材料力学截面图形的几何性质
材料力学 截面的几何性质
![材料力学 截面的几何性质](https://img.taocdn.com/s3/m/234a5dc549649b6648d747e0.png)
录
附录Ⅰ
§Ⅰ-1 §Ⅰ-2 §Ⅰ-3 §Ⅰ-4
截面的几何性质
截面的静矩和形心位置 惯性矩、惯性积和惯性半径 平行移轴公式 转轴公式 主惯性矩
静矩与形心
一、静矩的定义(与力矩类似)(也称面积矩或一次矩) 截面对z轴的静矩: y 截面对y轴的静矩:
Sz Sy
dS
A A
z
ydA
A
3
z 100
I
C
CI
a1 a2
I y I yI I yII 443 10 768 10
4
4
y
1211 104 mm 4
由于z轴是对称轴 ,故图形对两轴的惯性积为
140 103.3
CII
II
y
I yz 0
20
I z y 2 dA 2h y 2 bdy
3
附
录
组合截面形心
组合截面:如果截面的图形是由几个简单图形(如矩形、圆形 等)组成的,这种截面称为组合截面。 组合截面对X、Y轴静矩的计算:
S x Ai yci Ayc
i
n
S y Ai xci Axc
i
n
Ai——任一简单图形的面积; xci,yci——任一简单图形的形心坐标; n——全部简单图形的个数。 确定组合截面形心位置的公式:
C H/2
X
1 h 1 h yc 1 y1 ( y1 ) ( y1 ) 2 2 2 2
h 1 h S x Ayc 1 b( y 1 ) ( y 1 ) 2 2 2
b
b 2 2 (h 4y1 ) 8
例2、图形对 x 轴的静矩为
材料力学 截面图形几何性质
![材料力学 截面图形几何性质](https://img.taocdn.com/s3/m/a1c9b069af45b307e87197ef.png)
(此为平行移轴公式 )
注意: •式中的a、b代表坐标值,有时可能取负值。
•等号右边各首项为相对于形心轴的量。
9
材料力学Ⅰ电子教案
2.组合截面的惯性矩和惯性积
根据惯性矩和惯性积的定义易得组合截面对于某 轴的惯性矩(或惯性积)等于其各组成部分对于同一 轴的惯性矩(或惯性积)之和:
n
Ix
i1
I
xi
n
Iy
1
材料力学Ⅰ电子教案
二、形心公式:
yc
Sz A
; zc
Sy A
.
三、组合截面的静矩:n个简单图形组成的截面,其静矩为:
n
Sz Ai yci; i 1
n
S y Ai zci; i 1
n
四、组合截面形心公式:
Ai yci
yc
i 1 n
;
Ai
i 1
例5-1 求图示T形截面形心位置。
n
Ai zci
(20010) (5 150) 2 (10 300) 0 20010 2 (10 300)
38.8 mm
由于对称知: xc=0
3
y y1 200
C O
10 150 yC x1
x
目录
材料力学Ⅰ电子教案
求图示半径为r的半圆形对其直径轴x的静矩及其形心坐标yC。
解:过圆心O作与x轴垂直的y轴,在距x任意高度y处取一个与x 轴平行的窄条,
y
d A 2 r2 y2 • d y
dA
dy
yC
所以
Sx
A
yd
A
r
0
y( 2
r2 y2 )d y 2 r3 3
Cr
y
材料力学截面的几何性质课件
![材料力学截面的几何性质课件](https://img.taocdn.com/s3/m/bb67763a178884868762caaedd3383c4bb4cb493.png)
目录
• 截面的基本性质 • 截面的二次矩 • 截面的抗弯截面系数 • 截面的抗扭截面系数 • 材料力学截面的应用
01 截面的基本性质
截面的面积
面积
截面面积是二维平面图形被截后,与 原图形相比增加的面积。对于矩形、 圆形、三角形等简单形状,截面面积 可以通过几何公式直接计算。
的刚度和稳定性。
截面惯性矩
截面惯性矩是衡量截面抗弯刚度 的指标,对于承受弯矩的构件, 选择具有较大惯性矩的截面可以
减少挠度和转角。
截面抵抗矩
截面抵抗矩是衡量截面抗剪切能 力的指标,对于承受剪力的构件 ,选择具有较大抵抗矩的截面可
以增加构件的承载能力。
工程设计中的应用
桥梁设计
在桥梁设计中,需要考虑梁的截面尺寸、材料类型和截面形式等 因素,以确保桥梁具有足够的强度和刚、单位等因素,以确保数 据处理结果的准确性和可靠性。
1.谢谢聆 听
根据微面积和其对应的主 轴方向余弦,计算出截面 二次矩。
主轴的确定
根据计算出的惯性矩,找 出三个主轴的方向余弦和 角度。
实例分析
圆截面
圆截面的二次矩为常数, 且各主轴与截面垂直,说 明圆截面在弯曲时没有翘 曲的趋势。
矩形截面
矩形截面的二次矩与宽度 的平方成正比,说明矩形 截面有较好的抗弯能力。
工字形截面
工字形截面的二次矩比同 样面积的矩形截面小,但 抗弯能力仍高于同样重量 的实心杆件。
03 截面的抗弯截面系数
定义与性质
01
抗弯截面系数是截面对其轴线的惯性矩除以截面的面积 得到的数值,用来度量截面在弯矩作用下抵抗变形的能 力。
02
不同形状的截面有不同的抗弯截面系数,如圆截面为1 ,矩形截面为1.13,工字形截面为1.44等。
第4章(截面的几何性质)重要知识点总结(材料力学)
![第4章(截面的几何性质)重要知识点总结(材料力学)](https://img.taocdn.com/s3/m/79d70d33f01dc281e53af074.png)
【陆工总结材料力学考试重点】之(第4章)截面的几何性质1、静矩与形心?答:图形几何形状的中心称为形心。
对于图示的任意平面图形,任取一微元dA,设其坐标为(y,z),则定义:平面图形对于z轴的静矩:S z=∫ydAA平面图形对于y轴的静矩:S y=∫zdAA定义平面图形对于坐标轴(y,z)的惯性积:I yz=∫yzdAA根据积分的性质可知:当选取的y、z轴不一样时,则惯性积I yz也不一样。
若对于某对坐标轴y0、z0使得I y=0,则该对坐标轴y0、z0称为主轴,过0z0形心的主轴称为形心主轴(注:求主轴非常麻烦,大家只需记住以下结论)。
结论:1)圆截面的任何两条过圆心的且互相垂直的直径都是形心主轴;2)矩形截面的两条对称轴就是形心主轴;3)若截面有2跟对称轴,此两轴即为形心主轴,若截面只有一根对称轴,则该轴必为形心主轴,令一形心主轴为通过形心且与该对称轴垂直的轴。
2、简单截面的惯性矩与极惯性矩?答:(1)惯性矩与极惯性矩的定义如图,任意图形的面积为A,在其上任取微元dA,坐标为(y,z),则定义:平面图形对于z轴的惯性矩为:I z=∫y2dAA平面图形对于y轴的惯性矩为:I y=∫z2dAA平面图形对坐标原点O点的极惯性矩为:I p=∫ρ2dAA式中:ρ为该微元dA到原点的距离,由图可知:y2+z2=ρ2则:I p=I y+I z。
(2)常用截面的惯性矩和极惯性矩①实心圆截面(注:直径为d,对于形心主轴(即y、z轴过圆心O))I p=πd432,又:I p=I y+I z,故:I y=I z=πd464②空心圆截面(注:外径为D,内径为d,空心比α=dD,对于形心主轴)I p=πD432(1−α4),又:I p=I y+I z,故:I y=I z=πD464(1−α4)③矩形截面(注:设z轴方向宽度为b,y轴方向高度为h,对于形心主轴)I y=ℎb312I z=bℎ3123、组合截面的惯性矩与平行移轴公式?答:(1)组合截面惯性矩的计算对于图所示的组合截面(从圆截面中挖掉一个正方形后剩下的阴影部分),则根据负面积法求组合截面对轴的惯性矩:Iz组=Iz圆−Iz矩(2)惯性矩的平行移轴公式I z1=I z+Aa2式中:A为平面图形的面积,a为z轴与z1轴之间的距离。
第26讲第五章 材料力学(九)
![第26讲第五章 材料力学(九)](https://img.taocdn.com/s3/m/c90d66110029bd64793e2c97.png)
第五节截面图形的几何性质一、静矩与形心对图所示截面静矩的量纲为长度的三次方。
对于由几个简单图形组成的组合截面形心坐标显然,若z轴过形心,y c=0,则有S z=0,反之亦然:若y轴过形心,z c=0,则有S y=0,反之亦然。
【真题解析】5—30(2007年真题)图所示矩形截面,m-m线以上部分和以下部分对形心轴z的两个静矩( )。
(A)绝对值相等,正负号相同(B)绝对值相等,正负号不同(c)绝对值不等,正负号相同(D)绝对值不等,正负号不同解:根据静矩定义,图示矩形截面的静矩等于m-m线以上部分和以下部分静矩之和,即,又由于z轴是形心轴,Sz=0,故答案:(B)二、惯性矩、惯性半径、极惯性矩、惯性积对图所示截面,对z轴和y轴的惯性矩为惯性矩总是正值,其量纲为长度的四次方,也可写成i z、i y称为截面对z、y轴的惯性半径,其量纲为长度的一次方。
截面对0点的极惯性矩为因=y2+z2,故有I p=I z+I y,显然I p也恒为正值,其量纲为长度的四次方。
截面对y、z轴的惯性积为I yz可以为正值,也可以为负值,也可以是零,其量纲为长度的四次方。
若y、z两坐标轴中有一个为截面的对称轴,则其惯性积I yz恒等于零。
例6图(a)、(b)所示的两截面,其惯性矩关系应为哪一种?A.(I y)1>(I y)2,(I z)1=(I z)2B. (I y)1=(I y)2, (I z)1>(I z)2C.(I y)1=(I y)2,(I z)1<(I z)2D. (I y)1<(I y)2,(I z)1=(I z)2解:两截面面积相同,但图 (a)截面分布离z轴较远,故I z较大。
对y轴惯性矩相同。
答案:B2016—63真题面积相同的两个如图所示,对各自水平形心轴 z 的惯性矩之间的关系为()。
提示:图( a )与图( b )面积相同,面积分布的位置到 z 轴的距离也相同,故惯性矩I za=I zb而图( c )虽然面积与( a )、( b )相同,但是其面积分布的位置到 z 轴的距离小,所以惯性矩I zc也小。
材料力学截面的几何性质课件
![材料力学截面的几何性质课件](https://img.taocdn.com/s3/m/955661a9534de518964bcf84b9d528ea81c72f86.png)
截面的对称性
截面可以是对称的或非对称的。
对称截面是指沿中心线对称的截面,如圆形、正 方形等。
非对称截面是指不沿中心线对称的截面,如椭圆 形、三角形等。
截面的重心
重心是物体质量的集中点,对于规则形状的物体,重心位置可以通过几何计算得 到。
对于截面,重心是截面质量的集中点,其位置可以通过计算截面的面积和质量得 到。
材料力学的发展历程
总结词
材料力学的发展经历了多个阶段,从最早的实验观察到现代的理论建模和计算机模拟。
详细描述
最初的材料力学研究主要基于实验观察和经验总结,随着数学和物理学的发展,人们开始建立更精确 的理论模型,并使用计算机进行模拟和分析。这些理论模型和方法在解决复杂工程问题方面发挥了重 要作用。
02
意义
主惯性矩是衡量截面抗弯和抗扭能力的一个重要参数,其 值越大,抗弯和抗扭能力越强。
04
材料力学截面的弯曲性质
弯曲的定义
弯曲是指物体在力的作用下发 生形变,其中物体的一部分相 对于另一部分发生转动。
弯曲变形通常发生在梁、柱等 细长结构中,其中截面上的应 力分布不均匀。
弯曲变形可以通过施加外力或 重力等作用力引起,也可以由 热膨胀、收缩等因素引起。
扭转的变形能
1 2
变形能
物体在受到外力作用时,由于发生变形而储存的 能量称为变形能。
扭转变形能
物体在扭转变形时,由于变形而储存的能量称为 扭转变形能。
3
扭转变形能的计算
扭转变形能可以通过计算截面上的剪切应变和剪 切胡克常数来计算。
扭转的稳定性
01
稳定性
在材料力学中,稳定性是指物体在外力作用下保持其平衡状态的能力。
剪切变形能
材料力学 3 截面的几何性质
![材料力学 3 截面的几何性质](https://img.taocdn.com/s3/m/629a7429647d27284b735115.png)
大小:正,负,0。
y
量纲:[长度]3
二、截面的形心 几何形心=等厚均质薄片重心 z 形心坐标公式:
yc
C
zc
yc zc
y dA A z dA
A
A
Sz A Sy A
O
A
y
S y A zc
S z A yc
结论: 若 S z 0 yc 0 z 轴通过形心。反之,亦成立。
转轴公式
sin 2 I yz cos2
I y1 I z1 I y I z
二、形心主轴和形心主惯性矩 1、主轴和主惯性矩:坐标旋转到= 0 时,
Ix y
0 0
Ix I y 2
sin20 I xy cos 20 0
tan 2 0
2 I xy Ix Iy
z1
I yzc y1 z1 dA
A
a
O
z
yc
I z A y 2dA A (b y1 )2 dA
2 A ( y1 2by1 b 2 )dA
y
zc 为形心轴, S zc Ayc 0
I zc 2bS zc b 2 A
I zc b 2 A
2
a
2677710 .52 cm 4
平 衡 项 惯 性 矩 6686481 . 857.8 单 个 形 心 惯 性 矩 779.53
组合截面可以大大提高截面惯性矩。
I y Iz 2 cos2 I yz sin 2 cos2 I yz sin 2
I y Iz 2
I y Iz 2
当=0时,
dI y1 d
材料力学第四章截面的几何性质
![材料力学第四章截面的几何性质](https://img.taocdn.com/s3/m/48a824e8b1717fd5360cba1aa8114431b90d8ece.png)
在材料力学中,剪切中心是剪切应力作用下截面 发生剪切变形的点。通过计算截面的形心,可以 近似确定剪切中心的位置。
确定截面的质心
质心是截面质量的中心点,通过计算截面的形心, 可以近似确定质心的位置,这对于动力学分析和 稳定性分析非常重要。
03 主轴和主惯性矩
主轴的定义与计算
主轴
截面上的各点处到截面形心距离最大的方向。
预测物体的变形和破坏
通过分析截面的几何性质,可以预测 物体在不同受力条件下的变形和破坏 行为,为工程实践提供指导。
02 截面的面积和形心
截面面积的定义与计算
截面面积的定义
截面面积是指通过截面边界轮廓 线围成的区域面积。
截面面积的计算
可以通过测量截面轮廓线的长度 ,然后使用公式计算面积。对于 不规则形状,可以使用微元法或 积分法计算。
截面几何性质的应用前景
随着科技的发展和工程需求的提高,截面几何性质在材料力学中的重要性将更加凸 显,其在航空航天、交通运输、建筑等领域的应用将更加广泛。
随着新型材料的不断涌现,截面几何性质的研究将有助于深入了解这些材料的力学 行为,为新型材料的优化和应用提供理论支持。
随着数值模拟和计算机技术的发展,截面几何性质的研究将更加精确和深入,有助 于提高工程结构的分析和设计水平。
在实际工程中,主轴和主惯性矩也是 进行有限元分析时的重要输入参数, 用于模拟结构的力学行为并优化设计。
在结构设计时,根据主轴和主惯性矩 可以合理地选择材料的类型和截面的 形状,以提高结构的刚度和稳定性。
04 极惯性矩和惯性积
极惯性矩的定义与计算
极惯性矩
截面对任意直径的极惯性矩等于截面 面积与该直径的平方的乘积。
截面是确定物体受力分布和变形程度 的关键因素,通过研究截面的几何性 质,可以深入了解物体的力学性能, 为工程设计和安全评估提供依据。
截面的几何性质—平行移轴公式(材料力学)
![截面的几何性质—平行移轴公式(材料力学)](https://img.taocdn.com/s3/m/9ad9de7ba22d7375a417866fb84ae45c3a35c214.png)
1、平行移轴公式
右图任意截面,zc、yc 轴为通过截面形心C的一对正交轴,z、y轴为分别与zc、yc 轴平行的轴,
两平行轴之间的距离分别为a和b。
根据定义,图形对zc、yc 轴的惯性矩和惯性积分别为
Izc yc2dA, I yc zc2dA, Izc yc yc zcdA
I zy
i 1
I yzi
Izi, Iyi
,Iyz i
----指第
i个简单截面对
y, z
轴的惯性矩,惯性积。
例题 求T形截面对其形心轴 zC 的惯性矩(单位为mm)。
解:将截面分成两个矩形截面。 截面的形心必在对称轴 y 上。
取过矩形2的形心且平行于底边的轴作为参考轴记作z轴。
A1
20140
2800mm2 ,
Iz c
I1 zc
I2 zc
7.68106
4.43106
12.11106 mm4
20 140
yc
20
1
a1 zc
y1 a2 yc z
2
100
a2A b2A
c
I zy I zc yc abA
上式即为惯性矩和惯性积的平行移轴公式。
y
z yc
b
zc
dA
C
yc
a y zc
O
z
2、组合截面的惯性矩、惯性积
组合截面对某轴的惯性矩、惯性积,等于各简单图形对此轴的惯性矩、惯性积的代数和。
n
Iz Iz i
i 1
n
I y I y
i1 i
n
ycdA a2
dA
A
A
A
A
A
A
材料力学截面图形的几何性质习题
![材料力学截面图形的几何性质习题](https://img.taocdn.com/s3/m/846fe5bee518964bce847c84.png)
附录Ⅰ 截面图形的几何性质
I-1 填空题: I-1(1) 当一个正方形的边长和一个圆形的直径相等时,两图形对 其形心轴的惯性矩之比应为 16 。
3π
I-1(2) 若已知图示平面图形对 A 轴的惯性矩为 27 bh3 ,则图 4
形对 C 轴的惯性矩为 3 bh3 ,对 D 轴的惯性矩为 9 bh3 。
y xC
−α
0
α
= 2 R3 sin α 。 3
x Oα C
R
A = R 2α 。
xC
=
2R3 sin α 3R 2α
=
2 R sinα 3α
。
题 I-4 图
I-5 如图的截面由一个直径为 D 的半圆和一个矩形组成。如果图形的形心位于半圆的水
平直径处,求矩形的高 a。
解:上半圆对形心轴的静矩:
S1
=
12
-1-
B
A
题 I-1(6) 图
工程力学习题解答
I-2 单选题:
I-2(1) 边长为 4a 的正方形,在如图位置挖去一个边长为 a
的小正方形,余下的阴影图形对坐标轴 x、y、x′、y′的静
矩分别为 S x , S y , S x′ , S y′ ,其中只有 C 是对的。
A. S x
=
a3 2
B. S y =
C. I x = I x′ + (a2 + a′2 ) A D. I x = I xC + (a + a′)2 A E. I x = I x′ + 2aa′A + a2 A F. I x = I x′ + 2aSx′ + a2 A
b′ C a′
材料力学 截面的几何性质
![材料力学 截面的几何性质](https://img.taocdn.com/s3/m/ea73ec0890c69ec3d5bb75de.png)
O1 O 2
O
x
O3
x 1
C
课堂练习
I.
&
任意图形,若对某一对正交坐标轴的惯性积为零, 则这一对坐标轴一定是该图形的( )。
B
A. 形心轴; B. 主轴 C. 主形心轴 D. 对称轴 在图示开口薄壁截面图形中,当( 为一对主轴。
y
)时,y-z轴始终保持
A. y轴不动,x轴平移; B. x轴不动,y轴平移; C. x轴不动,y轴任意移动;
y b C 1x C 2x O a x
æ 1 öæ 2 ö æ 1 öæ h ö = ç bh ÷ç h ÷ + ç ah ÷ç ÷ è 2 øè 3 ø è 2 øè 3 ø
h 2 = (a + 2 b ) 6
形心位置
h
x = 0
h 2 (a + 2 b ) h a + 2 b S x y = = பைடு நூலகம்· = 6 A h 3 a + b (a + b ) 2
主惯性矩:
图形对主轴的惯性矩,称主惯性矩
形心主轴:
过形心的主轴称为形心主轴
形心主矩:
图形对形心主轴的惯性矩称为形心主矩
课堂练习
I.
&
在下列关于平面图形的结论中,(
)是错误的。
A.图形的对称轴必定通过形心; B.图形两个对称轴的交点必为形心; C.图形对对称轴的静矩为零; D.使静矩为零的轴必为对称轴。 在平面图形的几何性质中,(
y
dA y
ü2、惯性矩和极惯矩永远为正,
惯性积可能为正、为负、为零。
x 1
ü3、任何平面图形对于通过其形
材料力学 附录 截面的几何性质
![材料力学 附录 截面的几何性质](https://img.taocdn.com/s3/m/4c080e29a58da0116d17491f.png)
(Properties of Plane Areas) 三、组合截面的静矩和形心 (The first moments ¢roid of a composite area)
由几个简单图形组成的截面称为组合截面.
截面各组成部分对于某一轴的静矩之代数和,等于该截 面对于同一轴的静矩.
(Properties of Plane Areas)
§1-1 截面的静矩和形心 (The first moment of the area & centroid of
an area)
一、静矩(The first moment of the area )
截面对 y , z 轴的静矩为
z
S y
zdA
A
Sz
ydA
A
dA z
静矩可正,可负,也可能等于零.
1
矩形 2
A2 10 80 800mm2
y2
10
80 2
50mm
z2 5mm
所以 y A1 y1 A2 y2 23mm A1 A2
z A1z1 A2z2 38mm A1 A2
y1
z1
2 z2
10
O y2
y
90
(Properties of Plane Areas)
方法2 用负面积法求解,图形分割及坐标如图(b)
yC , zC ̄ 过截面的形心 C 且与 y, z轴平行
的坐标轴(形心轴)
z
Iy , Iz , Iyz — 截面对 y, z 轴的惯性矩和惯性积.
zC
IyC , IzC , IyCzC ̄ 截面对形心轴 yC , zC的惯性矩
n
Ai zi
z
材料力学 第五版 i 截面的几何性质+习题答案
![材料力学 第五版 i 截面的几何性质+习题答案](https://img.taocdn.com/s3/m/2f3d6f926137ee06eff91883.png)
附录I 截面的几何性质 习题解[习题I-1] 试求图示各截面的阴影线面积对x 轴的静积。
(a )解:)(24000)1020()2040(3mm y A S c x =+⨯⨯=⋅=(b )解:)(42250265)6520(3mm y A S c x =⨯⨯=⋅= (c )解:)(280000)10150()20100(3mm y A S c x =-⨯⨯=⋅=(d )解:)(520000)20150()40100(3mm y A S c x =-⨯⨯=⋅=[习题I-2] 试积分方法求图示半圆形截面对x 轴的静矩,并确定其形心的坐标。
解:用两条半径线和两个同心圆截出一微分面积如图所示。
dx xd dA ⋅=)(θ;微分面积的纵坐标:θsin x y =;微分面积对x 轴的静矩为: θθθθθdxd x x dx xd y dx xd y dA dS x ⋅=⋅⋅=⋅⋅=⋅=sin sin )(2半圆对x 轴的静矩为:32)]0cos (cos [3]cos []3[sin 33003002r r x d dx x S r rx =--⋅=-⋅=⋅=⎰⎰πθθθππ因为c x y A S ⋅=,所以c y r r ⋅⋅=232132π π34ry c = [习题I-3] 试确定图示各图形的形心位置。
(a ) 解:习题I-3(a): 求门形截面的形心位置矩形 Li Bi Ai Yci AiYci Yc 离顶边上 400 20 8000 160 1280000 左 150 20 3000 75 225000 右150 20 3000 75 225000140001730000Ai=Li*Bi Yc=∑AiYci/∑Ai(b)解:(c)解:[习题I-4]试求图示四分之一圆形截面对于x轴和y轴的惯性矩x I、y I和惯性积xy I。
解:用两条半径线和两个同心圆截出一微分面积如图所示。
dx xd dA ⋅=)(θ;微分面积的纵坐标:θsin x y =;微分面积对x 轴的惯性矩为: θθθθθdxd x dx xd x dx xd y dA y dI x ⋅=⋅⋅=⋅==232222sin sin )(四分之一圆对x 轴的惯性矩为: ⎰⎰⎰-⋅==2/0042/02322cos 1]4[sin ππθθθθd x d dx x I r rx)]2(2cos 21[2142/02/04θθθππd d r ⎰⎰-⋅= }]2[sin 212{82/04πθπ-=r 164r ⋅=π由圆的对称性可知,四分之一圆对y 轴的惯性矩为:164r I I x y ⋅==π微分面积对x 轴、y 轴的惯性积为:xydA dI xy =8)42(21]42[21)(21444042222022r r r x x r dx x r x ydx xdx I r rx r rxy =-=-=-==⎰⎰⎰- [习题I-5] 图示直径为mm d 200=的圆形截面,在其上、下对称地切去两个高为mm 20=δ的弓形,试用积分法求余下阴影部分对其对称轴x 的惯性矩。
材料力学——7截面的几何性质
![材料力学——7截面的几何性质](https://img.taocdn.com/s3/m/42e8b96a9b6648d7c1c74642.png)
y1
x1
x y
dA y1
x1
x
I x I y I x I y I x1 cos2 I xy sin 2 2 2
I x I y I x I y I y1 cos2 I xy sin 2 2 2 I x I y I x1 y1 2 sin 2 I xy cos2
A
等于形心坐标
t A
A
A
A
x
dA
y
x
xi Ai x A (正负面积法公式) 累加式 : y yi Ai A
y
x
S y Ax Ai xi
S x Ay Ai yi
例1 试确定下图的形心。
10
y
120 C2 C1(0,0) C2(-35,60)
解 : 组合图形,用正负面积法解之。 1.用正面积法求解,图形分割及坐标
y 2d d yC O x1
解: ①建立坐标系如图。
②求形心位置。
x xC
b
xi Ai 0 0 x A A 2 d d y A i i y 2 4 2 0.177d A 2 d 3 d 4
③ 建立形心坐标系;求:IyC , IxC , I xCy
负面积 C2 C1
x A x A x x
i i
1
1
2
A2
A
A1 A2
x
5(70110 ) 20.3 1208070110
图(b)
2 惯性矩、惯性积、极惯性矩 一、惯性矩:(与转动惯量类似) 是面积与它到轴的距离的平方之积。
I x y dA
截面图形的几何性质-材料力学
![截面图形的几何性质-材料力学](https://img.taocdn.com/s3/m/e5e0a2ceed3a87c24028915f804d2b160a4e8668.png)
yC
Sz A
558000 9000
62
Sz Sz1 Sz2 120 40 20 140 30110 558000
A A1 A2 120 40 140 30 9000
120
I
CI
C
CII
II
y 30
参考轴
z 40
yC
zC 140
注意
① 由两块组成组合图形,其复合图形形心一定位于两个子图的形心连线上。 ② 组合图形形心计算公式也适用于负面积情况, 但要记住面积为负号。
z
I
C1 C
s
C2
II
b
y1 h
y
y2
t
典型例题
例3 已知组合截面尺寸t=20mm,h=140mm,b=100mm。试求截面图
形对形心轴 y 的惯性矩。
t
解: 由平行移轴定理
矩形1对y轴的惯性矩:
I (1) y
I y1
b12 A1
矩形2对y轴的惯性矩:
I (2) y
I y2
b22 A2
整个截面的惯性矩:
Iz
y 2 dA
A
h y2bdy 0
b
y3 3
/
h 0
bh3 3
y
h b
dy y
z
典型例题
例2 试求图示截面对形心轴zC轴的惯性矩。
IzC
y 2 dA
A
h
2 h
y2bdy
2
b
y3 3
h
/
2
h
2
bh3
12
I yC
z 2dA
A
y
yC
hb3 =
材料力学 07截面几何性质
![材料力学 07截面几何性质](https://img.taocdn.com/s3/m/6fe7c94e59eef8c75fbfb3d2.png)
第7章 截面的几何性质
§7–1 静矩和形心 §7–2 惯性矩、惯性积、惯性半径 §7–3 惯性矩和惯性积的平行移轴定理 §7–4 惯性矩和惯性积的转轴公式、
主惯性矩和主惯性积
§7-3 惯性矩和惯性积的平行移轴定理 1、平行移轴定理:(与转动惯量的平行移轴定理类似)
y
yC
x
dA
(3)惯性积的数值可正可负,也可能等于零。若一对坐标轴中有 一轴为图形的对称轴,则图形对这一对称轴的惯性积必等于零 。但图形对某一对坐标轴的惯性积为零,这一对坐标轴中并不 一定有图形的对称轴。
(4)组合图形对某一对坐标轴的惯性积,等于各组合图形对同一 坐标轴的惯性积之和,即
∑ I xy = I xyi
4、惯性半径:
I x = ix2 A
Iy
=
i
2 y
A
惯性半径的特征
⇒ ix = Ix A iy = Iy A
(1)、惯性半径是对某一坐标轴定义的。 (2)、惯性半径的单位为m。 (3)、惯性半径的数值恒为正值。
惯性半径是衡量截面图形对某一轴惯性矩大小的参照值。
• 静矩 • 极惯性矩 • 惯性矩
几何关系
(2) 惯性矩的单位为m4。
(3)极惯性矩和轴惯性矩的数值均为大于零的正值 。
(4)图形对某一点的极惯性矩的数值,恒等于图形对以该点为坐 标原点的任意一对正交坐标轴的轴惯性矩之和,即
∫ Iρ = ρ2dA=Ix+Iy A
(5)组合图形对某一点的极惯性矩或某一轴的轴惯性矩,分别等 于各组合图形对同一点的极惯性矩或同一轴惯性矩之和,即
圆轴扭转 弯曲梁
τ = Tρ IP
ϕ = Tl GI P
σ
材料力学-截面几何特性
![材料力学-截面几何特性](https://img.taocdn.com/s3/m/8ad605f86037ee06eff9aef8941ea76e59fa4a46.png)
I 0 xC 2 yC 2
IxC IxC1 A1 yc21 IxC2 A2 yc22 1104 mm4 1200mm2 (15mm)2 28.58mm4 700mm2 (25mm)2 100.33mm4
64
9 /2
Ix2 Ix2C A2 (a xc2 )2 28mm 4 (80mm )2 (100 17)2 8 3467mm4
组合截面对x轴的惯性矩为
I x I x1 2I x2 5333mm4 23467mm4 12270mm4
§I-4 惯性矩和惯性积的转轴公式 ·截面 的主惯性轴和主惯性矩
A
A ( yC b)2 dA
A ( yC2 2byC b2 )dA
I xC 2bSxC b2 A
Ix IxC 2bSxC b2 A
因为C为形心
SxC AyC 0
y
yC
x
dA
a
r
bC y
xC
x
I x I xC b2 A 同理:
I y I yC a2 A I xy I xC yC abA I p I pC (a2 b2 ) A
C1
80
x
图(b)
x
xi
Ai
x 1
A1x
2
A2
A
A1A2
409600 45 7700 19.7mm 9600 7700
y
yi Ai
y 1
A1
y
2
A2
A
A1 A2
609600 65 7700 39.7mm 9600 7700
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y yC
S y zdA
A
O
zC z
z
图形对 z 轴的静矩
S z ydA
A
静矩的单位:m3,cm3,mm3
2
4.1 截面的静矩与形心
2.形心的位置
yC
ydA
A
A
Sz zC A ,
zdA
A
A
Sy A
静矩的性质 (1)静矩与轴有关,可正可负可为零。 (2)若yC,zC坐标轴过形心,则有
S yC 0
S zC 0
A1 c1 A2 c2
Sy
(3)组合图形静矩可分块计算求代数和
S z S z1 S z 2 A1 yC1 A2 yC 2
(4)求形心
S z A1 yC1 A2 yC 2 yC A A
A1 zC1 A2 zC 2 zC A A
3
4.1 截面的静矩与形心
O
dy
z
I y z 2dA
b 2 b 2
3 b h 2 hz dz 12
b
因为z轴(或y轴)为对称轴,故惯性积 惯性矩与惯性积
例4 试计算图示圆形截面对O点的极惯性矩IP和对于其形心 轴(即直径轴)的惯性矩Iy和Iz。 解:建立如图所示坐标系,取图示微元dA,
y
I yz yzdA
A
dA
(1)惯性积与轴有关,可正可负可 为零。
(2)若 y , z 轴有一为图形的对称轴, 则 Iyz = 0。
y
性质
O
z
z
11
4.3 平行移轴公式 1.平行移轴公式
已知任意形状的截面(如图)的面积A以及对于形心轴xC 和yC的惯性矩 I xC,I yC 及惯性积 I x y ,现需导出该截面对于 C C 与形心轴xC , yC平行的x轴和y轴的惯性矩Ix,Iy和惯性积Ixy。
iy
Iy A
y
O
z
z
7
4.2 惯性矩与惯性积
例3 试计算图示矩形截面对于其对称轴(即形心轴)z和y 的惯性矩Iz和Iy,及其惯性积Iyz。 y
z dz
I z y dA
2 A
同理
A
h 2 h 2
3 bh by 2dy 12
h
y
解:取平行于z轴的狭长条作为面积元素, 则 dA bdy
y
d
dA 2π d
πd 4 2 2 I P dA (2π d ) A 32 由于圆截面对任意方向的直径轴都是对称的, 故
d 2 0
O
z
I y Iz
d
所以
I P πd 4 I y Iz 2 64
9
4.2 惯性矩与惯性积
矩形: b
圆形: d
空心圆形: D d z y
I xC 2a S xC a 2 A
注意到xC轴为形心轴,故上式中的静矩 S xC等于零,从而有
I x I xC a 2 A
13
4.3 平行移轴公式
I x I xC a 2 A
同理可得
I y I yC b2 A
I xy I xC yC abA
以上三式就是惯性矩和惯性积的平行移轴公式。需要
y
dA
I y z dA
2 A
y
I z y 2 dA
A
O
z
z
惯性矩的单位:m4,cm4,mm4
6
4.2 惯性矩与惯性积
图形对原点的 极惯性矩
I p 2dA ( y 2 z 2 )dA I z I y
A A
y
图形对z轴和y轴 惯性半径
dA
iz
IZ A
h
z
z
y
bh3 Iz 12 hb3 Iy 12
y
Iz Iy Ip
d 4
64
4
Iy Iz
D 4 d 4
64
D 4
64
d
(1 4 )
32
32
Ip
D 4
dD
10
(1 4 )
4.2 惯性矩与惯性积
2.惯性积
整个截面对于z、y两坐标轴的 惯性积
i 1
n
d2
y2
x
O x
y1 y
15
b
d1
h
4.3 平行移轴公式
例5 试求图a所示截面对
于x轴的惯性矩Ix ,对于y轴
dy
4
4.1 截面的静矩与形心
例2 试计算图示T型截面的形心位置。
60
将截面分为I、II两个矩形,建立 如图所示坐标系。 各矩形的面积和形心坐标如下:
y
C
yC
z C zC C z
A A 20mm 60mm=1200mm2 yC 50mm yC 10mm
y 20
于是:
4
截面图形的几何性质
4.1 截面的静矩与形心 4.2 惯性矩与惯性积 4.3 平行移轴公式 4.4 惯性矩和惯性积的转轴公式
4.5 截面的主惯性轴和主惯性矩
1
4.1 截面的静矩与形心
1.静矩 任意平面图形 A (例如杆的横截面) 建立 yz 坐标系(x轴为杆的轴线) 平面图形的形心C(yc,zc) 图形对 y 轴的静矩
yC Ay A
i i Ci
A yC A yC A A
1200mm2 10mm+1200mm2 50mm 30mm 2 2 1200mm 1200mm 5
60
20
解:zC=0,只需计算yC
z
yC
C
4.2 惯性矩与惯性积
1.惯性矩
图形对 y,z 轴的 轴惯性矩
例1 试计算图示三角形截面对于与其底边重合的z轴的静矩。
y
O b
y
z
b (y )
h
解: 取平行于x轴的狭长条,
b 因此 d A ( h y ) d y h
b 易求 b( y ) (h y ) h
所以对 x 轴的静矩为
S x A y d A 0
h
b bh2 (h y ) y d y h 6
截面的形心C在x,y坐标系内的坐标为
x b和y a。
12
4.3 平行移轴公式
因截面上的任一元素dA在x,y
坐标系内的坐标为
x xC b,
于是有
y yC a
2 I x y 2 d A yC a d A yC d A 2a yC d A a 2 d A 2 A A A A A
注意的是式中的a,b为坐标,有正负,应用惯性积平行移
轴公式时要特别注意。
14
4.3 平行移轴公式
2.组合截面的惯性矩及惯性积
若组合截面由几个部分组成,则组合截面对于x,y 两轴的惯性矩和惯性积分别为
I x I xi,
i 1
n
I y I yi,
i 1
n
I xy I xyi