高灵敏CdTe量子点探针的构建及与金属离子的作用

高灵敏CdTe量子点探针的构建及与金属离子的作用
高灵敏CdTe量子点探针的构建及与金属离子的作用

量子点qled深度解析

量子点QLED电视解析或成LED后又一背光革命 2014年12月04日 过去10年,液晶技术成为显示领域的唯一主宰,未来10年,被誉为次时代显示技术的OLED(Organic Light Emitting Diode,有机发光二极管)理应取缔液晶技术,成就一番霸业,就像当年液晶技术取缔体积庞大的CRT技术一样。然而,液晶技术并不愿坐以待毙,2015年将实现终极进化,如果您想知道什么才是液晶的“完美形态”,请不要错过这篇文章。 液晶是一种自身不能发光的物质,需借助要额外的光源才能工作,这一物理特性是无法改变的,因此液晶技术的“终极进化”自然需要从背光系统下手。液晶技术的背光系统主要经历了 CCFL(Cold Cathode Fluorescent Lamp,冷阴极荧光灯管)和 WLED(White Light Emitting Diode,白色发光二极管)两个阶段。 量子点QLED将液晶技术进化至“完美的终极形态”

2015年,液晶技术将迎来背光系统的“终极进化”——量子点QLED 技术,无论是性能还是功耗都有革命性的突破,然而,考虑到液晶技术先天物理特性完全处于劣势,量子点QLED背光极有可能是继CCFL 背光和WLED背光之后,液晶发展史上的最后一次革命,这也是我们将其定义为“终极进化”的原因。 2015年:三星将引领量子点QLED技术做强做大内幕可靠消息,电视领域的龙头老大,三星将会在2015年推出基于量子点QLED背光技术的液晶电视(意味着三星将无限期搁浅OLED电视计划),国产方面TCL最快年底就会上市量子点QLED电视产品,LG Display作为顶尖的液晶面板制造商,已经宣布量子点QLED 面板将会量产,此外还有京东方、华星光电等面板厂都会力挺量子

生物纳米探针构建哪家好

这是很多人比较关心的问题。纳米探针由信号组件与亲和组件构成,前者指分子或纳米粒子等成像对比剂或标记物,后者指配体或抗体等特异性分子,使其与成像靶点特异性结合,利用高成像技术获得分子信息,纳米探针结合治疗还可以实现靶向治疗一体化。先丰纳米作为专业的生物纳米探针构建厂家,下面就简单的介绍生物纳米探针构建服务。 一、纳米探针组成 纳米颗粒(信号组件)+分子探针(识别组件) 二、用于构建纳米探针的材料如下: 1.磁性纳米颗粒作为磁共振造影剂 2.半导体量子点作为光学造影剂 3.金纳米颗粒作为CT造影剂/拉曼探针/光声探针 4.微气泡作为超声造影剂等 三、案例: 1. 纳米颗粒表面修饰DNA探针的制备与表征。 2.金纳米笼的多模态靶向分子探针的制备与表征。 3.PEG化磁性纳米颗粒的诊疗一体化分子探针的制备与表征。 4.蛋白载体的多模态分子探针制备及肿瘤靶向成像研究。

如果想要了解更多关于纳米探针构建的内容,欢迎立即咨询先丰纳米。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

量子点的制备及特性分析

班级:物理1201班 姓名:吴为伟 学号:20121800121 时间:2014年7月1日 ——量子点的制备及特性分析 大学物理实验报告

课题意义: 量子点是一种准零维半导体纳米晶体,其三个维度的尺寸都在几到几十纳米,外观恰似一极小的点状物,其内部电子在各方向的运动都受到限制,可以产生类似于原子的分立能级。量子点具有量子尺寸效应、量子限域效应以及表面效应等特殊效应。量子尺寸效应是指半导体量子点的带隙相对于体材料发生蓝移,并且随着量子点尺寸的减小,蓝移量增大,在光学性质方面引起吸收和发射光谱的蓝移现象:而且,相对于体材料,量子点还具有吸收和发光效率高的优点。量子点的这些有益光学特性使其在生物荧光标记、太阳能电池、发光二极管、激光器、探测器、量子计算机等新型光电子器件方面都具有非常重要的应用前景,成为各国科研人员研究的热点,并在多个学科中引起很大的反响。 实验目的: 本课题实验要求通过有机液相法制备CdS量子点、以及对其吸收和荧光光谱的测量,了解量子点的生长过程、吸收和荧光光谱基本原理和特点,以及量子尺寸效应的基础知识。 实验器材: 实验仪器:量子点制备设备一套、分析天平、离心机、吸收谱仪和荧光谱仪等。 化学试剂:硫粉(S)、氧化镉(CdO)、油酸(OA)、十八碳烯(ODE)、甲醇、正己烷、高纯氩气(Ar)等。 实验原理: 有机液相法 即以有机溶液为介质,以具有某些特殊性质的无机物和有机物作为反应原料,在适当的化学反应条件下合成纳米晶材料的方法。通常这些反应物、中间产物、生成物都是对水、空气敏感,在水溶液中不能稳定存在。最常用的方式是在无水无氧条件下的有机溶剂中进行的化学反应。通过改变反应温度、时间、反应物浓度、配体种类、含量等参数,可以制备出具有不同尺寸的纳米晶体。该方法制备的纳米晶体在尺寸和形貌上通常具有很好的单分散性,纳米晶质量高;而且,由于反应是在有机介质中进行,生成的纳米晶在有机溶剂中具有良好的分散性,非常有利于实际应用。 液相法生长纳米晶一般包括三个阶段:成核过程、生长过程和熟化过程。当溶质的量高于溶解度时,溶液过饱和,晶体就会从液体中析出,形成晶核,这就是成核过程。晶核的数量和成核速度是由溶液的过饱和度决定的。溶质从饱和溶液中运输到晶体表面,并按照晶体的结构重排,这就是生长过程。该过程主要是

量子点光学传感器的研究进展.

量子点光学传感器的研究进展 * 来守军 (重庆三峡学院化学与环境工程学院,重庆404000 摘要分别从荧光转换传感器、荧光共振能量传感器、磷光转换传感器和定位传感器等方面综述了量子点光学传感器的发生机理及其在测定金属离子、阴离子、小分子、共振能量转移体系以及磷光材料、固态材料方面的应用。最后介绍了量子点光学传感器存在的问题和发展趋势。 关键词量子点光学传感器 Research Development of Opt ical Sensor Based on Q uant um Dots LAI Shoujun (Depa rtment of Chem istry and Env ir onmental Eng ineering,Cho ng qing T hr ee G or ge U niver sity,Cho ng qing 404000Abstract T he r esear ch dev elopment o f the o pt ical sensor based o n quantum do ts is rev iewed f rom four sect ions,which are fluo rescence -based transduction,fluorescence resonance energ y -tr ansfer -based senso rs,phospho rescence transduction,and immobilizatio n techniques,and it s applications are also rev iewed.T he exist ing pro blems and develo p -ments trend of the optical senso r based o n quantum do ts are intro duced. Key words quantum do ts,optical,senso r *重庆市教育委员会科学技术研究项目资助(KJ081102 来守军:男,1977年生,讲师,博士研究生,主要从事量子点传感器方面的研究 T el:023-******** E -mail:laishj04@https://www.360docs.net/doc/7116805677.html,

金纳米探针

【摘要】由于金纳米粒子(AuNPs)具有与大小、形状和聚集程度相关的物理和化学特性,被广泛应用于各种生物分析和生物医学检测技术中,并发展成具有高选择性、高灵敏度的生物分析检测手段。以AuNPs为探针的分析方法通常具有简单、快速、灵敏度高的优点,并能应用于实际样品检测. 【关键词】金纳米粒子;探针;合成与修饰; 1 引言 纳米技术与化学、生物学、物理学和医学等领域的结合,对分析科学和生命科学领域的超灵敏检测和成像方法的发展起着越来越重要的 作用。由于AuNPs具有独特的光学性质(表面等离子体吸收和共振光散射)、易进行表面修饰以及良好的生物相容性(通常认为裸AuNPs 是无生物毒性的,而修饰后的AuNPs的生物毒性由其配体决定),因此功能化AuNPs的应用领域不断被拓宽,特别是其在生物分析和生物医药等领域的应用引起了人们广泛关注[2,3]。本文综述了生物分子修饰的AuNPs探针的合成及其在检测金属离子、小分子、DNA、蛋白质和细胞内分析等方面的新进展,以若干应用实例突显一些技术突破及发展趋势。 2 金纳米粒子的合成、稳定性和功能化 2.1 金纳米粒子的合成方法 金纳米粒子的制备方法可分为化学法和物理法。化学法是以金的化合物为原料,在还原反应生成金纳米粒子时控制粒子的生长,使其维持纳米尺度。化学合成法包括氧化还原法、电化学法、晶种法、模板法、

微乳液法、微波合成法和光化学法等,其中最具代表性并被广泛应用的有:(1)Turkevich-Frens法,即在100 ℃下,通过改变还原剂(柠檬酸钠)和三价金的化合物(氯金酸或氯金酸钠)的比例来控制AuNPs 粒径的大小,从而获得粒径在10~60 nm范围内且分散性较好的AuNPs。该方法制备程序简单,且包裹在AuNPs表面的柠檬酸根容易被其它配体置换(如巯基修饰的DNA等);(2)Brust-Schiffrin 法,即在两相(液/液)体系或单相体系中,以四正辛基溴化铵(TOAB)为相转移剂,将三价金的化合物(氯金酸或氯金酸钠)转移到有机相中,以烷基硫醇为稳定剂,NaBH4为还原剂,制备粒径为1~8 nm的AuNPs;硫醇/金盐的比例越大、加入还原剂速度越快,冷却溶液可以制得尺寸更小和单分散性更好的粒子,进一步通过配体交换反应改变AuNPs表面的配体而实现其功能化;(3)聚合物保护法:通常以含有聚乙二醇、硫醇或硫醚基团的聚合物为配体,以NaBH4为还原剂,制备水溶性或具有疏水性的粒径小于10 nm的AuNPs。聚合物稳定剂决定纳米粒子的溶解性;例如,采用硫醚或硫醇修饰的聚合物配体(烷基硫醚终端修饰的聚甲基丙烯酸等)一步法合成了具有高分散性的粒径小于5 nm的AuNPs,粒子的大小和分散性可以通过改变聚合物的结构、浓度和配体上能与金属结合的基团个数来控制,并且可以将粒径为1.1~1.7 nm的无荧光纳米粒子转变为荧光纳米粒子。物理法是利用各种技术将块状固体金分散为金纳米粒子,包括真空沉积法、电分散法、激光消融法等[12]。物理法容易控制AuNPs的形状并能获得图案化的AuNPs的阵列,但通常需要特殊的设备和技术,

量子点作为荧光探针在生物医学领域的研究进展

Hans Journal of Nanotechnology纳米技术, 2016, 6(1), 9-13 Published Online February 2016 in Hans. https://www.360docs.net/doc/7116805677.html,/journal/nat https://www.360docs.net/doc/7116805677.html,/10.12677/nat.2016.61002 Advances of Quantum Dots as Fluorescent Probes in Biological and Medical Fields Guolong Song, Xiangdong Kong* Institute of Biomaterials and Marine Biological Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou Zhejiang Received: Jan. 27th, 2016; accepted: Feb. 13th, 2016; published: Feb. 16th, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/7116805677.html,/licenses/by/4.0/ Abstract Quantum dots (QDs), three-dimensional (3-D) nanocrystals, possess a great deal of unique optical performances, such as wide excitation wavelength, narrow and symmetric emission wavelength, high quantum yield, long fluorescence lifespan, stable optical property. QDs can be used as fluo-rescent probes to label different components in biosystem, which contains tissues, cells, molecules and living animals imaging. A review on the advances of QDs as fluorescent probes in Biological and Medical fields is given in the paper. Keywords Quantum Dots, Biological Probes, In Vivo Imaging 量子点作为荧光探针在生物医学领域的 研究进展 宋国龙,孔祥东* 浙江理工大学生命科学学院,生物材料与海洋生物资源研究所,浙江杭州 收稿日期:2016年1月27日;录用日期:2016年2月13日;发布日期:2016年2月16日 *通讯作者。

1.3.3 功能化纳米探针在生物传感器、细胞分析中的应用

功能化纳米探针在生物传感器、细胞分析中的应用 1 功能化纳米探针在生物传感器中的应用 伴随着纳米技术的迅速发展,各种各样的组成、尺寸、大小、维度及形状的纳米材料被可控的修饰上不同的生物分子,用于发展特殊性质的纳米探针。生物传感方法己经成为发展速度较快的方法,由于其具有灵敏度高、响应速度快、和操作简易等特点。传感的原理基本上都是通过将纳米探针,的识别单元与待测物质结合过程转变为产生的光学、电化学、Roman 等信号的变化。 一些生物小分子如半胱胺酸、谷胱甘肽等在可逆氧化还原、细胞的解毒及代谢中起到了重要的作用,多巴胺等神经递质是人中枢神经系统中不可缺少的环节,AP肽与阿尔茨海默病(AD)密切相关,这些小分子的检测有利于一些疾病的早期诊断和监控。 1.1 荧光纳米探针用于蛋白质的分析 一般都是利用功能化的荧光纳米材枓与另一种生物分子修饰的有机物或者纳米材料先通过能量转移使荧光猝灭,当目标物引入时,由于和修饰的生物分子更强的作用力,使得猝灭的部分离开荧光性的纳米材料表面,纳米材料的荧光性质发生改变检测到目标蛋白。这种方法己经具有普适性,应用在蛋白或者其他生物大分子的分析检测中。 1.2 对核酸的分析检测 发展核酸传感器两个基本的目标是要求所构建的传感器具有高的灵敏度,而且具有高的特异性。性能优良的核酸传感器要能够在低浓度的情况下对核酸进行检测,并具有区别单个碱基错配的能力。在选择性方面,分子信标和肽核酸(PNA)具有很强的优势。相对于线性分子探针,分子倍标杂交存在一个动力学竞争过程,具有更好的选择性和区别单个碱基错配能力。为了实现高灵敏的检测,引入新的信号放大技术尤为重要。 纳米材料由于大的比表面积,可以提供更多的生物分子识别位点;并且可以通过改变尺寸、形状、组成而改变其物理化学性质;同时稳定性高具有较好的生物相容性、结合生物分子的能力等特点。伴随着纳米技术的迅速发展,各种各样的组成、尺寸、大小、维度及形状的纳米材料被可控的修饰上不同的生物分子,用于发展特殊性质的纳米探针,进行信号放大。 金纳米颗粒(AuNPs)是最常见的用于核酸传感分析中的载体,因为它可以很方便的通过巯基或氨基官能团与核酸或蛋白质等大分子进行功能化后得到生物相容性好的纳米复合物探针。利用DNA碱基互补配对原则,可控性地在空间上组装纳米金,AuNPs-DNA复合物体系对DNA检测是近二十几年来发展起来的一种简便、快速的传感方法。 Mirkin课题组在1996年首次报道了DNA修饰纳米金(DNA-AuNPs)这种新型的生物纳

实验五-CdTe量子点的制备及表征

CdTe量子点的制备及表征 一、实验目的 1. 掌握在水相中制备CdTe量子点的方法。 2. 熟悉CdTe量子点的表征手段。 二、实验原理 量子点(quantum dot),又称为纳米晶,是一种由II-VI族或III-V族元素组成的纳米颗粒。量子点的粒径一般介于1~100 nm之间,由于电子和空穴被量子限域,连续的能带结构变成具有分子特性的分立能级结构,受激后可以发射荧光。与传统的荧光染料相比,量子点具有以下无可比拟的荧光特性:(1)量子点的激发光波长范围很宽;(2)量子点具有可精确调谐的发射波长;(3)量子点具有较大的斯托克斯位移和狭窄对称的荧光谱峰; (4) 具有强的抗光漂白的特性。近年来,由于具有独特的光学和电学性质,而被广泛用于发光二极管、太阳能电池、生物标记与生物成像等领域。 本实验采用一锅煮的合成路线,采用空气稳定的亚碲酸钠(Na2TeO3)作为Te 源,二水合氯化镉,半胱氨酸,二水合柠檬酸三钠为原料,不需要使用Schlenk line 真空线,反应生成CdTe量子点。 在反应过程中Te 源的选择是最关键的,在这里,我们选用了空气稳定的亚碲酸钠,避免了合成容易被空气中的氧气氧化的H2Te或NaHTe,反应按照下述方程式来进行: 4TeO32- + 3BH4-= 4Te2- + 3BO2- + 6H2O CdL + Te2- =CdTe + L ; L=cysteine 在这个反应里,亚碲酸离子(TeO32-)首先被强还原性的硼氢化钠还原成碲离子(Te2-),Te2-进一步和Cd2+,反应生成CdTe。 三、仪器与试剂 试剂及玻璃器皿:亚碲酸钠,硼氢化钠,二水合氯化镉,L-半胱氨酸,二水合柠檬酸三钠购自上海国药试剂,实验用水为去离子水。另需,分析电子天平、三口颈瓶、冷凝管、温度计、移液管、滴管等玻璃器皿,冷凝管回流装置。 仪器:移液枪2支、一次性乳胶手套两包、紫外可见吸收光谱使用国产光谱仪。荧光光谱使用岛津荧光光谱仪。

半导体量子点及其应用概述_李世国答辩

科技信息2011年第29期 SCIENCE&TECHNOLOGY INFORMATION 0引言 近年来半导体材料科学主要朝两个方向发展:一方面是不断探索扩展新的半导体材料,即所谓材料工程;另一方面是逐步从高维到低维深入研究己知半导体材料体系,这就是能带工程。半导体量子点就是通过改变其尺寸实现能级的改变,达到应用的目的,这就是半导体量子点能带工程。半导体量子点是由少量原子组成的准零维纳米量子结构,原子数目通常在几个到几百个之间,三个维度的尺寸都小于100纳米。载流子在量子点的三个维度上运动受尺寸效应限制,量子效应非常显著。在量子点中,由于量子限制效应作用,其载流子的能级类似原子有不连续的能级结构,所以量子点又叫人造原子。由于特殊能级结构,使得量子点表现出独特的物理性质,如量子尺寸效应、量子遂穿效应、库仑阻塞效应、表面量子效应、量子干涉效应、多体相关和非线性光学效应等,它对于基础物理研究和新型电子和光电器件都有很重要的意义,量子点材料生长和器件应用研究一直是科学界的热点之一[1]。 1量子点制备方法 目前对量子点的制备有很多方法,主要有外延技术生长法、溶胶-凝胶法(Sol-gel 和化学腐蚀法等,下面简单介绍这几种制备方法: 1.1外延技术法 外延技术法制备半导体量子点,主要是利用当前先进的分子束外延(MBE、金属有机物分子束外延(MOCVD和化学束外延(CBE等技术通过自组装生长机理,在特定的生长条件下,在晶格失配的半导体衬底上通过异质外延来实现半导体量子点的生长,在异质外延外延中,当外延材料的生长达到一定厚度后,为了释放外延材料晶格失配产生的应力能,外延材料就会形成半导体量子点,其大小跟材料的晶格失配度、外延过程中的条件控制有很大的关系,外延技术这是目前获得高质量半导体量子点比较普遍的方法,缺点是对半导体量子点的生长都是在高真空或超高真空下进行,使得材料生长成本非常高。1.2胶体法

双量子点系统输运性质的研究【毕业作品】

BI YE SHE JI (20 届) 双量子点系统输运性质的研究

双量子点系统输运性质的研究 内容摘要:随着量子点的应用逐渐广泛,双量子点输运性质的研究引起人们越来越多的关注。本文主要介绍了双量子点系统的电子构型和模型,以及双量子点的研究现状。在lindblad形式量子主方程的基础上,推导出粒子数分辨量子主方程,利用全计数统计方法,推导出隧穿电流的各阶累积矩,从而研究在一般电极的情况下,双量子系统的输运性质(输运电流,电流噪声谱)。 关键词:双量子点量子主方程全计数统计 The research about transport properties of double quantum dots system Abstract:With the increasingly widespread use of quantum dots,more and more people are intrested in studing the transport properties of double quantum dots.This paper describes the electronic structure and model of double quantum dots system and introduces the research status of double quantum dots.Based on the quantum master equation which is in the Lindblad form,we deduce the particle-number-resolved master equation. Using the full counting statistics methods,we deduce the cumulative moment of the tunneling current in each order.Thus we can study the transport properties(transport current, the current noise spectrum) of double quantum system with ageneral electrodes. Key words:double quantum dots quantum master equation full counting statistics

量子点荧光探针在生物医学中的应用进展

文献综述 量子点荧光探针在生物医学中的应用进展 房彦军,宁保安,高志贤* (军事医学科学院卫生学环境医学研究所,天津300050) 摘要:量子点(半导体纳米微晶体)作为一种新型荧光探针,在生物医学领域中应用已引起国内外科学工作者的极大关注。文章主要概括了量子点优于传统荧光染料的特性、量子点荧光探针的生物标记方式及其在活细胞荧光标记及组织光学成像、肿瘤细胞示踪及检测、荧光免疫分析和微生物学等方面的应用,并对其在兽药多残留检测的发展前景进行了展望。 关键词:量子点;荧光探针;生物标记 中图分类号:Q6-33文献标识码:A文章编号:1001-5248(2009)03-0224-03 量子点(quantum dots,QDs)又称半导体纳米微晶体,是一种由ò~?族或ó~?族元素组成的能够接受激发光产生荧光的半导体纳米颗粒,其颗粒直径一般约为1~100nm。由于其具有独特的量子尺寸效应和表面效应,表现出优良的光谱特征和光化学稳定性,许多科学工作者已经尝试着将其应用于生物学领域,并且取得了一定的进展。本文将主要评述量子点荧光探针在生物医学中的应用进展。 1量子点及其荧光探针的特性 量子点因其独特的发光性质而备受关注,其发光性质是由于电子空穴以及与它们周围环境的相互作用而引起的,当激发能级超过带隙时,量子点就会吸收光子使电子从价带跃迁到导带而发光。由于量子点的很多电子状态存在于高能级水平,因此允许单一波长的光同时激发多颜色的量子点,若改变量子点的组成和大小可以获得从蓝色到红色范围内的发射光谱,如CdS和ZnSe量子点可发射蓝色至近紫外光,直径2nm的CdS/ZnSe量子点在550nm处发射绿光,而直径为4nm时在630nm处发射红光112。目前,用于标记生物大分子的量子点主要有单核的 基金项目:天津市自然科学基金资助项目课题(No.06YFJ MJC07700) 作者简介:房彦军(1972-),男,研究生,理学硕士,副研究员。从事卫生检验研究。 *通讯作者QDs如CdE(E=S,Se,Te)和具有核壳结构的QDs如CdS/ZnSe,CdTe/CdS122等,相对于单核QDs来说,核壳结构的QDs可以将量子产率提高到50%,甚至更高,并在消光系数上有数倍的增加,因而有很强的荧光发射特性,非常适合作生物分析中的荧光标记物。利用量子点进行荧光标记,相比传统的有机染料分子具有许多优点,其特征为:首先量子点的激发光谱较宽且呈连续分布,而发射光谱宽度狭窄(半峰宽20~30nm)且呈对称分布,可以减少光谱重叠,使同时区分多重荧光团成为可能132。由于其颜色可调,即不同大小的量子点能被单一波长的光激发而发出不同颜色的光,其发射波长从400nm~2L m不等,可以用于构建能同时检测多组分的荧光探针分析测试体系142。量子点荧光探针荧光效率高,光化学稳定性强,荧光强度比最常用的有机染料罗丹明6G 高20倍以上,稳定性是其的100倍以上142。第2个特征是其生物相容性好,经化学修饰的水溶性量子点,可与生物分子进行有效偶联,安全性好。通过量子点的表面与多种生物分子结合,可获得多种功能基团,使生化分析更加灵活。第3个特征是发光半导体量子点材料具有很好的非线性光学性质,可以探针进行深入的非侵害性的标记。 2量子点荧光探针与生物分子的连接方式 量子点与生物分子结合是按照特定的需求,对量子点进行表面修饰后形成量子点荧光探针,便可

荧光纳米探针在生命科学中的应用

摘要:纳米荧光探针(fluorescent probe)在化学传感、光学材料及生物检测和识别等领域得到了广泛的应用,并成为实现上述功能的一种主要的技术手段。但以传统的有机荧光染料为主的荧光探针在应用中也存在一些难以克服的缺陷。最近,无机发光量子点、荧光聚合物纳米微球、复合荧光二氧化硅纳米粒子等荧光纳米探针的相继出现,在一定程度上克服了传统有机荧光试剂的缺陷,为生物分析提供了新的发展领域,成为了近年来研究的热点。 关键字:纳米荧光探针、生物检测和识别、无机发光量子点 Abstract:Nano fluorescence probe is widely used in chemical sensing, optical materials and biological detection and identification field , and to realize the above functions as a primary technology. But in a traditional fluorescent primarily organic fluorescent probes in the application of some are difficult to overcome defects. Recently, inorganic light quantum dots, fluorescence polymer microspheres, nano composite fluorescence silica nanoparticles and fluorescence nanoprober have appeared in a certain extent, g served the defects of conventional organic fluorescence reagent, biological analysis to provide the new development area, become the focus of research in recent years. Key words: Nano fluorescence probe, Biological detection and recognition, Inorganic glowing dots 1、Classification of fluorescent nano probe 荧光纳米粒子是指与蛋白质或其他大分子结构非共价相互作用而使一种或几种荧光性质发生改变的小分子物质。可用于研究大分子物质的性质和行为。可以发荧光的半导体纳米微晶体(量子点)或将荧光团通过包埋、共价键连接以及超分子组装等方式引入有机或无机纳米粒子中,并让纳米粒子承担有机小分子荧光染料的检测、标记等功能。与传统的荧光染料相比,荧光纳米粒子具有更高的亮度和光稳定性,也能更加容易地实现水分散性和生物相容性。另外,随着纳米制备技术的进一步提高,对纳米粒子的尺度的精确控制及对粒子功能化手段的日臻完善,这在很大程度上使荧光纳米粒子满足了化学传感器、生物探针等领域的要求。目前荧光纳米粒子主要有无机发光量子点、荧光高分子纳米微球、复合荧光二氧化硅纳米粒子三大类。 1.1Quantum dots 通常是一种由n一Vl族或m一V族元素组成的纳米颗粒,直径在1一100nm之间,能够接受激发光产生荧光的半导体纳米颗粒。量子点在生物标记、太阳能电池和发光器件等领域具有广泛的应用前景。量子点粒径很小,它们的电子和空穴被量子限域,连续能带变成具有分子特性的分立能级结构,因此光学行为与一些大分子很相似,可以发射荧光。量子点的体积大小严格控制着它的光谱特征。量子点的晶体颗粒越小,比表面积越大,分布于表面的原子就越多,而表面的光激发的正电子或负电子受钝化表面的束缚作用就越大,其表面束缚能就越高,吸收的光能也越高,即存在量子尺寸效应,从而使其吸收带蓝移,荧光发射峰也相应蓝移。可见,相对于其他传统的荧光染料而言,量子点由于其量子尺寸效应,粒径不同或组成材料不同即可发射不同颜色的荧光。 1.2 Application of quantum dots in life science

量子点免疫层析检测技术方兴未艾

量子点免疫层析检测技术方兴未艾 免疫层析技术是一种快速、简便、灵敏、直观、价格低廉、可真正实现现场检测的检测方法。具有很多气相色谱、高效液相色谱、气质联用色谱、液质联用色谱、毛细管电泳等仪器检测方法以及其他传统方法无法企及的优点。在检测领域中处于特殊重要的地位,同时也是传统检测和仪器检测的良好补充。尤其在经济高速发展,生活水平提高的今天,人类重大疾病,环境污染,食品安全等问题日益受到极大的关注,让免疫层析检测技术更具有巨大的潜力和蓬勃的生命力。 目前,免疫层析产品主要为胶体金免疫层析试纸条,其最早应用于医学检验,在早孕检测中的应用取得了极大的成功,随后在各个领域迅速渗透漫延,其在毒品检测、环境检测、以及食品安全检测领域得到了迅速的发展,但是又出现新的问题,在很多方面,尤其是食品安全检测领域,有些农兽药残留限度极度苛刻,甚至要求0.1 ng/ml的检测限度,同时食品类物质如肉类、禽类、果蔬、谷物等成分复杂,前处理难度也很大,造成胶体金免疫层析检测灵敏度无法胜任。除了进一步提高前处理方法以外,寻求高灵敏度的免疫层析方法也显得尤为重要。 量子点是近20 年来发展起来的半导体纳米晶材料,因为它的优良特性,受到了很大的关注,并且已经显示出一定的潜力,近几年来从细胞标记等应用已逐渐开始向多个领域的检测与诊断方向渗透。 一、量子点特性 量子点(简称QDs,又称半导体纳米粒子)是由Ⅱ~Ⅵ族或Ⅲ~V族元素组成的,半径小于或接近于激光玻尔半径,能够接受激发光产生荧光的一类半导体纳米颗粒,其中研究较多的主要是CdX(x=S、Se、Te),直径约为2nm-6nm。量子点由于存在显著的量子尺寸效应和表面效应,从而使它具有常规材料所不具备的光吸收特性,使其应用领域越来越广泛,特别是其在免疫生物学和临床检验学等研究中的潜在的应用价值,已引起了广大科学工作者的极大关注,发光量子点作为荧光试剂探针标记生物大分子,正是近年来迅速发展的纳米材料在生物分析领域的重要应用之一。与普通的荧光染料相比较,量子点具有以下特点: (1) 有机染料荧光分子激光谱带较窄,每一种荧光分子必须用合适能量的光来激发,而且产生的荧光峰较宽,不对称,有些拖尾。这给区分不同的探针分子带来困难,很难利用有机染料分子同时检测多种组分。量子点由于量子限域效应使其激发波长的范围很宽,可以被波长短于发射光的光(一般短10nm以上)激发,并产生窄(半波宽约13nm)而对称的发射光谱,从而避免了相邻探测通道的串扰。 (2) 量子点具有“调色”功能,不同粒径大小的量子点具有不同的颜色,激发量子点的激发波长范围很宽,且连续分布,所以可以用同一波长的光激发不同大小的量子点而获得多种颜色标记,是一类理想的荧光探针。 (3)量子点的荧光强度强,稳定性好,抗漂白能力强,Chan和Nie通过实验证明ZnS包覆的CdSe比罗丹明6G分子要亮20倍和稳定100-200倍,可以经受多次激发,且标记后对生物大分子的生理活性影响很小,因此为研究生物大分子之间的长期作用提供了可能。

荧光量子点探针及其标记技术_蒋飞荣

文章编号 :1004-0374(2010)04-0391-05 收稿日期:2009-10-09;修回日期:2009-12-09基金项目:国家高技术研究发展计划(“863”计划)(2007AA021809;2007AA021811); 国家重点基础研究发展计划(“973”计划)(2010CB833605); 湖南省科技厅资助项目(2008FJ3186); 2009年度新世纪优秀人才支持计划(NCET-10-0790)#共同第一作者 *通讯作者:E-mail :rencaiping@https://www.360docs.net/doc/7116805677.html,; Tel :0731-******** 荧光量子点探针及其标记技术 蒋飞荣1,2#,贾文婷1#,张兴燊2,任彩萍1* (1中南大学肿瘤研究所,长沙 410078;2广西中医学院,南宁 530001) 摘要:量子点作为一种新型荧光标记物,与有机染料和荧光蛋白质相比,它们具有可调谐且宽的吸收 光谱,激发可产生多重荧光颜色、强荧光信号、抗光漂白能力强等独特的光学特性,使其广泛应用在生物和医学领域。该文就量子点探针的表面修饰和功能化及其标记技术的研究进展进行了阐述。关键词:荧光量子点;探针;生物标记中图分类号:Q6-33 文献标识码:A Fluorescent quantum dots probes and their biological labeling JIANG Fei-rong 1, 2#, JIA Wen-ting 1#, ZHANG Xing-shen 2, REN Cai-ping 1* (1 Cancer Research Institute, Central South University, Changsha 410078, China; 2 Guangxi Traditional Chinese Medical University, Nanning 530001, China) Abstract: As emerging promising fluorescent labels, semiconductor quantum dots (QDs) have tremendous potential in the fields of biology and medicine because of their unique optical properties with size-tunable light emission, broad absorption spectra for simultaneous excitation of multiple fluorescence colors, superior signal brightness, resistance against photobleaching, etc. This article briefly discusses the recent progresses on fluorescent QDs probes and their biological labeling including their surface modification and functionalization.Key words: fluorescent quantum dots; probe; biological labeling 荧光半导体量子点(fluorescent semiconductor quantum dots ,QDs)是一种由II-VI 族(如CdSe 和CdTe)或III-V 族(如InP 和InAs)或IV-VI 族(如PbS 和PbSe)元素组成的、直径一般在1~100 nm 、能够接受激发光产生荧光的半导体纳米颗粒。Bruchez 等[1]通过在QDs 表面包裹SiO 2,再连接上羟基以及Chan 和Nie [2]采用巯基乙酸修饰QDs ,解决了QDs 的水溶性和生物兼容性问题。 QDs 独特的光学特性、表面修饰和生物功能化以及标记技术的优势使得QDs 在生物学、活细胞和体内成像、药物研究和筛选、生物芯片等领域得到了广泛应用。本文就QDs 探针的表面修饰和功能化及其标记技术进行阐述。 1 QDs的特征 一种典型的水溶性核壳型QDs 应该包括: (1)一 个半导体核(如CdSe),其直径决定荧光的波长;(2)一个半导体外壳(如ZnS),用来提高量子产率;(3)一个亲水层,用来保证其水溶性[3]。与传统的有机荧光标记物相比,QDs 具有以下特点:(1)激发波长范围宽、发射波长范围窄,可以采用同一波长激发光同时激发不同颜色QDs [4]; (2)QDs 的荧光强度高及核壳结构稳定性好,可以经受反复多次激发,荧 DOI:10.13376/j.cbls/2010.04.001

量子点荧光探针合成及应用

量子点荧光探针合成及应用 姓名:廖晨博学号:1141109043 摘要:量子点是近年发展起来的一种新型荧光探针,与传统的有机荧光染料相比,具有许多优良的光谱性能,在生物化学、细胞生物学、分子生物学等研究领域显示了极其广阔的应用前景,已经引起了人们越来越广泛的重视。本论文瞄准这一重要的研究方向,以量子点的制备、量子点的性能表征以及量子点在化学生物分析中的应用为主线,对当前迅速发展的量子点进行简要综述。 关键词:量子点;荧光探针;生物分析;水相合成;油相合成 1.引言 近年来,对疾病进行早期、高灵敏度、特异性、稳定性特别是高通量诊断,已成为全世界科学家关注的热点。其中,荧光探针作为报告探针用于疾病的诊断已经越来越普遍。荧光探针具有高灵敏性和可识别性。现在常用的荧光标记,由于荧光染料分子荧光特性的限制(如:吸收谱窄、荧光光谱较宽、量子产率低、荧光易衰退等),远远不能适用于目前对疾病的高标准检测。与传统的有机荧光染料相比,近年来发现和发展的新型荧光探针——量子点(quantum dots),又叫做半导体纳米晶,可以解释为粒径小于或接近电子的德布罗意波长或电子平均自由程相的半导体纳米颗粒。它的直径只有1~12nm,因此存在特殊的物理性质,如量子尺寸效应、表面效应等,表现出优良的荧光纳米效应。它的激发光谱宽且连续分布、发射光谱窄而对称、发射光稳定性强.不易发生光漂白,通过改变粒子的尺寸和组成可获得从uv到近红外范围内任意点的光谱,因此相对传统有机荧光试剂具有无可比拟的优越性。其独特的光学和电学性质引起了物理学家、化学家和生物学家的浓厚兴趣和广泛关注,已经成为纳米技术的突出代表[1]。本文将重点对当前迅速发展的量子点荧光纳米颗粒进行简要综述,主要包括量子点的基本特性、制备方法、表面修饰及其在化学生物分析中的应用实例等。 2.量子点的基本特征 2.1量子点的荧光发光原理 半导体纳米材料的光致发光主要遵循:斯托克斯定律、反斯托克斯发光、辐射跃迁和非辐射跃迁这三个规律。研究表明发光材料的发射光谱容易受到发光材料的激活离子或离子团等发光中心影响。发光材料的发光形式主要包括复合发光和分立发光中心发光两种。复合发光是指处于激发态的电子离开原来的发光中心进入高能级的导带,而在原来的能级处留下一个空穴,导带中的电子与离化中心的空穴重新复合,产生发光。与此同时电子或空穴也会在量子点的内部扩散盈[2]。分立发光中心发光则是指处于激发态的电子并不离开原来的发光中心,只是从基态被激发到一些高能量的激发态上。处于高能级导带上的电子不稳定,电子可以再跃迁回价带基础能级而发射光子;也可以落入量子点的电子陷阱中。当电子落入较深的电子陷阱中的时候,大多数电子以非辐射的形式而猝灭,只有极少数的电子以光子的形式跃迁回价带或吸收一定能量后跃迁回到导带。因此,当量子点的电子陷阱较深、较多时,其量子产率会较低[3]。 半导体量子点的电子和空穴主要通过电子和空穴直接复合发光、表面缺陷态

CdTe量子点在荧光探针方面应用_夏姣云

第41卷第1期人工晶体学报 Vol.41No.12012年2月 JOURNAL OF SYNTHETIC CRYSTALS February ,2012 TGA-CdTe 量子点在荧光探针方面应用 夏姣云,徐万邦 (长沙理工大学化学与生物工程学院,长沙410004) 摘要:以巯基乙酸(TGA )为稳定剂,在加热回流氮气保护条件下制备CdTe 量子点,用荧光分光光度计、透射电子显 微镜和X 射线粉末衍射仪对CdTe 量子点进行表征。以该量子点为荧光探针,完善荧光淬灭法测定Cu 2+ 、 Hg 2+和Ag +等重金属离子的方法。考察缓冲溶液的pH 值、反应时间、量子点浓度、量子点的稳定性和干扰离子等多种因素对重金属离子测定的影响。在pH 值为6.2的三羟甲基氨基甲烷(tris )-盐酸缓冲溶液中,当量子点的浓度为4.2 ?10-2μg /L 和反应时间为30min 时,测得Cu 2+ 、 Hg 2+和Ag +的线性区间分别为2.3 250μg 、3.2 300μg 和4.3 150μg ,检测下限分别为0.28μg /L 、 0.53μg /L 和0.35μg /L 。并发现只有当所测量的重金属离子能与所采用的量子点能生成更难溶于水的沉淀才能引起量子点的荧光淬灭,从而可以对此类重金属离子进行定量检测。关键词:碲化镉;荧光探针;量子点 中图分类号:TG050.4+3 文献标识码:A 文章编号:1000- 985X (2012)01-0193-07Application of TGA-CdTe Quantum Dots in Fluorescent Probes XIA Jiao-yun ,XU Wan-bang (College of Chemistry and Biological Engineering ,Changsha University of Science and Technology ,Changsha 410004,China ) (Received 18April 2011,accepted 30July 2011) Abstract :CdTe quantum dots were synthesized in aqueous solution with thioglycollic acid (TGA )stabilizer by refluxing under nitrogen ,and were characterized by transmission electron microscopy ,X-ray diffractrometry and fluorescence spectra ,respectively.A route was developed for sensitive and selective determination of Cu 2+,Hg 2+and Ag +with water-soluble TGA-CdTe quantum dots as fluorescence probes.Different influence factors were studied ,such as concentration ,pH values ,buffer ,interfering ions and reaction time ,and so on.In tris-HCl buffer with pH =6.2,when the concentration of quantum dots was 4.2?10-2g /L and the reacting time was 30min ,the relative fluorescence intensity decreased linearly with Cu 2+,Hg 2+and Ag +,and concentration of those ions in the rangle of 2.3-250μg 、3.2-300μg and 4.3-150μg ,and the detection limit could reach 0.28μg /L ,0.53μg /L and 0.35μg /L ,respectively.It was found that fluorescence quenching of quantum dots was caused by the wate-insoluber precipitation of the measured heavy metal reaction with such quantum dots ,which resulted in the determination of these heavy metal ions. 收稿日期:2011-04-18;修订日期:2011-07-30基金项目:国家自然科学基金(20775010)资助项目;湖南省电力与交通材料保护重点实验室项目(2010CL05)作者简介:夏姣云(1974-),女,湖南省人,博士研究生,副教授。E- mail :xiajy625@yahoo.com.cn Key words :cadmium telluride ;fluorescent probes ;quantum dots 1引言 量子点作为一种优良的荧光材料,具有传统的荧光染料不可比拟的优势。量子点较有机荧光染料更不

相关文档
最新文档