高三物理一轮复习专题 法拉第电磁感应定律知识点总结

合集下载

电磁感应中的法拉第电磁感应定律知识点总结

电磁感应中的法拉第电磁感应定律知识点总结

电磁感应中的法拉第电磁感应定律知识点总结法拉第电磁感应定律是描述电磁感应现象的定律之一,由英国物理学家迈克尔·法拉第于1831年提出。

它是电磁感应理论的基础,对于理解电磁感应现象以及应用于电磁场中的各种设备具有重要意义。

本文将对法拉第电磁感应定律的相关知识点进行总结。

一、法拉第电磁感应定律的表述法拉第电磁感应定律的表述有两种形式,分别为积分形式和微分形式。

1. 积分形式:当一个闭合回路中的磁通量发生变化时,该回路中会产生感应电动势,其大小等于磁通量的变化率。

数学表达为:ε = -ΔΦ/Δt其中,ε表示感应电动势,ΔΦ表示磁通量的变化量,Δt表示时间的变化量。

2. 微分形式:当回路中的导线运动时,感应电动势的大小等于磁感应强度与导线长度的乘积与运动速度的乘积再乘以负号。

数学表达为:ε = -B * l * v其中,ε表示感应电动势,B表示磁感应强度,l表示导线长度,v表示导线的运动速度。

二、导体中的感应电流根据法拉第电磁感应定律,当导体中存在感应电动势时,就会产生感应电流。

感应电流的大小与感应电动势以及导体的电阻有关。

感应电流的方向满足右手定则,即当手指指向导线的运动方向时,拇指指向的方向即为感应电流的方向。

三、电磁感应的应用法拉第电磁感应定律在现实生活中有着广泛的应用,以下是几个应用示例:1. 发电机:发电机利用电磁感应原理将机械能转化为电能。

当导体在磁场中运动时,感应电动势产生,从而产生电流,实现电能的转换。

2. 变压器:变压器也是基于电磁感应原理工作的。

通过交变电压在一组线圈中产生交变磁场,从而在另一组线圈中感应出电动势,实现电能的输送和转换。

3. 感应加热:利用电磁感应加热的原理,可实现对金属材料的快速加热。

当金属材料处于变化的磁场中时,感应电流在其内部产生摩擦,从而产生热能。

四、感应电动势的影响因素1. 磁感应强度:磁感应强度越大,感应电动势越大。

2. 磁场的变化率:磁场变化越快,感应电动势越大。

高考物理一轮复习 专题44 法拉第电磁感应定律(讲)(含解析)

高考物理一轮复习 专题44 法拉第电磁感应定律(讲)(含解析)

专题44 法拉第电磁感应定律1.能应用法拉第电磁感应定律、公式E =Blv 计算感应电动势.2.理解自感、涡流的产生,并能分析实际应用.一、法拉第电磁感应定律 1. 感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即rR EI +=. 2. 法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比. (2)公式:tnE ∆∆Φ= 3. 导体切割磁感线的情形(1)一般情况:运动速度v 和磁感线方向夹角为θ,则E =Blv sin_θ. (2)常用情况:运动速度v 和磁感线方向垂直,则E =Blv . (3)导体棒在磁场中转动导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动产生感应电动势E =Bl v =21Bl 2ω(平均速度等于中点位置线速度21l ω). 二、自感与涡流 1. 自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势. (2)表达式:tILE ∆∆=E =L ΔI Δt .(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关. 2. 涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水中的旋涡,所以叫涡流.(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的相对运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流使导体受到安培力的作用,安培力使导体运动起来.(3)电磁阻尼和电磁驱动的原理体现了楞次定律的推广应用.考点一 法拉第电磁感应定律的应用 1. 感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率t∆∆Φ和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系. (2)当ΔΦ仅由B 引起时,则t B S n E ∆∆=;当ΔΦ仅由S 引起时,则tSB n E ∆∆=. 2. 磁通量的变化率t∆∆Φ是Φ-t 图象上某点切线的斜率. ★重点归纳★1、应用法拉第电磁感应定律解题的一般步骤(1)分析穿过闭合电路的磁场方向及磁通量的变化情况; (2)利用楞次定律确定感应电流的方向;(3)灵活选择法拉第电磁感应定律的不同表达形式列方程求解. (4)几点注意 ①公式tnE ∆∆Φ=是求解回路某段时间内平均电动势的最佳选择. ②用公式tBnSE ∆∆=求感应电动势时,S 为线圈在磁场范围内的有效面积. ③通过回路截面的电荷量q 仅与n 、ΔΦ和回路总电阻R 总有关,与时间长短无关.推导如下:q =I Δt =)()(r R n t r R t n+∆Φ=∆∙+∆∆Φ.★典型案例★如图所示,在一倾角为37°的粗糙绝缘斜面上,静止地放置着一个匝数10n =匝的正方形线圈ABCD ,E 、F 分别为AB 、CD 的中点,线圈总电阻 2.0R =Ω、总质量0.2m kg =、正方形边长L 0.4m =。

高考物理一轮复习 第四章 4 法拉高考物理一轮复习 第电磁感应定律知识点总结课件 新人教

高考物理一轮复习 第四章 4 法拉高考物理一轮复习 第电磁感应定律知识点总结课件 新人教

知识点 4 公式 E=nΔΔΦt 与 E=BLvsin θ 的区别和联系
E=nΔΔΦt
ΔΦ Δt
【例 1】如图 4-4-1 所示,有一夹角为θ的金属角架,角 架所围区域内存在匀强磁场中,磁场的磁感强度为 B,方向与 角架所在平面垂直,一段直导线 ab,从角顶 c 贴着角架以速度 v 向右匀速运动,求:
A.BLv
图 4-4-2 B.BLvsin θ C.Bdvsin θ
D.Bdv
题型1
公式 E=nΔΔΦt 的应用
【例 2】如图 4-4-3 甲所示,圆形线圈 M 的匝数为 50
匝,它的两个端点 a、b 与理想电压表相连,线圈中磁场方向如
图,线圈中磁通量的变化规律如图乙所示,则 ab 两点的电势高
低与电压表读数为( )
答案:B
•11、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。 •12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 •13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2022/1/182022/1/18January 18, 2022 •14、孩子在快乐的时候,他学习任何东西都比较容易。 •15、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •16、一个人所受的教育超过了自己的智力,这样的人才有学问。 •17、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2022年1月2022/1/182022/1/182022/1/181/18/2022 •18、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。 2022/1/182022/1/18
4 法拉第电磁感应定律

电磁感应定律及其应用知识点总结

电磁感应定律及其应用知识点总结

电磁感应定律及其应用知识点总结电磁感应现象是物理学中非常重要的一个概念,它不仅为我们理解自然界中的许多现象提供了理论基础,还在实际生活和科技领域有着广泛的应用。

下面我们就来详细总结一下电磁感应定律及其应用的相关知识点。

一、电磁感应定律1、法拉第电磁感应定律法拉第电磁感应定律指出:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

如果用 E 表示感应电动势,ΔΦ 表示磁通量的变化量,Δt 表示时间的变化量,那么法拉第电磁感应定律可以表示为:E =nΔΦ/Δt,其中 n 是线圈的匝数。

这个定律告诉我们,只要磁通量发生变化,就会产生感应电动势。

而磁通量的变化可以由多种方式引起,比如磁场的变化、线圈面积的变化、线圈与磁场的夹角变化等。

2、楞次定律楞次定律是用来确定感应电流方向的定律。

它指出:感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。

简单来说,如果磁通量增加,感应电流产生的磁场方向就与原磁场方向相反,以阻碍磁通量的增加;如果磁通量减少,感应电流产生的磁场方向就与原磁场方向相同,以阻碍磁通量的减少。

楞次定律的本质是能量守恒定律在电磁感应现象中的体现。

因为如果感应电流的方向不是这样,就会导致能量的无端产生或消失,这与能量守恒定律相违背。

二、电磁感应现象的产生条件要产生电磁感应现象,必须满足以下两个条件之一:1、穿过闭合电路的磁通量发生变化。

这可以是由于磁场的强弱变化、磁场方向的变化、闭合电路的面积变化或者闭合电路在磁场中的位置变化等原因引起的。

2、导体在磁场中做切割磁感线运动。

需要注意的是,如果导体整体都在匀强磁场中运动,而磁通量没有发生变化,是不会产生感应电流的。

三、电磁感应的应用1、发电机发电机是利用电磁感应原理将机械能转化为电能的装置。

在发电机中,通过转动线圈或者磁场,使线圈中的磁通量发生变化,从而产生感应电动势,向外输出电能。

常见的有交流发电机和直流发电机。

交流发电机产生的是交流电,其输出的电流方向和大小会周期性地变化;直流发电机则通过换向器等装置将交流电转化为直流电。

高三总复习 法拉第电磁感应定律

高三总复习 法拉第电磁感应定律

物理总复习:法拉第电磁感应定律【考点梳理】考点一、法拉第电磁感应定律一、感应电动势1、感应电动势在电磁感应现象中产生的电动势叫感应电动势。

产生感应电动势的那部分导体相当于电源。

只要穿过回路的磁通量发生改变,在回路中就产生感应电动势。

2、感应电动势与感应电流的关系感应电流的大小由感应电动势和闭合回路的总电阻共同决定,三者的大小关系遵守闭合电路欧姆定律,即E I R r=+。

二、法拉第电磁感应定律要点诠释:1、法拉第电磁感应定律感应电动势的大小跟穿过这一闭合电路的磁通量的变化率成正比。

E nt φ∆=∆,其中n 为线圈匝数。

2、法拉第电磁感应定律内容的理解(1)感应电动势的大小:E nt φ∆=∆。

公式适用于回路磁通量发生变化的情况,回路不一定要闭合。

(2)φ∆不能决定E 的大小,t φ∆∆才能决定E 的大小,而t φ∆∆与φ∆之间没有大小上的联系。

(3)当φ∆仅由B 的变化引起时,则B E nSt ∆=∆; 当φ∆仅由S 的变化引起时,则S E nBt ∆=∆。

(4)公式E n tφ∆=∆中,若t ∆取一段时间,则E 为t ∆这段时间内的平均值。

当磁通量不是均匀变化的,则平均电动势一般不等于初态与末态电动势的算术平均值。

三、导体切割磁感线时的感应电动势要点诠释:1、导体垂直切割磁感线时, 感应电动势可用E BLv =求出,式中L 为导体切割磁感线的有效长度。

若导线是曲折的,则L 应是导线的有效切割长度。

2、导体不垂直切割磁感线时,即v 与B 有一夹角θ,感应电动势可用sin E BLv θ=求出。

四、磁通量φ、磁通量变化量φ∆、磁通量变化率tφ∆∆的比较 要点诠释:1、φ是状态量,是某时刻穿过闭合回路的磁感线条数,当磁场与回路平面垂直时,BS φ=。

2、φ∆是过程量,它表示回路从某一时刻变化到另一时刻回路的磁通量的增量,即21φφφ∆=-。

3、 tφ∆∆表示磁通量变化的决慢,即单位时间内磁通量的变化,又称为磁通量的变化率。

高考物理一轮复习专题27法拉第电磁感应定律(原卷版+解析)

高考物理一轮复习专题27法拉第电磁感应定律(原卷版+解析)

专题27 法拉第电磁感应定律目录题型一实验:探究影响感应电流方向的因素 (1)题型二感应电流的产生和方向判断 (4)题型三楞次定律推论的应用 (6)题型四“三定则、一定律”的应用 (9)题型五法拉第电磁感应定律的理解及应用 (10)题型六导体切割磁感线产生的感应电动势 (13)类型1 平动切割磁感线 (14)类型2 转动切割磁感线 (15)类型3 有效长度问题 (16)题型六自感现象 (17)题型一实验:探究影响感应电流方向的因素1.实验设计如图2所示,通过将条形磁体插入或拔出线圈来改变穿过螺线管的磁通量,根据电流表指针的偏转方向判断感应电流的方向。

2.实验结论当穿过线圈的磁通量增加时,感应电流的磁场与原磁场的方向相反;当穿过线圈的磁通量减小时,感应电流的磁场与原磁场的方向相同。

3.注意事项实验前应首先查明电流表中电流的流向与电流表指针偏转方向之间的关系,判断的方法是:采用如图所示的电路,把一节干电池与电流表及线圈串联,由于电流表量程较小,所以在电路中应接入限流变阻器R,电池采用旧电池,开关S采用瞬间接触,记录指针偏转方向。

【例1】探究感应电流方向的实验所需器材包括:条形磁体、电流表、线圈、导线、一节干电池(用来查明线圈中电流的流向与电流表中指针偏转方向的关系).(1)实验现象:如图所示,在四种情况下,将实验结果填入下表.①线圈内磁通量增加时的情况①线圈内磁通量减少时的情况请填写表格中的空白项.(2)实验结论:当穿过闭合线圈的磁通量增加时,感应电流的磁场与原磁场方向________(选填“相同”或“相反”).(3)总结提炼:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的________.(4)拓展应用:如图所示是一种延时继电器的示意图.铁芯上有两个线圈A和B.线圈A和电源连接,线圈B与直导线ab构成一个闭合回路.弹簧K与衔铁D相连,D的右端触头C 连接工作电路(未画出).开关S闭合状态下,工作电路处于导通状态.S断开瞬间,延时功能启动,此时直导线ab中电流方向为________(选填“a到b”或“b到a”).说明延时继电器的“延时”工作原理:________.【例2】在“探究电磁感应的产生条件”的实验中,先按如图甲所示连线,不通电时,电流计指针停在正中央,闭合开关S时,观察到电流表指针向左偏。

高三物理必修三复习知识点归纳

高三物理必修三复习知识点归纳

高三物理必修三复习知识点归纳必修三是高中物理课程中的一门重要课程,主要内容涵盖了电磁感应、电磁波和现代物理等内容。

下面是对该学科的复习知识点的归纳总结,以供高三学生复习之用。

一、电磁感应1.法拉第电磁感应定律根据法拉第电磁感应定律,当线圈中有磁感应强度变化时,会在线圈两端产生感应电动势。

具体来说,当磁通量的变化导数与线圈中的匝数固定时,感应电动势的大小与导线围成的面积成正比。

2.洛仑兹力根据洛仑兹力的定义,当带电粒子在磁场中运动时,会受到外力作用,这个力称为洛仑兹力。

洛仑兹力的大小与粒子电荷、速度以及磁场强度等因素有关。

3.电磁感应定律的应用在实际生活中,电磁感应定律有许多应用,例如发电机、电磁振铃和电磁感应炉等。

二、电磁波1.电磁波的概念电磁波是一种由电场和磁场通过垂直于它们的方向相互作用形成的波动现象。

根据其波长不同,电磁波可以分为不同的种类,例如无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等。

2.电磁波的特性电磁波有许多共同的特性,例如传播速度恒定(等于真空中的光速)、沿直线传播、波长和频率之间存在反比关系以及可以发生反射、折射等现象。

3.电磁波的应用电磁波在生活中有广泛的应用,例如无线通信、卫星通讯、雷达、微波炉、红外线热成像和医学影像等。

4.电磁波的谱系根据电磁波的频率不同,可以将电磁波分为不同的谱系,包括无线电谱、红外线谱、可见光谱、紫外线谱、X射线谱和伽马射线谱等。

三、现代物理1.相对论相对论是爱因斯坦提出的一种物理学理论,在描述高速运动物体时具有更加精确的效果。

相对论基本原理包括光速不变原理和相对性原理。

2.光电效应光电效应是指当光照射到金属表面时,金属中的电子发生逸出的现象。

根据光电效应的特点,可以利用光电效应测量光的波长和频率以及光子的能量等。

3.康普顿散射康普顿散射是指X射线与物质中的电子相互作用,导致X射线的波长发生变化的现象。

通过测量康普顿散射的特点,可以推断出X射线中电子的动量和能量等信息。

2025年高考物理-法拉第电磁感应定律的理解及应用(解析版)

2025年高考物理-法拉第电磁感应定律的理解及应用(解析版)

法拉第电磁感应定律的理解及应用考点考情命题方向考点法拉第电磁感应定律2024年高考甘肃卷2024年高考广东卷2024年高考北京卷2023年高考湖北卷2023高考江苏卷2022年高考天津卷法拉第电磁感应定律是电磁感应的核心知识点,年年考查,一般与安培力、动力学、功和能结合考查。

题型一对法拉第电磁感应定律的理解及应用1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I =ER +r.2.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B 的变化引起时,则E =nΔB ·S Δt ;当ΔΦ仅由S 的变化引起时,则E =n B ·ΔSΔt;当ΔΦ由B 、S 的变化同时引起时,则E =n B 2S 2-B 1S 1Δt ≠n ΔB ·ΔSΔt.3.磁通量的变化率ΔΦΔt 是Φ-t 图象上某点切线的斜率.1(2024•泰州模拟)如图所示,正三角形ABC 区域存在方向垂直纸面向里、大小随时间均匀增加的磁场。

以三角形顶点C 为圆心,粗细均匀的铜导线制成圆形线圈平行于纸面固定放置,则下列说法正确的是()A.线圈中感应电流的方向为顺时针B.线圈有扩张趋势C.线圈所受安培力方向与AB 边垂直D.增加线圈匝数,线圈中感应电流变小【解答】解:AB 、磁场垂直纸面向里,磁感应强度增大,穿过线圈的磁通量增加,根据楞次定律可知,感应电流的方向为逆时针。

因感应电流的磁场要阻碍磁通量的变化,所以线圈有收缩趋势,故AB 错误;C 、线圈的有效长度与AB 边平行,根据左手定则可知,线圈所受安培力方向与AB 边垂直,故C 正确;D 、设B =kt (k >0,且为常数),圆形线圈的半径为l ,电阻为R 。

高考物理一轮教学案:专题十考点二 法拉第电磁感应定律 自感和涡流 含解析

高考物理一轮教学案:专题十考点二 法拉第电磁感应定律 自感和涡流 含解析

考点二 法拉第电磁感应定律 自感和涡流基础点知识点1 法拉第电磁感应定律 1.感应电动势(1)概念:在电磁感应现象中产生的电动势。

(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。

(3)方向判断:感应电动势的方向用楞次定律或右手定则判断。

2.法拉第电磁感应定律(1)内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。

(2)公式:E =n ΔΦΔt,其中n 为线圈匝数。

(3)感应电流与感应电动势的关系:遵守闭合电路的欧姆定律,即I =ER +r。

3.导体切割磁感线时的感应电动势(1)垂直切割:E =Bl v ,式中l 为导体切割磁感线的有效长度。

(2)不垂直切割:E =Bl v sin θ,式中θ为v 与B 的夹角。

(3)匀速转动:导体棒在垂直匀强磁场方向以角速度ω绕一端转动切割磁感线时,E =12Bωl 2。

知识点2 自感 涡流1.自感现象:由于通过导体自身的电流发生变化而产生的电磁感应现象。

2.自感电动势(1)定义:在自感现象中产生的感应电动势。

(2)表达式:E =L ΔIΔt。

(3)自感系数L①相关因素:与线圈的大小、形状、圈数以及是否有铁芯等因素有关。

②单位:亨利(H),常用单位还有毫亨(mH)、微亨(μH)。

1 mH =10-3H,1μH=10-6 H。

3.涡流:当线圈中的电流发生变化时,在它附近的导体中产生的像水的旋涡一样的感应电流。

(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的相对运动。

(2)电磁驱动:如果磁场相对于导体转动,在导体中产生的感应电流使导体受到安培力的作用而运动起来。

(3)电磁阻尼和电磁驱动的原理体现了楞次定律的推广应用。

重难点一、法拉第电磁感应定律的理解1.磁通量Φ、磁通量的变化量ΔΦ、磁通量的变化率ΔΦΔt的比较(1)磁通量的变化是由面积变化引起时,ΔΦ=B ·ΔS ,则E =n ΔSΔt ·B 。

电磁感应与法拉第定律知识点总结

电磁感应与法拉第定律知识点总结

电磁感应与法拉第定律知识点总结电磁感应是电磁学中的一个重要部分,研究电场和磁场之间的相互作用以及由此产生的电流和电动势。

在电磁感应的研究中,法拉第定律是其中的核心原理之一。

本文将对电磁感应和法拉第定律的相关知识点进行总结和概述。

一、电磁感应的基本概念电磁感应是指导体中的电流或电流变化所引起的磁场在电路中产生的电动势。

电磁感应的基本规律可以由法拉第定律描述,它是电磁感应的基本方程式。

二、法拉第定律的内容及应用1. 法拉第定律的内容法拉第定律表明,磁场变化时,闭合回路内产生的感应电动势的大小与磁场变化的速率成正比。

即感应电动势E与磁场变化速率的乘积ΔΦ/Δt的等于负号。

2. 法拉第定律的公式法拉第定律的公式可以表示为E = -dΦ/dt。

其中,E表示感应电动势,Φ表示磁通量,t表示时间。

3. 预测感应电动势的方向根据法拉第定律,可以预测产生的感应电动势的方向。

当磁场增强时,产生的感应电动势的方向与电流方向相同;当磁场减弱时,产生的感应电动势的方向与电流方向相反。

4. 应用于电磁感应现象法拉第定律被广泛应用于各种电磁感应现象,例如电感应加热、发电机、电感等。

应用法拉第定律可以解释这些现象的产生原理,并进行相关设计与优化。

三、电磁感应的相关知识点1. 磁感应强度磁感应强度B是表示磁场强度的物理量,单位是特斯拉(T)。

它表示单位面积上通过的磁通量。

2. 磁通量磁通量Φ是表示磁场穿过一定面积的物理量,单位是韦伯(Wb)。

它表示磁场线通过给定面积的数量。

3. 磁通量密度磁通量密度B是表示单位面积上的磁通量,单位是特斯拉(T)。

它表示磁场通过单位面积的多少。

4. 电感电感是指线圈中由电流产生的磁场所储存的能量,单位是亨利(H)。

电感的大小与线圈的匝数、线圈的形状和芯材等因素相关。

5. 互感互感是指两个或多个线圈之间通过磁场产生的相互感应现象。

互感的大小与线圈的匝数、线圈的相对位置和芯材等因素相关。

6. 感应电流当导体中的磁场发生变化时,会在导体中产生感应电流。

高中物理电磁感应知识点归纳总结

高中物理电磁感应知识点归纳总结

高中物理电磁感应知识点归纳总结电磁感应是物理学中的重要部分,它研究了电流和磁场之间的相互作用以及磁场变化对电场的影响。

在高中物理课程中,学生将学习有关电磁感应的基本原理、法拉第电磁感应定律、感应电动势、互感和自感等知识。

下面是对这些知识点的归纳总结。

1. 法拉第电磁感应定律法拉第电磁感应定律是电磁感应的基本定律,它描述了磁场发生变化时感应电动势的产生情况。

定律表述如下:当磁场的磁通量Φ发生变化时,通过电路的感应电动势ε的大小与变化率成正比,即ε = -dΦ/dt。

其中,ε表示感应电动势,Φ表示磁通量,t表示时间。

该定律指出,只有磁场的变化才会产生感应电动势。

2. 感应电动势感应电动势是指由于电路中磁通量变化而产生的电动势。

它是法拉第电磁感应定律的直接应用。

当导体与磁场相互作用时,磁通量发生变化,从而感应电动势产生。

感应电动势的大小与磁场变化率、导体的长度、导体与磁场间的角度有关。

感应电动势可以通过下列公式计算:ε = -N(dΦ/dt),其中ε表示感应电动势,N表示线圈的匝数。

3. 感应电流感应电动势产生的结果是感应电流。

当感应电动势存在时,如果电路是闭合的,感应电动势将驱动电流流过电路。

感应电流的产生是为了抵消磁场的变化,从而维持能量守恒。

感应电流的大小与电路的阻抗有关。

4. 互感与自感互感是指当两个或多个电路的线圈相互作用时,其中一个线圈中的变化电流引起其他线圈中的感应电动势的现象。

互感的大小与线圈的匝数、线圈之间的耦合系数有关。

互感可以用公式M = k√(L1*L2)来计算,其中M表示互感,k表示耦合系数,L1和L2表示两个线圈的自感值。

自感是指电流改变时,由于线圈自身的磁场变化而产生的感应电动势。

自感的大小与线圈匝数、线圈的形状和大小有关。

自感可以用公式L = NΦ/I来计算,其中L表示线圈的自感,Φ表示线圈中的磁通量,I表示线圈中的电流。

综上所述,高中物理中的电磁感应知识点包括法拉第电磁感应定律、感应电动势、感应电流以及互感和自感。

2025年高考物理总复习专项讲义法拉第电磁感应定律

2025年高考物理总复习专项讲义法拉第电磁感应定律

2025年高考物理总复习专项讲义电磁感应法拉第电磁感应定律1. 高考真题考点分布常考考点真题举例法拉第电磁感应定律的表述和表达式2024·广东·高考真题导体棒转动切割磁感线产生的动生电动势2024·浙江·高考真题计算导轨切割磁感线电路中产生的热量2024·海南·高考真题求导体棒运动过程中通过其截面的电量2024·贵州·高考真题2. 命题规律及备考策略【命题规律】通过对近年来高考物理电磁感应命题趋势的分析,我们可以看出高考对这一部分知识的考查不仅局限于基础知识的记忆和理解,更倾向于考查考生的综合应用能力和解决实际问题的能力。

因此,考生在备考过程中应该全面准备,注重知识的整合和应用,以更好地应对高考的挑战【备考策略】针对电磁感应的复习,考生应该全面掌握相关知识点,注重基础知识的巩固和理解,同时通过大量的练习来提高解决综合问题的能力。

【命题预测】高考物理命题会随着教育改革和科技进步而不断更新。

例如,新课标中对动量部分的调整可能影响电磁感应部分的命题方向。

一、磁通量1.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积。

(2)公式:Φ=BS(B⊥S);单位:韦伯(Wb)。

(3)矢标性:磁通量是标量,但有正负。

2.磁通量的变化量:ΔΦ=Φ2-Φ1。

3.磁通量的变化率:磁通量的变化量与所用时间的比值,即ΔΦΔt,与线圈的匝数无关;表示磁通量变化的快慢。

二、电磁感应现象1.电磁感应现象当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生的现象。

2.产生感应电流的条件(1)闭合导体回路;(2)磁通量发生变化。

三、感应电流的方向判断1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

(2)适用范围:一切电磁感应现象。

“四步法”判断感应电流方向楞次定律的推论内容例证阻碍原磁通量变化——“增反减同”阻碍相对运动——“来拒去留”使回路面积有扩大或缩小的趋势——“增缩减扩”阻碍原电流的变化——“增反减同”使闭合线圈远离或靠近磁体——“增离减靠”当开关S闭合时,左环向左摆动、右环向右摆动,远离通电线圈2.右手定则(1)内容:如图所示,伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。

高三物理一轮复习专题 法拉第电磁感应定律知识点总结

高三物理一轮复习专题  法拉第电磁感应定律知识点总结

tn Rt
tn R
如图所示,磁铁快插与慢插两情况通过电阻 R 的电量一样,但两情况下电流做功及做功功率不一样.
三.自感现象
1.自感现象:由于导体本身电流发生变化而产生的电磁感应现象.
2.自感电动势:自感现象产生的感应电动势叫自感电动势.
自感电动势大小: E L i t
L 为自感系数,
a.L 跟线圈的形状、长短、匝数等因素有关系.
注意:①楞次定律是普遍规律,适用于一切电磁感应现象.“总要”——指无一例外. ②当原磁场的磁通量增加时,感应电流的磁场与原磁场反向;当原磁场的磁通量减小时感应电流的磁场与原磁
场方向相同.
③要分清产生感应电流的“原磁场”与感应电流的磁场. ④楞次定律实质是能的转化与守恒定律的一种具体表现形式. 判断闭合电路(或电路中可动部分导体)相对运动类问题的分析策略 在电磁感应问题中,有一类综合性较强的分析判断类问题,主要讲的是磁场中的闭合电路在一定条件下产 生了感应电流,而此电流又处于磁场中,受到安培力作用,从而使闭合电路或电路中可动部分的导体发生 了运动. 对其运动趋势的分析判断可有两种思路方法:
第 6 页 共 12 页
相反,C 点电势高于 J 点电势. ④过灯泡的电流方向与开关闭合时的电流方向相反,a、b 两点电势,开关闭合时 Ua>Ub,开关断开后瞬间 Ua<Ub. 4.镇流器 是一个带铁芯的线圈,起动时产生瞬间高电压点燃日光灯,目光灯发光以后,线圈中的自感电动
势阻碍电流变化,正常发光后起着降压限流作用,保证日光灯正常工作. 线圈作用:起动时产生瞬间高电压,正常发光后起着降压限流作用。 5.日光灯的工作原理
磁通量变化
产生
感应电流
阻碍
产生
感应电流的磁场
散第 2 课 法拉第电磁感应定律、自感

物理高三第七章知识点总结

物理高三第七章知识点总结

物理高三第七章知识点总结在高三物理学习的过程中,第七章是一个非常重要的部分,本章主要涵盖电磁感应、电磁波和光的具体内容。

下面将从电磁感应、电磁波和光三个方面进行知识点总结。

一、电磁感应1. 法拉第电磁感应定律:当导体与磁场相对运动时,导体内会产生感应电动势。

感应电动势的大小和变化率与磁场的变化率成正比。

2. 感应电动势的方向由楞次定律决定:感应电动势的方向与产生它的磁通变化的方向相反。

二、电磁波1. 电磁波的基本概念:电磁波是由电场和磁场交替振荡而产生的一种波动现象。

具有电场和磁场的能量传播特性。

2. 麦克斯韦方程组:电磁波的理论基础。

包括麦克斯韦第一、二、三、四个方程。

3. 电磁波的性质:包括传播速度、频率和波长的关系、能量传播规律等。

4. 电磁波谱:包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。

它们的频率和波长不同,具有不同的特性和应用。

三、光1. 光的本质:光既表现出波动性,又表现出粒子性。

这种波粒二象性被量子力学所解释。

2. 光的传播:光在真空中传播的速度为常数,即光速。

在不同介质中的传播速度较真空中慢,根据光的折射定律可以计算光在介质中的传播速度。

3. 光的干涉现象:包括同心圆干涉、杨氏实验和薄膜干涉等。

根据干涉现象,可以推导出干涉条纹的间距与光的波长和干涉角的关系。

4. 光的衍射现象:包括单缝衍射、双缝衍射和衍射光栅等。

根据衍射现象,可以确定衍射角和主极小角的关系。

5. 偏振光的性质:当光线只在某一方向上振动时,称为偏振光。

偏振光可以通过偏振片进行选择性透射。

高三物理学习的第七章内容较为复杂,需要结合大量的例题进行深入理解和掌握。

除了理论知识点的掌握外,还需要注意动手实践和实验操作,加强实践能力和应用能力的培养。

希望同学们能够在高三物理学习中认真学习,理解物理的本质和规律,为今后的学习和科研打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:电磁感应类型:复习课电磁感应现象愣次定律一、电磁感应1.电磁感应现象只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。

产生的电流叫做感应电流.2.产生感应电流的条件:只要闭合回路中磁通量发生变化即△Φ≠0,闭合电路中就有感应电流产生.3. 磁通量变化的常见情况(Φ改变的方式):①线圈所围面积发生变化,闭合电路中的部分导线做切割磁感线运动导致Φ变化;其实质也是 B 不变而 S增大或减小②线圈在磁场中转动导致Φ变化。

线圈面积与磁感应强度二者之间夹角发生变化。

如匀强磁场中转动的矩形线圈就是典型。

③B 随 t(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化(Φ改变的结果):磁通量改变的最直接的结果是产生感应电动势,若线圈或线框是闭合的.则在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件:无论回路是否闭合,只要穿过线圈的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那部分导体相当于电源.电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,如果回路不闭合,则只能出现感应电动势,而不会形成持续的电流.我们看变化是看回路中的磁通量变化,而不是看回路外面的磁通量变化二、感应电流方向的判定1.右手定则:伸开右手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,手掌所在平面跟磁感线和导线所在平面垂直,大拇指指向导线运动的方向, 四指所指的方向即为感应电流方向(电源).用右手定则时应注意:①主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定,②右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直.③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向.④若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势.⑤“因电而动”用左手定则.“因动而电”用右手定则.⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。

导体切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的一个特例.用右手定则能判定的,一定也能用楞次定律判定,只是对导体在磁场中切割磁感线而产生感应电流方向的判定用右手定则更为简便.2.楞次定律(1)楞次定律(判断感应电流方向):感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化.(感应电流的) 磁场(总是) 阻碍(引起感应电流的磁通量的) 变化原因产生结果;结果阻碍原因。

(定语) 主语(状语) 谓语(补语) 宾语(2)对“阻碍”的理解注意“阻碍”不是阻止,这里是阻而未止。

阻碍磁通量变化指:磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用);磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”.(3)楞次定律另一种表达:感应电流的效果总是要阻.碍..(或.反.抗..)产生感应电流的原因. (F 安方向就起到阻碍的效果作用)即由电磁感应现象而引起的一些受力、相对运动、磁场变化等都有阻碍原磁通量变化的趋势。

①阻碍原磁通量的变化或原磁场的变化;②阻碍相对运动,可理解为“来拒去留”;③使线圈面积有扩大或缩小的趋势;有时应用这些推论解题比用楞次定律本身更方便④阻碍原电流的变化.楞次定律磁通量的变化表述:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

能量守恒表述:I 感的磁场效果总要反抗产生感应电流的原因①从磁通量变化的角度:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

②从导体和磁场的相对运动:导体和磁体发生相对运动时,感应电流的磁场总是阻碍相对运动。

③从感应电流的磁场和原磁场:感应电流的磁场总是阻碍原磁场的变化。

(增反、减同)④楞次定律的特例──右手定则楞次定律的多种表述、应用中常见的两种情况:一磁场不变,导体回路相对磁场运动;二导体回路不动, 磁场发生变化。

磁通量的变化与相对运动具有等效性:Φ↑相当于导体回路与磁场接近,Φ↓相当于导体回路与磁场远离。

(4)楞次定律判定感应电流方向的一般步骤基本思路可归结为:“一原、二感、三电流”,①明确闭合回路中引起感应电流的原磁场方向如何;②确定原磁场穿过闭合回路中的磁通量如何变化(是增还是减)③根据楞次定律确定感应电流磁场的方向.④再利用安培定则,根据感应电流磁场的方向来确定感应电流方向.注意:①楞次定律是普遍规律,适用于一切电磁感应现象.“总要”——指无一例外.②当原磁场的磁通量增加时,感应电流的磁场与原磁场反向;当原磁场的磁通量减小时感应电流的磁场与原磁场方向相同.③要分清产生感应电流的“原磁场”与感应电流的磁场.④楞次定律实质是能的转化与守恒定律的一种具体表现形式.判断闭合电路(或电路中可动部分导体)相对运动类问题的分析策略在电磁感应问题中,有一类综合性较强的分析判断类问题,主要讲的是磁场中的闭合电路在一定条件下产生了感应电流,而此电流又处于磁场中,受到安培力作用,从而使闭合电路或电路中可动部分的导体发生了运动.对其运动趋势的分析判断可有两种思路方法:①常规法:据原磁场(B 原方向及ΔΦ情况) −楞−次−定−律−→确定感应磁场(B 感方向) −安−培−定−则−→判断感应电流(I 感方向) −左−手−定−则−→导体受力及运动趋势.②效果法:由楞次定律可知,感应电流的“效果”总是阻碍引起感应电流的“原因”,深刻理解“阻碍”的含义.据"阻碍"原则,可直接对运动趋势作出判断,更简捷、迅速. (如F 安方向阻碍相对运动或阻碍相对运动的趋势)B 感和 I 感的方向判定:楞次定律(右手) 深刻理解“阻碍”两字的含义(I 感的 B 是阻碍产生I 感的原因)B 原方向?;B 原?变化(原方向是增还是减);I 感方向?才能阻碍变化;再由 I 感方向确定 B 感方向。

楞次定律的理解与应用理解楞次定律要注意四个层次:①谁阻碍谁?是感应电流的磁通量阻碍原磁通量;②阻碍什么?阻碍的是磁通量的变化而不是磁通量本身;③如何阻碍?当磁通量增加时,感应电流的磁场方向与原磁场方向相反,当磁通量减小时,感应电流的磁场方向与原磁场方向相同,即”增反减同”;④结果如何?阻碍不是阻止,只是延缓了磁通量变化的快慢,结果是增加的还是增加,减少的还是减少.另外①“阻碍”表示了能量的转化关系,正因为存在阻碍作用,才能将其它形式的能量转化为电能;②感应电流的磁场总是阻碍引起感应电流的相对运动.电磁感应现象中的动态分析:就是分析导体的受力和运动情况之间的动态关系。

一般可归纳为:导体组成的闭合电路中磁通量发生变化导体中产生感应电流导体受安培力作用导体所受合力随之变化导体的加速度变化其速度随之变化感应电流也随之变化周而复始地循环,最后加速度小致零(速度将达到最大)导体将以此最大速度做匀速直线运动导体受力运动产生E 感→I 感→通电导线受F 安→F 合外力变化→a变化→v 变化→E 感变化→……周而复始地循环。

“阻碍”和“变化”的含义原因产生结果;结果阻碍原因。

感应电流的磁场总是要阻碍引起感应电流的磁通量的变化,而不是阻碍引起感应电流的磁场。

因此,不能认为感应电流的磁场的方向和引起感应电流的磁场方向相反。

磁通量变化产生感应电流感应电流的磁场法拉第电磁感应定律、自感一、法拉第电磁感应定律(1)定律内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.发生电磁感应现象的这部分电路就相当于电源,在电源的内部电流的方向是从低电势流向高电势。

(即:由负到正)①表达式: E = n ∆φ = n ∆B ⨯ s = n B ⨯ ∆s =…=?(普适公式) ε∝ ∆φ (法拉第电磁感应定 ∆t ∆t ∆t∆t 律)感应电动势取决于磁通量变化的快慢ΔB/Δt (即磁通量变化率)和线圈匝数 n .ΔB/Δt 是磁场变化率(2)另一种特殊情况:回路中的一部分导体做切割磁感线运动时, 且导体运动方向跟磁场方向垂直。

② E=BL v (垂直平动切割) L 是导线的有效切割长度 (v 为磁场与导体的相.对.切.割.速.度.)(B 不动而导体动;导体不动而B 运动)③E= nBS ωsin(ωt+Φ); E m =nBS ω (线圈与 B ⊥的轴匀速转动切割) n 是线圈匝数④ E = Blv = Bl ωl = 1 B ωl 2 . (直导体绕一端转动切割) 2 2⑤*自感 E = n ∆φ = L ∆I E ∝ ∆I (电流变化快慢) (自感)自 t ∆t 自 t二、感应电量的计算感应电量 q = I ∆t = E ⋅ ∆t = n ∆φ ⋅ ∆t = n ∆φR R ∆t R如图所示,磁铁快插与慢插两情况通过电阻 R 的电量一样,但两情况下电流做功及做功功率不一样.三.自感现象1.自感现象:由于导体本身电流发生变化而产生的电磁感应现象.2.自感电动势:自感现象中产生的感应电动势叫自感电动势.自感电动势大小: E = L ∆i ∆tL 为自感系数,a .L 跟线圈的形状、长短、匝数等因素有关系.线圈越粗,越长、单位长度上的匝数越密,横截面积越大,它的自感系数越大,另外有铁芯的线圈自感系数大大增加b .自感系数的单位是亨利,国际符号是 L ,1 亨=103 毫亨=106 微亨3.关于自感现象的说明①如图所示,当合上开关后又断开开关瞬间,电灯 L 为什么会更亮,当合上开关后,由于线圈的电阻比灯泡的电阻小,因而过线圈的电流 I2 较过灯泡的电流 I1 大,当开关断开后,过线圈的电流将由I2 变小,从而线圈会产生一个自感电动势,于是电流由 c→b→a→d 流动,此电流虽然比 I2 小但比 I1 还要大.因而灯泡会更亮.假若线圈的电阻比灯泡的电阻大,则 I2<I1,那么开关断开后瞬间灯泡是不会更亮的.②开关断开后线圈是电源,因而 C 点电势最高,d 点电势最低③过线圈电流方向与开关闭合时一样,不过开关闭合时,J 点电势高于 C 点电势,当断开开关后瞬间则相反,C 点电势高于 J 点电势.④过灯泡的电流方向与开关闭合时的电流方向相反,a、b 两点电势,开关闭合时 U a>U b,开关断开后瞬间 U a<U b.4.镇流器是一个带铁芯的线圈,起动时产生瞬间高电压点燃日光灯,目光灯发光以后,线圈中的自感电动势阻碍电流变化,正常发光后起着降压限流作用,保证日光灯正常工作.线圈作用:起动时产生瞬间高电压,正常发光后起着降压限流作用。

相关文档
最新文档