测试技术5.常用传感器(完整版)

合集下载

测试技术第5讲--电感式传感器

测试技术第5讲--电感式传感器

meyyq@
电感式传感器
螺旋管式自感传感器
双螺管线圈差动型,较之单螺管线圈型有较高灵敏度及线性, 被用于电感测微计,其测量范围为0—300mm,最小分辨力为 0.5mm。这种传感器的线圈接于电桥,构成两个桥臀、线圈电感 LI、L2随铁芯位移而变化。
对 有 长 差 式 线 , 沿 向 磁 强 H为 于 限 度 动 的 圈 其 轴 的 场 度 : 线 长 l: 圈 度 IW l − 2x l + 2x 2x H= − + 2 2 2 2 2 2 2l 4r + (l − 2x) r +x 4r + (l + 2x) R: 圈 平 直 线 的 均 径 I: 圈 平 电 线 的 均 流 N: 圈 数 线 匝 线 的 向 场 布 不 匀 , 确 理 上 感 推 很困 。 圈 轴 磁 分 是 均 的 精 的 论 电 值 导 难 本 程 作 细 析 课 不 详 分
meyyq@
电感式传感器
变面积式自感传感器
仅改变气隙截面积的自感传感器称为变截面积式自感 传感器。在忽略气隙边缘效应的条件下,电感的变化 由下式计算:
W2µ0 (S + ∆S) W2µ0S W2µ0∆S W2µ0S ∆S ∆S ∆L = L - L0 ≅ − = = ≅ L0 2x 2x 2x 2x S S

U0 =
2
Z
=
2 R0 + jwL0

2
L0
=
2 δ0
(a)交流电桥测量电路 (b)变压器式电桥 图4- 7 自感式传感器测量电路
meyyq@
电感式传感器
自感传感器的测量电路
(2)变压器式交流电桥自感式 ) 传感器测量电路 传感器测量电路 变压器式交流电桥测量电路如图 (b)所示 当负截阻抗为无穷大 )所示, 桥路输出电压: 时, 桥路输出电压: 当传感器的衔铁处于中间位置, 当传感器的衔铁处于中间位置 电桥平衡。 有Uo=0, 电桥平衡。 当传感器衔铁上移时, 当传感器衔铁上移时 即 Z1=Z+∆Z, Z2=Z-∆Z, , 当传感器衔铁下移时, 当传感器衔铁下移时 则Z1=Z∆Z, Z2=Z+∆Z, 从上面两式可知, 从上面两式可知 衔铁上下移动 相同距离时, 相同距离时 输出电压的大小相 但方向相反, 由于是交流电压, 等, 但方向相反 由于是交流电压 输出指示无法判断位移方向, 必 输出指示无法判断位移方向 须配合相敏检波电路来解决。 须配合相敏检波电路来解决。

常见传感器及工作原理

常见传感器及工作原理

常见传感器及工作原理传感器是现代科技中不可或缺的一部分,它们负责将物理量转换成电信号或其他可以被处理的形式,从而实现对环境变化的感知和监测。

以下是一些常见传感器及其工作原理的介绍。

1. 温度传感器温度传感器是用来测量环境温度的设备。

它们可以基于不同的工作原理来实现。

其中一种常见的工作原理是热敏电阻。

热敏电阻的电阻值随温度的变化而变化,通过测量电阻值的变化来确定温度。

还有一种常见的工作原理是热电偶。

热电偶利用两种不同金属的热电效应产生电势差,通过测量电势差来确定温度。

2. 湿度传感器湿度传感器用于测量环境的湿度水分含量。

一种常见的湿度传感器是电容式湿度传感器。

它利用物质在不同湿度下的电容变化来测量湿度。

当空气中的湿度增加时,电容值也会增加。

另一种常见的湿度传感器是电阻式湿度传感器。

它利用湿度对电阻值的影响来测量湿度。

3. 光照传感器光照传感器用于测量环境中的光照强度。

一种常见的光照传感器是光敏电阻。

光敏电阻的电阻值随光照强度的变化而变化,通过测量电阻值的变化来确定光照强度。

另一种常见的光照传感器是光电二极管。

光电二极管利用光的能量来产生电流,通过测量电流的变化来确定光照强度。

4. 气体传感器气体传感器用于检测环境中的气体浓度。

一种常见的气体传感器是电化学传感器。

电化学传感器利用气体与电极之间的化学反应来测量气体浓度。

不同的气体会引起不同的化学反应,从而产生不同的电流信号。

另一种常见的气体传感器是光学传感器。

光学传感器利用气体对特定波长的光的吸收程度来测量气体浓度。

5. 压力传感器压力传感器用于测量环境中的压力变化。

一种常见的压力传感器是压阻式传感器。

压阻式传感器利用压力对电阻值的影响来测量压力变化。

当受到压力时,电阻值会发生变化。

另一种常见的压力传感器是压电传感器。

压电传感器利用压力对压电材料的形变产生电荷来测量压力变化。

以上是一些常见传感器及其工作原理的简介。

传感器的应用范围非常广泛,从工业生产到家庭生活都离不开它们。

传感器种类大全

传感器种类大全

传感器种类大全传感器是一种能够感知和检测某种特定物理量并将其转化为可识别信号的装置。

根据其感知的物理量不同,传感器可以分为多种不同类型。

下面我们将介绍一些常见的传感器种类,以便大家对传感器有更深入的了解。

1. 光学传感器。

光学传感器是一种利用光学原理来检测物体位置、颜色、亮度等特征的传感器。

常见的光学传感器包括光电开关、光电传感器、光电编码器等。

光学传感器在工业自动化、电子产品、医疗设备等领域有着广泛的应用。

2. 声学传感器。

声学传感器是一种利用声波进行检测和测量的传感器。

例如,超声波传感器可以用来测距、探测障碍物等,应用于汽车倒车雷达、物体测距等领域。

声学传感器在环境监测、医学影像、通信等领域也有着重要的应用。

3. 温度传感器。

温度传感器是一种用来测量温度的传感器。

常见的温度传感器包括热电偶、热敏电阻、红外线温度传感器等。

温度传感器在工业生产、家用电器、医疗设备等领域都有着广泛的应用。

4. 湿度传感器。

湿度传感器是一种用来测量空气湿度的传感器。

它可以帮助人们了解周围环境的湿度情况,从而采取相应的措施。

湿度传感器在气象观测、农业生产、仓储管理等领域都有着重要的应用。

5. 气体传感器。

气体传感器是一种用来检测和测量气体浓度的传感器。

例如,二氧化碳传感器可以用来监测室内空气质量,可燃气体传感器可以用来检测可燃气体泄漏等。

气体传感器在环境监测、工业安全、家用安全等领域都有着广泛的应用。

6. 压力传感器。

压力传感器是一种用来测量压力的传感器。

它可以将受力物体的压力转化为电信号输出,常用于工业自动化、汽车制造、航空航天等领域。

7. 加速度传感器。

加速度传感器是一种用来测量物体加速度的传感器。

它可以帮助人们了解物体的运动状态,常用于智能手机、运动追踪、车辆安全等领域。

8. 位移传感器。

位移传感器是一种用来测量物体位移的传感器。

它可以帮助人们了解物体的位置变化,常用于机械加工、机器人控制、航空航天等领域。

以上就是一些常见的传感器种类,每种传感器都有着特定的应用领域和工作原理。

常用传感器及工作原理及应用

常用传感器及工作原理及应用

常用传感器及工作原理及应用传感器是指能够将其中一种感知量变换成电信号或其他可以辨识的输出信号的装置。

它们广泛应用于工业自动化、环境监测、医疗器械、汽车电子、智能家居以及移动设备等各个领域。

本文将介绍一些常用传感器的工作原理及应用。

1.温度传感器温度传感器用于测量环境的温度。

常见的温度传感器有热电偶、热电阻和半导体温度传感器。

热电偶通过两个不同金属之间的温差来产生电压,热电阻则利用温度对电阻的敏感性来测量温度,而半导体温度传感器则利用半导体材料的特性来测量温度。

温度传感器广泛应用于气象观测、工业生产过程中的温度控制和家电中的温度监测等领域。

2.光敏传感器光敏传感器可以测量光的强度和光的频率。

常见的光敏传感器有光敏电阻、光敏二极管和光敏晶体管。

光敏电阻根据光照的强弱改变电阻值,光敏二极管和光敏晶体管则根据光照的强弱改变电流值。

光敏传感器广泛应用于照明控制、安防监控和光电设备等领域。

3.声音传感器4.湿度传感器湿度传感器可以测量环境中的湿度。

常见的湿度传感器有电容式湿度传感器和电阻式湿度传感器。

电容式湿度传感器利用电容的变化来感应湿度,电阻式湿度传感器则是利用湿度对电阻的敏感性来感应湿度。

湿度传感器广泛应用于气象观测、室内湿度控制和农业领域等。

5.加速度传感器加速度传感器可以测量物体的加速度。

常见的加速度传感器有压电式加速度传感器和微机械式加速度传感器。

压电式加速度传感器利用压电效应来感应加速度,微机械式加速度传感器则是利用微机械结构的变化来感应加速度。

加速度传感器广泛应用于汽车电子、智能手机以及航空航天领域等。

总的来说,传感器在现代社会中扮演着重要的角色,广泛应用于各个领域。

通过测量和感应物理量,传感器能够实现自动化控制、环境监测和智能化等功能,为社会的发展和人们的生活带来了便利和效益。

(完整版)传感器试题(答案)

(完整版)传感器试题(答案)

(完整版)传感器试题(答案)1、现代信息技术的三大支柱包括传感器技术、通信技术和计算机技术。

2、国家标准(GB7665-87)对传感器的定义为:一种能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。

3、传感器由敏感元件、传感元件、测量转换电路和辅助电源三部分组成。

4、现代科学技术使人类社会进入了信息时代,为了获取来自自然界的物质信息,需要通过传感器进行采集。

5、误差是测量结果与被测量的约定真值之间的差别。

6、对测量结果评价的三个概念包括精密度、准确度和精确度。

7、传感器的特性是对传感器的输出量与输入量之间对应关系的描述。

8、电阻应变式传感器的工作原理是将电阻应变片粘贴到各种弹性敏感元件上,使物理量的变化转换成应变片的应力、应变变化,从而变成电阻值变化。

9、热电阻温度计是利用金属导体或半导体材料的电阻率随温度而变化的特性进行温度测量的传感器。

10、电感式传感器是利用电磁感应原理,将被测非电量的变化转换成线圈的电感变化的一种传感器。

11、压电传感器是一种典型的自发电式传感器,它以某些电介质的压电效应为基础,在外力作用下,在电介质的表面产生电荷,从而实现非电量的电测转换。

12、热电偶产生的热电势一般由接触电势和温差电势组成。

13、光电式传感器是利用光敏元件将光信号转换为电流信号的装置。

14、霍尔传感器是利用霍尔效应原理制成的传感器,主要用来测量磁场的大小。

15、电容式传感器有变面积式、变间隙式和变介质式三种类型。

二、选择题:1、传感器的精确度是指传感器的输出指示值与被测量约定真值的一致程度。

(A)2、热电阻温度计基于金属或半导体材料的电阻率随温度而变化的特性来反映被测温度高低。

(D)3、炼油厂的气化炉耐压压力为6.5MPa,炉表面温度在400-450℃之间,应选用温度传感器进行测量。

(B)1. 目前常用的温度传感器包括双金属片、铂电阻、铜电阻和热电偶。

2. 工业用的热电偶常用的类型有K、J、T、E、N等,每种类型的热电偶都有其适用的温度范围和精度等特点。

《测试技术基础》5.常用传感器(完整版)

《测试技术基础》5.常用传感器(完整版)
其中,w-线圈匝数,B-磁感应 强度,l-单匝线圈有效长度,v -线圈与磁场的相对速度。
b. 线圈在磁场中作旋转运动
e kWBA
其中,k-与结构有关的系数 (<1),A-线圈的截面积, ω-角速度。
2020-11-9
7
②变磁阻式工作原理:一般通过改变传感器到被测对象间的气隙厚 度等方法来改变磁路磁阻。
热电偶是一种发电型传感器,其输出信号可直接接入记录仪 器。利用热电偶还可测量两点温差及温度场中多点的平均温度, 在实际使用时,还可利用不同被测对象构成热电偶,如测磨削温 度;可用车刀与零件构成一对热电偶,有关方面知识还可参考其 它专著。
2020-11-9
25
5.2.4 半导体光电效应式传感器
① 光电导效应――光的照射使半导体载流子(电子-空穴)浓度加 大,电导率增加,根据光电导效应可以制成光敏电阻。
R2
u
j (L1
2M 2 R22 ( L2 )2
L2 )
Z1 (R1 kR2 ) j(L1 kL2)
k
2M 2 R22 (L2 )2
由上式可看出:原线圈阻抗 Z0=R1+j ω L1 由于电涡流的影响, Z1变成 Z1=(R1+kR2)+j ω(L1-kL2) 式中:kR2:涡流反射电阻,
2020-11-9
22
③ 中间温度定理
EAB (t1, t2 ) EAB (t1, t3 ) EAB (t3, t2 )
一般热电偶的分度表(输出特性)是在冷端为0℃时给出的,若 测量时冷端不为0℃,则可据此修正。
2020-11-9
23
④热电偶相配定理
EAB (t1, t2 ) EAC (t1, t2 ) ECB (t, t2 )

(完整版)传感器与检测技术第二版知识点总结

(完整版)传感器与检测技术第二版知识点总结

传感器知识点一、电阻式传感器1) 电阻式传感器的原理:将被测量转化为传感器电阻值的变化,并加上测量电路。

2) 主要的种类:电位器式、应变式、热电阻、热敏电阻 ● 应变电阻式传感器1) 应变:在外部作用力下发生形变的现象。

2) 应变电阻式传感器:利用电阻应变片将应变转化为电阻值的变化a. 组成:弹性元件+电阻应变片b. 主要测量对象:力、力矩、压力、加速度、重量。

c. 原理:作用力使弹性元件形变发生应变或位移应变敏感元件电阻值变化通过测量电路变成电压等点的输出。

3) 电阻值:ALR ρ=(电阻率、长度、截面积)。

4) 应力与应变的关系:εσE =(被测试件的应力=被测试件的材料弹性模量*轴向应变)5) 应力与力和受力面积的关系:(面积)(力)(应力)A F =σ应注意的问题:a. R3=R4;b. R1与R2应有相同的温度系数、线膨胀系数、应变灵敏度、初值;c. 补偿片的材料一样,个参数相同;d. 工作环境一样;二、电感式传感器1) 电感式传感器的原理:将输入物理量的变化转化为线圈自感系数L 或互感系数M的变化。

2) 种类:变磁阻式、变压器式、电涡流式。

3) 主要测量物理量:位移、振动、压力、流量、比重。

● 变磁阻电感式传感器1) 原理:衔铁移动导致气隙变化导致电感量变化,从而得知位移量的大小方向。

2) 自感系数公式:)(2002气隙厚度(截面积)(磁导率)δμA L N=。

3) 种类:变气隙厚度、变气隙面积4) 变磁阻电感式传感器的灵敏度取决于工作使得当前厚度。

5) 测量电路:交流电桥、变压器式交变电桥、谐振式测量电桥。

P56 6)应用:变气隙厚度电感式压力传感器(位移导致气隙变化导致自感系数变化导致电流变化)● 差动变压器电感式传感器1) 原理:把非电量的变化转化为互感量的变化。

2) 种类:变隙式、变面积式、螺线管式。

3) 测量电路:差动整流电路、相敏捡波电路。

● 电涡流电感式传感器1) 电涡流效应:块状金属导体置于变化的磁场中或在磁场中做切割磁感线的运动,磁通变化,产生电动势,电动势将在导体表面形成闭合的电流回路。

电气测试技术第五章

电气测试技术第五章

应变片
直流电桥的工作原理 输出 U 0 U ab U ad
R1 R3 R2 R4 UI ( R1 R2 )(R3 R4 )
平衡条件: R R R R 1 3 2 4 工作时,各桥臂阻值变化,则输出电压U0 0 定义电桥的灵敏度为:

U0 SB R0 / R0
实际使用中,为了简化桥路设计,同时也为了得到电 桥的最大灵敏度,通常R1=R2=R3=R4=R0,即为等臂电桥.
半导体应变片:分为体型和扩散型两种。 体型:利用半导体材料的体 电阻制成。 扩散型:在半导体材料的基 片上利用集成电路工艺制成 扩散型电阻。 由于半导体(如单晶硅)是各向异性材料,因此 它的压阻效应不仅与掺杂浓度、温度和材料类型有 关,还与晶向有关(即对晶体的不同方向上施加力时, 其电阻的变化方式不同)。
2)桥路补偿法——电桥的和差特性
全桥自动补偿;半桥邻臂
3)热敏电阻补偿法——热敏电阻适当分压
3、应变片的布置和接桥方式
利用适当的布片和组桥方式消除温度变化和复合载 荷作用的影响,获得最大的输出灵敏度。 1)应变片应布置在弹性元件产生应变最大的位置,并 沿主应力方向贴片;贴片处的应变尽量与外载荷呈线 性关系(避开非线性区),同时应注意使该处不受非 待测载荷的干扰影响。 2)根据电桥的和差特性,选择适当的接桥方式,可以 使输出的灵敏度最大,同时又能排除非待测载荷的影 响并进行温度补偿。
R1 R1 R1 , R2 R2 R2
1 R0 Uo UI 2 R0
全桥接法:
R1 R1 R1 , R2 R2 R2, R3 R3 R3 , R4 R4 R4
R0 Uo UI R0
电桥的工作特性:
1)不同的接桥方式具有不同的电桥灵敏度,尽量采 用半桥双臂或全桥方式。

(完整版)传感器与检测技术-教案

(完整版)传感器与检测技术-教案

第一章引言➢教学要求1.掌握传感器的基本概念。

2.掌握传感器的组成框图(p2,图1.1)。

3.掌握传感器的静态性能和动态性能。

4.了解传感器的课程性质和课程任务。

5.了解传感器的分类和发展趋势。

➢教学内容1.1 传感器的发展和作用了解。

1.2 什么是传感器传感器定义:能够感受规定的被测量并按照一定的规律转换成可用输出信号的器件和装置,通常由敏感元件和转换元件组成。

顾名思义,传感器的功能是一感二传,即感受被测信息,并传送出去。

根据传感器的功能要求,它一般应由三部分组成,即:敏感元件、转换元件、转换电路。

1.3 传感器的分类1.根据被测物理量分类速度传感器、位移传感器、加速度传感器、温度传感器、压力传感器等。

2.按工作原理分类应变式、电压式、电容式、涡流式、差动变压器式等。

3.按能量的传递方式分类有源的和无源的传感器。

1.4 传感器的性能和评价1.4.1传感器的静态特性传感器的静态特性是指传感器的输入信号不随时间变化或变化非常缓慢时,所表现出来的输出响应特性,称静态响应特性。

通常用来描述静态特性的指标有:测量范围、精度、灵敏度、稳定性、非线性度、重复性、灵敏阈和分辨力、迟滞。

• 稳定性传感器的稳定性,一是指传感器测量输出值在一段时间内的变化,即用所谓的稳定度表示;二是指在传感器外部环境和工作条件变化时而引起输出值的变化,即用影响量来表示。

•灵敏度传感器灵敏度是表示传感器的输入增量与由它引起的输出增量之间的函数关系。

更确切地说,灵敏度k等于传感器输出增量与被测量增量之比,是传感器在稳态输出输入特性曲线上各点的斜率。

用公式表示为:• 灵敏阈与分辨力灵敏阈是指传感器能够区分出的最小读数变化量。

对模拟式仪表,当输入量连续变化时,输出量只做阶梯变化,则分辨力就是输出量的每个阶梯所代表的输入量的大小。

对于数字式仪表,灵敏度阈就是分辨力,即仪表指示数字值的最后一位数字所代表的值。

从物理含义看,灵敏度是广义的增益,而灵敏度阈则是死区或不灵敏度。

《测试技术》第四章传感器的基本类型及其工作原理解读

《测试技术》第四章传感器的基本类型及其工作原理解读

三、电位计式传感器
令 R / RL m, Rx / R x
(x 0时, Rx 0; x 1时,
UL
U
1
x mx(1
x)
Rx R)得
U L 与 x 呈非线性关系
电位计式传感器原理图
U Rx
x
R
a
RL UL
非线性相对误差 为:
b
(UL )m0 (UL )m0 100% [1 (UL )m0 ]100%
第一节. 概 述 传感器的组成
敏感元件
被测量
转换元件 辅助电源
基本转换电路
电量
敏感元件,是直接感受被测量,并输出与被测量成确定关 系的 某一物理量的元件。
转换元件,敏感元件的输出就是它的输入,它把输入转换成电 路参量。
基本转换电路:上述电路参数接入基本转换电路(简称转换电 路),便可转换成电量输出。
第四节. 电容式传感器
三、变介电常数型电容传感器
C 2 h11 2 (h h1)2
ln R
ln R
r
r
2 h2 2 h1(1 2)
ln R
ln R
r
r
容器内介质的介电常数 1
容器上面气体介质介电常数 2
输出电容C与液面高度成线性关系
第四节. 电容式传感器
三、变介电常数型电容传感器 — 应用
积变化 △AA ,电阻率的变化为 △ρ ,相应的电阻变化为 dRdR。对
式 R l 全微分得电阻变化率 dR//RR 为:
s
dR dl 2 dr d Rl r
上式中:dl l 为导体的轴向应变量 l ;dr / r 为导体的横向应变量 r
由材料力学得:l r
式中:μ为材料的泊松比,大多数金属材料的泊松比为 0.3~0.5 左右

第5章_常用传感器chjd

第5章_常用传感器chjd

工作原理:电磁感应定律。
根据电磁感应定律,在磁场中运动的线圈,产生的感应电 动势为 e—感应电动势(V);
e BD0 Nv
贵州大学机械工程学院
B—工作气隙中磁感应强度(T);
D0—线圈的平均直径(m); N—工作气隙中绕组线圈的匝数;
v—振动体振动速度(m/s)。
陈家兑
测试技术
第5章 常用传感器
贵州大学机械工程学院 陈家兑
测试技术 电感的品质因数Q
第5章 常用传感器
品质因数Q的定义:当线圈在某一频率的交流电压下工作时, 线圈所呈现的感抗和线圈直流电阻的比值。
2fL L Q R R 工作角频率, 2f L 线圈电感量 R 线圈的总损耗电阻
品质因数Q是表示线圈质量的一个重要参数。Q值的大小, 表明电感线圈损耗的大小,其Q值越大,线圈的损耗越小; 反之,其损耗越大。
贵州大学机械工程学院 陈家兑
测试技术
优点:输出阻抗较低,便于测量,
第5章 常用传感器
缺点:在测量时传感器的全部重量都必须附加在被测振动 物体上,这对某些振动测量结果的可靠性将产生较大的附加质 量影响。
应用:适合于在100~1000Hz频率范围内测量振动位移或振 动速度。振动的位移、速度、加速度之间保持着简单的微分、 积分关系,许多测振仪器中带有简单微积分电路,可根据需要 作位移、速度、加速度之间的转换。
(2)面积变化型
角位移型 灵敏度
贵州大学机械工程学院
0 r C 2
2
A
r 2
2
dC 0r 2 S 常数 d 2
陈家兑
测试技术
第5章 常用传感器
a)角位移型
b)平面线位移型 c)柱体线位移型 1—动板 2—定板

精品文档-测试技术与传感器(罗志增)-第5章

精品文档-测试技术与传感器(罗志增)-第5章

第5章 电感式传感器 图 5-10 电压输出型全波整流电路(全波电压输出)
第5章 电感式传感器
从图5-10的电路结构可知,不论两个次级线圈的输出瞬时
电压极性如何,流经电容C1的电流方向总是从2到4,流经电容
C2的电流方向总是从6到8,故整流电路的输出电压为
U 2

UU2240;U当68衔。铁当在衔零铁位在以零上位时时,,因因为为
线,虚线为实际特性曲线。
以上分析表明,差动变压器输出电压的大小反映了铁芯位
移的大小,输出电压的极性反映了铁芯运动的方向。
第5章 电感式传感器 图 5-9 差动变压器输出电压的特性曲线
第5章 电感式传感器 由图5-9可以看出,当衔铁位于中心位置时,差动变压器输
出电压并不等于零,我们把差动变压器在零位移时的输出电压称 为零点残余电压。它的存在使传感器的输出特性不经过零点,造 成实际特性与理论特性不完全一致。零点残余电压主要是由传感 器的两次级绕组的电气参数和几何尺寸不对称,以及磁性材料的 非线性等引起的。零点残余电压的波形十分复杂,主要由基波和 高次谐波组成。基波产生的主要原因是传感器的两次级绕组的电 气参数、几何尺寸不对称,导致它们产生的感应电势幅值不等, 相位不同,因此不论怎样调整衔铁位置,两线圈中的感应电势都 不能完全抵消。高次谐波中起主要作用的是三次谐波,其产生的 原因是磁性材料磁化曲线的非线性(磁饱和、磁滞)。零点残余电 压一般在几十毫伏以下,实际使用时,应设法减小它,否则将会 影响传感器的测量结果。
Δ 0
2
Δ 0
3
(5-8)
第5章 电感式传感器
由上式可求得电感增量ΔL和相对增量ΔL/L0的表达式,即
ΔL
L0
Δ 0

(完整版)传感器与检测技术试卷及答案

(完整版)传感器与检测技术试卷及答案

(完整版)传感器与检测技术试卷及答案1.属于传感器动态特性指标的是(D )重复性B 线性度C 灵敏度D 固有频率2 误差分类,下列不属于的是(B )系统误差B 绝对误差C 随机误差D粗大误差3、非线性度是表示校准(B )的程度。

、接近真值B、偏离拟合直线C、正反行程不重合D、重复性4、传感器的组成成分中,直接感受被侧物理量的是(B )、转换元件B、敏感元件C、转换电路D、放大电路5、传感器的灵敏度高,表示该传感器(C)工作频率宽B 线性范围宽C 单位输入量引起的输出量大D 同意输入量大6 下列不属于按传感器的工作原理进行分类的传感器是(B)应变式传感器B 化学型传感器C 压电式传感器D热电式传感器7 传感器主要完成两个方面的功能:检测和(D)测量B感知C 信号调节D 转换8 回程误差表明的是在(C)期间输出输入特性曲线不重合的程度多次测量B 同次测量C 正反行程D 不同测量9、仪表的精度等级是用仪表的(C)来表示的。

相对误差B 绝对误差C 引用误差D粗大误差二、推断1.在同一测量条件下,多次测量被测量时,绝对值和符号保持不变,或在改变条件时,按一定规律变化的误差称为系统误差。

(√)2 系统误差可消除,那么随机误差也可消除。

(×)3 对于具体的测量,周密度高的准确度不一定高,准确度高的周密度不一定高,所以精确度高的准确度不一定高(×)4 平均值就是真值。

(×)5 在n次等精度测量中,算术平均值的标准差为单次测量的1/n。

(×)6.线性度就是非线性误差.(×)7.传感器由被测量,敏感元件,转换元件,信号调理转换电路,输出电源组成.(√)8.传感器的被测量一定就是非电量(×)9.测量不确定度是随机误差与系统误差的综合。

(√)10传感器(或测试仪表)在第一次使用前和长时间使用后需要进行标定工作,是为了确定传感器静态特性指标和动态特性参数(√)二、简答题:(50分)1、什么是传感器动态特性和静态特性,简述在什么频域条件下只研究静态特性就能够满足通常的需要,而在什么频域条件下一般要研究传感器的动态特性?答:传感器的动态特性是指当输入量随时间变化时传感器的输入—输出特性。

(完整版)测试技术模拟题含答案

(完整版)测试技术模拟题含答案

4常用传感器的变换原理4.1单选题1、导体应变片在外力作用下引起电阻变化的因素主要是()。

(A)长度;(B)截面积;(C)电阻率;(D)温度2、在位移测量中,()传感器适用于非接触测量,而且不宜受油污等介质影响。

(A)电容;(B)压电;(C)电阻;(D) 电涡流3、面积变化型电容传感器的灵敏度()。

(A)正比于两块极板之间的线速度;(B) 正比于两块极板之间的线位移;(C) 正比于两块极板之间的间隙;(D)等于常数4、变极板间隙型电容传感器的输入与输出成()关系。

(A) 正比;(B) 线性;(C)反比;(D) 平方5、下列第()组传感器都是把被测量变换为电动势输出的。

(A)热电偶、电涡流、电阻应变;(B) 热电偶、霍尔、半导体气敏传感器;(C)硅光电池、霍尔、磁电;(D)压电、霍尔、电感式6、()传感器适用于几米到几十米的大型机床工作台位移的直线测量。

(A) 电涡流;(B) 电容;(C) 压磁;(D)光栅7、下列第()组传感器较适用于测量旋转轴的转速。

(A) 电涡流、电阻应变、电容;(B) 电磁感应、电涡流、光电;(C) 硅光电池、霍尔、压磁;(D) 压电、霍尔、电感式8、下面对涡流传感器描述正确的是()。

(A)不受油污等介质影响;(B) 它属于接触测量;(C) 有高频透射式;(D) 有低频反射式9、关于极距变化型电容传感器,()的说法是错误的。

(A) 极板之间的距离越小,灵敏度越高;(B) 电容与极板的位移成线性关系(C) 采用差动连接方式可以提高灵敏度;(D) 测量时,保持极板的覆盖面积不变10、关于可变磁阻式传感器,()的说法是错误的。

(A) 自感与气隙长度成正比例,与气隙导磁截面积成反比例(B) 可以把双螺管差动型的线圈做为电桥的两个桥臂(C) 采用差动连接方式可以提高灵敏度和线性(D) 变气隙型的灵敏度比面积型的灵敏度高11、关于线性可变差动变压器(LVDT)传感器,()的说法是错误的。

传感器种类大全

传感器种类大全

传感器种类大全引言传感器是一种能够感知、测量和转换各种物理量和化学量的设备。

它们在生活和工业中扮演着重要的角色,广泛应用于自动化、仪器仪表、工业生产、环境监测等领域。

本文将介绍一些常见的传感器种类及其应用。

1. 温度传感器温度传感器可以测量物体或环境的温度。

常见的温度传感器包括热电偶、热电阻和红外线传感器。

•热电偶:通过两种不同金属的接触产生电势差,根据电势差的变化推断温度。

•热电阻:利用金属或半导体导体材料的电阻随温度变化的特性来测量温度。

•红外线传感器:通过感知物体表面发射的红外线辐射来测量温度。

温度传感器广泛应用于空调、供暖系统、食品加工、医疗设备等领域。

2. 湿度传感器湿度传感器用于测量空气或其他气体中的湿度。

最常见的湿度传感器是电容式湿度传感器和电阻式湿度传感器。

•电容式湿度传感器:通过测量电容的变化来确定湿度水平。

•电阻式湿度传感器:利用基于吸湿材料的电阻测量湿度。

湿度传感器广泛应用于自动化温控系统、气象观测、农业温室、工厂等各个领域。

3. 压力传感器压力传感器测量介质(液体或气体)中的压力变化。

常见的压力传感器包括压电式传感器、电阻式传感器和电容式传感器。

•压电式传感器:利用介质的压力作用下,压电材料产生电荷从而测量压力。

•电阻式传感器:通过介质对电阻的作用测量压力。

•电容式传感器:通过介质对电容的影响测量压力。

压力传感器广泛应用于汽车制造、工业自动化、石油化工、医疗仪器等领域。

4. 光传感器光传感器用于检测光的强度、颜色以及检测光的频率。

常见的光传感器包括光敏电阻、光敏二极管和光电管。

•光敏电阻:根据光照的强度而改变电阻值,从而实现光的测量。

•光敏二极管:将光转化为电荷产生电流来测量光的强度。

•光电管:通过光电效应将光转化为电信号测量光的强度。

光传感器广泛应用于光电测量、图像识别、光控开关、安全监控等领域。

5. 加速度传感器加速度传感器测量物体在空间中的加速度。

常见的加速度传感器包括振动传感器、MEMS传感器和压电传感器。

测试技术第三章常用的传感器

测试技术第三章常用的传感器

第三章常用的传感器1. 传感器:广义上,传感器是在特定条件下将感受到的物理量,按照一定规律变换为与之相应的、易于检测、便于传输、处理或显示的另一种物理量的测量装置或元件。

狭义上,传感器就是将非电量转换成电量的装置或元件。

因为电信号易于检测、远距离传输、存储、显示、再现和运算处理,所以通常是将被测量转化为电量。

2. 传感器的作用类似于人的感觉器官。

它把被测量,如力、位移、温度等,转换为易测信号,传送给测量系统的信号调理环节。

传感器也可以认为是人类感官的延伸,因为借助传感器可以去探索那些人们无法用感官直接测量的事物,例如,用热电偶可以测得炽热物体的温度;用超声波探测器可以测量海水深度;用红外遥感器可从高空探测地面上的植被和污染情况,等等。

因此,可以说传感器是人们认识自然界的有力工具,是测量仪器与被测事物之间的接口。

在工程上也把提供与输入量有给定关系的输出量的器件,称为测量变换器。

传感器就是输入量为被测量的测量变换器。

传感器处于测试装置的输入端,其性能将直接影响着整个测试装置的工作质量。

传感器技术是当今信息工程的三大重要支柱之一。

传感器技术(信息的采集和转换)、通讯技术(信息的传递)、计算机技术(信息的处理)。

第一节传感器的分类传感器分类方法很多。

1.按被测量分类可分为位移传感器、力传感器、温度传感器等;2. 按传感器工作原理分类可分为机械式、电气式、光学式、流体式等;3. 按信号变换特征可概括分为物性型和结构型。

物性型传感器是依靠敏感元件材料本身物理化学性质的变化来实现信号的变换的。

仍如用水银温度计测量,是利用水银的热胀冷缩现象;压电测力计是利用石英晶体的压电效应等。

结构型传感器则是依靠传感器结构参量的变化而实现信号转换的。

例如,电容式传感器依靠极板间距离变化引起电容量的变化;电感式传感器依靠衔铁位移引起自感或互感的变化等。

4. 按输出信号分类可分为模拟式和数字式。

5. 按能量变换关系根据敏感元件与被测对象之间的能量关系,可分为能量转换型与能量控制型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/6/7
3
传感器作用及分类
5.1.2 传感器的分类
1. 按输出信号是模拟量还是数字量,可分成模拟传感器与数字传感器。 (I(t),V(t),数字量,频率量)。
2. 按变换原理,可分为参量型与发电型。 参量型:被测量使传感器本身的电参量R、L、C改变,这种传感器
工作时必须有外加电源,故又称为无源型,通常将其接入电桥,谐振电 路等信号调节器中,再变换成电压或电流量。
2. 电动式传感器的构成及其应用
① 振动测量 • 动圈式相对速度传感器:由两部分组成,一部分安装在被测物体上,通
常是磁铁与壳体,另一部分是线圈,固定在参照物体上;当两个物体产 生相对运动时,便产生电压量输出。( 图a) • 动圈式绝对速度传感器:传感器壳体固定在被测振动物体上,当壳体以 大于某一频率点的频率振动时,线圈芯轴系统(质量大,惯性力大)相 对于大地是静止的,因此壳体磁钢与线圈之间的相对速度就是被测物体 的绝对速度,线圈以这一速度切割磁力线,产生的电动势的大小即反应 了被测对象的运动速度。 ( 图b) • 变磁阻式电动式传感器:探头的磁极与振动物体间有一气隙,当振动物 体振动时,气隙变化引起磁路磁阻改变,线圈磁通发生变化,输出电动 势与振幅成比例。 ( 图c) 【演示】
发电型:被测量使传感器产生电动势、电流、电荷,可直接接入放 大器或记录仪器,所以又称为有源型,一般不需外加电源,如热电偶、 压电型传感器等。但由于能量有限,通常还要接放大器。
2020/6/7
发电型
参量型
4
传感器作用及分类
5.1.3 传感器工作原理与标定
任何一种传感器其工作原理都是基于某一种物理现象或化学现象。这 种现象抽象成若干个物理量(其中有一个电量)按一定规律相互影响,可 用一个数学公式来表示(建立一个数学模型),即:
e wBlv
其中,w-线圈匝数,B-磁感应 强度,l-单匝线圈有效长度,v -线圈与磁场的相对速度。
b. 线圈在磁场中作旋转运动
e kWBA
其中,k-与结构有关的系数 (<1),A-线圈的截面积, ω-角速度。
2020/6/7
发电型传感器
7
发电型传感器
②变磁阻式工作原理:一般通过改变传感器到被测对象间的气隙厚 度等方法来改变磁路磁阻。
dt
dt
dt R
两边进行拉普拉斯变换有:
SQ(s) CSV (s) 1 V (s) R
1 H (s) V (s) RS C
Q(s) RCS 1 1 1 RSC
H ( j) 1/ C
1
1
jcR
当输入 F(t) F0 sin0t 时
Байду номын сангаас
2020/6/7
15
发电型传感器
Q(t) DF0 sin0t Q0 sin0t
2020/6/7
8
发电型传感器
2020/6/7
•( 图a)
•( 图b)
•( 图c)
9
发电型传感器
2020/6/7
10
发电型传感器
② 转速传感器及转速测量
测速发电机:工作原理与发电机原理相同。
e kWBA
开磁路转速传感器(如图所示): 齿轮旋转时,探头与齿轮间气隙发 生变化,引起磁阻改变。线圈中的 感应电动势的频率与转速的关系式 为
不同的材料虽然压电机理不同,但最终产生的效应是等同的。
2020/6/7
13
发电型传感器
2.压电变换元件的应用特性: 压电变换元件相当于电荷源,其等效电路为:
C C0 Ci
R R0 // Ri
电路方程: Q(t) Cv i.dt
2020/6/7
14
发电型传感器
dQ(t) C dv i C dv v
输出: u(t) Q0 | H ( j0 ) | sin[0t (0 )]
其幅值: V0
Q0 / C
1 (CR10 )2
DF0 / C
1 (CR10 )2
可见,若想使输出信号保持一定的幅值,ω有一个范围,或者说
RC ? 1 时
通常为电量的 y=f(x1,x2,……,xn) (通常为非电量) 如: R=ρL/A 就描述了四个物理量间的关系。
如果我们能够让被测量影响某一个参数,而通过该参数与另一个电参数 的变化来反映被测量的大小,那么一个传感器就制造出来了。所以一种传 感器的设计、研制都要基于某种物理效应,在此基础上再设计出敏感部分 的结构以及变换部分的结构。我们在下面介绍的各种传感器都是从某一基 本的物理概念或原理出发,根据物理量间的关系来分析相应的传感器结构 及特点。
e w d
dt
电动势与磁通变化量有关。导致磁通变化的原因有多种,当线圈的匝 数及磁感应强度不变时,磁通的变化率与磁路的磁阻及线圈在磁场中的运 动速度有关。根据利用被测量改变线圈速度或磁阻的方式,可将电动式传 感器分成动圈式和变磁阻式。
2020/6/7
6
① 动圈式工作原理
a. 线圈在磁场中作直线运动
传感器在使用之前一般要进行标定,即确定输入与输出的关系,通常 由于制作误差和原理的理想化,使输入输出不能严格满足理想的物理公式。 所以,只有给定已知输入,确定输入、输出二者间关系后才能使用。
2020/6/7
5
发电型传感器
5.2 发电型传感器简介 5.2.1 电动式传感器(磁电式传感器)
1. 工作原理:根据电磁感应定理,一个匝数为w的线圈,当穿过该线圈的 磁通Φ发生变化时,其感应电动势的大小为:
f=N×n
其中,f:感应电势频率 N:齿数 n:转速【演示】
2020/6/7
11
发电型传感器
2020/6/7
12
发电型传感器
5.2.2 压电式传感器
1.工作原理 压电效应,某些材料,如石英晶体和钛酸钡陶瓷,在某一方向受 力时,其表面产生电荷,电荷量的改变与受力情况有关,即
Q DF D:压电系数;F:施加力的大小
测试技术基础
机械工程及自动化学院
2020/6/7
1
检测技术 第五章 常用传感器
5.1 传感器作用及分类 5.2 发电型传感器 5.3 参量型传感器
2020/6/7
2
传感器作用及分类
5.1 传感器的作用与分类 5.1.1 传感器的作用
传感器是控制系统中的第一个环节,它具有两个作用: 1. 敏感作用:感受物理量的变化,以完成对被测信号的拾取。 2. 变换作用:将非电量变换成电量。 对应这两个作用,传感器一般由两部分 组成,即敏感元件与变换元件,二者有 时很容易分开,有时合二为一。
相关文档
最新文档