实验结论1. 受迫振动共振现象是当外力频率与物体的固有频率相同时,物体振幅达到最大值的现象。

“受迫振动、共振”演示实验的研究与改进

“受迫振动、共振”演示实验的研究与改进

图 1 教 材 中研 究 受 迫 振 动 频 率 的实 验 装 置
在 实 际教 学 中 笔 者 发 现 该 实 验 存 在 3个 问 题 :. a 电动机 转 动 的周 期 ( 或偏 心 轮转 动 的周 期 )
图 2 教 材 中演 示 受 迫振 动 的 振 幅 与
固有 频 率 关 系 的 实 验 装 置
体做 受迫 振 动时 的频率 与驱 动力 频率 的关 系及 共 振现 象.教学 中 , 做好 2个 实验 的课 堂 演示 , 上 是 好这 节 课 的重 点.但 笔者 在 教 学 中发 现 , 材 中 教 提供 的 2个实 验装 置在演 示 相关 实验 现象 时存 在 较大 问题 , 以达 到预期 的 实验教 学 效果 . 难 图 1为教 材 中研 究 受 迫 振 动 频 率 的 实 验 装
振 摆 B和 C; 后 共振 摆 B和 C振 幅 逐 渐 增 大 , 然 驱 动摆 A 的振 幅逐 渐减 小 .到一 定 程 度 后 , 量 能
2 实 验 装 置 的 改进
针对 现有 实验 装 置 中存 在 的问 题 和 不 足 , 笔 者 在 原教材 实 验装 置 的基 础 上 进 行 了改 进 , 计 设 制 作 了“ 迫 振 动 、 振 ” 示 仪 .在 教 学 中笔 者 受 共 演 使 用 改进后 的 实验 装 置 , 很好 地 演 示 受 迫 振 动 能 频 率 、 振现 象 , 共 实验 效果 非 常显 著.
第2卷 9
第 1 O期
物 理
实 验
Vo . 9 No 1 12 .0
0C ., 00 t 2 9
20 0 9年 1 O月
PHYSI CS EXPERI ENTATI M oN
“ 迫振动 、 受 共振 " 示 实 验 的研 究 与 改进 演

受迫振动与共振实验报告

受迫振动与共振实验报告

实验报告:受迫振动与共振1.实验目的:本实验旨在通过研究受迫振动与共振现象,探究受迫振动的特点和共振的产生条件,并对实验结果进行分析和讨论。

2.实验器材:振动平台弹簧、质量块受迫振动装置功率放大器示波器频率计3.实验原理:受迫振动是指一个振动系统受到外力的作用,从而导致振幅的变化和相位的偏移。

在一定条件下,当外力的频率与系统的固有频率相等时,共振现象就会出现,此时振幅达到最大。

4.实验步骤:步骤1:搭建受迫振动装置,包括振动平台、弹簧和质量块。

步骤2:调整振动平台的频率和振幅,使其与受迫振动装置的固有频率相等。

记录调整后的频率和振幅值。

步骤3:接通功率放大器,调节输出功率,使受迫振动装置的振幅达到最大。

记录此时的频率和振幅值。

步骤4:使用示波器观察受迫振动的振动曲线,并记录相关数据。

步骤5:根据实验数据计算共振频率和共振宽度,并进行分析和讨论。

5.实验结果:调整后的频率和振幅值记录如下:频率:X Hz振幅:X cm受迫振动装置达到共振的频率和振幅值记录如下:共振频率:X Hz共振振幅:X cm6.实验讨论:通过实验数据计算得到的共振频率和共振宽度是否符合理论预期?受迫振动的振幅是否随着外力频率的增加而增加?如何改变外力的频率和幅度,以观察受迫振动的不同响应?7.实验结论:受迫振动是受到外力作用的振动,其振幅和相位会随着外力频率的变化而发生变化。

共振是指外力频率与系统固有频率相等时,振幅达到最大的现象。

通过实验可以观察到受迫振动的共振现象,并计算出共振频率和共振宽度。

以上为受迫振动与共振实验报告的基本内容和结构。

根据实际情况,还可以添加实验数据的图表、数据分析和实验误差的讨论等内容。

利用波尔共振仪研究受迫振动实验报告

利用波尔共振仪研究受迫振动实验报告

利用波尔共振仪研究受迫振动实验报告实验报告:利用波尔共振仪研究受迫振动一、实验目的与意义1.1 实验目的本次实验的主要目的是探究受迫振动现象。

在力学中,受迫振动是一个非常重要的概念。

它在我们生活中随处可见,比如秋千的摆动,甚至是建筑物在地震中的反应。

我们使用波尔共振仪进行实验,目的是观察和分析系统在不同频率下的振动特性。

1.2 实验意义理解受迫振动不仅仅是为了理论上的探索。

它还对实际应用有着深远的影响。

比如,工程师们需要设计抗震建筑,音乐家需要调音,甚至航天器的发射也需要考虑振动问题。

通过本次实验,我们可以加深对振动机制的理解,提升我们的实验技能和观察能力。

二、实验原理2.1 受迫振动受迫振动是指在外力作用下,物体的振动状态。

简单来说,就是你推一下秋千,它开始摆动。

频率的匹配至关重要。

当外力的频率与系统的固有频率相匹配时,振动幅度会显著增大,这就是共振现象。

2.2 波尔共振仪波尔共振仪是一个非常精密的设备。

它通过控制外部频率,测量物体的振动响应。

仪器的操作看似复杂,但其实就是不断调整频率,观察振动情况。

波尔共振仪帮助我们量化受迫振动的特征。

2.3 实验步骤实验开始前,我们首先组装好波尔共振仪。

然后,将待测物体固定在仪器上。

接着,缓慢增加外力的频率,观察并记录物体的振动幅度。

通过多次实验,我们能得到不同频率下的振动数据。

三、实验过程3.1 准备工作准备工作可谓是关键一步。

我们细心地检查仪器,确保每个部件都工作正常。

小心翼翼地调整仪器,像是给一个脆弱的孩子穿衣服。

紧张又期待。

接下来,我们把待测物体固定好,心中暗暗祈祷一切顺利。

3.2 数据记录频率逐渐升高,物体开始轻微摆动。

我们仔细观察,兴奋感油然而生。

随着频率增加,振动幅度渐渐增大,直到某个特定频率,振动幅度达到了最高点。

这一瞬间,仿佛时间都静止了。

我们迅速记录下这个数据,心里暗自高兴。

3.3 结果分析分析数据的过程充满挑战。

我们逐一查看记录,找出共振点。

受迫振动研究_实验报告

受迫振动研究_实验报告

一、实验目的1. 了解受迫振动的概念和特性。

2. 掌握利用波尔共振仪研究受迫振动的实验方法。

3. 研究不同阻尼力矩对受迫振动的影响,观察共振现象。

4. 学习用频闪法测定运动物体的某些量,如相位差。

二、实验原理1. 受迫振动:物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为策动力。

当策动力频率与原振动系统无阻尼时的固有振动频率相同时,系统产生共振,振幅最大。

2. 频闪法:通过使物体在特定频率下振动,观察物体在短时间内多次闪光,从而计算出物体的某些物理量,如相位差。

三、实验仪器1. 波尔共振仪2. 频闪仪3. 秒表4. 刻度尺5. 计算器四、实验步骤1. 将波尔共振仪放置在平稳的桌面上,调整摆轮使其处于水平位置。

2. 接通电源,打开波尔共振仪,调整策动力频率至接近摆轮的固有频率。

3. 观察摆轮的振动情况,记录振幅、频率等数据。

4. 改变阻尼力矩,观察振幅、频率等数据的变化。

5. 利用频闪法测定摆轮振动的相位差。

6. 分析实验数据,绘制幅频曲线、相频曲线。

五、实验数据及分析1. 实验数据:阻尼力矩:0.1 N·m,振幅:0.5 cm,频率:2 Hz,相位差:10°阻尼力矩:0.2 N·m,振幅:0.3 cm,频率:1.5 Hz,相位差:20°阻尼力矩:0.3 N·m,振幅:0.2 cm,频率:1 Hz,相位差:30°2. 分析:(1)随着阻尼力矩的增加,振幅逐渐减小,频率逐渐降低,相位差逐渐增大。

(2)当阻尼力矩为0.1 N·m时,系统处于共振状态,振幅最大,频率与固有频率相等。

(3)频闪法测定的相位差与理论计算值基本一致。

六、实验结论1. 通过实验,验证了受迫振动的概念和特性,了解了不同阻尼力矩对受迫振动的影响。

2. 利用波尔共振仪和频闪法可以有效地研究受迫振动,并得出可靠的实验数据。

3. 实验结果表明,在受迫振动过程中,系统会产生共振现象,振幅最大,频率与固有频率相等。

受迫振动演示实验报告

受迫振动演示实验报告

一、实验目的1. 了解受迫振动的概念和特点。

2. 观察受迫振动中共振现象的产生。

3. 研究受迫振动的幅频特性和相频特性。

4. 学习利用实验仪器进行受迫振动实验。

二、实验原理受迫振动是指物体在周期外力的作用下发生的振动。

当策动力的频率与系统的固有频率相同时,系统产生共振,振幅达到最大值。

受迫振动的幅频特性是指振幅与策动力的频率之间的关系,相频特性是指振幅与策动力频率之间的相位差。

三、实验仪器与设备1. 波尔共振仪2. 弹簧摆轮3. 电磁阻尼装置4. 频闪仪5. 数据采集器6. 计算机及分析软件四、实验步骤1. 连接波尔共振仪,确保各部分工作正常。

2. 将弹簧摆轮固定在波尔共振仪上,调整摆轮的初始位置,使其处于平衡状态。

3. 打开电磁阻尼装置,调整阻尼力矩,使阻尼系数适中。

4. 利用频闪仪观察摆轮的振动情况,并记录下摆轮的振动频率。

5. 改变策动力的频率,记录下不同频率下的振幅和相位差。

6. 利用数据采集器记录下摆轮的振动数据,并输入计算机进行分析。

7. 分析振幅与策动力频率之间的关系,绘制幅频特性曲线。

8. 分析振幅与策动力频率之间的相位差,绘制相频特性曲线。

五、实验结果与分析1. 实验结果(1)当策动力的频率与摆轮的固有频率相同时,观察到摆轮的振幅达到最大值,产生共振现象。

(2)随着策动力频率的增加,振幅逐渐减小,相位差逐渐增大。

(3)幅频特性曲线呈倒U形,相频特性曲线呈线性。

2. 分析(1)共振现象的产生是由于策动力的频率与摆轮的固有频率相匹配,使得系统在策动力作用下产生较大的振幅。

(2)幅频特性曲线表明,在共振频率附近,振幅随策动力频率的增加而增大,当超过共振频率后,振幅逐渐减小。

(3)相频特性曲线表明,振幅与策动力频率之间存在相位差,相位差随着策动力频率的增加而增大。

六、实验结论1. 受迫振动是物体在周期外力作用下发生的振动,具有共振现象。

2. 共振现象的产生是由于策动力的频率与系统的固有频率相匹配。

受迫振动实验报告总结

受迫振动实验报告总结

受迫振动实验报告总结实验目的本实验旨在通过研究受控物体在受迫力作用下的振动特点,探讨谐振、共振、幅频特性等相关问题,加深对振动现象的理解。

实验装置和原理实验采用了一套受迫振动实验装置,包括:一个悬挂在弹性杆上的实验物体、一对电磁线圈、一个频率调节器、一个信号发生器、一个振动测量装置。

其中实验物体连接电磁线圈,当电磁线圈通过交流电流时,对实验物体施加周期性的受迫力。

实验步骤1. 将实验物体悬挂在弹性杆上,并调整实验物体的位置,使其处于自由落体平衡状态。

2. 调节频率调节器,采用不同的频率进行实验,观察实验物体的振动情况,并记录测得的数据。

3. 利用信号发生器调节电磁线圈的交流电流频率,将频率调至实验物体的谐振频率附近,观察实验物体的共振现象。

4. 将实验物体的频率与电流大小、振幅等参数进行测量,得出实验物体的幅频特性曲线。

实验结果与分析经过实验观察及测量,得到了一系列实验数据,并绘制了相应的图表。

实验结果显示,实验物体在受迫力作用下产生了振动,且振幅与频率存在一定的关联性。

谐振现象通过调节频率调节器,我们观察到实验物体在达到一特定频率时出现了谐振现象。

在该频率下,实验物体的振幅较大,且对外界干扰较为敏感。

这一现象说明,当受迫力的频率与实验物体的固有频率相近时,能量传递效率较高,振动幅度达到最大。

幅频特性曲线根据实验数据绘制的幅频特性曲线显示,实验物体的振幅随着频率的变化呈现出一定的规律性。

在低频范围内,振幅逐渐增加;而在谐振频率附近,振幅达到最大值;随后在高频范围内,振幅逐渐减小。

实验讨论与改进在实验过程中,我们发现了一些问题,并对实验结果进行了讨论和分析。

首先,由于实验条件的限制,我们无法精确测量实验物体的振动频率和振幅,可能存在一定的误差。

其次,实验过程中可能会受到外界干扰因素,如空气阻力、弹簧老化等,这些因素可能会对振动现象产生一定影响。

为提高实验的准确性和可靠性,我们可以进行以下改进措施:增加测量仪器的精度、减小外界干扰因素、多次重复实验取平均值等。

受迫振动与共振实验报告

受迫振动与共振实验报告

受迫振动与共振实验报告受迫振动与共振实验报告引言:振动是自然界中普遍存在的一种现象,它在物理学、工程学等领域中具有广泛的应用。

受迫振动是一种特殊的振动现象,它在外界作用下被迫以某种频率振动。

共振则是指当外界频率与振动系统的固有频率相等时,振动幅度达到最大值的现象。

本次实验旨在通过受迫振动与共振的研究,深入了解振动现象的特性和应用。

实验目的:1. 通过实验观察和测量受迫振动的特性;2. 研究共振现象的产生条件及其应用。

实验装置与方法:本次实验采用了一根长而细的弹簧,一台频率可调的振荡器和一块质量较小的振子。

实验步骤如下:1. 将弹簧固定在支架上,挂上振子;2. 将振荡器与弹簧相连,调节振荡器频率为可调范围内的任意值;3. 激发振荡器,观察振子的振动情况,并记录振动幅度和频率。

实验结果与分析:在实验过程中,我们发现振子的振幅随着外界频率的变化而发生变化。

当外界频率与振子的固有频率相同时,振幅达到最大值,即发生共振现象。

此时,振子受到的外力与其固有振动频率完全同步,使得振子的振幅不断增大。

通过实验数据的记录和分析,我们得出以下结论:1. 受迫振动的振幅与外界频率之间存在一定的关系,当外界频率接近振子的固有频率时,振幅达到最大值;2. 共振现象的产生与振子的固有频率密切相关,只有当外界频率与振子的固有频率相等时,共振现象才会发生;3. 共振现象在实际生活中有着广泛的应用,如音乐乐器的共鸣、桥梁的共振等。

实验的局限性与改进:本次实验中,我们只观察了振子的振幅变化,而未对其相位进行测量。

进一步的实验可以通过引入相位测量装置,来研究振子的相位变化规律。

此外,由于实验条件的限制,我们只能在有限的频率范围内进行观察,进一步的实验可以扩大频率范围,以获得更全面的数据。

结论:通过本次实验,我们深入了解了受迫振动与共振现象的特性和应用。

受迫振动是一种外界强迫下的振动现象,而共振则是在外界频率与振动系统固有频率相等时,振幅达到最大值的现象。

音叉的受迫振动与共振实验报告

音叉的受迫振动与共振实验报告

音叉的受迫振动与共振实验报告
本次实验旨在通过对音叉的受迫振动与共振现象进行观察和研究,以加深对振
动和波动理论的理解,并验证实验中的相关理论知识。

实验过程中,我们使用了音叉、频率计、振动台等仪器,通过调节频率和振幅等参数,观察音叉的振动情况,记录实验数据,并进行分析和总结。

首先,我们将音叉固定在振动台上,通过频率计调节振动台的频率,使其与音
叉的固有频率相同,这时我们观察到音叉振幅明显增大,这就是共振现象。

共振是指当外力的频率与物体自身的固有频率相同时,物体的振幅会急剧增大的现象。

在实验中,我们通过改变振动台的频率,观察到了共振现象的发生,并记录了共振的频率和振幅数据。

其次,我们改变外力的频率,使其不等于音叉的固有频率,这时我们观察到音
叉的振动情况发生了变化,振幅减小,这就是受迫振动。

受迫振动是指外力对物体施加周期性作用力时,物体发生的振动。

在实验中,我们通过改变外力的频率,观察到了受迫振动的现象,并记录了受迫振动的频率和振幅数据。

通过实验数据的记录和分析,我们发现共振频率和受迫振动频率之间存在一定
的关系,共振频率大约等于音叉的固有频率,而受迫振动频率则可以通过外力的频率来控制。

这些实验结果验证了振动和波动理论中有关共振和受迫振动的相关知识,加深了我们对这些理论的理解。

总的来说,本次实验通过对音叉的受迫振动与共振现象进行观察和研究,验证
了振动和波动理论中的相关知识。

实验结果表明,共振频率和受迫振动频率之间存在一定的关系,这对我们进一步理解振动和波动现象具有重要意义。

希望通过本次实验,能够加深对振动和波动理论的理解,为今后的学习和科研工作打下坚实的基础。

受迫振动与共振实验报告

受迫振动与共振实验报告

受迫振动与共振实验报告实验名称:受迫振动与共振实验报告实验目的:通过受迫振动和共振实验,了解振动的基本特性及其在实际中的应用。

实验仪器:万能试验机、电磁振荡器、示波器等。

实验原理:受迫振动:当物体受到周期性外力作用时,会出现一种物理现象称为受迫振动。

其运动方程为:mx'' + kx = F(t)其中,m为物体的质量,x为物体的位移,k为物体的劲度系数,F(t)为外力。

在周期性外力作用下,物体的振动频率为外力频率。

共振:当周期性外力与物体本身的固有振动频率一致时,物体会产生巨大振动,并且能量不断积累,导致共振现象的产生。

实验步骤:1. 首先,打开电磁振荡器并连接示波器。

2. 用万能试验机垂直放置一个质量近似的弹性体,并将弹簧固定在顶板上。

3. 在弹簧下方挂上一个固定质量的振子,并使用电磁振荡器对振子进行周期性振动。

4. 通过调节电磁振荡器的频率,观察弹簧上的振动情况。

5. 测量不同频率下弹簧的振动幅度与电磁振荡器的驱动力。

实验结果:通过实验,我们发现:当电磁振荡器的频率与弹簧的固有振动频率相等时,弹簧的振幅会显著增强,出现共振现象。

而当电磁振荡器频率低于弹簧固有振动频率时,振幅逐渐减小,呈现出强制散射的特点;当电磁振荡器频率高于弹簧固有振动频率时,振幅逐渐减小,呈现出削弱的特点。

结论:受迫振动和共振是振动学中的常见现象,掌握其特点和规律对于实际应用具有重要作用。

实验结果表明,在受迫振动下,物体的振幅受到外力频率和物体自身特性的影响;而在共振状态下,物体能够吸收更多的能量,具有倍增振幅的特征。

实验评价:该实验操作简单,让我们对受迫振动和共振有了更深入的了解,同时加深了我们对物理学原理的认识。

受迫振动的研究实验报告

受迫振动的研究实验报告

受迫振动的研究实验报告实验目的,通过对受迫振动的研究,探索振动系统的特性,并验证受迫振动的理论知识。

实验仪器与设备,振动台、弹簧振子、电磁振子、频率计、示波器、电源供应器等。

实验原理,受迫振动是指在外力作用下,振动系统受到迫使而产生的振动。

当外力的频率接近振动系统的固有频率时,会出现共振现象。

在实验中,我们将通过改变外力的频率和振幅,观察振动系统的响应,从而研究受迫振动的特性。

实验步骤:1. 将弹簧振子和电磁振子分别固定在振动台上,并连接到电源供应器和频率计上。

2. 调节频率计和电源供应器,使弹簧振子和电磁振子的固有频率分别为f1和f2。

3. 分别设置外力的频率为f1、f2和f3,观察振动系统的响应,并记录数据。

4. 调节外力的振幅,重复步骤3的实验,并记录数据。

5. 对实验数据进行分析和处理,得出结论。

实验结果与分析:通过实验数据的记录和分析,我们得出以下结论:1. 当外力的频率等于弹簧振子或电磁振子的固有频率时,振动系统会出现共振现象,振幅急剧增大。

2. 外力的振幅对振动系统的响应有明显影响,振幅越大,振动系统的响应越明显。

结论,受迫振动是振动系统的一种重要现象,外力的频率和振幅对振动系统的响应有显著影响。

通过实验研究,我们可以更深入地了解受迫振动的特性,为振动系统的应用提供理论支持。

实验总结,通过本次实验,我们深入探讨了受迫振动的特性,并验证了受迫振动的理论知识。

实验结果对于进一步研究振动系统具有一定的指导意义,也为相关领域的工程应用提供了理论支持。

实验中遇到的问题与改进,在实验过程中,由于外界干扰和仪器误差等因素,可能会对实验结果产生一定影响。

在以后的实验中,我们可以进一步优化实验条件,减小误差,确保实验结果的准确性。

实验的意义与展望,受迫振动作为振动系统的重要现象,具有广泛的应用价值。

通过对受迫振动的研究,可以深入理解振动系统的特性,为相关领域的工程应用提供理论支持。

未来,我们可以进一步探索受迫振动的特性,拓展其在工程领域的应用。

受迫振动与共振实验报告

受迫振动与共振实验报告

受迫振动与共振实验报告一、实验目的1、观察受迫振动的现象,研究受迫振动的特征。

2、研究受迫振动的振幅与驱动力频率之间的关系,从而了解共振现象。

3、学习使用示波器和信号发生器等实验仪器。

二、实验原理1、受迫振动当一个振动系统受到周期性外力作用时,其振动状态称为受迫振动。

受迫振动的振幅和相位不仅取决于系统本身的性质(如质量、弹性系数等),还与驱动力的频率和幅度有关。

2、共振当驱动力的频率接近振动系统的固有频率时,受迫振动的振幅会显著增大,这种现象称为共振。

在共振状态下,系统从驱动力中吸收的能量最大。

三、实验仪器1、气垫导轨2、滑块3、弹簧4、砝码5、光电门6、数字毫秒计7、示波器8、信号发生器四、实验步骤1、安装实验装置将气垫导轨调至水平,把滑块放在导轨上,用弹簧将滑块与固定端连接,并在滑块上放置适量砝码。

2、测量固有频率轻轻推动滑块,使其在气垫导轨上做自由振动,通过光电门和数字毫秒计测量振动周期,从而计算出系统的固有频率。

3、进行受迫振动实验将信号发生器与导轨连接,产生周期性的驱动力。

逐渐改变驱动力的频率,同时用示波器观察滑块振动的振幅。

4、记录数据在不同的驱动力频率下,记录滑块振动的振幅。

五、实验数据及处理|驱动力频率(Hz)|振幅(cm)|||||5 |05 ||10 |12 ||15 |20 ||20 |35 ||25 |48 ||30 |55 ||35 |58 ||40 |50 ||45 |42 ||50 |30 |以驱动力频率为横坐标,振幅为纵坐标,绘制出振幅与驱动力频率的关系曲线。

从曲线中可以明显看出,在驱动力频率接近系统固有频率时(约为30Hz),振幅达到最大值,即发生了共振现象。

六、误差分析1、气垫导轨未能完全水平,导致滑块运动过程中受到额外的阻力。

2、测量仪器本身存在一定的误差,如数字毫秒计的精度有限。

3、实验环境中的空气阻力对滑块的振动也会产生一定的影响。

七、实验思考与讨论1、共振现象在实际生活中有哪些应用和危害?共振现象在许多领域都有重要的应用,比如在声学中,乐器的共鸣箱利用共振原理来增强声音;在无线电技术中,利用共振可以选择特定频率的信号。

利用波尔共振仪研究受迫振动实验报告

利用波尔共振仪研究受迫振动实验报告

利用波尔共振仪研究受迫振动实验报告受迫振动是物理学中一个重要的研究方向,利用波尔共振仪可以进行受迫振动的实验研究。

本实验旨在通过波尔共振仪的搭建和调整,观察受迫振动的波形特点,并研究受迫振动的周期与频率之间的关系。

实验结果可以用以验证受迫振动的理论模型,并进一步探讨受迫振动的规律性。

一、实验目的1.理解受迫振动的概念和规律。

2.学习使用波尔共振仪进行受迫振动的实验研究。

3.通过实验观察并分析受迫振动的波形特点。

4.探究受迫振动的周期与频率之间的关系。

二、实验原理1.受迫振动的定义:当有一周期性外力作用于一个自由振动系统时,振动系统将产生受迫振动。

外力的周期等于振动系统的周期时,称之为共振。

共振时,振动系统的振幅将达到最大值。

2.波尔共振仪的构造:波尔共振仪主要由一个弹性线和其两端的摆线振子组成。

外力通过弹性线传递给摆线振子,从而产生受迫振动。

3.受迫振动的周期和频率关系:受迫振动的周期与弹性线的原长和振子质量有关。

当振子质量不变时,周期的平方与弹性线的原长成正比。

三、实验步骤1.搭建波尔共振仪:在水平台上固定一端的弹性线,将另一端的摆线振子挂在弹性线上。

2.调整外力的频率:通过调整外力的频率,使振子呈现共振状态。

可以通过改变外力的频率或改变振子的长度来调整频率。

3.观察振子的波形特点:调整合适的外力频率后,观察摆线振子的波形特点,如最大振幅、振动周期等。

4.测量振子的振动周期:利用计时器测量振子的振动周期,并记录下来。

5.调整外力的频率,并再次观察振子的波形特点和测量振动周期。

6.重复步骤3~5,完成一系列不同频率下的观察和测量。

四、实验结果与分析1.根据步骤3和4的观察和测量,我们可以得到不同外力频率下的振子振动周期。

2.根据实验原理中的周期与频率关系,我们可以计算出受迫振动的频率与周期之间的关系。

3.绘制频率与周期的关系曲线,观察是否符合受迫振动的理论模型。

4.将实验结果与理论模型进行对比和讨论,分析实验结果的合理性和可能的偏差。

受迫振动与共振实验报告

受迫振动与共振实验报告

受迫振动与共振实验报告本次实验旨在通过对受迫振动与共振的研究,加深对这一物理现象的理解,探索其在不同条件下的特性和规律。

实验过程中,我们通过搭建实验装置,进行数据采集和分析,得出了一些有价值的结论和发现。

首先,我们搭建了一个简单的受迫振动实验装置,利用一根弹簧和一个质量块构成简谐振动系统。

在外力的作用下,质量块受到周期性的驱动力,产生受迫振动。

我们通过改变外力的频率和振幅,观察了振动系统的响应,并记录了相应的数据。

接着,我们进行了共振实验。

我们发现,在一定的条件下,外力的频率与振动系统的固有频率匹配时,振动系统将会出现共振现象。

这时,振动系统的振幅会急剧增大,甚至引起系统的破坏。

我们通过实验数据和图表清晰地展现了共振现象的特点和规律。

在分析实验数据的过程中,我们发现了一些有趣的现象。

例如,在受迫振动实验中,当外力的频率接近振动系统的固有频率时,振幅会明显增大,但并不会像共振那样急剧增大。

这为我们进一步研究振动系统的特性提供了新的思路。

通过本次实验,我们深刻认识到了受迫振动与共振的重要性和应用价值。

在实际生活和工程中,这些物理现象都有着广泛的应用,如建筑结构的抗震设计、电子设备的振动控制等领域。

因此,对于这些现象的深入理解和研究,不仅有助于丰富我们的物理知识,还能为工程技术的发展提供有力支持。

综上所述,通过本次实验,我们对受迫振动与共振有了更深入的了解,对实验数据的分析和结论也有了更加清晰的认识。

我们相信,这些实验结果和发现将为我们今后的学习和科研工作提供宝贵的参考和指导。

同时,我们也意识到,物理实验不仅是理论知识的延伸,更是对我们动手能力和实践能力的锻炼,我们将继续努力,深入探索物理世界的奥秘。

利用波尔共振仪研究受迫振动实验报告

利用波尔共振仪研究受迫振动实验报告

利用波尔共振仪研究受迫振动实验报告大家好,今天我要给大家分享一下我最近做的一个有趣的实验——利用波尔共振仪研究受迫振动。

这个实验可不仅仅是为了满足我们的好奇心,还能让我们更深入地了解声音和振动的奥秘哦!让我们来简单介绍一下波尔共振仪。

波尔共振仪是一种用于测量声波频率和强度的仪器,它的名字来源于法国物理学家路易·德布罗意(Louis de Broglie)。

通过波尔共振仪,我们可以观察到不同频率的声音在物体上的响应,从而得出物体的固有频率和振幅。

那么,什么是受迫振动呢?受迫振动是指一个物体在受到外力作用下产生的振动。

比如说,当我们用手指敲击桌子时,桌子会产生受迫振动;当我们驾驶汽车行驶在颠簸的路上时,车身也会产生受迫振动。

这些振动都是由外界的力量驱动的,而不是物体本身发出的。

接下来,我就来给大家详细介绍一下我们的实验过程吧!我们需要准备一些实验材料,包括:波尔共振仪、麦克风、音箱、泡沫板、钢球等。

然后,我们按照以下步骤进行实验:1. 将泡沫板放在钢球上方,确保钢球完全被泡沫板包裹住。

这样可以减少空气阻力对实验结果的影响。

2. 将麦克风放置在距离泡沫板约1米的地方,以便捕捉到泡沫板发出的声音。

将音箱放置在另一个位置,以便播放不同频率的声音。

3. 打开音箱,播放不同频率的声音。

注意,这里的频率要高于或低于泡沫板的固有频率,以便观察到受迫振动的现象。

4. 调整音箱的音量和播放时间,观察泡沫板的振动情况。

如果泡沫板在播放特定频率的声音时出现明显的振动,那么就说明这个频率是泡沫板的固有频率。

5. 为了进一步验证我们的实验结果,我们可以将钢球从泡沫板上取下来,然后再次播放同样频率的声音。

这时,我们会发现泡沫板仍然会振动,但振幅会减小。

这是因为钢球的存在使得泡沫板与周围环境的相互作用减弱了。

通过这次实验,我们不仅学到了如何利用波尔共振仪研究受迫振动,还了解到了声音是如何传播的以及物体之间的相互作用原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第29卷 第10期2009年10月 物 理 实 验 P H YSICS EXPERIM EN TA TION Vol.29 No.10 Oct.,2009 收稿日期:2009208221 作者简介:王浙伟(1972-),男,浙江温州人,永强中学一级教师,学士,从事高中物理教学工作.基础教育研究“受迫振动、共振”演示实验的研究与改进王浙伟(永强中学,浙江温州325024) 摘 要:对现有受迫振动、共振演示实验装置的不足进行了剖析,改进了原有的实验装置,制作了受迫振动、共振演示仪器.阐述了改进后的实验装置的具体制作、教学使用及特点.关键词:受迫振动;共振;演示实验中图分类号:G 633.7 文献标识码:B 文章编号:100524642(2009)10200162041 现有实验装置存在的问题在新教材(人教版)选修3-4“外力作用下的振动”一节中,教材通过2个演示实验,研究了物体做受迫振动时的频率与驱动力频率的关系及共振现象.教学中,做好2个实验的课堂演示,是上好这节课的重点.但笔者在教学中发现,教材中提供的2个实验装置在演示相关实验现象时存在较大问题,难以达到预期的实验教学效果.图1为教材中研究受迫振动频率的实验装置.装置中2个弹簧振子做受迫振动的周期性驱动力由可变转速的电动机提供,改变电动机的转速可调整驱动力的频率.教材要求在实验中记录驱动力的周期和振子振动的周期,通过比较得出驱动力的周期与振子振动的周期的关系,即物体做受迫振动时的频率等于驱动力频率.图1 教材中研究受迫振动频率的实验装置在实际教学中笔者发现该实验存在3个问题:a.电动机转动的周期(或偏心轮转动的周期)不能目测,即使用秒表来测量也有一定的困难,实验中根本无法记录. b.当启动电动机驱动振子做受迫振动时,振子振动并不稳定,几乎只有在发生共振时振子振动才比较稳定,当逐渐调节电动机转速时,振子振动的频率难以随之同步. c.电动机带动偏心轮转动,使悬挂在偏心轮上的细线周期性上下扯动,进而驱动振子做受迫振动,这一驱动力传递过程可视性不强,除前排几个学生可看到外,其他学生根本无法看到.图2为教材中用于演示受迫振动的振幅与固有频率关系以及共振现象实验装置.按教材介绍,当A 摆振动时,通过绳子给其他摆以驱动力,从而使其他摆做受迫振动,与A 摆摆长相同的摆球振幅最大,其他摆摆幅小.但该实验在实际中观察到的现象并非如预想的理想,实际情况是:当驱动摆A 振动时,开始时是与驱动摆A 邻近的D ,E 两摆振动明显,且振幅大于离A摆较远的共图2 教材中演示受迫振动的振幅与固有频率关系的实验装置振摆B和C;然后共振摆B和C振幅逐渐增大,驱动摆A的振幅逐渐减小.到一定程度后,能量传递方向发生变化,共振摆B和C振幅逐渐变小,驱动摆A振幅逐渐增大,并如此反复.实验中,在提供周期性驱动力的A摆开始摆动后,不仅其他各摆的振幅在不停地变化,而且各摆的频率与驱动摆频率也不相同,差异非常明显.教师在演示该实验时往往参照老教材教参的做法,即当B和C摆振幅明显大于D和E摆时来说明共振现象,并在共振摆B和C振幅减小之前立即停止实验.笔者认为如此做法十分不妥,同时教师也难以解释为何开始时D和E两摆的振幅明显大于共振摆B和C,以及各摆的频率不相同现象.显然,这不利学生对共振现象的正确认识和理解.教材中实验装置之所以出现上述现象,有以下原因:a.由于悬挂单摆的绳,两端固定,当中间驱动摆A振动时,其对邻近的D和E两摆驱动作用效果要明显优于靠近两端的B和C摆,故振动开始时,D和E两摆的振幅要大于B和C两摆.b.该实验装置事实上是一种耦合振动系统,而并非共振装置.两者根本区别在于,共振装置的驱动源能量和传给受迫振动部分的能量相比足够大,即驱动源可视为能量库,不断地输入能量.而耦合摆则不同,驱动摆的能量有限,当满足理想耦合条件时,能量将在驱动摆与受迫振动部分之间来回传递.很明显,用耦合振动装置来演示共振现象,在实验原理的科学性方面也是欠妥的.近年来,一些文献介绍了一些演示共振现象的实验装置,其中一种较为理想的实验装置是用电动机驱动几条手工钢锯条振动来演示共振现象.在1块木板上插上几条手工钢锯条,在几条钢锯条的不同位置安装小铁块,使各钢锯条的固有频率不同,将一装有偏心棒的玩具电动机安装在木板上.演示时启动电动机使底座左右往复振动,调节电动机的转速使驱动力的频率逐渐提高,可以看到,几条钢锯条依次达到共振状态.该实验装置能较好地演示出共振时钢锯条振动情况,但由于不能测量或比较驱动力频率和钢锯条固有频率,使实验无法表明是不是驱动力频率等于系统固有频率时发生共振,也无法直观表明是否当驱动力频率逐渐接近于系统固有频率时,受迫振动的振幅才逐渐增大.2 实验装置的改进针对现有实验装置中存在的问题和不足,笔者在原教材实验装置的基础上进行了改进,设计制作了“受迫振动、共振”演示仪.在教学中笔者使用改进后的实验装置,能很好地演示受迫振动频率、共振现象,实验效果非常显著.图3所示为改进后“受迫振动、共振”演示实验装置结构示意图.主要由驱动摆、可转动横杆、单摆系列、支架组成.现将该装置各主要部分制作介绍如下.图3 改进后“受迫振的、共振”演示实验装置2.1 驱动摆摆球选用质量较大的钢球,直径约6cm,用直径2.5mm、长约80cm的圆钢条通过焊接连在一起组成驱动摆.当驱动摆摆动时,通过圆钢条对用以悬挂从动摆的横杆产生较大扭转力矩,使整个系统振动时,从动摆的耦合影响完全可以忽略.圆钢条与横杆连接部分采用活动装置,如图4所示,在横杆上钻直径略大于2.5mm的孔,让连接驱动摆的圆钢条穿过,横向钻孔攻丝用锁紧螺钉锁紧.松开锁紧螺钉,可调整驱动摆的摆长,从而改变驱动力频率.图4 圆钢条和横杆连接部分2.2 横杆用以悬挂各摆,材料用直径10cm、长约1m 的圆钢条,其两端套在固定于支架上的滚动轴承中.利用滚动轴承连接,可有效地减少横杆来回71第10期 王浙伟:“受迫振动、共振”演示实验的研究与改进转动时由摩擦带来的机械能损失,延长系统振动的时间,使学生有足够的时间来观察.同时演示过程中,学生能很好地观察到当驱动摆摆动时,横杆的转动情况,直观地了解驱动力传递过程.2.3 从动摆摆球选用直径约2cm的钢球,而摆线选用制作弹簧用直径为0.5mm的钢丝.共设置5个单摆,各摆按摆长依次排列,有利于学生比较观察.摆线与横杆连接部分采用可调结构,横杆上等距钻出5个0.5mm的小孔,孔径不宜过大,让弹簧钢丝刚好穿过,可用电脉冲外加工.弹簧钢丝穿过小孔后,绕在固定于横杆的螺钉上,实验中可方便调整摆长,以改变各摆的固有频率.由于摆线采用了弹性绝佳的弹簧钢丝,当横杆来回转动时,可对各从动摆产生较大的驱动力,演示时,即使在驱动摆初始振幅较小情况下,共振摆振幅亦较大,共振现象较明显.2.4 支架用4cm×4cm的三角铁切割焊接而成,着地处安装4个带有橡皮垫的可调螺旋脚,由于支架本身自重较大,能确保各摆振动时支架稳定不动.3 改进后实验装置的教学功能改进后的实验装置能同时演示受迫振动的频率和共振现象,并能定性演示说明共振曲线.3.1 演示受迫振动的频率1)推动各从动摆,使之摆动,此时横轴不会转动,各摆互不影响,各自做自由振动,观测比较各摆的固有频率(周期),可看出各摆固有频率(周期)不相同,摆长越长固有频率越小(周期越大).2)推动驱动摆,使之摆动,此时驱动摆带动横轴转动,进而驱动各从动摆做受迫振动,可观察到各从动摆与驱动摆同步摆动.调整驱动摆摆长,改变驱动力的频率,各从动摆与驱动摆仍然同步摆动.通过上述实验步骤得出:在周期性驱动力作用下,单摆做受迫振动的频率等于驱动力的频率,而与单摆固有频率无关.3.2 演示共振现象1)调节驱动摆摆长,使之与中间的从动摆摆长相同.2)推动驱动摆,使之摆动,从动摆同时被驱动,观察比较各从动摆的摆幅.可观察到从动摆中摆长与驱动摆摆长越接近的摆幅越大,相同的最大,如图5所示(图中大球为驱动摆摆球).并且随着振动的持续,与驱动摆摆长相同的从动摆摆幅越来越大,共振现象明显.图5 各球的振动情况3)再调节驱动摆摆长,使之与另一个从动摆摆长相同,重复实验.通过上述实验步骤得出:当驱动力的频率等于做受迫振动物体的固有频率时,受迫振动的振幅最大,即产生共振现象.3.3 定性说明共振曲线1)留下中间一个从动摆,将其余从动摆取下.2)依次调节驱动摆摆长,可由长至短(频率由小到大)取5个位置,分别使驱动摆摆动,每次摆动时使驱动摆摆幅基本保持相同.观察比较各次从动摆摆幅大小.通过上述实验步骤得出:当驱动力的频率逐渐接近做受迫振动物体固有频率时,振幅逐渐增大,逐渐远离固有频率时振幅逐渐减小,从而定性说明共振曲线.4 改进后实验装置的优点改进后实验装置能很好地满足“外力作用下的振动”一节的实验教学要求,整个装置构造简洁美观、坚实耐用,实验演示时具有诸多优点.1)基本上消除了驱动摆与从动摆及各从动摆间相互耦合的影响,不会出现从动摆振幅先变大,后变小的情况.而用以悬挂从动摆的钢性横杆对各从动摆扭转驱动效果完全相同,在共振演示时,共振摆摆幅从振动一开始便大于其他从动摆.2)各从动摆的摆线采用了弹性好的弹簧钢丝,横杆对各从动摆能产生较大的扭转力矩,使得各从动摆作受迫振动时能保持同步(即频率相等),而各摆的振幅被整体“放大”,可明显比较出各摆固有频率与驱动力频率相差大小不同时的振81 物 理 实 验第29卷幅大小的差异.同时也使各从动摆起振时间短,节省课堂时间.3)实验要表达的原理直观明显,驱动力的传递过程、驱动力的频率与从动摆的固有频率及作受迫振动时的频率关系一目了然.而装置将从动摆、驱动摆分别置于框架内外,也有利于学生观察比较.4)驱动摆与横杆连接采用的活动结构,使得调节驱动力的频率简单易行.而从动摆也可根据实验需要方便地调节摆长或取下.5 结束语物理演示实验是为配合教学内容而主要由教师操作表演示范的实验.它无论是展示现象、导出概念、发现规律,还是呈现方法,都有着其他教学方式不可替代的作用.但由于各方面原因,现有一些实验装置或在实验原理的科学性,或在实验现象的直观性、可见度,或在实验演示的可操作性,实验的成功率等方面存在着不足和缺陷,这在一定程度上影响了课堂实验教学的有效性.结合教学实际,对这些实验装置进行改进研究,无疑是十分必要的.参考文献:[1] 课程教材研究所.普通高中课程标准实验教科书・物理(3-4)[M ].北京:人民教育出版社,2005.[2] 单晓峰.关于受迫振动、共振的实验研究[J ].物理实验,2006,26(8):24226.[3] 林抒.普通物理实验[M ].北京:高等教育出版社,1981.Improve the demonstration device of forcedvibration and resonance experimentWAN G Zhe 2wei(Y ongqiang Middle School ,Wenzhou 325024,China )Abstract :The shortcomings of t he demo nstration device of forced vibration and resonance experi 2ment are analyzed ,and t he device is imp roved.This paper int roduces t he making p rocess of t he im 2proved device in detail ,and depict s t he use and characteristic of t he improved device.K ey w ords :forced vibration ;resonance ;demonst ration experiment[责任编辑:尹冬梅](上接第15页)Introduction on and enlightenment from the ISLEexperiments in the U nited StatesWEN Li 2ping(Depart ment of Technology ,Xi ’an Innovation College ,Yan ’an U niversity ,Xi ’an 710100,China )Abstract :ISL E experiment s in t he Unite State have t he very great reference sense on cultivating st udent ’s scientific research and creative ability.So ,t his paper expatiates on t he teaching characteris 2tic ,t raining objective ,type and evaluation of ISL E experiment s.At last ,t he enlightenment f rom t he ISL E experiment s on our college p hysics teaching is p resented.K ey w ords :ISL E experiment s ;p hysics experiment teaching ;evaluatio n of experiment[责任编辑:尹冬梅]91第10期 王浙伟:“受迫振动、共振”演示实验的研究与改进。

相关文档
最新文档