(新)高一数学必修2第二章测试题及答案解析

合集下载

高一数学必修2第二章测试题及答案解析(同名10275)

高一数学必修2第二章测试题及答案解析(同名10275)

第二章单元测试题、选择题1.若直线 a 和 b 没有公共点,则 a 与 b 的位置关系是 ( )A .相交B .平行C .异面D .平行或异面2 .平行六面体ABCD -A i B i C i D i 中,既与AB 共面也与CC i 共面的棱 的条数为 ( ) A .3 B .4 C .5 D . 64.长方体ABCD — A i B i C i D i 中,异面直线AB,A i D i 所成的角等于()A. 30° B . 45° C . 60° D . 90° 5.对两条不相交的空间直线a 与b ,必存在平面a,使得() A . a? a , b? a B . a? a, b 〃a C.a 丄 a, b 丄 a D . a? a, b 丄 a6. 下面四个命题:① 若直线 a b 异面 b c 异面 则 a c 异面;② 若直线 a b 相交 b c 相交 则 a c 相交;③ 若a // b ,则a , b 与c 所成的角相等;④ 若a 丄b , b 丄c ,则a / c.其中真命题的个数为()A . 4B . 3C . 2D . i 7. 在正方体 ABCD —A i B i C i D i 中EF 分别是线段 A i B i B i C i 上的 不与端点重合的动点,如果 A i E = B i F ,有下面四个结论:① EF 丄 AA i ;® EF // AC ;③ EF 与 AC 异面;④ EF //平面 ABCD. 其中一定正确的有 ( )A. ①② B .②③ C .②④ D .①④B .8设a , b 为两条不重合的直线,a, B 为两个不重合的平面,下列命 题中为真命题的是( )A .若a , b 与a 所成的角相等,贝S a //bB .若 a / a, b / 伏 a// B,则 a / bB. 若 a? a, b? B a / b ,贝U a// [33. 已知平面a 和直线I ,则 A .平行 B .相交 a 内至少有一条直线与1(C .垂直D .异面D .若a丄a, b丄3 a丄3贝y a丄b9.已知平面a丄平面厲aQ B= l,点A€ a, A?l,直线AB II l,直线AC 丄l,直线m// a n//伏则下列四种位置关系中,不一定成立的是( )A . AB//m B. AC 丄m C. AB// B D. AC 丄B二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)14. 正方体ABCD —A i B i C i D i中,二面角G —AB-C的平面角等于15. ______________________________________________________ 设平面a//平面B, A, C€ a, B , D € B,直线AB与CD交于点S,且点S位于平面a B之间,AS= 8 , BS= 6 , CS= 12 ,则SD= _______________16. 将正方形ABCD沿对角线BD折成直二面角A—BD —C,有如下四个结论:①AC丄BD :②厶ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是_________ .三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17. (10分)如下图,在三棱柱ABC—A1B1C1中,△ ABC与厶A i B i C i 都求证:(1)平面AB i F i //平面C i BF;⑵平面AB i F i丄平面ACC i A i.18. (12分)如图所示,边长为2的等边△ PCD所在的平面垂直于矩形ABCD所在的平面,BC = 2 2 M为BC的中点.(1)证明:AM丄PM;⑵求二面角P-AM —D的大小.详解答案1[答案]D2[答案]C[解析]AB与CC i为异面直线,故棱中不存在同时与两者平行的直线,因此只有两类:第一类与AB平行与CG相交的有:CD、C1D1与CC i平行且与AB相交的有:BB i、AA1,第二类与两者都相交的只有BC,故共有5条.3[答案]C[解析]1°直线I与平面a斜交时,在平面a内不存在与I平行的直线,二A错;2°l? a时,在a内不存在直线与I异面,二D错;3°l // a时,在a内不存在直线与I相交.无论哪种情形在平面a内都有无数条直线与I垂直.4[答案]D[解析]由于AD // A i D i,则/ BAD是异面直线AB, A i D i所成的角,很明显/ BAD = 90°5[答案]B[解析]对于选项A,当a与b是异面直线时,A错误;对于选项B,若a, b不相交,则a与b平行或异面,都存在a,使a? a, b // a, B正确;对于选项C, a丄a, b± a, 一定有a/ b, C错误;对于选项D , a? a, b丄a 一定有a丄b , D错误.6[答案]D[解析]异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a / c ,而在空间中,a与c 可以平行,可以相交,也可以异面,故④错误.7[答案]D[解析]如图所示.由于AA i丄平面A i B i C i D i , EF?平面A i B i C i D i,则EF丄AA i,所以①正确;当E, F分别是线段A1B1, B1C1 的中点时,EF// A i C i, 又AC// A i C i,贝S EF II AC,所以③不正确;当E, F分别不是线段A i B i, B i C i的中点时,EF与AC异面,所以②不正确;由于平面A iB iC iD i I平面ABCD, EF?平面A i B i C i D i,所以EF //平面ABCD,所以④正确.8[答案]D[解析]选项A中,a, b还可能相交或异面,所以A是假命题;选项B中,a, b还可能相交或异面,所以B是假命题;选项C中,a, B还可能相交,所以C是假命题;选项D中,由于a丄a a丄则a // B或a? B,贝卩B内存在直线I I a,又b± B,则b±I,所以a丄b.9[答案]Ci3[答案]an片ABi4[答案]45°[解析]如图所示,正方体ABCD — A i B i C i D i 中,由于BC 丄AB , BC i 丄AB ,贝卩/C i BC 是二面角C i — AB — C 的平面角.又△ BCC i 是等 腰直角三角形,则/ C i BC = 45°i5[答案]9T all AC // BD ,则Ah SD ,A 6=SD ,解得 SD = 9i6[答案]①②④[解析]如图所示,①取BD 中点,E 连接AE , CE ,则BD 丄AE , BD 丄CE ,而 AE A CE = E ,「. BD 丄平面 AEC , AC?平面 AEC , 故 AC 丄BD ,故①正确.②设正方形的边长为a,则AE= CE=_2a.由①知/ AEC= 90°是直二面角A-BD —C的平面角,且/ AEC = 90° 二AC= a,•••△ ACD是等边三角形,故②正确.③由题意及①知,AE丄平面BCD,故/ ABE是AB与平面BCD 所成的角,而/ ABE=45°所以③不正确.④分别取BC, AC的中点为M, N,连接ME, NE, MN.1 1贝S MN // AB, 且MN = 2AB= qa,〃厂 1 1ME / CD,且ME = 2CDpa,•••/ EMN是异面直线AB, CD所成的角.在Rt A AEC 中,AE= CE=今a, AC= a,1 1••• NE = 2AC = 2a. MEN 是正三角形,二/ EMN = 60° 故④正确.17[证明](1)在正三棱柱ABC—A1B1C1中,T F、F1分别是AC、A1C1的中点,•B1F1 // BF, AF1 // GF.又••• B1F1 n AF1 = F1, C1F n BF=F,•平面AB1F1 //平面GBF.(2)在三棱柱ABC—A1B1C1 中,AA1 丄平面A1B1C1,「. BF 丄AA「又B1F1 丄A1C1, A1C1 n AA1 = A1,•B1F1X平面ACC1A1,而B1F1?平面ABF,「•平面AB i F i 丄平面ACC i A i .18[解析](1)证明:如图所示,取 CD 的中点E ,连接PE , EM , EA ,•••△ PCD 为正三角形,••• PE 丄CD , PE = PDsin /PDE = 2sin60=^3.•••平面PCD 丄平面ABCD ,• P E 丄平面 ABCD ,而 AM?平面 ABCD ,「. PE 丄AM. T 四边形ABCD 是矩形,• △ ADE , △ECM , △ABM 均为直角三角形,由勾股定理可求得 EM = 3, AM = 6, AE = 3,• EM 2 + AM 2 = AE 2. • AM 丄 EM.又 PEA EM = E ,「. AM 丄平面 PEM ,「. AM 丄PM.(2)解:由(1)可知EM 丄AM , PM 丄AM ,• / PME 是二面角P - AM — D 的平面角.•二面角P — AM — D 的大小为45°• tan/ PME PE = 3= EM = 3=• / PME = 45°。

高一数学必修2第二章测试题及答案解析

高一数学必修2第二章测试题及答案解析

第二章单元测试题一、选择题1.若直线a和b没有公共点,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为()A.3B.4C.5D.63.已知平面α和直线l,则α内至少有一条直线与l() A.平行B.相交C.垂直D.异面4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于()A.30°B.45°C.60°D.90°5.对两条不相交的空间直线a与b,必存在平面α,使得() A.a⊂α,b⊂α B.a⊂α,b∥αC.a⊥α,b⊥α D.a⊂α,b⊥α6.下面四个命题:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.其中真命题的个数为()A.4B.3C.2D.17.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.其中一定正确的有()A.①②B.②③C.②④D.①④B.8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是()A.若a,b与α所成的角相等,则a∥b B.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b9.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,n∥β,则下列四种位置关系中,不一定成立的是()A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)13.下列图形可用符号表示为________.14.正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于________.15.设平面α∥平面β,A,C∈α,B,D∈β,直线AB与CD交于点S,且点S位于平面α,β之间,AS=8,BS=6,CS=12,则SD=________. 16.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如下图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.18.(12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.详解答案1[答案] D2[答案] C[解析]AB与CC1为异面直线,故棱中不存在同时与两者平行的直线,因此只有两类:第一类与AB平行与CC1相交的有:CD、C1D1与CC1平行且与AB相交的有:BB1、AA1,第二类与两者都相交的只有BC,故共有5条.3[答案] C[解析]1°直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错;2°l⊂α时,在α内不存在直线与l异面,∴D错;3°l∥α时,在α内不存在直线与l相交.无论哪种情形在平面α内都有无数条直线与l垂直.4[答案] D[解析]由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD=90°.5[答案] B[解析]对于选项A,当a与b是异面直线时,A错误;对于选项B,若a,b不相交,则a与b平行或异面,都存在α,使a⊂α,b ∥α,B正确;对于选项C,a⊥α,b⊥α,一定有a∥b,C错误;对于选项D,a⊂α,b⊥α,一定有a⊥b,D错误.6[答案] D[解析]异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a∥c,而在空间中,a与c 可以平行,可以相交,也可以异面,故④错误.7[答案] D[解析]如图所示.由于AA1⊥平面A1B1C1D1,EF⊂平面A1B1C1D1,则EF⊥AA1,所以①正确;当E,F分别是线段A1B1,B1C1的中点时,EF∥A1C1,又AC∥A1C1,则EF∥AC,所以③不正确;当E,F分别不是线段A1B1,B1C1的中点时,EF与AC异面,所以②不正确;由于平面A1B1C1D1∥平面ABCD,EF⊂平面A1B1C1D1,所以EF∥平面ABCD,所以④正确.8[答案] D[解析]选项A中,a,b还可能相交或异面,所以A是假命题;选项B中,a,b还可能相交或异面,所以B是假命题;选项C中,α,β还可能相交,所以C是假命题;选项D中,由于a⊥α,α⊥β,则a ∥β或a⊂β,则β内存在直线l∥a,又b⊥β,则b⊥l,所以a⊥b.9[答案] C[解析]如图所示:AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β.13[答案]α∩β=AB14[答案]45°[解析]如图所示,正方体ABCD-A1B1C1D1中,由于BC⊥AB,BC1⊥AB,则∠C1BC是二面角C1-AB-C的平面角.又△BCC1是等腰直角三角形,则∠C1BC=45°.15[答案]9[解析]如下图所示,连接AC,BD,则直线AB,CD确定一个平面ACBD.∵α∥β,∴AC∥BD,则ASSB=CSSD,∴86=12SD,解得SD=9.16[答案]①②④[解析]如图所示,①取BD中点,E连接AE,CE,则BD⊥AE,BD⊥CE,而AE∩CE=E,∴BD⊥平面AEC,AC⊂平面AEC,故AC ⊥BD,故①正确.②设正方形的边长为a,则AE=CE=2 2a.由①知∠AEC=90°是直二面角A-BD-C的平面角,且∠AEC=90°,∴AC=a,∴△ACD是等边三角形,故②正确.③由题意及①知,AE⊥平面BCD,故∠ABE是AB与平面BCD 所成的角,而∠ABE=45°,所以③不正确.④分别取BC,AC的中点为M,N,连接ME,NE,MN.则MN∥AB,且MN=12AB=12a,ME∥CD,且ME=12CD=12a,∴∠EMN是异面直线AB,CD所成的角.在Rt△AEC中,AE=CE=22a,AC=a,∴NE=12AC=12a.∴△MEN是正三角形,∴∠EMN=60°,故④正确.17[证明](1)在正三棱柱ABC-A1B1C1中,∵F、F1分别是AC、A1C1的中点,∴B1F1∥BF,AF1∥C1F.又∵B1F1∩AF1=F1,C1F∩BF=F,∴平面AB1F1∥平面C1BF.(2)在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∴B1F1⊥AA1.又B1F1⊥A1C1,A1C1∩AA1=A1,∴B1F1⊥平面ACC1A1,而B1F1⊂平面AB1F1,∴平面AB1F1⊥平面ACC1A1.18[解析](1)证明:如图所示,取CD的中点E,连接PE,EM,EA,∵△PCD为正三角形,∴PE⊥CD,PE=PD sin∠PDE=2sin60°= 3.∵平面PCD⊥平面ABCD,∴PE⊥平面ABCD,而AM⊂平面ABCD,∴PE⊥AM.∵四边形ABCD是矩形,∴△ADE,△ECM,△ABM均为直角三角形,由勾股定理可求得EM=3,AM=6,AE=3,∴EM2+AM2=AE2.∴AM⊥EM.又PE∩EM=E,∴AM⊥平面PEM,∴AM⊥PM.(2)解:由(1)可知EM⊥AM,PM⊥AM,∴∠PME是二面角P-AM-D的平面角.∴tan∠PME=PEEM=33=1,∴∠PME=45°.∴二面角P-AM-D的大小为45°.。

数学必修2第二章测试题及答案

数学必修2第二章测试题及答案

xy Oxy Oxy OxyO高一年级数学学科必修2第二章质量检测试题试卷第Ⅰ卷一、选择题(本大题共10小题;每小题5分;共50分)1.下列命题中为真命题的是 ( ) A .平行直线的倾斜角相等 B .平行直线的斜率相等C .互相垂直的两直线的倾斜角互补D .互相垂直的两直线的斜率互为相反2. 在同一直角坐标系中;表示直线y ax =与y x a =+正确的是 ( )A .B .C .D .3.已知点(1,2)A 、(3,1)B ;则线段AB 的垂直平分线l 的方程是 ( )A .524=+y xB .524=-y xC .52=+y xD .52=-y x4.如果直线022=++y ax 与直线023=--y x 平行;那么系数a 为 ( ) A .23-B .6-C .3-D .32 5.过直线013=-+y x 与072=-+y x 的交点;且与第一条直线垂直的直线l 的方程是( ) A .073=+-y x B .0133=+-y x C .072=+-y x D .053=--y x 6.与圆02422=+-+y y x 相切;并在x 轴、y 轴上的截距相等的直线共有 ( ) A.6条 B.5条 C.4条 D.3条7.直线2x =被圆422=+-y a x )(所截得的弦长等于32;则a 的值为 ( ) A 、-1或-3 B 、22-或 C 、1或3 D 、3 8.已知1O :06422=+-+y x y x 和2O :0622=-+x y x 交于,A B 两点;则AB 的垂直平分线的方程是 ( )A. 30x y ++= B. 250x y --= C. 390x y --= D. 4370x y -+= 9.两点)2,2(++b a A 、B ),(b a b --关于直线1134=+y x 对称;则 ( ) A.2,4=-=b a B.2,4-==b a C.2,4==b a D. 2,4a b ==10.空间直角坐标系中;点(3,4,0)A -和点(2,1,6)B -的距离是 ( ) A. B. C .9 D二、填空题(本大题共6小题;每小题5分;共30分)把答案填第Ⅱ卷题中横线上11.直线x y 2=关于x 轴对称的直线方程为 .12.已知点)1,1(P 和直线l :02043=--y x ;则过P 与直线l 平行的直线方程是 ;过点P与l 垂直的直线方程是 .13.直线l 经过直线0623=++y x 和0752=-+y x 的交点;且在两坐标轴上的截距相等;则直线l 的方程是_____ _.14.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4)A -;(0,2)B -;则圆C 的方程为 .15.已知点(,)M a b 在直线1543=+y x 上;则22b a +的最小值为 16.经过)1,2(-A 和直线1x y +=相切;且圆心在直线x y 2-=上的圆的方程为_____________ _________ __________ .高一年级数学学科必修2第二章质量检测试题参赛试卷第Ⅱ卷二、填空题(本大题共6小题;每小题5分;共30分.把答案填在题中横线上)11.________________________15._________________________三、解答题(本大题共5小题;共70分;解答应写出文字说明;证明过程或演算步骤) 17.(12分)求经过点)2,1(A 且到原点的距离等于1的直线方程.18. (14分) 已知一曲线是与两个定点(0,0)O 、(3,0)A 距离的比为21的点的轨迹;则求此曲线的方程.19.(14分) 求垂直于直线0743=--y x ;且与两坐标轴构成周长为10的三角形的直线方程20.(15分) 自点A(-3;3)发出的光线L 射到x 轴上;被x 轴反射;其反射光线所在直线与圆x 2+y 2-4x-4y+7=0相切;求光线L 所在直线的方程.21(15分)圆822=+y x 内有一点(1,2)P -;AB 为过点P 且倾斜角为α的弦;(1)当α=1350时;求AB ;(2)当弦AB 被点P 平分时;求出直线AB 的方程;(3)设过P 点的弦的中点为M ;求点M 的坐标所满足的关系式.高一年级数学学科必修2第二章质量检测试题试卷二、试卷结构特点本试题是对高一数学必修2第二章“解析几何”的单元检测;满分150分;时间120分钟;分为Ⅰ卷和Ⅱ卷;共有试题21道;其中10道选择题;共50分;6道填空题;共30分;5道解答题;共70分。

数学必修二第二章经典测试题(含答案)(2)(K12教育文档)

数学必修二第二章经典测试题(含答案)(2)(K12教育文档)

数学必修二第二章经典测试题(含答案)(2)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(数学必修二第二章经典测试题(含答案)(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为数学必修二第二章经典测试题(含答案)(2)(word版可编辑修改)的全部内容。

必修二第二章综合检测题一、选择题1.若直线a和b没有公共点,则a与b的位置关系是( )A.相交B.平行 C.异面 D.平行或异面2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为()A.3 B.4 C.5 D.63.已知平面α和直线l,则α内至少有一条直线与l()A.平行B.相交C.垂直D.异面4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于()A.30°B.45°C.60°D.90°5.对两条不相交的空间直线a与b,必存在平面α,使得( )A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α6.下面四个命题:其中真命题的个数为( )①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.A.4 B.3 C.2 D.17.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.其中一定正确的有( )A.①②B.②③C.②④D.①④8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是( )A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b9.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,n∥β,则下列四种位置关系中,不一定成立的是( )A.AB∥m B.AC⊥m C.AB∥β D.AC⊥β10.已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为( )A.-错误! B .错误!C。

高一数学第二章测试题及答案解析

高一数学第二章测试题及答案解析

高一数学第二章测试题及答案解析第二章单元测试题一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若直线a和b没有公共点,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为()A.3B.4C.5D.63.已知平面α和直线l,则α内至少有一条直线与l() A.平行B.相交C.垂直D.异面4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°5.对两条不相交的空间直线a与b,必存在平面α,使得() A.a?α,b?α B.a?α,b∥α C.a⊥α,b⊥α D.a?α,b⊥α6.下面四个命题:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.其中真命题的个数为()A.4B.3C.2D.17.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.其中一定正确的有()A.①②B.②③C.②④D.①④8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是()A.若a,b与α所成的角相等,则a∥b B.若a∥α,b∥β,α∥β,则a∥bC.若a?α,b?β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b9.已知平面α⊥平面β,α∩β=l,点A∈α,A?l,直线AB∥l,直线AC⊥l,直线m∥α,n∥β,则下列四种位置关系中,不一定成立的是()A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β10.已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为()A.-45 B. .35C.34D.-3511.已知三棱锥D-ABC的三个侧面与底面全等,且AB=AC=3,BC=2,则以BC为棱,以面BCD与面BCA为面的二面角的余弦值为() A.33 B.13C.0D.-1212.如图所示,点P在正方形ABCD所在平面外,P A⊥平面ABCD,P A=AB,则PB与AC所成的角是()A.90°B.60°C.45°D.30°二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)13.下列图形可用符号表示为________.14.正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于________.15.设平面α∥平面β,A,C∈α,B,D∈β,直线AB与CD交于点S,且点S位于平面α,β之间,AS=8,BS=6,CS=12,则SD=________. 16.将正方形ABCD沿对角线BD折成直二面角A-BD -C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如下图,在三棱柱ABC-A1B1C1中,△AB C与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.18.(本小题满分12分)如图所示,在四棱锥P-ABCD中,P A⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(1)证明:CD⊥平面P AE;(2)若直线PB与平面P AE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.19.(12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P -AM -D 的大小.20.(本小题满分12分)(2010·辽宁文,19)如图,棱柱ABC -A 1B 1C 1的侧面BCC 1B 1是菱形,B 1C ⊥A 1B .(1)证明:平面AB 1C ⊥平面A 1BC 1;(2)设D 是A 1C 1上的点,且A 1B ∥平面B 1CD ,求A 1D DC 1的值.21.(12分)如图,△ABC 中,AC =BC =22AB ,ABED 是边长为1的正方形,平面ABED ⊥底面ABC ,若G ,F 分别是EC ,BD 的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;(3)求几何体ADEBC的体积V.22.(12分)如下图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求异面直线AC1与B1C所成角的余弦值.详解答案1[答案] D2[答案] C[解析]AB与CC1为异面直线,故棱中不存在同时与两者平行的直线,因此只有两类:第一类与AB平行与CC1相交的有:CD、C1D1与CC1平行且与AB相交的有:BB1、AA1,第二类与两者都相交的只有BC,故共有5条.3[答案] C[解析]1°直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错;2°l?α时,在α内不存在直线与l异面,∴D错;3°l∥α时,在α内不存在直线与l相交.无论哪种情形在平面α内都有无数条直线与l垂直.4[答案] D[解析]由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD=90°.5[答案] B[解析]对于选项A,当a与b是异面直线时,A错误;对于选项B,若a,b不相交,则a与b平行或异面,都存在α,使a?α,b ∥α,B正确;对于选项C,a⊥α,b⊥α,一定有a∥b,C错误;对于选项D,a?α,b⊥α,一定有a⊥b,D错误.6[答案] D[解析]异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a∥c,而在空间中,a与c 可以平行,可以相交,也可以异面,故④错误.7[答案] D[解析]如图所示.由于AA1⊥平面A1B1C1D1,EF?平面A1B1C1D1,则EF⊥AA1,所以①正确;当E,F分别是线段A1B1,B1C1的中点时,EF∥A1C1,又AC∥A1C1,则EF∥AC,所以③不正确;当E,F分别不是线段A1B1,B1C1的中点时,EF与AC异面,所以②不正确;由于平面A1B1C1D1∥平面ABCD,EF?平面A1B1C1D1,所以EF∥平面ABCD,所以④正确.8[答案] D[解析] 选项A 中,a ,b 还可能相交或异面,所以A 是假命题;选项B 中,a ,b 还可能相交或异面,所以B 是假命题;选项C 中,α,β还可能相交,所以C 是假命题;选项D 中,由于a ⊥α,α⊥β,则a ∥β或a ?β,则β内存在直线l ∥a ,又b ⊥β,则b ⊥l ,所以a ⊥b .9[答案] C[解析] 如图所示:AB ∥l ∥m ;AC ⊥l ,m ∥l ?AC ⊥m ;AB ∥l ?AB ∥β.10[答案] 35 命题意图] 本试题考查了正方体中异面直线的所成角的求解的运用.[解析] 首先根据已知条件,连接DF ,然后则角DFD 1即为异面直线所成的角,设边长为2,则可以求解得到 5=DF =D 1F ,DD 1=2,结合余弦定理得到结论. 11[答案] C[解析]取BC中点E,连AE、DE,可证BC⊥AE,BC⊥DE,∴∠AED为二面角A-BC-D的平面角又AE=ED=2,AD=2,∴∠AED=90°,故选C.12[答案] B[解析]将其还原成正方体ABCD-PQRS,显见PB∥SC,△ACS 为正三角形,∴∠ACS=60°.13[答案]α∩β=AB14[答案]45°[解析]如图所示,正方体ABCD-A1B1C1D1中,由于BC⊥AB,BC1⊥AB,则∠C1BC是二面角C1-AB-C的平面角.又△BCC1是等腰直角三角形,则∠C1BC=45°.15[答案]9[解析] 如下图所示,连接AC ,BD ,则直线AB ,CD 确定一个平面ACBD . ∵α∥β,∴AC ∥BD ,则AS SB =CS SD ,∴86=12SD ,解得SD =9. 16[答案] ①②④[解析] 如图所示,①取BD 中点,E 连接AE ,CE ,则BD ⊥AE ,BD ⊥CE ,而AE ∩CE =E ,∴BD ⊥平面AEC ,AC ?平面AEC ,故AC ⊥BD ,故①正确.②设正方形的边长为a ,则AE =CE =22a . 由①知∠AEC =90°是直二面角A -BD -C 的平面角,且∠AEC =90°,∴AC =a ,∴△ACD 是等边三角形,故②正确.③由题意及①知,AE ⊥平面BCD ,故∠ABE 是AB 与平面BCD 所成的角,而∠ABE =45°,所以③不正确.④分别取BC ,AC 的中点为M ,N ,连接ME ,NE ,MN .则MN ∥AB ,且MN =12AB =12a ,ME ∥CD ,且ME =12CD =12a ,∴∠EMN 是异面直线AB ,CD 所成的角.在Rt △AEC 中,AE =CE =22a ,AC =a ,∴NE =12AC =12a .∴△MEN 是正三角形,∴∠EMN =60°,故④正确. 17[证明] (1)在正三棱柱ABC -A 1B 1C 1中,∵F 、F 1分别是AC 、A 1C 1的中点,∴B 1F 1∥BF ,AF 1∥C 1F .又∵B 1F 1∩AF 1=F 1,C 1F ∩BF =F ,∴平面AB 1F 1∥平面C 1BF .(2)在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面A 1B 1C 1,∴B 1F 1⊥AA 1. 又B 1F 1⊥A 1C 1,A 1C 1∩AA 1=A 1,∴B 1F 1⊥平面ACC 1A 1,而B 1F 1?平面AB 1F 1,∴平面AB 1F 1⊥平面ACC 1A 1. 18[解析](1)如图所示,连接AC ,由AB =4,BC =3,∠ABC =90°,得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE . ∵P A ⊥平面ABCD ,CD ?平面ABCD ,所以P A ⊥CD .而P A ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .(2)过点B 作BG ∥CD ,分别与AE ,AD 相交于F ,G ,连接PF . 由(1)CD ⊥平面P AE 知,BG ⊥平面P AE .于是∠BPF 为直线PB 与平面P AE 所成的角,且BG ⊥AE .由P A ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角. AB =4,AG =2,BG ⊥AF ,由题意,知∠PBA =∠BPF ,因为sin ∠PBA =P A PB ,sin ∠BPF =BFPB ,所以P A =BF .由∠DAB =∠ABC =90°知,AD ∥BC ,又BG ∥CD ,所以四边形BCDG 是平行四边形,故GD =BC =3.于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以 BG =AB 2+AG 2=25,BF =AB 2BG =1625=855.于是P A =BF =855.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×P A =13×16×855=128515.19[解析] (1)证明:如图所示,取CD 的中点E ,连接PE ,EM ,EA ,∵△PCD为正三角形,∴PE⊥CD,PE=PD sin∠PDE=2sin60°= 3.∵平面PCD⊥平面ABCD,∴PE⊥平面ABCD,而AM?平面ABCD,∴PE⊥AM.∵四边形ABCD是矩形,∴△ADE,△ECM,△ABM均为直角三角形,由勾股定理可求得EM =3,AM=6,AE=3,∴EM2+AM2=AE2.∴AM⊥EM.又PE∩EM=E,∴AM⊥平面PEM,∴AM⊥PM.(2)解:由(1)可知EM⊥AM,PM⊥AM,∴∠PME是二面角P-AM-D的平面角.∴tan∠PME=PEEM=33=1,∴∠PME=45°.∴二面角P-AM-D的大小为45°. 20[解析](1)因为侧面BCC1B1是菱形,所以B1C⊥BC1,又已知B1C⊥A1B,且A1B∩BC1=B,所以B1C⊥平面A1BC1,又B1C?平面AB1C所以平面AB1C⊥平面A1BC1 .(2)设BC1交B1C于点E,连接DE,则DE是平面A1BC1与平面B1CD的交线.因为A1B∥平面B1CD,A1B?平面A1BC1,平面A1BC1∩平面B1CD =DE,所以A1B∥DE.又E是BC1的中点,所以D为A1C1的中点.即A1D DC1=1.21[解](1)证明:连接AE,如下图所示.∴AE∩BD=F,且F是AE的中点,又G 是EC 的中点,∴GF ∥AC ,又AC ?平面ABC ,GF ?平面ABC ,∴GF ∥平面ABC .(2)证明:∵ADEB 为正方形,∴EB ⊥AB ,又∵平面ABED ⊥平面ABC ,平面ABED ∩平面ABC =AB ,EB ?平面ABED ,∴BE ⊥平面ABC ,∴BE ⊥AC .又∵AC =BC =22AB ,∴CA 2+CB 2=AB 2,∴AC ⊥BC .又∵BC ∩BE =B ,∴AC ⊥平面BCE .(3)取AB 的中点H ,连GH ,∵BC =AC =22AB =22,∴CH ⊥AB ,且CH =12,又平面ABED ⊥平面ABC∴GH ⊥平面ABCD ,∴V =13×1×12=16.22[解析] (1)证明:在直三棱柱ABC -A 1B 1C 1中,底面三边长AC =3,BC =4,AB =5,∴AC ⊥BC .又∵C 1C ⊥AC .∴AC ⊥平面BCC 1B 1. ∵BC 1?平面BCC 1B ,∴AC ⊥BC 1.(2)证明:设CB 1与C 1B 的交点为E ,连接DE ,又四边形BCC 1B 1为正方形.∵D 是AB 的中点,E 是BC 1的中点,∴DE ∥AC 1. ∵DE ?平面CDB 1,AC 1?平面CDB 1,∴AC 1∥平面CDB 1.(3)解:∵DE ∥AC 1,∴∠CED 为AC 1与B 1C 所成的角.在△CED 中,ED =12AC 1=52,CD =12AB =52,CE =12CB 1=22,∴cos ∠CED =252=225.∴异面直线AC 1与B 1C 所成角的余弦值为225.。

高中数学必修2第二章测试(含答案).docx

高中数学必修2第二章测试(含答案).docx

第二章测试(时间:120分钟总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面;③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行.其中正确的命题是()A.①②B.②④C.①③D.②③答案:B2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是()A.平行B.相交C.平行或相交D.不相交解析:由棱台的定义知,各侧棱的延长线交于一点,所以选B.答案:B3.一直线/与其外三点A, B, C可确定的平面个数是()A.1个B. 3个C. 1个或3个D. 1个或3个或4个解析:当A、B、C共线且与/平行或相交时,确定一个平面;当A、B、C共线且与/ 异面时,可确定3个平面;当A、B. C三点不共线时,可确定4个平面.答案:D4.若三个平面两两相交,有三条交线,则下列命题中止确的是()A.三条交线为异面直线B.三条交线两两平行C.三条交线交于一点D.三条交线两两平行或交于一点答案:D5.如图,在AABC中,ZBAC=90°,丄面ABC, AB=AC, D是BC的中点,则图中直角三角形的个数是()A. 5B. 8C. 10D. 6解析:这些直角三角形是:△B4B, △B4D, AMC, MAC, ABAD, ACAD,△PBD, △PCD.共8 个.答案:B6.下列命题正确的有()①若厶ABC在平面a外,它的三条边所在直线分别交a于P、Q、R,则P、0、R三点、共线.②若三条平行线a、b. c都与直线/相交,则这四条直线共面.③三条直线两两相交,则这三条直线共面.A. 0个B. 1个C. 2个D. 3个解析:易知①与②正确,③不正确.答案:C7.若平面a丄平面沟a^p=l,且点Pea, PH,则下列命题中的假命题是()A.过点P且垂直于a的直线平行于0B.过点P且垂直于/的直线在a内C.过点P且垂直于0的直线在a内D.过点P且垂直于/的平面垂直于0答案:B& 如右图,在棱长为2的正方体ABCD-ArBiCiDr中,O是底面ABCD的中心,M、N分别是棱DDi、DiCi的中点,则直线OM()A.与AC、MN均垂直相交B.与AC垂直,与MN不垂直C.与A/N垂直,与AC不垂直D.与AC、MN均不垂直解析:易证 AC 丄面 BB X D\D, OMU 面 BBQQ, :.AC±OM.计算得 OM 2 + MN 1 = ON 1=5, OMLMN.答案:A 9. (2010-江西高考)如图,M 是正方体ABCD-AiBrCiDi 的棱DDi 的中点,给出下列四 个命题:D.①②③ 解析:将过点M 的平面CDDiCi 绕直线DDi 旋转任意非零的角度,所得平面与直线AB, BiCi 都相交,故③错误,排除A, B, D.答案:C10.已知平面a 外不共线的三点A 、B 、C 到a 的距离相等,则正确的结论是()A. 平面ABC 必平行于aB. 平面ABC 必不垂直于aC. 平面ABC 必与a 相交D. 存在/\ABC 的一条中位线平行于a 或在a 内解析:排除A 、B 、C,故选D.答案:D11. (2009-广东高考)给定下列四个命题:① 若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ② 若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③ 垂直于同一直线的两条直线相互平行;④ 若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂 直.其中,为真命题的是()A.①和②B.②和③ ①过M 点有且只有一条直线与直线AB,Bi 。

人教版高中数学必修第二册第二单元《复数》测试题(含答案解析)

人教版高中数学必修第二册第二单元《复数》测试题(含答案解析)
一、选择题
1.设 a R ,则复数 z 1 a2 2ai 所对应点组成的图形为( ) 1 a2
A.单位圆
B.单位圆除去点 1,0
C.单位圆除去点
1, 0
D.单位圆除去点 1,0
2.在下列命题中,正确命题的个数是( ). ①两个复数不能比较大小;
②复数 z i 1对应的点在第四象限;
③若 x2 1 x2 3x 2 i 是纯虚数,则实数 x 1;
【点睛】
本题主要考查复数的乘法运算,考查复数相等的性质,属于基础题.
12.A
解析:A
【分析】
把两个复数都化为 a bi(a,b R) 形式,然后由共轭复数定义求a
i
bi
ia
i2
bi
b
ai
, 1 i2
2i
,又
a
bi 1
与 1 i2
互为共轭复数,所以
b 0 , a 2 .则 a b 2 .
13.如果复数 2 bi 的实部和虚部互为相反数,那么实数 b 的值为__ 1 2i
14.下列命题( i 为虚数单位)中:①已知 a,b R 且 a b ,则 (a b) (a b)i 为纯虚
数;②当 z 是非零实数时, z 1 2 恒成立;③复数 z (1 i)3 的实部和虚部都是- z
②根据基本不等式的性质知 | z 1 | 2 恒成立; z
③化简复数 z ,得 z 的实部和虚部都是 2 ; ④根据模长公式得关于 a 的不等式,求解即可; ⑤根据复数代数运算法则,化简计算即可. 【详解】
解掌握水平.
14.②③④【分析】①当时不是纯虚数;②根据基本不等式的性质知恒成
立;③化简复数得的实部和虚部都是;④根据模长公式得关于的不等式求解

高一数学必修2第二章测试题及答案解析(同名8164)

高一数学必修2第二章测试题及答案解析(同名8164)

第二章综合检测题、选择题1 .若直线a和b没有公共点,则a与b的位置关系是()A .相交B .平行C.异面D .平行或异面2 .平行六面体ABCD —A i B i C i D i中,既与AB共面也与CC i共面的棱的条数为( )A. 3B. 4C. 5D. 63. 已知平面a和直线I,则a内至少有一条直线与1( )A .平行B .相交C.垂直D .异面4. 长方体ABCD —A i B i C i D i中,异面直线AB,A i D i所成的角等于()A. 30°B. 45°C. 60°D. 90°5. 对两条不相交的空间直线a与b,必存在平面a,使得() Aa? a, b? a Ba? a, b II a Ca X a, b X a Da? a b X a6. 下面四个命题:①若直线a b 异面b c 异面则a c 异面;②若直线a b 相交b c 相交则a c 相交;③若a I b 则a b 与c 所成的角相等;④若a X b b X c 则a I c.其中真命题的个数为( )A. 4B. 3C. 2D. i7. 在正方体ABCD —A i B i C i D i中,E , F分别是线段A i B i , B i C i上的不与端点重合的动点,如果A i E= B i F ,有下面四个结论:①EF X AA i;②EF II AC;③EF与AC异面;④EF I平面ABCD. 其中一定正确的有( )A .①②B.②③C.②④ D .①④8. 设a , b为两条不重合的直线,a, B为两个不重合的平面,下列命题中为真命题的是( )A.若a , b与a所成的角相等,则a// bB .若a I a, b I 伏a// B,贝y a I bC. 若a? a, b? B a I b,贝U a I [3D. 若a Xa, b X 3 aXB 贝U a X b9. 已知平面a丄平面3 aQ 3= I,点A € a, A?l ,直线AB I I ,直线AC X I 直线m I a n I3 则下列四种位置关系中不一定成立的是A. AB I m B. AC X m C. AB I3 D. AC X 310已知正方体ABCD — A 1B 1C 1D 1中,E 、F 分别为BB i 、CC 1的中点, 那么直线AE 与D i F 所成角的余弦值为( )4 3 3 3A .— 4 B. .5 C ・3 D . — 311.已知三棱锥D — ABC 的三个侧面与底面全等,且 AB = AC =「3, BC = 2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的余弦值为 (_)A.fB.| C . 0D .— 1 12 .如图所示,点P 在正方形ABCD 所在平面外,PA 丄平面ABCD , FA =AB ,则PB 与AC 所成的角是( ) A . 90° B . 60二、填空题13.14. 正方体ABCD — A 1B 1C 1D 1中,二面角 G — AB — C 的平面角等于 15. 设平面a//平面伏A , C € a, B , D €3直线AB 与CD 交于点 S ,且点S 位于平面a 3之间,AS = 8, BS= 6, CS= 12,则SD= ________ 16. 将正方形ABCD 沿对角线BD 折成直二面角A — BD — C ,有如下 四个结论:① AC 丄BD ;② 厶ACD 是等边三角形;③ AB 与平面BCD 成60°的角;④ AB 与CD 所成的角是60°C .其中正确结论的序号是 __________ .三、解答题17. 如下图,在三棱柱ABC —A1B1C1中,△ ABC与厶A i B i C i都为正三求证:(1)平面AB i F i //平面C i BF;⑵平面AB i F i丄平面ACGA i.18如图所示,在四棱锥F-ABCD中,FA丄平面ABCD, AB= 4, BC E是CD的中点.(1) 证明:CD丄平面PAE;⑵若直线PB与平面FAE所成的角和PB与平面ABCD所成的角相等, 求四棱锥F- ABCD的体积.19如图所示,边长为2的等边△ FCD所在的平面垂直于矩形ABCD 所在的平面,BC= 2 ■',2, M为BC的中点.(1)证明:AM丄FM;⑵求二面角F-AM- D的大小.20如图,棱柱ABC —A 1B 1C 1的侧面BCC i B i 是菱形,B i C 丄A i B.(1)证明:平面AB i C 丄平面A i BC i ;⑵设D 是A i C i 上的点,且A i B //平面B i CD ,求A i D 2i 如图,△ ABC 中,AC = BC = ^AB , ABED 是边长为i 的正方形, 平面ABED 丄底面ABC , 若 G , F 分别是EC , BD 的中点.(i)求证:GF //底面ABC ;⑵求证:AC 丄平面EBC ;⑶求几何体ADEBC 的体积V.DC i 的值.22女口下图所示,在直三棱柱ABC—A1B1C1中,AC= 3, BC = 4, AB = 5, AA i = 4,点D是AB的中点.(1)求证:⑵求证:AC i //平面CDB i;⑶求异面直线AC i与B i C所成角的余弦值.详解答案1[答案]D2[答案]C[解析]AB与CC i为异面直线,故棱中不存在同时与两者平行的直线, 因此只有两类:第一类与AB平行与CC i相交的有:CD、C1D1与CC i平行且与AB相交的有:BB i、AA i,第二类与两者都相交的只有BC,故共有5条.3[答案]C[解析]1°直线I与平面a斜交时,在平面a内不存在与I平行的直线,•••A 错;2°l? a时,在a内不存在直线与I异面,「・D错;3°l //a时,在a内不存在直线与I相交.无论哪种情形在平面a内都有无数条直线与I垂直.4[答案]D[解析]由于AD //A i D i,贝U/BAD是异面直线AB, A i D i所成的角,很明显Z BAD= 90 °5[答案]B[解析]对于选项A,当a与b是异面直线时,A错误;对于选项B, 若a, b不相交,则a与b平行或异面,都存在a,使a? a, b//a, B 正确;对于选项C, a丄a, b丄a, —定有a//b , C错误;对于选项D , a? a, b± a, —定有a丄b , D错误.6[答案]D[解析]异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a//c,而在空间中,a与c可以平行,可以相交,也可以异面,故④错误.7[答案]D[解析]如图所示.由于AA i丄平面A i B i C i D i, EF?平面A i B i C i D i, 则EF丄AA i,所以①正确;当E, F分别是线段A i B i, B i C i的中点时,EF//A i C i,又AC//A i C i,贝S EF//AC,所以③不正确;当E, F分别不是线段A i B i, B i C i的中点时,EF与AC异面,所以②不正确;由于平面A i B i C i D i //平面ABCD, EF?平面A i B i C i D i,所以EF //平面ABCD, 所以④正确.5 ------ c8[答案]D[解析]选项A中,a, b还可能相交或异面,所以A是假命题;选项B 中,a, b还可能相交或异面,所以B是假命题;选项C中,a B 还可能相交,所以C是假命题;选项D中,由于a丄a a丄伏则a / B或a? B,贝卩B内存在直线I //a,又b丄B,则b±l,所以a丄b.9[答案]C[解析]如图所示:AB//I //m ; AC 丄 l , m//l?AC 丄 m ; AB//I? AB //B310[答案]3命题意图]本试题考查了正方体中异面直线的所成角 的求解的运用.[解析]首先根据已知条件,连接DF ,然后则角DFD i 即为异面直线所成的角,设边长为2,则可以求解得到'5= DF = D i F , DD i = 2,结合余弦定理得到结论.11[答案]C[解析] 取BC 中点E ,连AE 、DE ,可证BC 丄AE , BC 丄DE ,「.zAED 为二面角 A -BC -D 的平面角又 AE = ED = 2, AD = 2,「・zAED = 90 ° 故选C.12[答案]B[解析]将其还原成正方体 ABCD -PQRS,显见PB//SC,mCS 为正 13[答案]14[答案]45°三角形,/i[解析]如图所示,正方体ABCD —A1B1C1D1中,由于BC丄AB, BG 丄AB,贝卩Z C1BC是二面角C1 —AB—C的平面角.又△ BCC1是等腰直角三角形,则/C i BC = 45°T all B,「.AC //BD ,AS CS 8 12则SB = SD ,A 6= SD ,解得 SD = 9.16[答案]①②④[解析]如图所示,①取BD 中点,E 连接AE , CE ,贝y BD 丄AE , BD 丄CE , 而 AE A CE = E ,「.BD 丄平面 AEC , AC?平面 AEC , 故 AC 丄 BD ,故①正确.② 设正方形的边长为a ,则AE = CE = a.: ” 1 /7^115[答案]9由①知Z AEC= 90是直二面角A—BD —C的平面角,且/ AEC =90 ° .••AC= a,•••/ACD是等边三角形,故②正确.③由题意及①知,AE丄平面BCD,故/ABE是AB与平面BCD所成的角,而Z ABE= 45 °所以③不正确.④分别取BC, AC的中点为M, N,连接ME, NE, MN.1 1贝卩MN //AB,且MN = 2AB = qa,1 1ME//CD,且ME = 2CD = 2a,•••zEMN是异面直线AB, CD所成的角.亠亠x/2在Rt A AEC 中,AE= CE = -^a, AC= a,「•NE = 2AC = 2a. •△MEN 是正三角形,「./EMN = 60° 故④正确. 17[证明](1)在正三棱柱ABC—A1B1C1中,TF、F1分别是AC、A1C1的中点,•••B1F1 //BF, AF1 //C1F.又TB1F1 Q AF1= F1, C〔F n BF= F,•平面AB1F1 //平面GBF.(2) 在三棱柱ABC —A1B1C1 中,AA1 丄平面A1B1C1,「.B1F1 丄AA1. 又B1F1 丄A1C1, A1C1 n AA1 = A1,「•B1F1 丄平面ACC1A1,而B1F1?平面AB1F1,•平面AB1F1丄平面ACC1A1.18[解析](1)如图所示,连接 AC ,由 AB = 4, BC = 3,/ABC = 90° 得 AC = 5. 又AD = 5, E 是CD 的中点,所以CD 丄AE.••PA 丄平面ABCD , CD?平面ABCD ,所以PA 丄CD.而FA , AE 是平面PAE 内的两条相交直线,所以 CD 丄平面PAE. ⑵过点B 作BG //CD ,分别与AE , AD 相交于F , G ,连接PF.由(1)CD 丄平面PAE 知,BG 丄平面PAE.于是Z BPF 为直线PB 与平面 PAE 所成的角,且BG 丄AE.由PA 丄平面ABCD 知,/PBA 为直线PB 与平面ABCD 所成的角. AB = 4, AG = 2, BG 丄AF ,由题意,知/PBA=ZBPF ,因为 sinZPBA = PB , sin/BPF = |B , 由 ZDAB =Z ABC = 90 知,AD //BC ,又BG//CD ,所以四边形 BCDG是平行四边形,故GD = BC = 3.于是AG = 2.在 Rt^BAG 中,AB = 4, AG = 2, BG 丄AF ,所以BG=p B 2+ AG 2 = 2质,BF = AB|=務=皆.于是 PA = BF =皆.1又梯形ABCD 的面积为S =十(5 + 3) X 4= 16,所以四棱锥P -ABCD 的体积为1 c i 1 _ 8 5128 ‘5 V =^x S x PA =T X 16X = . 3 3 5 15所以PA = BF.19[解析](1)证明:如图所示,取CD的中点E,连接PE, EM , EA,H •••△CD 为正三角形,「PE 丄 CD , PE = PDsinZPDE = 2sin60 =°3.••平面PCD 丄平面ABCD ,「PE 丄平面 ABCD ,而AM?平面ABCD ,「・PE 丄AM. •四边形ABCD 是矩形,「•/ADE , △ECM , A ABM 均为直角三角形,由勾股定理可求得 EM =.''3,AM = :6, AE = 3,•••EM 2 + AM 2= AE 2「AM 丄EM.又 PE A EM = E ,「AM 丄平面 PEM ,「・AM 丄 PM.(2)解:由(1)可知EM 丄AM , PM 丄AM ,「•zPME 是二面角P -AM — D 的平面角.「•二面角P — AM — D 的大小为45 :20[解析]「•ta n/PME = EM ,「./PME = 45 :(1) 因为侧面BCC i B i 是菱形,所以B i C 丄BC i , 又已知 B i C 丄A i B ,且 A i B A BC i = B ,所以B i C 丄平面A i BC i ,又B i C?平面AB i C 所以平面AB i C 丄平面A i BC i .(2) 设BC i 交B i C 于点E ,连接DE ,则DE 是平面A i BC i 与平面 B i CD 的交线.因为A i B//平面B i CD,A i B?平面A i BC i ,平面A i BC i A 平面B i CD =DE ,所以 A i B//DE.又E 是BC i 的中点,所以D 为A i C i 的中点.即 A i D DC i = i.2i [解](i)证明:连接AE ,如下图所示.VADEB 为正方形,•••AE A BD = F ,且F 是AE 的中点,又G 是EC 的中点,•••GF //AC ,又 AC?平面 ABC , GF?平面 ABC ,•••GF //平面 ABC.(2)证明:V ADEB 为正方形,• EB 丄AB ,又V 平面ABED 丄平面ABC ,平面ABED A 平面ABC = AB , EB? 平面ABED ,•BE 丄平面 ABC ,「.BE 丄AC.又 */AC = BC ="^AB,•••CA2+ CB2= AB2,•••AC丄BC.又V BC A BE= B,「.AC丄平面BCE.J2 x[2⑶取AB 的中点H,连GH , VBC= AC = pAB = p,1•CH丄AB,且CH =㊁,又平面ABED丄平面ABC1 1 1•GH 丄平面ABCD,:S 1X£=.3 2 622[解析](1)证明:在直三棱柱ABC—A1B1C1中,底面三边长AC =3, BC= 4, AB= 5,「・AC丄BC.又TGC丄AC.「AC丄平面BCC1B1.••BG?平面BCGB,「.AC丄BG.⑵证明:设CB1与GB的交点为E,连接DE,又四边形BCC1B1 为正方形.VD是AB的中点,E是BC1的中点,二DE //AG.VDE?平面CDB1, AG?平面CDB1,•••AC //平面CDB1.(3) 解:TDE //AG ,• zCED为AC1与B1C所成的角.在△CED 中,ED =推1 = 2,1 5 1 厂CD = 2AB= 2,CE = 2CB1 = 2 2,2二异面直线AC1与B1C所成角的余弦值为牛22。

人教版高中数学必修2第二章单元测试(二)- Word版含答案

人教版高中数学必修2第二章单元测试(二)- Word版含答案

必修二第二章训练卷点、直线、平面之间的位置关系(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下列推理错误的是()A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A∈l,l⊂α⇒A∈α2.长方体ABCD -A1B1C1D1中,异面直线AB,A1D1所成的角等于()A.30°B.45°C.60°D.90°3.在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,当BD∥平面EFGH时,下面结论正确的是()A.E,F,G,H一定是各边的中点B.G,H一定是CD,DA的中点C.BE∶EA=BF∶FC,且DH∶HA=DG∶GCD.AE∶EB=AH∶HD,且BF∶FC=DG∶GC4.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n 等于()A.8B.9C.10D.115.如图所示,在正方体ABCD—A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于()A.AC B.BD C.A1D D.A1D16.如图所示,将等腰直角△ABC沿斜边BC上的高AD折成一个二面角,此时∠B′AC =60°,那么这个二面角大小是()A.90°B.60°C.45°D.30°7.如图所示,直线P A垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O 的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面P AC的距离等于线段BC的长,其中正确的是( ) A .①②B .①②③C .①D .②③8.如图,三棱柱111ABC A B C -中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是( )A .CC 1与B 1E 是异面直线B .AC ⊥平面ABB 1A 1C .AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D .A 1C 1∥平面AB 1E9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定成立的是( ) A .AB ∥m B .AC ⊥m C .AB ∥βD .AC ⊥β10.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( ) A .512πB .3πC .4πD .6π11.正方体ABCD -A 1B 1C 1D 1中,过点A 作平面A 1BD 的垂线,垂足为点H .以下结论中,错误的是( )A .点H 是△A 1BD 的垂心B .AH ⊥平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成的角为45°12.已知矩形ABCD ,AB =1,2BC =,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.下列四个命题:①若a ∥b ,a ∥α,则b ∥α;②若a ∥α,b ⊂α,则a ∥b ;③若a ∥α,则a 平行于α内所有的直线;④若a ∥α,a ∥b ,b ⊄α,则b ∥α.其中正确命题的序号是________.14.如图所示,在直四棱柱1111ABCD A B C D -中,当底面四边形A 1B 1C 1D 1满足条件_______时,有A 1C ⊥B 1D 1.(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况)15.已知四棱锥P ABCD -的底面ABCD 是矩形,P A ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则 ①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于PAB △的面积; ④直线AE 与直线BF 是异面直线.16.如图所示,已知矩形ABCD 中,AB =3,BC =a ,若P A ⊥平面ABCD ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如图所示,长方体1111ABCD A B C D-中,M、N分别为AB、A1D1的中点,判断MN与平面A1BC1的位置关系,为什么?18.(12分)如图,三棱柱111ABC A B C-的侧棱与底面垂直,AC=9,BC=12,AB=15,AA1=12,点D是AB的中点.(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1.19.(12分)如图,在三棱锥P—ABC中,PA⊥底面ABC,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面P AC.(2)是否存在点E使得二面角A DE P--为直二面角?并说明理由.20.(12分)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱111ABC A B C-的高.21.(12分)如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥面BDE;(2)求证:平面P AC⊥平面BDE;(3)若二面角E BD C--为30°,求四棱锥P ABCD-的体积.22.(12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E ABC-的体积.2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.【答案】C【解析】若直线l∩α=A,显然有l⊄α,A∈l,但A∈α.故选C.2.【答案】D【解析】由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD =90°.故选D.3.【答案】D【解析】由于BD∥平面EFGH,所以有BD∥EH,BD∥FG,则AE∶EB=AH∶HD,且BF∶FC=DG∶GC.故选D.4.【答案】A【解析】如图,取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EFH平行,其余4个平面与EFH相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.故选A.5.【答案】B【解析】易证BD⊥面CC1E,则BD⊥CE.故选B.6.【答案】A 【解析】连接B′C,则△AB′C为等边三角形,设AD=a,则B′D=DC=a,2B C AC a'==,所以∠B′DC=90°.故选A.7.【答案】B【解析】对于①,∵P A⊥平面ABC,∴P A⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面P AC,又PC⊂平面P AC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥P A,∵P A⊂平面P AC,∴OM∥平面P AC;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离.故①②③都正确.8.【答案】C【解析】由已知AC=AB,E为BC中点,故AE⊥BC,又∵BC∥B1C1,∴AE⊥B1C1,故C正确.故选C.9.【答案】D【解析】∵m∥α,m∥β,α∩β=l,∴m∥l.∵AB∥l,∴AB∥m.故A一定正确.∵AC⊥l,m∥l,∴AC⊥m.故B一定正确.∵A∈α,AB∥l,l⊂α,∴B∈α.∴AB⊄β,l⊂β.∴AB∥β.故C也正确.∵AC⊥l,当点C在平面α内时,AC⊥β成立,当点C不在平面α内时,AC⊥β不成立.故D不一定成立.故选D.10.【答案】B【解析】如图所示,作PO⊥平面ABC,则O为△ABC的中心,连接AP,AO.13333sin 602ABC S =⨯⨯⨯︒=.1113394ABC A B C ABC V S OP OP -∴=⨯=⨯=,3OP ∴=.又32313OA =⨯⨯=,∴tan 3OP OAP OA ∠==,又02OAP π<∠<,∴3OAP π∠=.故选B .11.【答案】D【解析】因为AH ⊥平面A 1BD ,BD ⊂平面A 1BD ,所以BD ⊥AH . 又BD ⊥AA 1,且AH ∩AA 1=A .所以BD ⊥平面AA 1H .又A 1H ⊂平面AA 1H .所以A 1H ⊥BD ,同理可证BH ⊥A 1D ,所以点H 是△A 1BD 的垂心,故A 正确. 因为平面A 1BD ∥平面CB 1D 1,所以AH ⊥平面CB 1D 1,B 正确.易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确.因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠AA 1H ≠45°,所以∠A 1AH ≠45°,故D 错误.故选D . 12.【答案】B【解析】A 错误.理由如下:过A 作AE ⊥BD ,垂足为E ,连接CE ,若直线AC 与直线BD 垂直,则可得BD ⊥平面ACE ,于是BD ⊥CE ,而由矩形ABCD 边长的关系可知BD 与CE 并不垂直.所以直线AC 与直线BD 不垂直.B 正确.理由:翻折到点A 在平面BCD 内的射影恰好在直线BC 上时,平面ABC ⊥平面BCD ,此时由CD ⊥BC 可证CD ⊥平面ABC ,于是有AB ⊥CD .故B 正确. C 错误.理由如下:若直线AD 与直线BC 垂直,则由BC ⊥CD 可知BC ⊥平面ACD ,于是BC ⊥AC ,但是AB <BC ,在△ABC 中∠ACB 不可能是直角.故直线AD 与直线BC 不垂直.由以上分析显然D 错误.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】④【解析】①中b 可能在α内;②a 与b 可能异面或者垂直;③a 可能与α内的直线异面或垂直.14.【答案】B 1D 1⊥A 1C 1(答案不唯一)【解析】由直四棱柱可知CC 1⊥面A 1B 1C 1D 1,所以CC 1⊥B 1D 1,要使B 1D 1⊥A 1C ,只要B 1D 1⊥平面A 1CC 1,所以只要B 1D 1⊥A 1C 1,还可以填写四边形A 1B 1C 1D 1是菱形,正方形等条件. 15.【答案】①③【解析】由条件可得AB ⊥平面P AD ,∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而P A ∥PB , 这是不可能的,故②错;1·2PCD S CD PD =△,1·2PAB S AB PA =△,由AB =CD ,PD >P A 知③正确;由E 、F 分别是棱PC 、PD 的中点,可得EF ∥CD ,又AB ∥CD ,∴EF ∥AB , 故AE 与BF 共面,④错. 16.【答案】a >6【解析】由题意知:P A ⊥DE ,又PE ⊥DE ,P A ∩PE =P ,∴DE ⊥面P AE ,∴DE ⊥AE .易证△ABE ∽△ECD .设BE =x ,则AB BE CE CD =,即33xa x =-.∴290x ax +=-, 由0∆>,解得a >6.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】平行,见解析.【解析】直线MN ∥平面A 1BC 1.证明如下:∵M ∉平面A 1BC 1,N ∉平面A 1BC 1.∴MN ∉平面A 1BC 1. 如图,取A 1C 1的中点O 1,连接NO 1、BO 1.∵11112N D O C ∥,1112M D B C ∥,∴1NO MB ∥.∴四边形NO 1BM 为平行四边形.∴MN ∥BO 1.又∵BO 1⊂平面A 1BC 1,∴MN ∥平面A 1BC 1. 18.【答案】(1)见解析;(2)见解析. 【解析】(1)∵C 1C ⊥平面ABC ,∴C 1C ⊥AC .∵AC =9,BC =12,AB =15,∴AC 2+BC 2=AB 2,∴AC ⊥BC .又BC ∩C 1C =C ,∴AC ⊥平面BCC 1B 1,而B 1C ⊂平面BCC 1B 1,∴AC ⊥B 1C . (2)连接BC 1交B 1C 于O 点,连接OD .如图,∵O ,D 分别为BC 1,AB 的中点,∴OD ∥AC 1.又OD ⊂平面CDB 1,AC 1⊄平面CDB 1.∴AC 1∥平面CDB 1. 19.【答案】(1)见解析;(2)存在,见解析.【解析】(1)证明∵P A ⊥底面ABC ,∴P A ⊥BC .又∠BCA =90°,∴AC ⊥BC . 又∵AC ∩P A =A ,∴BC ⊥平面P AC .(2)∵DE ∥BC ,又由(1)知,BC ⊥平面P AC ,∴DE ⊥平面P AC . 又∵AE ⊂平面P AC ,PE ⊂平面P AC ,∴DE ⊥AE ,DE ⊥PE . ∴∠AEP 为二面角A DE P --的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC ,∴∠P AC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC .这时∠AEP =90°, 故存在点E ,使得二面角A DE P --为直二面角.20.【答案】(1)见解析;(2)21. 【解析】(1)证明 连接BC 1,则O 为B 1C 与BC 1的交点.因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1.又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO ,故B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)解 在平面BB 1C 1C 内作OD ⊥BC ,垂足为D ,连接AD . 在平面AOD 内作OH ⊥AD ,垂足为H .由于BC ⊥AO ,BC ⊥OD ,故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形.又BC =1,可得34OD =.由于AC ⊥AB 1,所以11122OA B C ==.由OH ·AD =OD ·OA ,且2274AD OD OA =+=,得2114OH =.又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为217, 故三棱柱111ABC A B C -的高为217. 21.【答案】(1)见解析;(2)见解析;(3)3618P ABCD V a -=. 【解析】(1)证明 连接OE ,如图所示.∵O 、E 分别为AC 、PC 的中点,∴OE ∥P A . ∵OE ⊂面BDE ,P A ⊄面BDE ,∴P A ∥面BDE . (2)证明 ∵PO ⊥面ABCD ,∴PO ⊥BD .在正方形ABCD 中,BD ⊥AC ,又∵PO ∩AC =O ,∴BD ⊥面P AC . 又∵BD ⊂面BDE ,∴面P AC ⊥面BDE .(3)解 取OC 中点F ,连接EF .∵E 为PC 中点, ∴EF 为POC △的中位线,∴EF ∥PO .又∵PO ⊥面ABCD ,∴EF ⊥面ABCD ,∴EF ⊥BD . ∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥面EFO ,∴OE ⊥BD . ∴∠EOF 为二面角E BD C --的平面角,∴∠EOF =30°.在Rt △OEF 中,11224OF OC AC a ===,∴6·tan 30EF OF a =︒=,∴62OP EF a ==.∴231663P ABCD V a a a -=⨯⨯=. 22.【答案】(1)见解析;(2)见解析;(3)3V =. 【解析】(1)证明在三棱柱111ABC A B C -中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1, 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1. (2)证明 取AB 的中点G ,连接EG ,FG .因为E ,F 分别是A 1C 1,BC 的中点,所以FG ∥AC ,且12FG AC =. 因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形.所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE ,所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC ,所以223AB AC BC =-= 所以三棱锥E -ABC 的体积11113·312332ABC V S AA ==⨯⨯=△.。

人教版高中数学必修2第二章测试题A组及答案解析

人教版高中数学必修2第二章测试题A组及答案解析

人教版高中数学必修2第二章测试题A组及答案解析第二章点、直线、平面之间的位置关系一、选择题1.设 $\alpha$,$\beta$ 为两个不同的平面,$l$,$m$ 为两条不同的直线,且 $l\subset\alpha$,$m\subset\beta$,有如下的两个命题:①若 $\alpha\parallel\beta$,则 $l\parallel m$;②若 $l\perp m$,则 $\alpha\perp\beta$。

那么()。

A。

①是真命题,②是假命题B。

①是假命题,②是真命题C。

①②都是真命题D。

①②都是假命题2.如图,ABCD为正方体,下面结论错误的是()。

A。

BD $\parallel$ 平面CBB。

AC $\perp$ BDC。

AC $\perp$ 平面CBD。

异面直线AD与CB角为60°3.关于直线 $m$,$n$ 与平面 $\alpha$,$\beta$,有下列四个命题:① $m\parallel\alpha$,$n\parallel\beta$ 且$\alpha\parallel\beta$,则 $m\parallel n$;② $m\perp\alpha$,$n\perp\beta$ 且 $\alpha\perp\beta$,则$m\perp n$;其中真命题的序号是()。

A。

①②B。

③④C。

①④D。

②③4.给出下列四个命题:①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行③若直线 $l_1$,$l_2$ 与同一平面所成的角相等,则$l_1$,$l_2$ 互相平行④若直线 $l_1$,$l_2$ 是异面直线,则与 $l_1$,$l_2$ 都相交的两条直线是异面直线其中假命题的个数是()。

A。

1B。

2C。

3D。

45.下列命题中正确的个数是()。

①若直线 $l$ 上有无数个点不在平面 $\alpha$ 内,则$l\parallel\alpha$②若直线 $l$ 与平面 $\alpha$ 平行,则 $l$ 与平面$\alpha$ 内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行④若直线 $l$ 与平面 $\alpha$ 平行,则 $l$ 与平面$\alpha$ 内的任意一条直线都没有公共点A。

高中数学必修2(人教B版)第二章平面解析几何初步2.2知识点总结含同步练习题及答案

高中数学必修2(人教B版)第二章平面解析几何初步2.2知识点总结含同步练习题及答案

|a| = |b|
⋯⋯②
由 ①② 解得 a = b = 5 或 a = −1 ,b = 1 ,所以直线方程为 x + y − 5 = 0 或 x − y + 1 = 0. (ii)当 a = b = 0 时,直线过原点和 P (2, 3) ,所以直线方程为 3x − 2y = 0 . 综上可知,所求直线方程为 x + y − 5 = 0 或 x − y + 1 = 0 或 3x − 2y = 0 . 已知三角形的顶点是 A(−5, 0) ,B(3, −3) ,C (0, 2) ,求 AC 边所在直线的方程,以及该边上的 中线所在直线的方程. 解:过点 A(−5, 0) ,C (0, 2) 的两点式方程为
直线的基本量与方程 直线与直线的位置关系 直线的相关计算
三、知识讲解
1.直线的基本量与方程 描述: 直线的倾斜角 当直线l 与x 轴相交时,我们取 x 轴作为基准,x 轴正向与直线 l 向上方向之间所成的角α叫做直 线l 的倾斜角(angle of inclination).直线倾斜角α 的取值范围为0 ∘ ≤ α < 180 ∘ .
2 y − (−3) x−3 由两点式得直线 BD 的方程为 ,整理可得 8x + 11y + 9 = 0 ,这就是 = 1 − (−3) −5 − 3 2 AC 边上的中线所在直线的方程.
⎪ ⎩
2.直线与直线的位置关系 描述: 直线 l 1 :y = k1 x + b 1 ,l 2 :y = k2 x + b 2 . 当 l 1 与 l 2 平行时,则 k1 = k2 且 b 1 ≠ b 2 ; 当 l 1 与 l 2 重合时,则 k1 = k2 且 b 1 = b 2 ; 当 l 1 与 l 2 相交时,则 k1 ≠ k2 ,特别地,若两直线垂直,则 k1 ⋅ k2 =#43; B 1 y + C1 = 0, A 2 1 + B 1 ≠ 0 ,l 2 :A 2 x + B 2 y + C2 = 0, A 2 + B 2 ≠ 0 . 当 l 1 与 l 2 平行时,则 A 1 B 2 = A 2 B 1 且 B 1 C2 ≠ B 2 C1 ; 当 l 1 与 l 2 重合时,则 A 1 B 2 = A 2 B 1 且 B 1 C2 = B 2 C1 ; 当 l 1 与 l 2 相交时,则 A 1 B 2 ≠ A 2 B 1 ,特别地,若两直线垂直,则 A 1 A 2 + B 1 B 2 = 0 . 例题: 直线 3x − 2y + m = 0 和 (m 2 + 1)x + 3y − 3m = 0 的位置关系是( A.平行 B.重合 C.相交 D.不确定 解:两直线的斜率分别为 交. )

2019-2020高中数学必修二第二章测试试卷及答案解析

2019-2020高中数学必修二第二章测试试卷及答案解析

1 2019-2020高中数学必修二第二章测试试卷 (总分:150分 时间:120分钟) 一、选择题:(本大题共12小题,每小题5分,共60分) 1、已知平面α内有无数条直线都与平面β平行,那么( ) A .α∥β B .α与β相交 C .α与β重合 D .α∥β或α与β相交 2、若直线l ∥平面α,直线a α⊂,则l 与a 的位置关系是 A 、l ∥a B 、l 与a 异面 C 、l 与a 相交 D 、l 与a 没有公共点 3、已知直线a 、b 、c 与平面α.给出: ①a ⊥c ,b ⊥c a ∥b ;②a ∥c ,b ∥c a ∥b ;③a ∥α,b ∥αa ∥b ;④a ⊥α,b ⊥αa ∥b .其中正确命题的个数是( )A.1 B.2 C.3 D.4 4、如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ). A .BD ∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1D 1 D .异面直线AD 与CB 1角为60° 5、一个棱柱是正四棱柱的条件是 A 、底面是正方形,有两个侧面是矩形 B 、底面是正方形,有两个侧面垂直于底面 C 、底面是菱形,且有一个顶点处的三条棱两两垂直 D 、每个侧面都是全等矩形的四棱柱 6、下列说法正确的是 A 、三点确定一个平面 B 、四边形一定是平面图形 C 、梯形一定是平面图形 D 、平面α和平面β有不同在一条直线上的三个交点 7、给出以下四个命题 ①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行; ②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直. 其中真命题的个数是 A.4 B.3 C.2 D.1 8、下列命题中正确的命题的个数为( ) ①直线l 平行于平面α内的无数条直线,则l∥α;②若直线a 在平面α外,则a∥α; ③若直线a∥b,直线b α,则a∥α;④若直线a∥b,b 平面α,那么直线a 就平行于平面α内的无数条直线. A.1 B.2 C.3 D.4 9、如图,在△ABC 中,∠BAC =90°,P A ⊥面ABC ,AB =AC ,D 是BC 的中点,则图中直角三角形的个数是() A .5 B .8 C .10 D .6 10、如图所示,在四面体ABCD 中,E ,F 分别是AC 与BD 的中点,若CD =2AB =4,EF ⊥BA ,则EF 与CD 所成的角为() A .90° B .45° C .60° D .30° 11、已知直线a 与直线b 垂直,a 平行于平面α,则b 与α的位置关系是( ) A.b∥α B.b α C.b 与α相交 D.以上都有可能 12、如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点 E ,F ,且EF =12,则下列结论错误的是( ) A. AC ⊥BE B. EF ∥平面ABCD C.三棱锥A —BEF 的体积为定值 D.△AEF 的面积与△BEF 的面积相等班级姓名考号密封线内不要答题(第2。

高一数学必修2习题(答案详解)

高一数学必修2习题(答案详解)

一、选择题【共10道小题】1、给出的下列命题中,正确命题的个数是( )①梯形的四个顶点在同一平面内②三条平行直线必共面③有三个公共点的两个平面必重合④每两条都相交且交点各不相同的四条直线一定共面A.1B.2C.3D.4参考答案与解析:思路解析:逐个对各选项分析:梯形是一个平面图形,所以其四个顶点在同一个平面内,①对;两条平行直线是可以确定一个平面的,三条平行直线有可能确定三个平面,②错;三个公共点可以同在两个相交平面的公共直线上,③错;设这四条直线分别为l1、l2、l3、l4,取其中两条相交直线l1和l2,则它们可确定一个平面α,取l3,设其与l1、l2的交点分别为A、B,则由题意知这两点不同,且A∈l1,B∈l2,所以有A、B∈α,从而l3∈α;同理可证明l4∈α.所以每两条都相交且交点各不相同的四条直线一定共面,④对.答案:B主要考察知识点:空间直线和平面2、如图2-1-17,空间四边形SABC中,各边及对角线长都相等,若E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于( )A.90°B.60°C.45°D.30°图2-1-17参考答案与解析:思路解析:求EF与SA所成的角,可把SA平移,使其角的顶点在EF上,为此取SB的中点G,连结GE、GF、BE、AE.由三角形中位线定理得GE=BC,GF=SA,且GF∥SA,所以∠GFE就是EF与SA所成的角.若设此空间四边形边长为a,那么GF=GE=a,EA=a,EF=a,因此△EFG为等腰直角三角形,∠EFG=45°,所以EF与SA所成的角为45°.答案:C主要考察知识点:空间直线和平面3、如果直线a∥平面α,那么直线a与平面α内的( )A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交参考答案与解析:思路解析:利用线面平行的定义.直线a∥平面α,则a与α无公共点,与α内的直线当然均无公共点.答案:D主要考察知识点:空间直线和平面4、若点M在直线α上,α在平面α内,则M、a、α间的上述关系可记为( )A.M∈a,a∈αB.M∈a,aαC.M a,aαD.M a,aα参考答案与解析:B主要考察知识点:空间直线和平面5、在空间四边形ABCD的边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF与HG交于点M,则( )A.M一定在直线AC上B.M一定在直线BD上C.M可能在AC上,也可能在BD上D.M不在AC上,也不在BD上参考答案与解析:A主要考察知识点:空间直线和平面6、下列说法正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.平面α和平面β有不同在一条直线上的三个交点参考答案与解析:解析:A错,不共点的三点;B错,如空间四边形;D错,两平面的三个交点在同一直线上.答案:C主要考察知识点:空间直线和平面7、若点M在直线a上,a在平面α内,则M,a,α间的上述关系可记为()A.M∈a,a∈αB.M∈a,C.,D.,参考答案与解析:解析:要明确数学符号语言的表示.答案:B主要考察知识点:空间直线和平面8、异面直线是指()A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线参考答案与解析:解析:A错,有可能平行;B错,有可能平行或相交;C错,有可能平行或相交;D正确.答案:D主要考察知识点:空间直线和平面9、若a∥α,b∥α,则直线a、b的位置关系是()A.平行B.相交C.异面 D.A、B、C均有可能参考答案与解析:解析:平行、相交、异面都有可能,此题的难点在于可能选平行,易和平行公理混淆.答案:D主要考察知识点:空间直线和平面10、下列命题:①若直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线,则a∥α;④若直线a∥b,bα,那么直线a就平行于平面α内的无数条直线.其中真命题的个数为( )A.1B.2C.3D.4参考答案与解析:解析:对于①,∵直线l虽与平面α内无数条直线平行,但l有可能在平面α内,∴l不一定平行于α.∴①是假命题.对于②,∵直线a在平面α外包括两种情况:a∥α和a与α相交,∴a和α不一定平行.∴②是假命题.对于③,∵直线a∥b, ,则只能说明a和b无公共点,但a可能在平面α内,∴a不一定平行于α.∴③是假命题.对于④,∵a∥b, ,那么aα或a∥α,∴a可以与平面α内的无数条直线平行.∴④是真命题.综上所述,真命题的个数为1.答案:A主要考察知识点:空间直线和平面二、填空题【共4道小题】1、空间三条直线两两相交,点P不在这三条直线上,那么由点P和这三条直线最多可以确定的平面的个数为__________.参考答案与解析:解析:(1)当题中三条直线共点但不共面相交时,可确定3个平面;而P点与每条直线又可确定3个平面,故共确定6个.主要考察知识点:空间直线和平面2、和两条平行直线中的一条是异面直线的直线与另一条直线的位置关系是_______.参考答案与解析:思路解析:由公理4可知不可能平行,只有相交或异面.答案:相交或异面主要考察知识点:空间直线和平面3、看图填空.(1)AC∩BD=_______;(2)平面AB1∩平面A1C1=________;(3)平面A1C1CA∩平面AC=________;(4)平面A1C1CA∩平面D1B1BD=_________;(5)平面A1C1∩平面AB1∩平面B1C=_________;(6)A1B1∩B1B∩B1C1=_________.参考答案与解析:解析:两个面的两个公共点连线即为交线.答案:(1)O(2)A1B1(3)AC(4)OO1(5)B1(6)B1主要考察知识点:空间直线和平面4、已知平面α、β相交,在α、β内各取两点,这四点都不在交线上,这四点能确定平面_______个.参考答案与解析:解析:分类,如果这四点在同一平面内,那么确定一个平面,如果这四点不共面,则任意三点可确定一个平面,可确定四个.答案:1或4主要考察知识点:空间直线和平面三、解答题【共3道小题】1、如图,已知△ABC在平面α外,它的三边所在直线分别交平面α于点P、Q、R,求证:P、Q、R三点共线.参考答案与解析:解析:本题是一个证明三点共线的问题,利用公理3,两平面相交时,有且只有一条公共直线.因此只需证明P、Q、R三点是某两个平面的公共点,即可得这三个点都在两平面的交线上,因此是共线的.证明:设△ABC确定平面ABC,直线AB交平面α于点Q,直线CB交平面α于点P,直线AC 交平面α于点R,则P、Q、R三点都在平面α内,又因为P、Q、R三点都在平面ABC内,所以P、Q、R三点都在平面α和平面ABC的交线上,而两平面的交线只有一条,所以P、Q、R三点共线.主要考察知识点:空间直线和平面2、如图,已知正方体ABCD—A′B′C′D′.①哪些棱所在直线与直线BA′是异面直线?②直线BA′和CC′的夹角是多少?③哪些棱所在的直线与直线AA′垂直?参考答案与解析:解析:①由异面直线的定义可知,棱AD,DC,CC′,DD′,D′C′,B′D′所在直线分别与直线BA′是异面直线.②由BB′∥CC′可知,∠B′BA′为异面直线BA′与CC′的夹角,∠B′BA′=45°,所以BA′与CC′的夹角为45°.③直线AB,BC,CD,DA,A′B′,B′C′,C′D′,D′A′分别与直线AA′垂直.主要考察知识点:空间直线和平面3、已知直线b∥c,且直线a与b、c都相交,求证:直线a,b,c共面.参考答案与解析:证明:∵b∥c,∴不妨设b,c共面于平面α.设a∩b=A,a∩c=B,∴A∈a,B∈a,A∈α,B∈α,即.∴三线共面.主要考察知识点:空间直线和平面一、选择题【共10道小题】1、若两个平面互相平行,则分别在这两个平行平面内的直线( )A.平行B.异面C.相交 D.平行或异面参考答案与解析:解析:两平行平面内的直线可能平行,也可能异面,就是不可能相交.答案:D主要考察知识点:空间直线和平面2、下列结论中,正确的有( )①若aα,则a∥α②a∥平面α,bα则a∥b③平面α∥平面β,aα,bβ,则a∥b④平面α∥β,点P∈α,a∥β,且P∈a,则aαA.1个B.2个C.3个 D.4个参考答案与解析:解析:若aα,则a∥α或a与α相交,由此知①不正确若a∥平面α,bα,则a与b异面或a∥b,∴②不正确若平面α∥β,aα,bβ,则a∥b或a与b异面,∴③不正确由平面α∥β,点P∈α知Pβ过点P而平行平β的直线a必在平面α内,是正确的.证明如下:假设aα,过直线a作一面γ,使γ与平面α相交,则γ与平面β必相交.设γ∩α=b,γ∩β=c,则点P∈b.由面面平行性质知b∥c;由线面平行性质知a∥c,则a∥b,这与a∩b=P矛盾,∴aα.故④正确.答案:A主要考察知识点:空间直线和平面3、在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC和平面DEF的位置关系是( )A.平行B.相交C.在内 D.不能确定参考答案与解析:解析:在平面ABC内.∵AE:EB=CF:FB=1:3,∴AC∥EF.可以证明AC平面DEF.若AC平面DEF,则AD平面DEF,BC平面DEF.由此可知ABCD为平面图形,这与ABCD是空间四边形矛盾,故AC平面DEF.∵AC∥EF,EF平面DEF.∴AC∥平面DEF.答案:A主要考察知识点:空间直线和平面4、a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是( )A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,bC.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在参考答案与解析:解析:如当A与a确定的平面与b平行时,过A作与a,b都平行的平面不存在.答案:D主要考察知识点:空间直线和平面5、已知直线a与直线b垂直,a平行于平面α,则b与α的位置关系是( )A.b∥αB.bαC.b与α相交D.以上都有可能参考答案与解析:思路解析:a与b垂直,a与b的关系可以平行、相交、异面,a与α平行,所以b与α的位置可以平行、相交、或在α内,这三种位置关系都有可能.答案:D主要考察知识点:空间直线和平面6、下列命题中正确的命题的个数为( )①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线bα,则a∥α;④若直线a∥b,b平面α,那么直线a就平行于平面α内的无数条直线.A.1B.2C.3D.4参考答案与解析:解析:对于①,∵直线l虽与平面α内无数条直线平行,但l有可能在平面α内(若改为l与α内任何直线都平行,则必有l∥α),∴①是假命题.对于②,∵直线a在平面α外,包括两种情况a∥α和a与α相交,∴a与α不一定平行,∴②为假命题.对于③,∵a∥b,bα,只能说明a与b无公共点,但a可能在平面α内,∴a不一定平行于平面α.∴③也是假命题.对于④,∵a∥b,bα.那么aα,或a∥α.∴a可以与平面α内的无数条直线平行.∴④是真命题.综上,真命题的个数为1.答案:A主要考察知识点:空间直线和平面7、下列命题正确的个数是( )(1)若直线l上有无数个点不在α内,则l∥α(2)若直线l与平面α平行,l与平面α内的任意一直线平行(3)两条平行线中的一条直线与平面平行,那么另一条也与这个平面平行(4)若一直线a和平面α内一直线b平行,则a∥αA.0个B.1个C.2个 D.3个参考答案与解析:解析:由直线和平面平行的判定定理知,没有正确命题.答案:A主要考察知识点:空间直线和平面8、已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若m⊥α,m⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若mα,nβ,m∥n,则α∥β;④若m、n是异面直线,mα,m∥β,nβ,n∥α,则α∥β.其中真命题是( )A.①和②B.①和③C.③和④ D.①和④参考答案与解析:解析:利用平面平行判定定理知①④正确.②α与β相交且均与γ垂直的情况也成立,③中α与β相交时,也能满足前提条件答案:D主要考察知识点:空间直线和平面9、长方体ABCD-A1B1C1D1中,E为AA1中点,F为BB1中点,与EF平行的长方体的面有()A.1个B.2个C.3个 D.4个参考答案与解析:解析:面A1C1,面DC1,面AC共3个.答案:C主要考察知识点:空间直线和平面10、对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l,M,使得l∥α,l∥β,M∥α,M∥β.其中可以判断两个平面α与β平行的条件有()A.1个B.2个C.3个 D.4个参考答案与解析:解析:取正方体相邻三个面为α、β、γ,易知α⊥γ,β⊥γ,但是α与β相交,不平行,故排除①,若α与β相交,如图所示,可在α内找到A、B、C三个点到平面β的距离相等,所以排除③.容易证明②④都是正确的.答案:B主要考察知识点:空间直线和平面1、在棱长为a的正方体ABCD—A1B1C1D1中,M、N分别是棱A1B1、B1C1的中点,P是棱AD上一点,AP=,过P、M、N的平面与棱CD交于Q,则PQ=_________.参考答案与解析:解析:由线面平行的性质定理知MN∥PQ(∵MN∥平面AC,PQ=平面PMN∩平面AC,∴MN∥PQ).易知DP=DQ=.故.答案:主要考察知识点:空间直线和平面2、如果空间中若干点在同一平面内的射影在一条直线上,那么这些点在空间的位置是__________.参考答案与解析:共线或在与已知平面垂直的平面内主要考察知识点:空间直线和平面3、若直线a和b都与平面α平行,则a和b的位置关系是__________.参考答案与解析:相交或平行或异面主要考察知识点:空间直线和平面4、正方体ABCD-A1B1C1D1中,E为DD1中点,则BD1与过点A,C,E的平面的位置关系是_________.参考答案与解析:解析:如图所示,连结BD,设BD∩AC=O,连结BD1,在△BDD1中,E 为DD1的中点,O为BD的中点,∴OE为△BDD1的中位线.∴OE∥BD1.又平面ACE,OE平面ACE,∴BD1∥平面ACE.答案:平行主要考察知识点:空间直线和平面1、如图,直线AC,DF被三个平行平面α、β、γ所截.①是否一定有AD∥BE∥CF;②求证:.参考答案与解析:解析:①平面α∥平面β,平面α与β没有公共点,但不一定总有AD∥BE. 同理不总有BE∥CF.②过A点作DF的平行线,交β,γ于G,H两点,AH∥DF.过两条平行线AH,DF的平面,交平面α,β,γ于AD,GE,HF.根据两平面平行的性质定理,有AD∥GE∥HF.AGED为平行四边形.∴AG=DE.同理GH=EF.又过AC,AH两相交直线之平面与平面β,γ的交线为BG,CH.根据两平面平行的性质定理,有BG∥CH.在△ACH中,.而AG=DE,GH=EF,∴.主要考察知识点:空间直线和平面2、如图,ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点.求证:SA∥平面MDB.参考答案与解析:解析:要说明SA∥平面MDB,就要在平面MDB内找一条直线与SA平行,注意到M是SC的中点,于是可找AC的中点,构造与SA平行的中位线,再说明此中位线在平面MDB内,即可得证.证明:连结AC交BD于N,因为ABCD是平行四边形,所以N是AC的中点.又因为M是SC的中点,所以MN∥SA.因为MN平面MDB,所以SA∥平面MDB.主要考察知识点:空间直线和平面3、如图,已知点M、N是正方体ABCD-A1B1C1D1的两棱A1A与A1B1的中点,P是正方形ABCD 的中心,求证:MN∥平面PB1C.参考答案与解析:证明:如图,连结AC,则P为AC的中点,连结AB1,∵M、N分别是A1A与A1B1的中点,∴MN∥AB1.又∵平面PB1C,平面PB1C,故MN∥面PB1C.一、选择题【共10道小题】1、二面角指的是( )A.两个平面相交所组成的角B.经过同一条直线的两个平面所组成的图形C.一条直线出发的两个半平面组成的图形D.两个平面所夹的不大于90°的角参考答案与解析:解析:根据二面角的定义讨论,故选C.答案:C主要考察知识点:空间直线和平面2、α、β、γ、ω是四个不同平面,若α⊥γ,β⊥γ,α⊥ω,β⊥ω,则( )A.α∥β且γ∥ωB.α∥β或γ∥ωC.这四个平面中可能任意两个都不平行D.这四个平面中至多有一对平面平行参考答案与解析:解析:若α∩β=a.∵α⊥γ,β⊥γ,∴α⊥γ.同理a⊥ω.∴γ∥ω;若α∥β,则γ与ω相交或平行,∴α∥β或γ∥ω.答案:B主要考察知识点:空间直线和平面3、已知直线m、n与平面α、β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中真命题的个数是( )A.0B.1C.2D.3参考答案与解析:解析:①m∥α,n∥α不一定有m∥α.②③正确.答案:C主要考察知识点:空间直线和平面4、如图2-3-15,设P是正方形ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC、平面PAD的位置关系是( )图2-3-15A.平面PAB与平面PBC、平面PAD都垂直B.它们两两都垂直C.平面PAB与平面PBC垂直、与平面PAD不垂直D.平面PAB与平面PBC、平面PAD都不垂直参考答案与解析:思路解析:∵PA⊥平面ABCD,∴PA⊥BC.又∵BC⊥AB,PA∩AB=A,∴PC⊥平面PAB,从而平面PBC⊥平面PAB.由AD⊥PA,AD⊥AB,PA∩AB=A得AD⊥平面PAB.∵AD平面PAD,∴平面PAD⊥平面PAB.答案:A主要考察知识点:空间直线和平面5、如图2-3-16,等边三角形ABC的边长为1,BC边上的高为AD,若沿AD折成直二面角,则A 到BC的距离是……()图2-3-16A.1B.C.D.参考答案与解析:思路解析:折叠后BD=DC=,且∠BDC为二面角的平面角,∠BDC=90°,∴BC=.取BC中点E,连结DE,则DE⊥BC,进一步易证AE⊥BC,AE的长为所求距离.∵AD=,DE=BC=,∴AE=.答案:C主要考察知识点:空间直线和平面6、下列命题正确的是( )A.垂直于同一条直线的两直线平行B.垂直于同一条直线的两直线垂直C.垂直于同一个平面的两直线平行D.垂直于同一条直线的一条直线和平面平行参考答案与解析:思路解析:在空间中垂直于同一直线的两条直线,可能平行相交,也可能异面,所以A,B错,垂直于同一直线的直线和平面的位置关系可以是直线在平面内,直线和平面平行,所以D错.答案:C主要考察知识点:空间直线和平面7、空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是( )A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交参考答案与解析:解析:取BD中点E,连结AE、CE.∵AB=AD=BC=CD,∴AE⊥BD,CE⊥BD.∴BD⊥平面AEC.又AC面AEC,∴BD⊥AC.答案:C主要考察知识点:空间直线和平面8、线段AB的长等于它在平面α内射影长的2倍,则AB所在直线与平面α所成的角为()A.30°B.45°C.60°D.120°参考答案与解析:解析:由直角三角形的边角关系,可知直线与平面α所成的角为60°.答案:C主要考察知识点:空间直线和平面9、设α,β为两个不重合的平面,l,M,n为两两不重合的直线,给出下列四个命题:①若α∥β,,则l∥β;②若, ,M∥β,n∥β,则α∥β;③若l∥α,l⊥β,则α⊥β;④若,,且l⊥M,l⊥n,则l⊥α.其中正确命题的序号是( )A.①③④B.①②③C.①③D.②④参考答案与解析:解析:由面面平行的判定定理,知②错误;由线面垂直的判定定理知④错误.答案:C主要考察知识点:空间直线和平面10、下列说法中正确的是()①过平面外一点有且只有一条直线和已知平面垂直②过直线外一点有且只有一个平面和已知直线垂直③过平面外一点可作无数条直线与已知平面平行④过直线外一点只可作一条直线与已知直线垂直A.①②③B.①②③④C.②③D.②③④参考答案与解析:解析:由线面垂直的性质及线面平行的性质,知①②③正确;④错,过直线外一点作平面与直线垂直,则平面内的所有直线都与该直线垂直.答案:A主要考察知识点:空间直线和平面二、填空题【共4道小题】1、α、β是两个不同的平面,m、n是平面α、β外的两条不同直线,给出四个结论:①m⊥n;②α⊥β;③n⊥β;④m⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题______.参考答案与解析:解析:假设①③④为条件,即m⊥n,n⊥β,m⊥α成立,如图.过m上一点P 作PB∥N,则PB⊥m,PB⊥β,设垂足为B.又设m⊥α,垂足为A,过PA、PB的平面与α、β的交线l交于点C.∵l⊥PA,l⊥PB,∴l⊥平面PAB.∴l⊥AC,l⊥BC.∴∠ACB是二面角α-l-β的平面角.由m⊥n,显然PA⊥PB,∴∠ACB=90°,∴α⊥β.由①③④②成立.反过来,如果②③④成立,与上面证法类似可得①成立.答案:②③④①或①③④②.主要考察知识点:空间直线和平面2、α、β是两个不同的平面,m、n是平面α、β外的两条不同直线,给出四个结论:①m⊥n;②α⊥β;③n⊥β;④m⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题______.参考答案与解析:解析:假设①③④为条件,即m⊥n,n⊥β,m⊥α成立,如图.过m上一点P 作PB∥N,则PB⊥m,PB⊥β,设垂足为B.又设m⊥α,垂足为A,过PA、PB的平面与α、β的交线l交于点C.∵l⊥PA,l⊥PB,∴l⊥平面PAB.∴l⊥AC,l⊥BC.∴∠ACB是二面角α-l-β的平面角.由m⊥n,显然PA⊥PB,∴∠ACB=90°,∴α⊥β.由①③④②成立.反过来,如果②③④成立,与上面证法类似可得①成立.答案:②③④①或①③④②.主要考察知识点:空间直线和平面3、设三棱锥P ABC的顶点P在平面ABC上的射影是H,给出下列命题:①若PA⊥BC,PB⊥AC,则H是△ABC的垂心;②若PA、PB、PC两两互相垂直,则H是△ABC的垂心;③若∠ABC=90°,H是AC的中点,则PA=PB=PC;④若PA=PB=PC,则H是△ABC的外心.请把正确命题的序号填在横线上:______________.参考答案与解析:解析:①若P A⊥BC,PB⊥AC,则H为垂心.②∵PA⊥PB,PA⊥PC,∴PA⊥面PBC.∴PA⊥BC.又PH⊥面ABC,∴PH⊥BC.∴BC⊥面PAH.∴AH⊥BC.同理BH⊥AC,∴H为垂心.③∵H为AC中点,∠ABC=90°,∴AH=BH=CH.又PH⊥面ABC,由勾股定理知PA=PB=PC.④∵PA=PB=PC,又PH⊥面ABC,同③可知AH=BH=CH,∴H为外心.答案:①②③④主要考察知识点:空间直线和平面4、如图,P是二面角α-AB-β的棱AB上一点,分别在α、β上引射线PM、PN,截PM=PN,如果∠BPM=∠BPN=45°,∠MPN=60°,则二面角α-AB-β的大小是___________.参考答案与解析:解析:过M在α内作MO⊥AB于点O,连结NO,设PM=PN=a,又∠BPM=∠B PN=45°,∴△OPM≌△OPN.∴ON⊥AB.∴∠MON为所求二面角的平面角.连结MN,∵∠MPN=60°,∴MN=a.又,∴MO2+NO2=MN2.∴∠MON=90°.答案:90°主要考察知识点:空间直线和平面三、解答题【共3道小题】1、如图,在正方体ABCD—A1B1C1D1中,EF⊥A1D,EF⊥AC,求证:EF∥BD1.参考答案与解析:解析:要证明EF∥BD1,可构造与它们都垂直的一个平面.由于A1D,AC 均为各面的对角线,通过对角线的平行性可构造垂直关系.证明:连结A1C1,由于AC∥A1C1,EF⊥AC,∴EF⊥A1C1.又EF⊥A1D,A1D∩A1C1=A1,∴EF⊥平面A1C1D. ①∵BB1⊥平面A1B1C1D1,A1C1平面A1B1C1D1,∴BB1⊥A1C1.又A1B1C1D1为正方体,∴A1C1⊥B1D1.∵BB1∩B1D1=B1,∴A1C1⊥平面BB1D1D.而BD1平面BB1D1D,∴BD1⊥A1C1.同理,DC1⊥BD1,DC1∩A1C1=C1,∴BD1⊥平面A1C1D. ②由①②可知EF∥BD1.主要考察知识点:空间直线和平面2、在长江汽车渡口,马力不足或装货较重的汽车上岸时,采用沿着坡面斜着成S形的方法向上开,这是为什么?你能从数学的角度进行解释吗?参考答案与解析:答案:在汽车马力恒定的情况下,行驶单位路程内,垂直上升高度愈大,汽车愈费“力”,当“力”所不及时,就会发生危险.日常经验告诉我们,走S形可减少这种危险,从数学的角度看,可作如下解释.图2-3-22如图,AB表示笔直向上行走的路线(AB⊥CA),α表示它与水平面所成的交角,CB表示斜着向上行走的路线,β表示它与水平面所成的夹角,它们所达到的高度都是BD.现在的问题就是要研究α和β这两个角哪个大,越大越费力.在Rt△BAD中,sinα=.①在Rt△BCD中,sinβ=.②比较①与②,因为AB、CB分别是直角三角形ABC的直角边和斜边,也就是说AB<CB,所以>.又因为α、β都是锐角,所以α>β.因此汽车沿着CB方向斜着向上开要省力.山区修筑的公路,采取盘山而上的方法,也是这个道理.主要考察知识点:空间直线和平面3、如图,在四面体ABCD中,△ABD、△ACD、△BCD、△ABC都全等,且,BC=2,求以BC为棱、以面BCD和面BCA为面的二面角的大小.参考答案与解析:解:取BC的中点E,连结AE、DE,∵AB=AC,∴AE⊥BC.又∵△ABD≌△ACD,AB=AC,∴DB=DC.∴DE⊥BC.∴∠AE D为二面角A-BC-D的平面角.又∵△ABC≌△DBC,且△ABC为以BC为底的等腰三角形,故△DBC也是以BC为底的等腰三角形,∴.又△ABD≌△BDC,∴AD=BC=2.在Rt△DEB中,,BE=1,∴,同理.在△AE D中,∵AE=DE=,AD=2,∴AD2=AE2+DE2.∴∠AE D=90°.∴以面BCD和面BCA为面的二面角的大小为90°.主要考察知识点:空间直线和平面一、选择题【共12道小题】1、下列说法中正确的是( )A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等参考答案与解析:B主要考察知识点:简单几何体和球2、将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括( )A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆台、一个圆柱D.一个圆柱、两个圆锥参考答案与解析:D主要考察知识点:简单几何体和球3、过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为( )A. B. C.D.参考答案与解析:解析:设球半径为R,截面半径为r.+r2=R2,∴r2=.∴.答案:A主要考察知识点:简单几何体和球4、如图所示的直观图是将正方体模型放置在你的水平视线的左上角而绘制的,其中正确的是( )参考答案与解析:解析:由几何体的直观图画法及主体图形中虚线的使用,知A正确.答案:A主要考察知识点:简单几何体和球5、长方体的高等于h,底面积等于S,过相对侧棱的截面面积为S′,则长方体的侧面积等于( )A. B.C. D.参考答案与解析:解析:设长方体的底面边长分别为a、b,过相对侧棱的截面面积S′=①,S=ab②,由①②得:(a+b)2=+2S,∴a+b=,S侧=2(a+b)h=2h.答案:C主要考察知识点:简单几何体和球6、设长方体的对角线长度是4,过每一顶点有两条棱与对角线的夹角都是60°,则此长方体的体积是( )A. B. C.D.参考答案与解析:解析:设长方体的过一顶点的三条棱长为a、b、c,并且长为a、b的两条棱与对角线的夹角都是60°,则a=4cos60°=2,b=4cos60°=2.根据长方体的对角线性质,有a2+b2+c2=42,即22+22+c2=42.∴c=.因此长方体的体积V=abc=2×2×=.答案:B主要考察知识点:简单几何体和球7、棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S1、S2、S3,则( )A.S1<S2<S3B.S3<S2<S1C.S2<S1<S3 D.S1<S3<S2参考答案与解析:解析:由截面性质可知,设底面积为S.;;可知:S1<S2<S3故选A.用平行于底面的平面截棱锥所得截面性质都是一些比例关系:截得面积之比就是对应高之比的平方,截得体积之比,就是对应高之比的立方,所谓“高”,是指大棱锥、小棱锥的高,而不是两部分几何体的高.答案:A主要考察知识点:简单几何体和球8、正四面体的内切球球心到一个面的距离等于这个正四面体高的( )A. B. C.D.参考答案与解析:解析:球心到正四面体一个面的距离即球的半径r,连结球心与正四面体的四个顶点.把正四面体分成四个高为r的三棱锥,所以4×S·r=·S·h,r= h (其中S为正四面体一个面的面积,h为正四面体的高)答案:C主要考察知识点:简单几何体和球9、若圆台两底面周长的比是1∶4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是( )A.1∶16B.3∶27C.13∶129D.39∶129参考答案与解析:解析:由题意设上、下底面半径分别为r,4r,截面半径为x,圆台的高为2h,则有,∴x=.∴.答案:D主要考察知识点:简单几何体和球10、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是( )A. B. C.D.。

新人教版高中数学必修第二册第二单元《复数》测试题(有答案解析)(1)

新人教版高中数学必修第二册第二单元《复数》测试题(有答案解析)(1)

一、选择题1.已知复数1z ,2z 满足()1117i z i +=-+,21z =,则21z z -的最大值为( )A .3B .4C .5D .62.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限 B .z 一定不为纯虚数 C .z 对应的点在实轴的下方D .z 一定为实数3.复数()211i z i+=-,则z 的共轭复数在复平面内对应的点在 A .第一象限B .第二象限C .第三象限D .第四象限4.已知复数()()31z m m i m Z =-+-∈在复平面内对应的点在第二象限,则1z=( )A B .2C D .125.若复数z 满足232,z z i +=-其中i 为虚数单位,则z= A .1+2i B .1-2iC .12i -+D .12i --6.“复数3iia z -=在复平面内对应的点在第三象限”是“0a ≥”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件7.若C z ∈,且22i 1z +-=,则22i z --的最小值是( ) A .2 B .3C .4D .58.设313iz i+=-,则232020z z z z ++++=( )A .1B .0C .1i --D .1i +9.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由著名数学家欧拉发明的,他将指数函数定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式,若将2i e π表示的复数记为z ,则(12)z i +的值为( ) A .2i -+ B .2i --C .2i +D .2i -10.若实系数一元二次方程20z z m ++=有两虚数根αβ、,且3αβ=-,那么实数m 的值是( ) A .52B .1C .1-D .52-11.已知复数 1cos isin z αα=+ 和复数2cos isin z ββ=+,则复数12z z ⋅的实部是( ) A .()sin αβ-B .()sin αβ+C .()cos αβ-D .()cos αβ+12.复数z 满足(1i)2i z -=,则z = A .1i - B .1i -+ C .1i --D .1i +二、填空题13.已知复数z 满足||1z =,则|i ||i |z z ++-的最大值是__________.14.已知i 为虚数单位,计算:12cos sin 233i ππ⎛⎫⎡⎤⎛⎫÷-= ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭_________. 15.若复数72aiz i+=-的实部为3,其中a 是实数,i 是虚数单位,则2z 的虚部为______. 16.已知复数2i -(i 为虚数单位)是实系数一元二次方程20x bx c ++=的一个根,则b c +=_____.17.已知复数1z =,i 为虚数单位,则34z i -+的最小值为_________. 18.已知a 为实数,i 为虚数单位,若复数2(1)(1)z a a i =-++为纯虚数,则20001a i i+=+______. 19.若复数(3)(12)z i i =--,则z 的共轭复数z 的虚部为_____20.已知复数集合{i |1,1,,}A x y x y x y R =+≤≤∈221133{|(i),}44B z z z z A ==+∈,其中i 为虚数单位,若复数z A B ∈,则z 对应的点Z 在复平面内所形成图形的面积为________三、解答题21.已知复数z 满足:||13z i z =+-,求22(1)(34)2i i z++的值.22.已知复数z 满足|z |=z 的实部、虚部均为整数,且z 在复平面内对应的点位于第四象限. (1)求复数z ;(2)若()22m m n i z --=,求实数m ,n 的值.23.当实数m 为何值时,复数()22656z m m m m i =--+++分别是 (1)虚数; (2)纯虚数; (3)实数. 24.计算下列各题:(1)55(1)(1)11i i i i +-+-+;(2)201920191111i i i i +-⎛⎫⎛⎫- ⎪ ⎪-+⎝⎭⎝⎭;;(4) 23201920202320192020i i i i i +++++.25.设复数12,z z 满足12122210z z iz iz +-+=. (1)若12,z z 满足212z z i -=,求12,z z .(2)若1z =k ,使得等式24z i k -=恒成立?若存在,试求出k 的值;若不存在,请说明理由.26.i 是虚数单位,且2(1)2(5)3i i a bi i-+++=+(,a b ∈R ).(1)求,a b 的值;(2)设复数1()z yi y R =-+∈,且满足复数()a bi z +⋅在复平面上对应的点在第一、三象限的角平分线上,求||z .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先求得1z ,设出2z ,然后根据几何意义求得21z z -的最大值. 【详解】 由()()()()11711768341112i i i iz i i i i -+--++====+++-,令2z x yi =+,x ,y R ∈,由222||11z x y =⇒+=,()()2134z z x y i -=-+-=2z 对应点在单位圆上,所以21z z -表示的是单位圆上的点和点()3,4的距离,()3,4到圆心()0,05=,单位圆的半径为1,所以21max 516z z -=+=. 故选:D 【点睛】本小题主要考查复数除法运算,考查复数模的最值的计算.2.C解析:C 【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定. 【详解】()2222110t t t ++=++>,z ∴不可能为实数,所以D 错误;z ∴对应的点在实轴的上方,又z 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误;21,25302t t t =+-=,z 可能为纯虚数,所以B 错误; ∴C 项正确.故选:C 【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.3.C解析:C 【解析】 【分析】利用复数代数形式的乘除运算化简复数z ,求出z 在复平面内对应的点的坐标得答案. 【详解】()()()()212121,1,1111i i i iz i z i i i i i +⋅+====-+∴=-----⋅+ 即z 的共轭复数在复平面内对应的点在第三象限 . 故选C. 【点睛】本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.4.C解析:C 【解析】分析:由题意得到关于m 的不等式组,求解不等式组确定m 的范围,然后结合题意即可求得最终结果.详解:由题意可得:3010x m m Z -<⎧⎪->⎨⎪∈⎩,即13m <<且m Z ∈,故2m =,则:1z i =-+,由复数的性质112z z ===.本题选择C 选项.点睛:本题主要考查复数的运算法则,复数的综合运算等知识,意在考查学生的转化能力和计算求解能力.5.B解析:B 【解析】试题分析:设i z b a =+,则23i 32i z z a b +=+=-,故,则12i z =-,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.6.A解析:A 【详解】因为33aiz a i i-==--,所以由题设可得00a a -<⇒>,因此0a >是0a ≥的充分不必要条件,故应选答案A .7.B解析:B 【分析】由复数的模的几何意义,可得z 在复平面的轨迹是以()2,2-为圆心,以1为半径的圆,根据圆的几何性质可得结果. 【详解】设i z x y =+(),x y ∈R ,则()22i 22i 1z x y +-=++-=, 所以()()22221x y ++-=,表示圆心为()2,2-,半径为1r =的圆.()()()()2222i 22i 22z x y x y --=-+-=-+-,表示点(),x y 和()2,2之间的距离,故()min 22i 22413z r --=---=-=. 故选:B. 【点睛】本题考查复数的模的几何意义,考查圆的性质,考查学生的计算求解能力,属于中档题.8.B解析:B 【分析】利用复数代数形式的乘除运算化简z ,再由等比数列的前n 项和公式及虚数单位i 的运算性质求解. 【详解】 3(3)(13)1013(13)(13)10i i i iz i i i i +++====--+, 20202020232020(1)(1)(11)0111z z i i i z z z zz i i---∴+++⋯+====---.故选:B . 【点睛】本题考查复数代数形式的乘除运算,考查虚数单位i 的运算性质,训练了等比数列前n 项和的求法,是基础题.9.A解析:A 【分析】根据欧拉公式求出2cos sin22iz e i i πππ==+=,再计算(12)z i +的值.【详解】 ∵2cossin22iz e i i πππ==+=,∴(12)(12)2z i i i i +=+=-+. 故选:A. 【点睛】此题考查复数的基本运算,关键在于根据题意求出z .10.A解析:A 【分析】根据实系数方程有两虚数根,利用求根公式解得:12z -±=,由此可得αβ-的m 表示形式,根据3αβ-=即可求得m 的值. 【详解】因为20z z m ++=,所以z =,又因为3αβ-=,所以3=,所以419m -=,解得:52m =. 故选A. 【点睛】实系数一元二次方程()200++=≠ax bx c a ,有两虚根为,αβ,注意此时的240b ac ∆=-<,因此在写方程根时应写成:2b x -±=而不能写成了x =11.D解析:D 【解析】分析:利用复数乘法运算法则化简复数,结合两角和的正弦公式、两角和的余弦公式求解即可. 详解:()()12cos cos cos cos z z isin isin ααββαβ⋅=++=()()2cos cos cos i sin isin i sin sin isin αβαβαβαβαβ+++=+++,∴实部为()cos αβ+,故选D.点睛:本题主要考查的是复数的乘法,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++运算的准确性,否则很容易出现错误.12.B解析:B 【解析】因为()1i 2i z -=,所以()2i111iz i i i ==+=-+-,选B. 二、填空题13.【分析】设则化简可得;然后分类讨论去绝对值在根据三角函数的性质即可求出结果【详解】设则当时所以的最大值是;当时所以的最大值是;当时所以综上的最大值是故答案为:【点睛】本题考查复数的代数表示法及其几何解析:【分析】设cos sin (,0)2z i θθθπ=+≤<,则化简可得coscos2222z i z i θθθθ++-=++-;然后分类讨论去绝对值,在根据三角函数的性质,即可求出结果. 【详解】设cos sin (,0)2z i θθθπ=+≤< .则z i z i ++-===coscos2222θθθθ=++-.02θπ≤<,02θπ∴≤<.当0,24θπ⎡⎤∈⎢⎥⎣⎦时,0sin cos 122θθ≤≤≤≤,所以2z i z i θ+-=+,z i z i ++-的最大值是当3,244θππ∈⎛⎤⎥⎝⎦时,cos sin 12222θθ-≤<<≤,所以2z i z i θ++-=,z i z i ++-的最大值是;当3,24θππ∈⎛⎫⎪⎝⎭时,1cos sin 2222θθ-<<-<<,所以sin cos 22θθ<,2z i z i θ++-=-,z i z i ++-<.综上,z i z i ++-的最大值是故答案为: 【点睛】本题考查复数的代数表示法及其几何意义,考查复数模的求法,训练了利用三角函数求最值,是中档题.14.【分析】先把转化为再利用复数三角形式的除法运算法则即可求出答案【详解】解:原式故答案为:【点睛】本题主要考查由复数的代数形式转化为复数三角形式以及复数三角形式的除法运算法则属于基础题解析:14-+【分析】先把12+转化为cos sin 33i ππ+,再利用复数三角形式的除法运算法则即可求出答案.【详解】 解:原式cossin2cos sin 3333i i ππππ⎡⎤⎛⎫⎛⎫=+÷⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ cos sin 2cos 3333i isin ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+÷-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1cos sin 23333i ππππ⎡⎤⎛⎫⎛⎫=+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦14=-+.故答案为:144-+. 【点睛】本题主要考查由复数的代数形式转化为复数三角形式以及复数三角形式的除法运算法则,属于基础题.15.6【分析】化简复数实部为3求出a 进而求出【详解】解:由题意知的虚部为6故答案为:6【点睛】本题考查复数的基础知识和含参复数的运算属于基础题解析:6 【分析】化简复数,实部为3,求出a ,进而求出2z . 【详解】 解:7(7)(2)2(2)(2)ai ai i z i i i +++==--+(14)(72)1472555a a i a ai -++-+==+. 由题意知1435a-=,1a ∴=-, 3z i ∴=+,286z i ∴=+, 2z ∴的虚部为6. 故答案为:6. 【点睛】本题考查复数的基础知识和含参复数的运算,属于基础题.16.1【分析】的共轭复数是实系数一元二次方程的一个根利用一元二次方程的根与系数的关系求【详解】解:因为是实系数一元二次方程的一个根所以是实系数一元二次方程的一个根所以因此故答案为:1【点睛】本题考查了一解析:1 【分析】2i -的共轭复数2i +是实系数一元二次方程20x bx c ++=的一个根,利用一元二次方程的根与系数的关系求b 、c .【详解】解:因为2i -是实系数一元二次方程20x bx c ++=的一个根, 所以2i +是实系数一元二次方程20x bx c ++=的一个根, 所以[(2)(2)]4b i i =--++=-,(2)(2)5c i i =-⋅+=, 因此451b c +=-+=. 故答案为:1. 【点睛】本题考查了一元二次方程的根与系数的关系,属于基础题.17.4【分析】利用复数的几何意义转化求解即可【详解】解:复数z 满足为虚数单位复数z 表示:复平面上的点到(00)的距离为1的圆的几何意义是圆上的点与的距离所以其最小值为:故答案为:4【点睛】本题考查复数的解析:4 【分析】利用复数的几何意义,转化求解即可. 【详解】解:复数z 满足1z =,i 为虚数单位, 复数z 表示:复平面上的点到(0,0)的距离为1的圆.34z i -+的几何意义是圆上的点与()34-,的距离,14-= . 故答案为:4. 【点睛】本题考查复数的几何意义,复数的模的求法,考查转化思想以及计算能力,属于中档题.18.【分析】利用纯虚数的定义复数的运算法则即可求出【详解】解:为纯虚数且解得故答案为:【点睛】本题考查了复数的运算法则纯虚数的定义考查了推理能力与计算能力属于基础题 解析:1i -【分析】利用纯虚数的定义、复数的运算法则即可求出. 【详解】 解:2(1)(1)z a a i =-++为纯虚数,210a ∴-=,且10a +≠,解得1a =20001112(1)111(1)(1)i i i i i i i ++-∴===-+++-.故答案为:1i -. 【点睛】本题考查了复数的运算法则、纯虚数的定义,考查了推理能力与计算能力,属于基础题.19.7【分析】利用复数乘法运算化简为的形式由此求得共轭复数进而求得共轭复数的虚部【详解】故虚部为【点睛】本小题主要考查复数乘法运算考查共轭复数的概念考查复数虚部的知识解析:7 【分析】利用复数乘法运算化简z 为a bi +的形式,由此求得共轭复数,进而求得共轭复数的虚部. 【详解】()()31217z i i i =--=-,17z i =+,故虚部为7.【点睛】本小题主要考查复数乘法运算,考查共轭复数的概念,考查复数虚部的知识.20.【分析】先由复数的几何意义确定集合所对应的平面区域再确定集合所对应的平面区域由复数可得复数对应的点在复平面内所形成图形即为集合与集合所对应区域的重叠部分结合图像求出面积即可【详解】因为复数集合所以集 解析:72【分析】先由复数的几何意义确定集合A 所对应的平面区域,再确定集合B 所对应的平面区域,由复数z A B ∈⋂,可得复数z 对应的点Z 在复平面内所形成图形即为集合A 与集合B 所对应区域的重叠部分,结合图像求出面积即可.【详解】 因为复数集合{i |1,1,,}A x y x y x y R =+≤≤∈,所以集合A 所对应的平面区域为1x =±与1y =±所围成的正方形区域; 又221133{|,}44B z z i z z A ⎛⎫==+∈ ⎪⎝⎭,设1z a bi =+,且1a ≤, 1b ≤, ,a b R ∈, 所以()()()21333333444444z i z i a bi a b a b i ⎛⎫⎛⎫=+=++=-++ ⎪ ⎪⎝⎭⎝⎭,设2z 对应的点为(),x y , 则()()3434x a b y a b ⎧=-⎪⎪⎨⎪=+⎪⎩,所以3232a x y b y x ⎧=+⎪⎪⎨⎪=-⎪⎩,又1a ≤, 1b ≤,所以33223322x y y x ⎧-≤+≤⎪⎪⎨⎪-≤-≤⎪⎩, 因为复数z A B ∈⋂,z 对应的点Z 在复平面内所形成图形即为集合A 与集合B 所对应区域的重叠部分,如图中阴影部分所示,由题意及图像易知:阴影部分为正八边形,只需用集合A 所对应的正方形区域的面积减去四个小三角形的面积即可. 由321x y y ⎧+=⎪⎨⎪=⎩得112B ⎛⎫ ⎪⎝⎭,,由321x y x ⎧+=⎪⎨⎪=⎩得112C ⎛⎫ ⎪⎝⎭,, 所以11172242222S =⨯-⨯⨯⨯=阴影. 故答案为72【点睛】本题主要考复数的几何意义,以及不等式组所表示平面区域问题,熟记复数的几何意义,灵活掌握不等式组所表示的区域即可,属于常考题型.三、解答题21.34i +【分析】先根据复数相等解得z ,再根据复数运算法则求解【详解】设,(,)z a bi a b R =+∈,而||13z i z =+- 22130a b i a bi +-++= 则22410{{,43330a ab a z i b b =-+-=⇒=-+=-= 所以2222(1)(34)2(34)2(34)3422(43)2(34)i i i i i i i z i i i ++++===+-++ 【点睛】本题考查复数相等以及复数运算法则,考查基本分析求解能力,属基础题.22.(1) 12z i =-或2i z =-.(2) 3m =±,5n =.【分析】(1)利用已知条件,设出复数z ,通过225(,)a b a b +=∈Z 及所对点所在位置求出即可复数z ;(2)利用(1),结合复数的乘法运算求解m ,n 的值【详解】(1)设(,)z a bi a b =+∈Z ,则225(,)a b a b +=∈Z ,因为z 在复平面内对应的点位于第四象限,所以0a >,0b <,所以12a b =⎧⎨=-⎩或21a b =⎧⎨=-⎩, 所以12z i =-或2i z =-.(2)由(1)知12z i =-或2i z =-,当12z i =-时,234z i =--;当2i z =-时234z i =-.因为()22m m n i z --=,所以234m m n =±⎧⎨-=⎩,解得3m =±,5n =. 【点睛】 本题考查复数的模长公式,考查复数的乘法运算,考查计算能力,是基础题23.(1)m≠-2且m≠ -3; (2)m=3; (3)m=-2或m=-3.【分析】由已知条件分别得到(1)虚数:得到 256m m ++≠0;(2)纯虚数:得到 26m m --=0并且256m m ++≠0(3)实数;2 56m m ++=0;分别解之即可.【详解】复数()22656z m m m m i =--+++是:(1)虚数:得到 256m m ++≠0,解得m≠-2且m≠ -3;(2)纯虚数: 得到 26m m --=0并且256m m ++≠0解得m=3(3)实数:2 56m m ++=0解得m=-2或m=-3故答案为m≠-2且m≠ -3; m=3; m=-2或m=-3.【点睛】本题考查了复数的基本概念;关键是由题意,得到复数的实部和虚部的性质.24.(1)0;(2)2i -;(3)516;(4)10101010i - 【分析】根据复数的乘除运算法则及乘方运算,即可计算出(1)(2)的值;利用复数模的运算性质可求出(3)的值;利用分组求和及i 的运算性质可求出(4)的值.【详解】 (1) 5566232322(1)(1)(1)(1)[(1)][(1)]11(1)(1)(1)(1)11i i i i i i i i i i i i i i +-+-+-+=+=+-+-++--- 3333(2)(2)44022i i i i -=+=-=. (2)因为21(1)21(1)(1)2i i i i i i i ++===--+,21(1)21(1)(1)2i i i i i i i ---===-++-, 所以20192019201945043201920319111(22221)i i i i i i i i i i ⨯+-=--==+-⎛⎫⎛⎫ ⎪ ⎪-+=⎝⎭=-⎝⎭.==5454845252516⨯====⨯. (4) 23201920202320192020i i i i i +++++(234)(5678)(2017201820192020)i i i i i i =--++--+++--+(22)(22)(22)+i i i =-+-+-505(22)i =⨯- 10101010i =-.【点睛】本题主要考查复数的乘除运算,乘方运算,复数的模的运算性质及i 的运算性质,属于中档题.25.(1)123,5z i z i ==-或12,z i z i =-=-. (2)存在,k =【分析】(1)由条件可得211230z iz --=,设1z a bi =+,即可算出(2)由条件得212212iz z z i -=+,然后22212iz z i -=+22427z i -= 【详解】(1)由212z z i -=,可得212z z i =-, 代入已知方程得()()1111222210z z i iz i z i -+--+=, 即211230z iz --=.令()1,z a bi a b =+∈R , 所以()22230a b i a bi +---=, 即()222320a b b ai +---=, 所以2223020a b b a ⎧+--=⎨-=⎩,解得03a b =⎧⎨=⎩或01a b =⎧⎨=-⎩. 所以123,5z i z i ==-或12,z i z i =-=-.(2)由已知得212212iz z z i-=+,又1z =所以22212iz z i-=+22222132iz z i -=+, 所以()()()()22222121322iz iz z i z i ---=+-,整理得()()224427z i z i -+=,所以22427z i -=,即24z i -=,所以存在常数k =,使得等式24z i k -=恒成立.【点睛】设()1,z a bi a b =+∈R ,利用复数相等和相关性质将复数问题实数化是解决复数问题的常用方法.26.(1)3,1a b ==-(2【解析】分析:(1)由复数的四则运算可化简复数,再由复数相等可知实部与虚部都要相等,可求得,a b .(2)由复数的乘法运算可化简复数式为标准式,再由复数在第一、三象限的角平分线上可知复数实部等于虚部,求得参数y,再由复数模公式求得复数模.详解:(1)∵()()21253i i a bi i -+++=+ 1033i i==-+ , 又∵,a b R ∈ ∴3,1a b ==-(2)()()()31a bi z i yi +⋅=--+()()331y y i =-+++由题意可知:331y y -+=+,解得2y =-∴z ==点睛:本题主要考查复数四则运算与乘方综合运算和复数相等,及复数与坐标对应关系,及复数的模.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章综合检测题时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若直线a和b没有公共点,则a与b的位置关系是()A.相交B.平行C.异面D.平行或异面2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为()A.3B.4C.5D.63.已知平面α和直线l,则α内至少有一条直线与l()A.平行B.相交C.垂直D.异面4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于()A.30°B.45°C.60°D.90°5.对两条不相交的空间直线a与b,必存在平面α,使得() A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α6.下面四个命题:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.其中真命题的个数为()A.4B.3C.2D.17.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.其中一定正确的有()A.①②B.②③C.②④D.①④8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是()A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC .若a ⊂α,b ⊂β,a ∥b ,则α∥βD .若a ⊥α,b ⊥β,α⊥β,则a ⊥b9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,n ∥β,则下列四种位置关系中,不一定成立的是( )A .AB ∥m B .AC ⊥mC .AB ∥βD .AC ⊥β10.(2012·大纲版数学(文科))已知正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为BB 1、CC 1的中点,那么直线AE 与D 1F 所成角的余弦值为( )A .-45 B. .35C .34D .-3511.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的余弦值为( )A.33B.13 C .0 D .-1212.如图所示,点P 在正方形ABCD 所在平面外,P A ⊥平面ABCD ,P A =AB ,则PB 与AC 所成的角是( )A .90°B .60°C .45°D .30°二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)13.下列图形可用符号表示为________.14.正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于________.15.设平面α∥平面β,A,C∈α,B,D∈β,直线AB与CD交于点S,且点S位于平面α,β之间,AS=8,BS=6,CS=12,则SD =________.16.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如下图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.[分析]本题可以根据面面平行和面面垂直的判定定理和性质定理,寻找使结论成立的充分条件.18.(本小题满分12分)如图所示,在四棱锥P-ABCD中,P A⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(1)证明:CD⊥平面P AE;(2)若直线PB与平面P AE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.19.(12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.20.(本小题满分12分)(2010·辽宁文,19)如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B.(1)证明:平面AB1C⊥平面A1BC1;(2)设D是A1C1上的点,且A1B∥平面B1CD,求A1D DC1的值.21.(12分)如图,△ABC中,AC=BC=22AB,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;(3)求几何体ADEBC的体积V.[分析](1)转化为证明GF平行于平面ABC内的直线AC;(2)转化为证明AC垂直于平面EBC内的两条相交直线BC和BE;(3)几何体ADEBC是四棱锥C-ABED.22.(12分)如下图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求异面直线AC1与B1C所成角的余弦值.详解答案1[答案] D2[答案] C[解析]AB与CC1为异面直线,故棱中不存在同时与两者平行的直线,因此只有两类:第一类与AB平行与CC1相交的有:CD、C1D1与CC1平行且与AB相交的有:BB1、AA1,第二类与两者都相交的只有BC,故共有5条.3[答案] C[解析]1°直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错;2°l⊂α时,在α内不存在直线与l异面,∴D错;3°l∥α时,在α内不存在直线与l相交.无论哪种情形在平面α内都有无数条直线与l垂直.4[答案] D[解析]由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD=90°.5[答案] B[解析]对于选项A,当a与b是异面直线时,A错误;对于选项B,若a,b不相交,则a与b平行或异面,都存在α,使a⊂α,b ∥α,B正确;对于选项C,a⊥α,b⊥α,一定有a∥b,C错误;对于选项D,a⊂α,b⊥α,一定有a⊥b,D错误.6[答案] D[解析]异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a∥c,而在空间中,a与c 可以平行,可以相交,也可以异面,故④错误.7[答案] D[解析]如图所示.由于AA1⊥平面A1B1C1D1,EF⊂平面A1B1C1D1,则EF⊥AA1,所以①正确;当E,F分别是线段A1B1,B1C1的中点时,EF∥A1C1,又AC∥A1C1,则EF∥AC,所以③不正确;当E,F分别不是线段A1B1,B1C1的中点时,EF与AC异面,所以②不正确;由于平面A1B1C1D1∥平面ABCD,EF⊂平面A1B1C1D1,所以EF∥平面ABCD,所以④正确.8[答案] D[解析]选项A中,a,b还可能相交或异面,所以A是假命题;选项B中,a,b还可能相交或异面,所以B是假命题;选项C中,α,β还可能相交,所以C是假命题;选项D中,由于a⊥α,α⊥β,则a ∥β或a⊂β,则β内存在直线l∥a,又b⊥β,则b⊥l,所以a⊥b.9[答案] C[解析]如图所示:AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β.10[答案]35命题意图]本试题考查了正方体中异面直线的所成角的求解的运用.[解析]首先根据已知条件,连接DF,然后则角DFD1即为异面直线所成的角,设边长为2,则可以求解得到5=DF=D1F,DD1=2,结合余弦定理得到结论.11[答案] C[解析]取BC中点E,连AE、DE,可证BC⊥AE,BC⊥DE,∴∠AED为二面角A-BC-D的平面角又AE=ED=2,AD=2,∴∠AED=90°,故选C.12[答案] B[解析]将其还原成正方体ABCD-PQRS,显见PB∥SC,△ACS 为正三角形,∴∠ACS=60°.13[答案]α∩β=AB14[答案]45°[解析]如图所示,正方体ABCD-A1B1C1D1中,由于BC⊥AB,BC1⊥AB,则∠C1BC是二面角C1-AB-C的平面角.又△BCC1是等腰直角三角形,则∠C1BC=45°.15[答案]9[解析]如下图所示,连接AC,BD,则直线AB ,CD 确定一个平面ACBD .∵α∥β,∴AC ∥BD , 则AS SB =CS SD ,∴86=12SD ,解得SD =9.16[答案] ①②④[解析] 如图所示,①取BD 中点,E 连接AE ,CE ,则BD ⊥AE ,BD ⊥CE ,而AE ∩CE =E ,∴BD ⊥平面AEC ,AC ⊂平面AEC ,故AC ⊥BD ,故①正确.②设正方形的边长为a ,则AE =CE =22a .由①知∠AEC =90°是直二面角A -BD -C 的平面角,且∠AEC =90°,∴AC =a ,∴△ACD 是等边三角形,故②正确. ③由题意及①知,AE ⊥平面BCD ,故∠ABE 是AB 与平面BCD 所成的角,而∠ABE =45°,所以③不正确.④分别取BC ,AC 的中点为M ,N ,连接ME ,NE ,MN .则MN ∥AB ,且MN =12AB =12a ,ME ∥CD ,且ME =12CD =12a ,∴∠EMN 是异面直线AB ,CD 所成的角.在Rt △AEC 中,AE =CE =22a ,AC =a ,∴NE =12AC =12a .∴△MEN 是正三角形,∴∠EMN =60°,故④正确.17[证明] (1)在正三棱柱ABC -A 1B 1C 1中,∵F、F1分别是AC、A1C1的中点,∴B1F1∥BF,AF1∥C1F.又∵B1F1∩AF1=F1,C1F∩BF=F,∴平面AB1F1∥平面C1BF.(2)在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∴B1F1⊥AA1.又B1F1⊥A1C1,A1C1∩AA1=A1,∴B1F1⊥平面ACC1A1,而B1F1⊂平面AB1F1,∴平面AB1F1⊥平面ACC1A1.18[解析](1)如图所示,连接AC,由AB=4,BC=3,∠ABC=90°,得AC =5.又AD=5,E是CD的中点,所以CD⊥AE.∵P A⊥平面ABCD,CD⊂平面ABCD,所以P A⊥CD.而P A,AE是平面P AE内的两条相交直线,所以CD⊥平面P AE.(2)过点B作BG∥CD,分别与AE,AD相交于F,G,连接PF.由(1)CD⊥平面P AE知,BG⊥平面P AE.于是∠BPF为直线PB与平面P AE所成的角,且BG⊥AE.由P A⊥平面ABCD知,∠PBA为直线PB与平面ABCD所成的角.AB=4,AG=2,BG⊥AF,由题意,知∠PBA=∠BPF,因为sin∠PBA=P APB ,sin∠BPF=BFPB,所以P A=BF.由∠DAB=∠ABC=90°知,AD∥BC,又BG∥CD,所以四边形BCDG是平行四边形,故GD =BC =3.于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以 BG =AB 2+AG 2=25,BF =AB 2BG =1625=855.于是P A =BF =855.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为 V =13×S ×P A =13×16×855=128515.19[解析] (1)证明:如图所示,取CD 的中点E ,连接PE ,EM ,EA ,∵△PCD 为正三角形,∴PE ⊥CD ,PE =PD sin ∠PDE =2sin60°= 3.∵平面PCD ⊥平面ABCD , ∴PE ⊥平面ABCD ,而AM ⊂平面ABCD ,∴PE ⊥AM .∵四边形ABCD 是矩形,∴△ADE ,△ECM ,△ABM 均为直角三角形,由勾股定理可求得EM =3,AM =6,AE =3,∴EM 2+AM 2=AE 2.∴AM ⊥EM .又PE ∩EM =E ,∴AM ⊥平面PEM ,∴AM ⊥PM .(2)解:由(1)可知EM ⊥AM ,PM ⊥AM ,∴∠PME 是二面角P -AM -D 的平面角.∴tan ∠PME =PE EM =33=1,∴∠PME =45°. ∴二面角P -AM -D 的大小为45°.20[解析](1)因为侧面BCC 1B 1是菱形,所以B 1C ⊥BC 1,又已知B 1C ⊥A 1B ,且A 1B ∩BC 1=B ,所以B 1C ⊥平面A 1BC 1,又B 1C ⊂平面AB 1C所以平面AB 1C ⊥平面A 1BC 1 . (2)设BC 1交B 1C 于点E ,连接DE ,则DE 是平面A 1BC 1与平面 B 1CD 的交线.因为A 1B ∥平面B 1CD ,A 1B ⊂平面A 1BC 1,平面A 1BC 1∩平面B 1CD =DE ,所以A 1B ∥DE .又E 是BC 1的中点,所以D 为A 1C 1的中点.即A 1D DC 1=1.21[解] (1)证明:连接AE ,如下图所示.∵ADEB 为正方形,∴AE ∩BD =F ,且F 是AE 的中点,又G 是EC 的中点, ∴GF ∥AC ,又AC ⊂平面ABC ,GF ⊄平面ABC ,∴GF ∥平面ABC .(2)证明:∵ADEB 为正方形,∴EB ⊥AB ,又∵平面ABED ⊥平面ABC ,平面ABED ∩平面ABC =AB ,EB ⊂平面ABED ,∴BE ⊥平面ABC ,∴BE ⊥AC .又∵AC =BC =22AB ,∴CA 2+CB 2=AB 2,∴AC ⊥BC .又∵BC ∩BE =B ,∴AC ⊥平面BCE .(3)取AB 的中点H ,连GH ,∵BC =AC =22AB =22,∴CH ⊥AB ,且CH =12,又平面ABED ⊥平面ABC∴GH ⊥平面ABCD ,∴V =13×1×12=16.22[解析] (1)证明:在直三棱柱ABC -A 1B 1C 1中,底面三边长AC =3,BC =4,AB =5,∴AC ⊥BC .又∵C 1C ⊥AC .∴AC ⊥平面BCC 1B 1.∵BC 1⊂平面BCC 1B ,∴AC ⊥BC 1.(2)证明:设CB 1与C 1B 的交点为E ,连接DE ,又四边形BCC 1B 1为正方形.∵D 是AB 的中点,E 是BC 1的中点,∴DE ∥AC 1. ∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1.(3)解:∵DE ∥AC 1,∴∠CED 为AC 1与B 1C 所成的角.在△CED 中,ED =12AC 1=52,CD =12AB =52,CE =12CB 1=22,∴cos ∠CED =252=225.∴异面直线AC 1与B 1C 所成角的余弦值为225.。

相关文档
最新文档