新课标九年级数学中考复习强效提升分数精华版平面几何最值问题
新课标九年级数学中考复习强效提升分数精华版专题复习---最值问题
教师姓名 课题名称 教学目标 教学重点 教学难点学生姓名 专题复习-----------最值问题年级 课型初三 复习课学科 上课时间数学扎实牢固掌握基础知识,熟悉该题型,能掌握解决该题型的策略 注重数学思想方法的应用、对称知识的掌握 学生对本专题的理解与掌握、解题能力的提高一、中考专题诠释 最值问题是指由于一些点、线等位置发生变化导致一些量的变化,在变化过程中会出现量的最大值和最小值 (如两线段和最小、差最大、三角形周长最小等等)一类问题.根据其特征大致可分为:求线段的最值、求 两线段的和及差的最值、图形周长的最值、图形面积的最值。
二、解题策略与解法精讲 由于最值问题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧, 具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠; 其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解 答.由于此题型有固定模式或套路,所以可从以下几方面考虑: 1.线段公理——两点之间,线段最短; 2. 对称的性质——①关于一条直线对称的两个图形全等; ②对称轴是两个对称图形对应点连线的垂直平 分线; 3.三角形两边之和大于第三边; 4.三角形两边之差小于第三边。
5、垂直线段最短。
三、中考考点演练 1、(中招湖北黄石市中考题)如图,在等腰⊿ABC 中,∠ABC=120° ,点 P 是底边 AC 上一个动点,M、 N 分别是 AB、BC 的中点,若 PM+PN 的最小值为 2,则⊿ABC 的周长是_________2、(中招滨州市)如图,等边△ABC 的边长为 6,AD 是边 BC 上的中线,M 是 AD 上的动点,E 是边 AC 上的一 点,若 AE=2,EM+CM 的最小值为________。
3.在正方形 ABCD 中,点 E 是 BC 上的一定点,且 BE=10,EC=14,点 P 是 BD 上的一动点,则 PE+PC 的最小值 是 .14、(中招湖北荆门市中考题) 如图 2,菱形 ABCD 的两条对角线分别长 6 和 8,点 P 是对角线 AC 上的 一个动点,点 M、N 分别是边 AB、BC 的中点,则 PM+PN 的最小值是_____________. 5、(中招乐山市中考题)如图 3,MN 是⊙O 的直径,MN=2,点 A 在⊙O 上,∠AMN=30° ,B 为弧 AN 的中点,P 是直径 MN 上一动点,则 PA+PB 的最小值为_________6、(中招济宁市中考题)如图,正比例函数 于 点,过 点作 轴的垂线,垂足为 ,已知的图象与反比例函数 的面积为 1.在第一象限的图象交(1)求反比例函数的解析式; (2)如果 合),且 为反比例函数在第一象限图象上的点(点 点的横坐标为 1,在 轴上求一点 ,使 与点 不重最小.7、如图,已知直线 y=1 1 2 x+1 与 y 轴交于点 A,与 x 轴交于点 D,抛物线 y= x +bx+c 与直线交于 A、E 2 2两点,与 x 轴交于 B、C 两点,且 B 点坐标为(1,0). (1)求该抛物线的解析式; (3)在抛物线的对称轴上找一点 M,使|AM-MC|的值最大,求出点 M 的坐标. yEA D OyBCx8、(威海中招) 如图 5,在直角坐标系中,点 A,B,C 的坐标分别为(-1,0),(3,0),(0,3), 过 A,B,C 三点的抛物线的对称轴为直线 l,D 为对称轴上 l 一动点, (1)求抛物线的解析式; (2)求当 AD+CD 最小时点 D 的坐标; (3) 以点 A 为圆心,以 AD 为半径作⊙A,①证明:当 AD+CD 最小时,直线 BD 与⊙A 相切。
新课标九年级数学中考复习强效提升分数精华版数学复习提纲
数学复习提纲第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆一、重要概念1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)实数无理数(无限不循环小数)0 (有限或无限循环性数) 整数分数 正无理数 负无理数 0 实数 负数 整数 分数 无理数有理数正数整数 分数 无理数有理数│a │2a a (a ≥0)(a 为一切实数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的] 分配律)3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷51³5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)附:典型例题1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │ =b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。
新课标九年级数学中考复习强效提升分数精华版 面积最大(小)值问题
1 二次函数的实际应用——面积最大(小)值问题[课前热身]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少?(2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少?6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--⨯=+-=⋅-=典例精讲[1]某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内,而当205.12<≤x 内,y 随x 的增大而减小,∴当5.12=x 时,2 5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.[2]已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y ,则矩形PNDM 的面积S=xy (2≤x≤4)易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H则有△AFB ∽△BHP ∴PH BH BF AF =,即3412--=y x , ∴521+-=x y , x x xy S 5212+-==)42(≤≤x , 此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值y 随x 的增大而增大,对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[3]某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x-×0.4×(0.4-x )×10]3 )24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.课堂小测:1、如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( )A .424mB .6 mC .15 mD .25m解:AB =x m ,AD=b ,长方形的面积为y m 2∵AD ∥BC ∴△MAD ∽△MBN ∴MB MA BN AD =,即5512x b -=,)5(512x b -= )5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值.2、小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -=x x 3442+-= 4289)417(42+--=x ∵104340≤-<x ∴2176<≤x4 ∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小, ∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大. 小结:校本作业:周六1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米.2.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x -米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x ∴当25=x 时,3625max =S (平方米) 即:鸡场的长度为25米时,面积最大.(2) 中间有n 道篱笆,则宽为250+-n x 米,设面积为S 平方米. 则:)50(212502x x n n x x S -+-=+-⋅=5 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米) 由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米.即:使面积最大的x 值与中间有多少道隔墙无关.3.(湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( )A .7B .6C .5D .4周日1.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式.A B C DP Q解:∵∠APQ=90°,∴∠APB+∠QPC=90°.∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90°.∴△ABP ∽△PCQ.,86,yx x CQ BP PC AB =-= ∴x x y 34612+-=.3.(南京市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,•分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?解:∵矩形MFGN ∽矩形ABCD∴MF=2MN =2x ∴ EM=10-2x∴S=x (10-2x )=-2x 2+10x=-2(x-2.5)2+12.5∵1020<<x ,∴50<<x当x=2.5时,S 有最大值12.562.(2008四川内江)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 0.5 米.则:设c ax y +=2 将点)1,5.0(-,)5.2,1(代入,⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.周一1、(黑龙江哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?解:(1)根据题意,得x x x x S 3022602+-=⋅-= 自变量的取值范围是(2)∵01<-=a ,∴S 有最大值当时, 答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.周二1.(山东聊城)如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).7 (1)要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.解:(1)设正方形的边长为cm , 则. 即. 解得(不合题意,舍去),. 剪去的正方形的边长为1cm .(2)有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2, 则与的函数关系式为:. 即. 改写为. 当时,.即当剪去的正方形的边长为2.25cm 时,长方体盒子的侧面积最大为40.5cm 2.(3)有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2.若按图1所示的方法剪折, 则与的函数关系式为: x x x x y ⋅-⋅+-=22102)28(28 即. 当时,.若按图2所示的方法剪折, 则与的函数关系式为:x x x x y ⋅-⋅+-=2282)210(2. 即. 当时,.比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm 2. 周三.1、(兰州)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式;(2)求支柱的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:(1)根据题目条件,的坐标分别是. 设抛物线的解析式为, 将的坐标代入, 得解得.所以抛物线的表达式是.(2)可设,于是从而支柱的长度是米.(3)设是隔离带的宽,是三辆车的宽度和,则点坐标是.过点作垂直交抛物线于,则.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.9。
新课标九年级数学中考复习强效提升分数精华版中考数学复习专题 代数、三角、几何综合问题
中考数学复习专题 代数、三角、几何综合问题概述:代数、三角与几何综合题是较复杂与难度较大的问题,其中包括方程、函数、三角与几何等,内容基本上包含所有的初中数学知识,必须把以前的函数观念、方程思想、数形结合思想、转化与化归思想进行综合来解题.典型例题精析 例1.有一根直尺的短边长2cm ,长边长10cm ,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm ,如图1,将直尺的矩边DE 放置与直角三角形纸板的斜边AB 重合,且点D 与点A 重合,将直尺沿AB 方向平移如图2,设平移的长度为xcm (•0≤x ≤10),直尺和三角形纸板的重叠部分(图中阴影部分)的面积为Scm 2.(1)当x=0时(如图),S=________;当x=10时,S=___________; (2)当0<x ≤4时(如图2),求S 关于x 的函数关系式;(3)当4<x<10时,求S 关于x 的函数关系式,并求出S 的最大值(同学可在图3、•图4中画草图)解析:(1)2;2.(2)在Rt △ADG 中,∠A=45°, ∴DG=AD=x .同理EF=AE=x+2,∴S 梯形DEGF =12(x+x+2)×2=2x+2, ∴S=2x+2.(3)①当4<x<6时,(如图5) GD=AD=x ,EF=EB=12-(x+2)=10-x , 则S △ADG =12x -2,S △BEF =12(10-x )2, 而S △ABC =12×12×6=36,∴S=36-12x 2-12(10-x )2=-x 2+10x-14,S=-x 2+10x-14=-(x-5)2+11,∴当x=5(4<5<6)时,S 最大值=11.②当6≤x<10时(如图6), BD=BG=12-x ,BE=EF=10-x ,S=12(12-x+10-x )×2=22-2x , S 随x 的增大而减小,所以S ≤10.由①、②可得,当4<x<10时,S 最大值=11.例2.如图所示,点O 2是⊙O 1上一点,⊙O 2与⊙O 1相交于A 、D 两点,BC⊥AD,垂足为D ,分别交⊙O 1、⊙O 2于B 、C 两点,延长DO 2交⊙O 2于E ,交BA 的延长线于F ,BO 2交AD 于G ,连结AG .•(1)求证:∠BGD=∠C ;(2)若∠DO 2C=45°,求证:AD=AF ;(3)若BF=6CD ,且线段BD 、BF 的长是关于x 的方程x 2-(4m+2)x+4m 2+8=0•的两个实数根,求BD 、BF 的长.解析:(1)∵BC ⊥AD 于D , ∴∠BDA=∠CDA=90°,∴AB 、AC 分别为⊙O 1、⊙O 2的直径.∵∠2=∠3,∠BGD+∠2=90°,∠C+∠3=90°, ∴∠BGD=∠C .(2)∵∠DO 2C=45°,∴∠ABD=45°,∵O 2D=O 2C ,∴∠C=∠O 2DC=12(180°-∠DO 2C )=67.5°, ∴∠4=22.5°, ∵∠O 2DC=∠ABD+∠F , ∴∠F=∠4=22.5°,∴AD=AF .(3)∵BF=6CD ,∴设CD=k ,则BF=6k . 连结AE ,则AE ⊥AD ,∴AE ∥BC ,∴AE AFBD BF∴AE ·BF=BD ·AF . 又∵在△AO 2E 和△DO 2C 中,AO 2=DO 2 ∠AO 2E=∠DO 2C , O 2E=O 2C ,∴△AO 2E≌△DO 2C ,∴AE=CD=k,∴6k2=BD·AF=(BC-CD)(BF-AB).∵∠BO2A=90°,O2A=O2C,∴BC=AB.∴6k2=(BC-k)(6k-BC).∴BC2-7kBC+12k2=0,解得:BC=3k或BC=4k.当BC=3k,BD=2k.∵BD、BF的长是关于x的方程x2-(4m+2)x+4m2+8=0的两个实数根.∴由根与系数的关系知:BD+BF=2k+6k=8k=4m+2.整理,得:4m2-12m+29=0.∵△=(-12)2-4×4×29=-320<0,此方程无实数根.∴BC=3k(舍).当BC=4k时,BD=3k.∴3k+6k=4m+2,18k2=4m2+8,整理,得:m2-8m+16=0,解得:m1=m2=4,∴原方程可化为x2-18x+72=0,解得:x1=6,x2=12,∴BD=6,BF=12.中考样题训练1.已知抛物线y=-x2+(k+1)x+3,当x<1时,y随着x的增大而增大,当x>1时,y 随x的增大而减小.(1)求k的值及抛物线的解析式;(2)设抛物线与x轴交于A、B两点(A在B的左边),抛物线的顶点为P,试求出A、•B、P三点的坐标,并在直角坐标系中画出这条抛物线;(3)求经过P、A、B三点的圆的圆心O′的坐标;(4)设点G(0,m)是y轴上的动点.①当点G运动到何处时,直线BG是⊙O′的切线?并求出此时直线BG的解析式.②若直线BG与⊙O相交,且另一个交点为D,当m满足什么条件时,点D在x轴的下方?2.如图,已知圆心A(0,3),⊙A与x轴相切,⊙B的圆心在x轴的正半轴上,且⊙B与⊙A外切于点P,两圆的公切线MP交y轴于点M,交x轴于点N.(1)若sin ∠OAB=45,求直线MP 的解析式及经过M 、N 、B 三点的抛物线的解析式; (2)若⊙A 的位置大小不变,⊙B 的圆心在x 轴的正半轴上移动,并使⊙B 与⊙A 始终外切,过M 作⊙B 的切线MC ,切点为C ,在此变化过程中探究: ①四边形OMCB 是什么四边形,对你的结论加以证明;②经过M 、N 、B 三点的抛物线内是否存在以BN 为腰的等腰三角形?若存在,•表示出来;若不存在,说明理由.3.如图,已知直线L 与⊙O 相交于点A ,直径AB=6,点P 在L•上移动,连结OP 交⊙O 于点C ,连结BC 并延长BC 交直线L 于点D .(1)若AP=4,求线段PC 的长;(2)若△PAO 与△BAD 相似,求∠APO 的度数和四边形OADC 的面积.(•答案要求保留根号)LyM CBA xPO N考前热身训练1.如图,已知A 为∠POQ 的边OQ 上一点,以A 为顶点的∠MAN 的两边分别交射线OP 于M 、N 两点,且∠MAN=∠POQ=α(α为锐角),当∠MAN 为以点A 为旋转中心,AM 边从与AO•重合的位置开始,按逆时针方向旋转(∠MAN 保持不变)时,M 、N 两点在射线OP•上同时以不同的速度向右平行移动.设OM=x ,ON=y (y>x ≥0),△AOM 的面积为S ,若cos α、OA•是方程2z 2-5z+2=0的两个根.(1)当∠MAN 旋转30°(即∠OAM=30°)时,求点N 移动的距离;(2)求证:AN 2=ON ·MN ; (3)求y 与x 之间的函数关系式及自变量量x 的取值范围;(4)试写出S 随x 变化的函数关系式,并确定S 的取值范围.2.如图,已知P 、A 、B 是x 轴上的三点,点A 的坐标为(-1,0),点B 的坐标为(3,0),•且PA :AB=1:2,以AB 为直径画⊙M 交y 轴的正半轴于点C . (1)求证:PC 是⊙M 的切线;(2)在x 轴上是否存在这样的点Q ,使得直线QC 与过A 、C 、B•三点的抛物线只有一个交点?若存在,求点Q 的坐标,若不存在,请说明理由;(3)画⊙N ,使得圆心N 在x 轴的负半轴上,⊙N 与⊙M 外切,且与直线PC 相切于D ,•问将过A 、C 、B 三点的抛物线平移后,能否同时经过P 、D 、A 三点?为什么?M A Q P O N答案:中考样题看台1.(1)k=1,抛物线解析式y=-x2+2x+3(2)A(-1,0),B(3,0),C(1,4)(3)∵⊙O′过A、B两点,∴O′在AB的垂直平分线上,即在抛物线的对称轴上,设抛物线的对称轴交x轴于M,交⊙O′于N,则有MP×MN=MA×MB,4MN=2×2,∴MN=1,•PN=5,O′P=52<PM,∴O′点在x轴上方,∴O′M=32,∴O′(1,32).(4)①过B点作⊙O′的切线交y轴于点G,直线BO′交y轴于点E,可求出直线BO•′的解析式为,y=-34x+94,∴E(0,94),∵BG是⊙O′的切线,BO⊥EG,∴BO=OE×OG,∴OG=4,•∴G(0,-4),求出直线BG的解析式为y=43x-4.②-4<m<0.2.(1)在Rt△AOB中,∵OA=3,sin∠OAB=45,cos∠OAB=35,∴AB=5,OB=4,BP=5-3=2.•在Rt△APM中,APAM=cos∠OAB=35,∴AM=5,OM=2,∴点M(0,-2),又△NPB∽△AOB,∴BN AB BP OB,∴BN=52,•∴ON=32,∴点B(32,0),设MP的解析式为y=kx+b,∵MP经过M、N两点,∴MP的解析式为y=43x-2,设过M、N、B的抛物线解析式为y=a(x-32)(x-4)且点M(0,-2)在其上,可得a=-13,即y=-13x2+116x-2.(2)①四边形OMCB是矩形.证明:在⊙A不动,⊙B运动变化过程中,恒有∠BAO=∠MAP,OA=AP,∠AOB=∠APM=90°,∴△AOB≌△APM,∴OB=PM,AB=AM,∴PB=OM ,而PB=BC ,∴OM=BC ,由切线长定理知MC=MP ,∴MC=OB , ∴四边形MOBC 是平行四边形, 又∵∠MOB=90°,∴四边形MOBC 是矩形.②存在,由上证明可知,Rt △MON ≌Rt △BPN , ∴BN=MN .因此在过M 、N 、B 三点的抛物线内有以BN 为腰的等腰三角形MNB 存在,• 由抛物线的轴对称性可知,在抛物线上必有一点M ′与M 关于其对称轴对称, ∴BN=BM ′,这样得到满足条件的三角形有两个,△MNB 和△M ′NB . 3.(1)∵L 与⊙O 相切于点A ,∴∠4=90°,∴OP 2=OA 2+AP 2, ∵OB=OC=12AB=3,AP=4, ∴OP 2=32+42,∴OP=5, ∴PC=5-3=2.(2)∵△PAO ∽△BAD ,且∠1>∠2,∠4=90°, ∴∠2=∠APO ,∴OB=OC ,∴∠2=∠3 ∵∠1=∠2+∠3,∴∠2=2∠2=2∠APO ∴∠4=90°,∴∠1+∠APO=90° ∴3∠APO=90°,∴∠APO=30°. 在Rt △BAD 中,∠2=∠APO=30°.∴AD=6sin30°=6×3. 过点O 作OE ⊥BC 于点E ∵∠2=30°,BO=3,∴OE=32,BE=3×cos30°=2,∴∴S 四边形OADC =S △BAD -S △BOC =12AB ·AD=12BC ·OE=12×6×12×3294154.考前热身训练1.(1)易知OA=2,cos α=12,∠POQ=∠MAN=60°, ∴初始状态时,△AON 为等边三角形,•∴ON=OA=2,当AM 旋转到AM ′时,点N 移动到N ′, ∵∠OAM ′=30°,∠POQ=∠M ′AN•′=60°,∴∠M ′N ′A=30°,在Rt △OAN 中,ON ′=2AO=4, ∴NN ′=ON ′-ON=2,∴点N 移动的距离为2.(2)易知△OAN ∽△AMN ,∴AN 2=ON ·MN .(3)∵MN=y-x ,∴AN 2=y 2-xy ,过A 点作AD ⊥OP ,垂足为D ,可得OD=1, ∴DN=ON-OD=y-1,在Rt △AND 中,AN 2=AD 2+DN 2=y 2-2y+4, ∴y 2-xy=y 2-2y+4,即y=42x-. ∴y>0,∴2-x>0,即x<2,又∵x ≥0,∴x 的取值范围是:0≤x<2.(4)S=12·OM ·x ,∵S 是x 的正比例函数,且比例系数2>0,∴0≤S<2·2.即0≤ 2.(1)易知⊙M 半径为2,设PA=x ,则x :4=1:2⇒x=2,由相交弦定理推论得OC=OA .OB=1×3,2=PO 2+OC 2=32+2=12,PM 2=42=16,MC 2=22=4,∴PM 2=PC 2+MC 2,∴∠PCM=90°.(2)易知过A 、C 、B 三点的抛物线的解析式为(x+1)(x-3),•假设满足条件的Q 点存在,坐标为(m ,0),直线QC 的解析式为y=-m, ∵直线QC 与抛物线只有一个公共点,∴方程(x+1)(x-3)∴(2+3m)2=0,∴m=-32,即满足条件的Q 点存在,•坐标为(-32,0);(3)连结DN ,作DH ⊥PN ,垂足为H ,设⊙N 的半径为r ,则∵ND ⊥PC , ∴ND ∥MC ,∴DN PN MC PM =,∴224r r -=, ∴r=23,∵DN 2=NH ·NP ,∴(23)2=NH·(2-23),∴NH=13,∴,∴D(-2).∵抛物线y=-3(x+1)(x-3)平移,使其经过P、A两点的抛物线的解析式为y=-3(x+•1)(x+3)又经验证D是该抛物线上的点,∴将过A、C、B三点的抛物线平移后能同时经过P、D、A三点.。
新课标九年级数学中考复习强效提升分数精华版最大值和最小值问题
一. 配方法例1. (2005年全国初中数学联赛武汉CASIO杯选拔赛)可取得的最小值为_________。
解:原式由此可知,当时,有最小值。
二. 设参数法例2. (《中等数学》奥林匹克训练题)已知实数满足。
则的最大值为________。
解:设,易知由,得从而,由此可知,是关于t的方程的两个实根。
于是,有解得。
故的最大值为2。
例3. (2004年全国初中联赛武汉选拔赛)若,则可取得的最小值为()A. 3B.C.D. 6解:设,则从而可知,当时,取得最小值。
故选(B)。
三. 选主元法例4. (2004年全国初中数学竞赛)实数满足。
则z的最大值是________。
解:由得。
代入消去y并整理成以为主元的二次方程,由x为实数,则判别式。
即,整理得解得。
所以,z的最大值是。
四. 夹逼法例5. (2003年北京市初二数学竞赛复赛)是非负实数,并且满足。
设,记为m的最小值,y为m的最大值。
则__________。
解:由得解得由是非负实数,得从而,解得。
又,故于是,因此,五. 构造方程法例6. (2000年山东省初中数学竞赛)已知矩形A的边长为a和b,如果总有另一矩形B使得矩形B与矩形A的周长之比与面积之比都等于k,试求k的最小值。
解:设矩形B的边长为x和y,由题设可得。
从而x和y可以看作是关于t的一元二次方程的两个实数根,则因为,所以,解得所以k的最小值是四. 由某字母所取的最值确定代数式的最值例7. (2006年全国初中数学竞赛)已知为整数,且。
若,则的最大值为_________。
解:由得,代入得。
而由和可知的整数。
所以,当时,取得最大值,为。
七. 借助几何图形法例8. (2004年四川省初中数学联赛)函数的最小值是________。
解:显然,若,则。
因而,当取最小值时,必然有。
如图1,作线段AB=4,,且AC=1,BD=2。
对于AB上的任一点O,令OA=x,则。
那么,问题转化为在AB上求一点O,使OC+OD最小。
新课标九年级数学中考复习强效提升分数精华版 数学复习资料
九年级数学复习资料一、数(一)、知识梳理:1、有理数:整数和分数统称为有理数。
(1)、①整数→正整数/0/负整数②分数→正分数/负分数(2)、数轴:①规定了原点、正方向和单位长度的直线叫做数轴。
②任何一个有理数都可以用数轴上的一个点来表示,但数轴上的点并不一定都表示有理数,实数和数轴上的点才是一一对应关系。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等,互为相反数的两个数的和为0,例如a与b互为相反数,则a+b=0。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数.(3)、绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他本身/负数的绝对值是他的相反数/0的绝对值是0。
④两个负数比较大小,绝对值大的反而小。
⑤一对相反数的绝对值相等。
(4)、有理数的运算:加法:①同号两数相加,取相同的符号,把绝对值相加。
②异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫幂,a 叫底数,n叫次数。
(5)、性质及运算律①交换律,结合律,分配律:a+b=b+a; a+b+c=a+(b+c); ab=ba; abc=a(bc); a(b+c)=ab+ac②绝对值的性质:|a|≥0,(a为有理数) ;③有理数比较大小:正数大于0,0大于负数,正数大于负数,两个负数比较大小绝对值大的反而小。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
中考数学专题复习 平面几何的最值问题_答案
7. C 提示:当点 P 与点 D 重合时,四边形 ACBP 的周长最大.
8. (1)连结 ME,过 N 作 NF⊥AB 于 F,可证明 Rt△EB A≌Rt△MNF,得 MF=AE=x.∵
ME2=AE2+AM2,故 MB2=x2+AM2,即(2-AM)2=x2+AM2,AM=1- 1 x2,∴S= 4
y
的取值范围内,所以
y=
5 2
不是极值点,当
y=3
时,S(3)
=12,当
y=4
时,S(4)=8,故
Smax=12.此时,钢板的最大利用率
42
12 1
2
1
=80%.
例
2
6 设 PD=x(x>1),则 PC= x2 1 ,由 Rt△PCD∽△PAB,得 AB= CD PA x 1 ,令 y
PC
x2 1
l22 ,当
r>
4h 2
4
时, l12
l22
,当
r<
4h 2
4
时, l12
l22
.
例5
设 DN=x,PN=y,则 S=xy,由△APQ∽△
ABF,得
2
4
4
y
x
1 2
即
x=10-2y,代入
S=xy 得 S=xy=y(10-2y),即 S=-2
y
5 2
2
25 2
,
因
3≤y≤4,而
y=
5 2
不在自变量
11. (1)点 P 恰好在 BC 上时,由对称性知 MN 是△ABC 的中位线,∴当 MN= 1 BC=3 时, 2
点 P 在 BC 上.(
2)由已知得△ABC 底边上的高 h= 52 -32 =4. ①当 0<x≤3 时,如图 1,连结 AP 并延长交
新课标九年级数学中考复习强效提升分数精华版中考数学二轮专题复习关于最值问题分析
中考数学二轮专题复习关于最值问题分析最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。
利用一次函数和二次函数的性质求最值。
一、“最值”问题大都归于以下几类基本模型:Ⅰ、归于函数模型:即利用一次函数的增减性和二次函数的对称性及增减性,确定某范围内函数的最大或最小值。
(本专题主要涉及以下几种类型)Ⅱ、归于几何模型,这类模型又分为三种情况:(1)归于“两点之间,线段最短”。
凡属于求“变动的两线段或三线段之和的最小值”时,大都应用这一模型。
(2)归于“三角形两边之和大于第三边,三角形两边之差小于第三边”凡属于求“变动的两线段之差(和)的最值”时,大都应用这一模型。
(3)归于“垂线段最短”凡是属于点到直线距离最值问题时,大都应用这一模型。
Ⅲ、不等式模型:0)ax xx+≥>Ⅳ、因圆上的动点引起的最值问题Ⅴ、非常规问题几何模型:条件:如图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA PB+的值最小.方法:作点A关于直线l的对称点A',连结A B'交l于点P,则PA PB A B'+=的值最小(不必证明).一、填空题1、如图1,正方形ABCD的边长为2,Q为BC的中点,P是AC上一动点.连结PB,PQ,则PB+PQ的最小值是___________;2、如图,在边长为1的等边三角形ABC中,点D是AC的中点,点P是BC边的中垂线MN上一动点,则PC+PD的最小值为.3、.如图所示,正方形ABCD的面积为12,ABE△是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD PE+的和最小,则这个最小值为____________4、要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?请你以街道旁为x轴,建立了平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是 __________________ ;5、如图18在直角坐标系中有四个点A(-6,3),B(-2,5),C(0D(n,0),当四边形ABCD周长最短时,则m+n= ______6、如图,当四边形PABN的周长最小时,a=.7、已知边长为4的正三角形ABC,两顶点A、B系的x轴、y轴的正半轴上滑动,点C在第一象限,OC的最大值为8、已知两直角边长为分别5,12的直角三角形ABC,两顶点A、B分别在平面ABA'PlDNMPCBAA DEPB CxA BCDNM(第10题A 直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,OC的最大值为____________9. (山东济南)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,_________________10、如图,45AOB∠=°,P是AOB∠内一点,10PO=,Q R、分别是OAOB、上的动点,则PQR△周长的最小值=_____________________11.如图,在锐角ABC△中,45AB BAC=∠=°,BAC∠的平分线交BC于点D M N,、分别是AD和AB上的动点,则BM MN+的最小值是___________ .12、△ABC中,∠C = 90°,AB = 10,tan A =43,过AB边上一点P作PE⊥AC于E,PF⊥BC于F,E、F是垂足,则EF的最小值等于.13.在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为14、(草桥二模)如图,∠AOB=60°,点P在∠AOB的角平分线上,OP=10cm,点E、F是∠AOB两边OA,OB上的动点,当△PEF的周长最小时,点P到EF距离是____________________15、(江苏扬州)如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是.16.如图,在ABC△中,10AB=,8AC=,6BC=,经过点C且与边AB相切的动圆与CA CB,分别相交于点P Q,,则线段PQ长度的最小值是()A. 7B. 6C. 5D.4.817. (宁波) 如图,△ABC中,︒=∠60BAC,︒=∠45ABC,AB=22,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为。
新课标九年级数学中考复习强效提升分数精华版专题复习 最短路线问题
九年级数学中考专题复习 最短路线问题专题诠释:考查知识点----“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
解题总思路----找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。
教学过程:一、数学模型 1、实际问题:如图,要在河边修建一个水泵站,分别向张村、李庄送水,修在河边什么地方可使所用的水管最短 2、数学问题:已知:直线l 和l 的同侧两点A 、B 。
求作:点C ,使C 在直线l 上,并且AC +CB 最小。
二、例题讲解例1、(湖北荆门)一次函数y kx b =+的图象与x 、y 轴分别交于点A (2,0),B (0,4). (1)求该函数的解析式;(2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 上一动点, 求PC +PD 的最小值,并求取得最小值时P 点坐标.例2、问题探究(1)如图①,四边形ABCD 是正方形, 10AB cm =,E 为边BC 的中点,P 为BD 上的一个动点,求PC PE +的最小值;(2)如图②,若四边形ABCD 是菱形, 10AB cm =,45ABC ∠=°,E 为边BC 上的一个动点,P 为BD 上的一个动点,求PC PE +的最小值;问题解决(3)如图③,若四边形ABCD 是矩形, 10AB cm =,20BC cm =,E 为边BC 上的一个动点,P 为BD 上的一个动点,求PC PE +的最小值;图① 图② 图③例3、如图,在直角坐标系中,点A 的坐标为(-2,0),连结0A ,将线段OA 绕原点O 顺时针旋转120。
,得到线段OB. (1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(注意:本题中的结果均保留根号)A DBADBCEP冲刺中考:1、(达州)在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值).2、(抚顺市)如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( ) A. B. C .3 D3、(鄂州)已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当P A +PD 取最小值时,△APD 中边AP 上的高为( ) A 、17172B 、17174 C 、 17178D 、34、如图,在锐角ABC △中,45AB BAC =∠=°,BAC ∠的平分线交BC 于点D M N ,、分别是AD 和AB 上的动点,则BM MN +的最小值是________.5、如图,在△ABC 中,AC=BC=2,∠ACB=90。
新课标九年级数学中考复习强效提升分数精华版专题二:数形结合
专题二:数形结合简要分析数形结合思想是一种重要的数学思想方法。
近几年各地中考试题中都体现了这种数学思想方法。
数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
典型例题例1、小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还。
”如果用纵轴y 表示父亲与儿子进行中离家的距离,用横轴x 表示父亲离家的时间,那么下面的图像与上述诗的含义大致吻合的是()A B C D例2、已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是( )A .a >0B .当x >1时,y 随x 的增大而增大C .c <0D .3是方程ax 2+bx +c =0的一个根【分析】从二次函数的图象可知,图象开口向下,a <0;当x >1时,y 随x 的增大而减小; x=0时,y =c >0;函数的对称轴为x=1,函数与x 轴的一个交点的横坐标为-1,函数与x 轴的另一个交点的横坐标为3。
例3、如图所示,点A 的坐标为(2,0),点B 在直线上运动,当线段AB 最短时,点B 的坐标为例4、如图,直线b x k y +=1与反比例函数xk y 2=的图象 交于A )6,1(,B )3,(a 两点. (1)求1k 、2k 的值; (2)直接写出021>-+xk b x k 时x 的取值范围; (3)如图,等腰梯形OBCD 中,BC //OD ,OB =CD ,OD 边在x 轴上,过点C 作CE ⊥OD 于点E ,CE 和反比例函数的图象交于点P ,当梯形OBCD 的面积为12时,请判断PC 和PE 的大小关系,并说明理由.OPE DCBAyx【分析】(1)略(2)021>-+xk b x k 的x 的范围,就是当y 1>y 2时,自变量的x 的范围,从图象上看:直线在双曲线上方,即x 的范围是在点A 、B 的横坐标之间,这是“以形助数” (3)要判断PC 和PE 的大小关系,只需要分别求出它们的长度,“以数助形”.设点P 的坐标为(m ,n ),易得C (m ,3),点的坐标转化成线段长度CE=3,BC=m-2,OD=m+2,利用梯形的面积是12列方程,可求得m 的值,从而求得点P 的坐标,根据线段的长度关系可知PC=PE .考 点 训 练一、填空题1、已知二次函数c bx ax y ++=2的图象如图所示,则0___42,0____,0___,0___ac b c b a -2、如图,抛物线y =-x 2+2x +m (m <0)与x 轴相交于点A (x 1,0)、B (x 2,0),点A 在点B 的左侧.当x =x 2-2时,y ______0(填“>”“=”或“<”号).3、如图所示,矩形AOCB 的两边OC 、OA 分别位于x 轴,y 轴上,点B 的坐标为B,D 是AB 边上的一点。
新课标九年级数学中考复习强效提升分数精华版(精品课件)专题7函数最值的应用
例2、如图一边靠学校院墙,其 他三边用40 m的预制篱笆围成 一个矩形花圃,由于实际需要 矩形的宽x只能在4 m和7 m之 间变化,设花圃面积为y。求y 与x之间的函数关系
式和y的最值 。
【分析】利用矩形的面积等于长乘以宽,列出二次函数关 系式,再利用取值范围及二次函数的性质即可求得.
解:由题意y=x(40-2x)=-2x2+40x=-2(x-10)2+200 (4≤x≤7) 从这个函数图象可以看出:由于x的取值范围的限 制,它仅仅是抛物线的一段,且不包括顶点,它 既有最大值,也有最小值,并且该段抛物线是y随 x的增大而增大的将x=4,x=7代入解析式得 128≤y≤182 ∴y与x之间的解析式为: y=-2x2+40x(4≤x≤7), y的最大值为182,最小值为128.
例4、已知某服装厂现有A种布料70米,B 种布料52米,现计划用这两种布料生产M、 N两种型号的时装共80套. 做一套M型号的时装需用A种布料0.6米,B 种布料0.9米,可获利润45元; 做一套N型号的时装需用A种布料1.1米, B种布料0.4米,可获利50元, 若设生产N型号的时装套数为x,用这批布 料生产两型号的时装所获的总利润为y元 (1)求y(元)与x(套)的函数关系式,并求出自 变量x的取值范围;
函数最值的应用
1、能结合原题目中的已知条件揭示几 何图形的性质并能够借助这些性质来建 立几何图形中元素之间的函数关系式.
2、能运用数形结合的思想, 深刻理解函数性质和几何图形 的元素之间的关系,并能通过 函数的最值来探求几何图形中 某些元素的最值.
3.列函数的解析式解决实际 生活中常见的应用性问题.
例3、某商店以每件42元的价格购进一种 服装,根据试销得知,这种服装每天的销 售量t(件)与每件的销售价x(元)可看成一次 函数关系:t=-3x+204 (1)写出商店卖这种服装每天的销售利润y 与每件销售价x之间的函数关系式.(每天销 售利润指所卖服装的销售价与购进价的差)
新课标九年级数学中考复习强效提升分数精华版最值问题)
题型一:一次函数最值问题:(1)设该车间每月生产甲、乙两种塑料各x 吨,利润分别为1y 元和2y 元,分别求1y 和2y与x 的函数关系式(注:利润=总收入-总支出);(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨,获得的总利润最大?最大利润是多少?2、(中招•深圳)迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?3、(中招•深圳)“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?6.(中招•深圳)“节能环保,低碳生活”是我们倡导的一种生活方式,某家电商场计划用11.8万元购进节能型电视机、洗衣机和空调共40台,三种家电的进价和售价如表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机的数量的3倍.请问商场有哪几种进货方案?(2)在“中招年消费促进月”促销活动期间,商家针对这三种节能型产品推出“现金每购1000元送50元家电消费券一张、多买多送”的活动.在(1)的条件下,若三种电器在活动期间全部售出,商家预估最多送出多少张?7.(中招•深圳)深圳某科技公司在甲地、乙地分别生产了17台、15台同一型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台,运往B馆14台;运往A、B两馆的运费如表1:(1)设甲地运往A馆的设备有x台,请填写表2,并求出总运费y(元)与x(台)的函数关系式;(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x为多少时,总运费最小,最小值是多少?。
新课标九年级数学中考复习强效提升分数精华版动点最值问题 (36)
中考专题复习:动点最值问题一.株洲最近五年中考试题的特点:1.(2012•株洲)如图,在△ABC 中,∠C=90°,BC=5米,AC=12米.M 点在线段CA 上,从C 向A 运动,速度为1米/秒;同时N 点在线段AB 上,从A 向B 运动,速度为2米/秒.运动时间为t 秒.(1)当t 为何值时,∠AMN=∠ANM ?(2)当t 为何值时,△AMN 的面积最大?并求出这个最大值.2.(2010年株洲)(本题满分8分)如图,直角ABC ∆中,90C ∠=︒,AB =sin 5B =,点P为边BC 上一动点,PD ∥AB ,PD 交AC 于点D ,连结AP .(1)求AC 、BC 的长;(2)设PC 的长为x ,ADP ∆的面积为y .当x 为何值时,y 最大,并求出最大值.3.(2009年株洲)(本题满分10分)如图1,Rt ABC ∆中,90A ∠=︒,3tan 4B =,点P 在线段AB 上运动,点Q 、R 分别在线段BC 、AC 上,且使得四边形APQR 是矩形.设AP 的长为x ,矩形APQR 的面积为y ,已知y 是x 的函数,其图象是过点(12,36)的抛物线的一部分(如图2所示). (1)求AB 的长; (2)当AP 为何值时,矩形APQR 的面积最大,并求出最大值. 为了解决这个问题,孔明和研究性学习小组的同学作了如下讨论: 张明:图2中的抛物线过点(12,36)在图1中表示什么呢? 李明:因为抛物线上的点(,)x y 是表示图1中AP 的长与矩形APQR 面积的对应关系,那么,(12,36)表示当12AP =时,AP 的长与矩形APQR 面积的对应关系. 赵明:对,我知道纵坐标36是什么意思了! 孔明:哦,这样就可以算出AB ,这个问题就可以解决了. 请根据上述对话,帮他们解答这个问题. P DCB AR Q P C B A4.(2010湘潭)如图,在直角梯形ABCD 中,AB ∥DC ,∠D =90o ,AC ⊥BC ,AB =10cm ,BC =6cm ,F 点以2cm /秒的速度在线段AB 上由A 向B 匀速运动,E 点同时以1cm /秒的速度在线段BC 上由B 向C 匀速运动,设运动时间为t 秒(0<t<5).(1)求证:△ACD ∽△BAC ; (2)求DC 的长;(3)设四边形AFEC 的面积为y ,求y 关于t 的函数关系式,并求出y 的最小值.BF5.(2009湘潭)如图,在平面直角坐标系中,四边形OABC 为矩形,3OA =,4OC =,P 为直线AB 上一动点,将直线OP 绕点P 逆时针方向旋转90°交直线BC 于点Q ;(1)当点P 在线段AB 上运动(不与A B ,重合)时,求证:O A ·BQ=AP ·BP ;(2)在(1)成立的条件下,设点P 的横坐标为m ,线段CQ 的长度为l ,求出l 关于m 的函数解析式,并判断l 是否存在最小值,若存在,请求出最小值;若不存在,请说明理由;(3)直线AB 上是否存在点P ,使POQ △为等腰三角形,若存在,请求出点P 的坐标;若不存在,请说明理由.6.(2012•张家界)如下左图,抛物线y=﹣x 2+x+2与x 轴交于C 、A 两点,与y 轴交于点B ,OB=4.点O 关于直线AB 的对称点为D ,E 为线段AB 的中点. (1)分别求出点A 、点B 的坐标; (2)求直线AB 的解析式; (3)若反比例函数y=的图象过点D ,求k 值; (4)两动点P 、Q 同时从点A 出发,分别沿AB 、AO 方向向B 、O 移动,点P 每秒移动1个单位,点Q 每秒移动个单位,设△POQ 的面积为S ,移动时间为t ,问:S 是否存在最大值?若存在,求出这个最大值,并求出此时的t 值;若不存在,请说明理由. 7.如上右图,A 、B 两点的坐标分别是(8,0)、(0,6),点P 由点B 出发沿BA 方向向点A 作匀速直线运动,速度为每秒3个单位长度,点Q 由A 出发沿AO (O 为坐标原点)方向向点O 作匀速直线运动,速度为每秒2个单位长度,连接PQ ,若设运动时间为t (0<t <)秒.解答如下问题: (1)当t 为何值时,PQ ∥BO ? (2)设△AQP 的面积为S ,①求S 与t 之间的函数关系式,并求出S 的最大值; ②若我们规定:点P 、Q 的坐标分别为(x 1,y 1),(x 2,y 2),则新坐标(x 2﹣x 1,y 2﹣y 1)称为“向量PQ ”的坐标.当S 取最大值时,求“向量PQ ”的坐标. 4题图 x。
新课标九年级数学中考复习强效提升分数精华版《解几何中的最值问题》导学案
《解几何中的最值问题》导学案学习目标1、 掌握解析几何中求最值问题的常见方法;2、 通过解析几何中的有关最值问题的处理,体会转化、数形结合等数学思想方法。
一、 课前热身1. 设实数x 、y 满足221x y +=,则x y +最大值为 。
2.动点(,)P x y 在直线20x y +-=上,则22x y +的最小值为 。
3.以椭圆短轴的一端点和椭圆的两焦点为顶点的三角形的面积为1,则椭圆长轴的最小值为 。
4.若点O 和点F 分别为椭圆13422=+y x 的中心和左焦点,点P 为椭圆上的任意一点,则FP OP ⋅的最大值为 。
二、 典例分析例1. 已知圆M 过两点(1,1)-,(1,1)-,且圆心M 在20x y +-=上。
(1) 求圆M 的方程;(2) 设P 是直线3480x y ++=上的动点,PA ,PB 是圆M 的两条切线,A ,B 为切点,求四边形PAMB 面积的最小值。
变题:上述条件不变,求PB PA ∙的最小值。
例2. 椭圆2222:1(0)x y E a b a b +=>>的左、右焦点分别为1F ,2F ,点(4,)A m 在椭圆E 上,且0212=⋅F F AF ,点(2,0)D 到直线1F A 的距离为185DH =。
(1)求椭圆E 的方程;(2)设点P 位椭圆E 上的任意一点,求PD PF ⋅1的最小值。
三、 课堂巩固1.设实数x 、y 满足191622=+y x ,则34x y +的最大值是 最小值是 。
2. 若点P 在直线1:30l x y ++=上,过点P 的直线2l 与曲线22:(5)16C x y -+=只有一个公共点M ,则PM 的最小值为 。
四、 课堂小结五、 课后巩固(一) 基础练习1. 椭圆22221(0)x y a b a b +=>>上的点到焦点(,0)F c 的最大距离为 。
2. 直线22x y +=与坐标轴交于A ,B ,若动点(,)P a b 在线段AB 上,则()max ab = 。
新课标九年级数学中考复习强效提升分数精华版全国各省市中考数学压轴题精选精析(按省市归类)
AMNP﹣S△PAM=S△DPN+S
梯形
(t﹣4) (4t﹣16) NDAM﹣S△PAM=错误!未找到引用源。
+错误!未找到引用源。[(4t﹣16)+(t﹣1)]× 3﹣错误!未找到引用源。 (t﹣1) (t﹣1) =错误!未找到引用源。t2﹣错误!未找到引用源。t+6. 解错误!未找到引用源。t2﹣错误!未找到引用源。t+6=错误!未找到引用源。 , 得:t1=错误!未找到引用源。 ,t2=错误!未找到引用源。 ,
考点:一次函数综合题;勾股定理;平行四边形的性质;圆周角定理。 专题:综合题;分类讨论。 分析: (1)利用直径所对的圆周角是直角,从而判定三角形 ADB 为等腰Байду номын сангаас角三角形,其直 角边的长等于两直线间的距离; (2)利用数形结合的方法得到当直线与图形 C 有一个交点时自变量 x 的取值范围即可; (3)根据平行四边形的性质及其四个顶点均在图形 C 上,可能会出现四种情况,分类讨论 即可. 解答:解: (1)分别连接 AD、DB,则点 D 在直线 AE 上, 如图 1, ∵点 D 在以 AB 为直径的半圆上, ∴∠ADB=90° , ∴BD⊥AD, 在 Rt△DOB 中,由勾股定理得,BD=错误!未找到引用源。 , ∵AE∥BF,
全国各省市中考数学压轴题精选精析(按省市归类)
25、 (北京)如图,在平面直角坐标系 xOy 中,我把由两条射线 AE,BF 和以 AB 为直径的 半圆所组成的图形叫作图形 C(注:不含 AB 线段) .已知 A(﹣1,0) ,B(1,0) ,AE∥BF, 且半圆与 y 轴的交点 D 在射线 AE 的反向延长线上. (1)求两条射线 AE,BF 所在直线的距离; (2)当一次函数 y=x+b 的图象与图形 C 恰好只有一个公共点时,写出 b 的取值范围; 当一次函数 y=x+b 的图象与图形 C 恰好只有两个公共点时,写出 b 的取值范围; (3)已知▱AMPQ(四个顶点 A,M,P,Q 按顺时针方向排列)的各顶点都在图形 C 上, 且不都在两条射线上,求点 M 的横坐标 x 的取值范围.
新课标九年级数学中考复习强效提升分数精华版 (新题解析)
专题八 探索规律 课堂测验班级__________姓名__________1.如图,是一个装饰物品连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )。
2、观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有 个 3、先找规律,再填数:1111111111111111,,,,122342125633078456 (111)+_______.2011201220112012+-=+-=+-=+-=-=⨯则4、将正偶数按下表排列:第1列 第2列 第3列 第4列第1行 2第2行 4 6第3行 8 10 12第4行 14 16 18 20 ……根据上面的规律,则2006所在行、列分别是 . 5、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0) 根据这个规律探索可得,第100个点的坐标为____________.在平面直角坐标系xOy 中,点A 1,A 2,A 3,···和B 1,B 2,B 3,···分别在直线y=kx+b 和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果A 1(1,1),A 27322⎛⎫ ⎪⎝⎭,,那么点n A 的纵坐标是 .专题九 分类讨论 课堂测验(第1题图) B班级__________姓名__________1、一次函数y kx b x =+-≤≤,当31时,对应的y 值为19≤≤x ,则kb 的值是( )。
A. 14B. -6 C . -4或21D. -6或142、为了美化环境,计划在小区内用120m 2的草皮铺设一块一边长为20的等腰三角形绿地,请求出这个三角形的另两条边长分别是_____________.3、已知直角三角形两边x 、y 的长满足240x -+=,则第三边长为 .4、如图,正方形ABCD 的边长是2,BE =CE ,MN =1,线段MN 的两端在CD 、AD 上滑动。
新课标九年级数学中考复习强效提升分数精华版几何最值问题解法专题复习
中考数学几何最值问题解法专题复习在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
下面通过近年全国各地中考的实例探讨其解法。
一、应用两点间线段最短的公理(含应用三角形的三边关系)求最值:典型例题:例1. (2012山东济南3分)如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为【 】A 1BC .5 5 D .52 【答案】A 。
【考点】矩形的性质,直角三角形斜边上的中线性质,三角形三边关系,勾股定理。
【分析】如图,取AB 的中点E ,连接OE 、DE 、OD ,∵OD≤OE+DE,∴当O 、D 、E 三点共线时,点D 到点O 的距离最大,此时,∵AB=2,BC=1,∴OE=AE=12AB=1。
DE====,∴OD 1。
故选A 。
例2.(2012湖北鄂州3分)在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 ▲ 。
【答案】4。
【考点】最短路线问题,全等三角形的判定和性质,三角形三边关系,垂直线段的性质,锐角三角函数定义,特殊角的三角函数值。
【分析】如图,在BA 上截取BE=BN ,连接EM 。
∵∠ABC 的平分线交AC 于点D ,∴∠EBM=∠NBM。
在△AME 与△AMN 中,∵BE=BN ,∠EBM=∠NBM,BM=BM ,∴△BME≌△BMN(SAS )。
新课标九年级数学中考复习强效提升分数精华版中考要点检测试卷
中考要点检测试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都23.(4分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于点D.则△BCD与△ABC的周长之比为()4.(4分)在Rt△ABC中,∠C=90°,sinA=,则cosB的值等于().B D5.(4分)如图所示的计算程序中,y与x之间的函数关系对应的图象所在的象限是()6.(4分)如图,在△ABC中,AB=BC=2,以AB为直径的⊙O与BC相切于点B,则AC等于().B27.(4分)如图,锐角△ABC中,BE,CD是高,它们相交于O,则图中与△BOD相似的三角形有()8.(4分)二次函数y=ax 2+bx+c 的图象如图所示,反比例函数y=与正比例函数y=(b+c )x 在同一坐标系中的大致图象可能是( ). B D9.(4分)将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为( )10.(4分)如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O 点,若S △AOD :S △OCD =1:2,则S △AOD :S △BOC =( ). B D二、填空题(共4小题,每小题5分,满分20分)11.(5分)一条抛物线具有下列性质:(1)经过点A (0,3);(2)在y 轴左侧的部分是上升的,在y 轴右侧的部分是下降的.试写出一个满足这两条性质的抛物线的表达式. _________ .12.(5分)如图,在半径为10的⊙O 中,OC 垂直弦AB 于点D ,AB=16,则CD 的长是 _________ .13.(5分)如图,在△ABC 中,∠ACB=90°,AC=4,BC=3,O 是边AB 的中点,过点O 的直线l 将△ABC 分割成两个部分,若其中的一个部分与△ABC 相似,则满足条件的直线l 共有 _________ 条.14.(5分)如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则sinα=_________.三、解答题(共9小题,满分90分)15.(8分)如图,在平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,3)、B(2,2)、C(2,1),D(3,3).(1)以原点O为位似中心,相似比为2,将图形放大,画出符合要求的位似四边形;(2)在(1)的前提下,写出点A的对应点坐标A′,并说明点A与点A′坐标的关系.16.(8分)已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围.17.(8分)如图A、B、P、C是⊙O上的四个点,∠APC=∠CPB=60°,判断△ABC的形状,并证明你的结论.18.(8分)2009年首届中国国际航空体育节在莱芜雪野举办,期间在市政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A处时,仪器显示正前方一高楼顶部B的仰角是37°,底部C的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,)19.(10分)已知反比例函数y=的图象与二次函数y=ax2+x﹣1的图象相交于点(2,2)(1)求a和k的值;(2)反比例函数的图象是否经过二次函数图象的顶点,为什么?20.(10分)会堂里竖直挂一条幅AB,小刚从与B成水平的C点观察,视角∠C=30°,当他沿CB方向前进2米到达到D时,视角∠ADB=45°,求条幅AB的长度.21.(12分)在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B (1)求证:△ADF∽△DEC;(2)若AB=4,AD=3,AE=3,求AF的长.22.(12分)如图,以线段AB为直径的⊙O交线段AC于点E,点M是的中点,OM交AC于点D,∠BOE=60°,cosC=,BC=2.(1)求∠A的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.23.(14分)如图,已知△ABC中,∠A=90°,AB=6,AC=8,D是AB上一动点,DE∥BC,交AC于E,将四边形BDEC沿DE向上翻折,得四边形B'DEC',B'C'与AB、AC分别交于点M、N.(1)证明:△ADE∽△ABC;(2)设AD为x,梯形MDEN的面积为y,试求y与x的函数关系式.当x为何值时y有最大值?参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都23.(4分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于点D.则△BCD与△ABC的周长之比为()4.(4分)在Rt△ABC中,∠C=90°,sinA=,则cosB的值等于().B D.5.(4分)如图所示的计算程序中,y与x之间的函数关系对应的图象所在的象限是(),由其性质判断所在的象限.为﹣,则函数过第二、四象限,故选(6.(4分)如图,在△ABC中,AB=BC=2,以AB为直径的⊙O与BC相切于点B,则AC等于().B2=;故选7.(4分)如图,锐角△ABC 中,BE ,CD 是高,它们相交于O ,则图中与△BOD 相似的三角形有( )8.(4分)二次函数y=ax 2+bx+c 的图象如图所示,反比例函数y=与正比例函数y=(b+c )x 在同一坐标系中的大致图象可能是( ) . B D>图象在一、三象限,正比例函数9.(4分)将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()10.(4分)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O点,若S△AOD:S△OCD=1:2,则S△AOD:S△BOC=().B D((二、填空题(共4小题,每小题5分,满分20分)11.(5分)一条抛物线具有下列性质:(1)经过点A(0,3);(2)在y轴左侧的部分是上升的,在y轴右侧的部分是下降的.试写出一个满足这两条性质的抛物线的表达式.y=﹣x2+3等.12.(5分)如图,在半径为10的⊙O中,OC垂直弦AB于点D,AB=16,则CD的长是4.AD=OD==613.(5分)如图,在△ABC中,∠ACB=90°,AC=4,BC=3,O是边AB的中点,过点O的直线l将△ABC分割成两个部分,若其中的一个部分与△ABC相似,则满足条件的直线l共有3条.14.(5分)如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则sinα=.CD==CDF==.三、解答题(共9小题,满分90分)15.(8分)如图,在平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,3)、B(2,2)、C(2,1),D(3,3).(1)以原点O为位似中心,相似比为2,将图形放大,画出符合要求的位似四边形;(2)在(1)的前提下,写出点A的对应点坐标A′,并说明点A与点A′坐标的关系.16.(8分)已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围.,解得17.(8分)如图A、B、P、C是⊙O上的四个点,∠APC=∠CPB=60°,判断△ABC的形状,并证明你的结论.是所对的圆周角,18.(8分)2009年首届中国国际航空体育节在莱芜雪野举办,期间在市政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A处时,仪器显示正前方一高楼顶部B的仰角是37°,底部C的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,)19.(10分)已知反比例函数y=的图象与二次函数y=ax2+x﹣1的图象相交于点(2,2)(1)求a和k的值;(2)反比例函数的图象是否经过二次函数图象的顶点,为什么?y=交于点((y=y=x((=y=[(y=20.(10分)会堂里竖直挂一条幅AB,小刚从与B成水平的C点观察,视角∠C=30°,当他沿CB方向前进2米到达到D时,视角∠ADB=45°,求条幅AB的长度.,=;AB+2,AB=+121.(12分)在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B (1)求证:△ADF∽△DEC;(2)若AB=4,AD=3,AE=3,求AF的长.DE=22.(12分)如图,以线段AB为直径的⊙O交线段AC于点E,点M是的中点,OM交AC于点D,∠BOE=60°,cosC=,BC=2.(1)求∠A的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.A=cosC=是×=3OA=,MD=23.(14分)如图,已知△ABC中,∠A=90°,AB=6,AC=8,D是AB上一动点,DE∥BC,交AC于E,将四边形BDEC沿DE向上翻折,得四边形B'DEC',B'C'与AB、AC分别交于点M、N.(1)证明:△ADE∽△ABC;(2)设AD为x,梯形MDEN的面积为y,试求y与x的函数关系式.当x为何值时y有最大值?,,所以.。
新课标九年级数学中考复习强效提升分数精华版(最值问题) 苏科版
九年级数学上册期中复习(最值问题) 苏科版1、函数225y x x =--+,当-2<X<4时函数的最大值为 ___ 2、若函数322-+=x x y ,当24-≤≤-x 时,函数值的最大值为____,最小值_____, 当42x -≤≤时,函数值的最大值为_____,最小值_____,当12x ≤≤时,函数值的最大值为_____,最小值_____.3、代数式2x2+8x-3的最小值为________,代数式-2x2+8x-3的最大值为________.4、已知实数x ,y 满足x2+3x+y-3=0,则x+y 的最大值为______.5、已知二次函数22)3()1(-+-=x x y ,当x =_________时,函数达到最小值。
6、已知x 、y 都是正实数,且满足4x2+4xy +y2+2x +y -6=0,则x (1-y )的最小值为 .7、二次函数2y ax bx =+的图象如图,若一元二次方程 ax2+bx+m-1=0有实数根,则m 的最大值为_______.8、一个小服装厂生产某种风衣,售价P(元/件)与日销售量x (件)之间的关系为P =160-2x ,生产x 件的成本为R =500+30x 元.(1)该厂的日销售量为多大时,获得的日利润为1300元?(2)当日销售量为多少时,可获得最大日利润?最大利润是多少元?9、近几年,随着苏州“园林城市”建设的快速发展,对花木需求量逐年提高。
某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润1y 与投资量x 成正比例关系,如图①所示;种植花卉的利润2y 与投资量x 成二次函数关系,如图②所示(注:利润与投资量的单位:万元)(1)分别求出利润1y 与2y 关于投资量x 的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?第8题10、如图,等腰梯形ABCD 中,AB=4,CD=9,∠C =60°,动点P 从点C 出发沿CD 方向向点D 运动,动点Q 同时以相同速度从点D 出发沿DA 方向向终点A 运动,其中一个动点到达端点时,另一个动点也随之停止运动.(1)求AD 的长;(2)设CP=x ,问当x 为何值时△PDQ 的面积达到最大,并求出最大值;11、如图,在等边三角形ABC 中,AB=2,点D 、E 分别在线段BC 、AC 上(点D 与点B 、C 不重合),且∠ADE=600. 设BD=x,CE=y.(1)求y 与x 的函数表达式;(2)当x 为何值时,y 有最大值,最大值是多少?C ED B A12、如图, 已知抛物线c bx x y ++=221与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1).(1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.13、如图,一次函数122y x=-+分别交y轴、x 轴于A、B两点,抛物线2y x bx c=-++过A、B两点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;
(5)应用其它知识求最值。
下面通过近年全国各地中考的实例探讨其解法。
一、 应用两点间线段最短的公理(含应用三角形的三边关系)求最值:
例1.如图,∠MON =90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运
动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB =2,BC =1,运动过程
中,点D 到点O 的最大距离为【 】
A 1
B
C 5
D .52 【考点】
【分析】
例2.在锐角三角形ABC 中,BC =24,∠ABC =45°,BD 平分∠ABC ,M 、N 分别是BD 、BC
上的动点,则CM +MN 的最小值是 。
例3、如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点
P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ .
二、应用垂线段最短的性质求最值:
例4.在△ABC 中,AB =AC =5,BC =6.若点P 在边AC 上移动,则BP 的最小值是 .
【考点】
【分析】
例5.如图,菱形ABCD 中,AB =2,∠A =120°,点P ,Q ,K 分别为线段BC ,CD ,BD
上的任意一点,则PK +QK 的最小值为【 】A . 1 B C . 2
D 1
【考点】
【分析】
例6.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为.其中正确结论的个数
是【】
A.1个B.2个C.3个D.4个
【考点】
【分析】
例8.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为.
【考点】
【分析】
例9.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD 上滑动,且E、F不与B.C.D重合.
(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;
(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.
例10.(云南昆明12分)如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;
(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC 是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由.
三、应用轴对称的性质求最值
例11.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN 周长最小时,则∠AMN+∠ANM的度数为【】
A.130° B.120° C.110° D.100°
【考点】
例12.如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为【】
A.1 B.2 C.3 D.4
例13.如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是【】
A.3 B.4 C.5 D.6
例14.如图,在梯形ABCD中,AB∥CD,∠BAD=90°,AB=6,对角线AC
平分∠BAD,
点E在AB上,且AE=2(AE<AD),点P是AC上的动点,则PE+PB的最小值
是.
二、应用二次函数求最值:
例15.正方形ABCD的边长为1cm,M、N分别是BC.CD上两个动点,且始终保持
AM⊥MN,当BM= cm时,四边形ABCN的面积最大,最大面积为cm2.
【考点】
【分析】
例16.如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同
侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是.
【考点】
【分析】
例17.在矩形ABCD中,AB=2,AD=3,P是BC上的任意一点(P与B、C不重合),过点P作
AP⊥PE,垂足为P,PE交CD于点E.
(1)连接AE,当△APE与△ADE全等时,求BP的长;
(2)若设BP为x,CE为y,试确定y与x的函数关系式。
当x取何值时,y的值最大?最大
值是多少?(3)若PE∥BD,试求出此时BP的长.
【分析】
例6.(江苏苏州8分)如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,
过点P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接PA 、PB ,设PC 的长为()x 2x 4<<.⑴当5x=2 时,求弦PA 、PB 的长度;
⑵当x 为何值时,PD PC ⋅的值最大?最大值是多少?
【考点】
【分析】
l
P
D
B
O
A。