传热学课件-清华大学 (1)

合集下载

传热学(全套课件666P) ppt课件

传热学(全套课件666P) ppt课件
1A 1 (T 1 4T 2 4) ( 1-9 )
§1-3 传热过程和传热系数
一、传热过程 1 、概念
热量由壁面一侧的流体通过壁面传到 另一侧流体中去的过程称传热过程。
2 、传热过程的组成 传热过程一般包括串联着的三个环节组成, 即:
① 热流体 → 壁面高温侧; ② 壁面高温侧 → 壁面低温侧; ③ 壁面低温侧 → 冷流体。 若是稳态过程则通过串联环节的热流量相同。
二、对流
1 、基本概念
1) 对流:是指由于流体的宏观运动,从而使 流体各部分之间发生相对位移,冷热流体 相互掺混所引起的热量传递过程。 对流仅发生在流体中,对流的同时必伴随 有导热现象。
2) 对流换热:流体流过一个物体表面时的 热量传递过程,称为对流换热。
2 、对流换热的分类
1)根据对流换热时是否发生相变分:有
第一章


§1-0 概 述
一、基本概念
❖ 1 、传热学 ❖ 传热学是研究热量传递规律的学科。 ❖ 1)物体内只要存在温差,就有热量从物
体的高温部分传向低温部分; ❖ 2)物物体。
2 、热量传递过程 根据物体温度与时间的关系,热量传递过程 可分为两类:
t f1 tw1
Ah 1
tw1 tw2 A /
t w 2 t f 2 Ah 2
(d) (e) (f)
三式相加,整理可得:
A(t f 1 t f 2 )
1 1
h1 h2
也可以表示成:
(1-10)
A(tkf1tf2)A k t (1-11)
式中, k称为传热系数,单位为

W/ m2K
⑤热辐射现象仍是微观粒子性态的一种宏 观表象。
⑥ 物体的辐射能力与其温度性质有关。这 是热辐射区别于导热,对流的基本特点。

大学传热学第一章 绪论

大学传热学第一章 绪论

传热过程中的温度分布
• 稳态传热过程——热量传递过程中温度不随时间变化的传 热过程。
• 非稳态传热过程——热量传递过程中温度随时间变化的传 热过程。
• 一维传热过程——传热过程中热量只在一个方向进行。 • 多维传热过程——热量在多个方向传递的过程。
第一节 热量传递的三种基本方式
• 导热 • 热对流(对流) • 热辐射(热辐射)
传热学
第一章 绪论
• 传热学是研究热量传递规律的科学。 • 有温差的地方就会有传热。 • 热量传递具有方向性——从高温到低温。 • 热量传递的基本方式有三种——导热、热对流和辐射。
传热学的应用的实例
• 食品加工 • 航天飞行器表面的冷却 • 稠油开采 • 电子器件的冷却 • 生物工程 • 能源动力 • 交通运输
• 实例:两个非接触物体之间的热量传递;火焰的 热量传递;太阳辐射等等。
• 计算:斯忒藩-玻耳兹曼定律。
斯忒藩-玻耳兹曼定律
AT 4
Ac 0
T 100
4
5.67108W /m2 K 4
第二节 传热过程和传热系数
• 定义:热量由壁面一侧的流体通过壁面传给另一侧流体的 过程称为传热过程。
• 模拟法:利用同类现象可比拟的特点,用已知现 象的规律模拟所要研究的现象。
• 实验法:通过试验的方法来获得所要研究问题解 的方法。
第三节 传热学发展简史
• 本节内容请同学自学。
• 实例:由墙壁隔开的室内外空气间的传热。 • 计算:传热方程
传热方程
kAt t
f1

1
At t
1/ h / 1/ h
f1
f2
1
2
传热学的研究方法
• 解析法:首先建立所研究问题的数学描写,然后 应用解析数学的方法,求解该问题。

《传热学基本知识》PPT课件

《传热学基本知识》PPT课件

3、传热的基本方式
导热 热对流 热辐射
4、稳定传热基本概念
稳定传热 传热中温度差保持一恒定值,即不随时间有所变化。
不稳定传热 传热中温度差随时间变化而变化。
本章无特别说明的传热现象都是指稳定传热。
§2-2 稳定导热
一、定义
温度不同的物体直接接触,温度较高的物体把热能传给 温度较低的物体,或在同一物体内部,热能从温度较高 的部分传给温度较低部分的传热现象。
Q-单位时间的对流换热量。 q -对流换热热流强度。 F -墙壁的换热面积。 tb -墙面的温度。
t1 -流体的温度。
-对流换热系数,
其大小反映了对流换热的强弱。
变换公式的形式,可得:
q tb t1 tb t1
1
R

R -对流换热热阻,与对流换热系数成反比。
§2-4 辐射换热
1 1 d
1

1
1
Rn R Rw R
n w
K -墙体的总传热系数。 R -墙体的总传热阻。
二、传热的增强与削弱
1、增强传热的基本途径 Q KFt
(1)提高传热系数 (2)增大传热面积 (3)增大传热温差
2、增强传热的方法
(1)改变流体的流动状况 (2)改变流体的物性 (3)改变换热表面情况
一、热辐射的本质和特点
1、定义 2、特点:
不依靠物质的直接接触而进行能量传递。 伴随能量形式两次转化:内能→电磁波能→内能。 只要T>OK,物体都会不断向周围发射热射线。
即使没有温差,也存在热辐射,只不过物体辐射和吸收的 能量相等,处于动态平衡。
二、辐射能的吸收、反射和透射
根据能量守恒定律,有:

(完整PPT)传热学

(完整PPT)传热学

(完整PPT)传热学contents •传热学基本概念与原理•导热现象与规律•对流换热原理及应用•辐射换热基础与特性•传热过程数值计算方法•传热学实验技术与设备•传热学在工程领域应用案例目录01传热学基本概念与原理03热辐射通过电磁波传递热量的方式,不需要介质,可在真空中传播。

01热传导物体内部或两个直接接触物体之间的热量传递,由温度梯度驱动。

02热对流流体中由于温度差异引起的热量传递,包括自然对流和强制对流。

热量传递方式传热过程及机理稳态传热系统内的温度分布不随时间变化,热量传递速率保持恒定。

非稳态传热系统内的温度分布随时间变化,热量传递速率也随时间变化。

传热机理包括导热、对流和辐射三种基本传热方式的单独作用或相互耦合作用。

生物医学工程研究生物体内的热量传递和温度调节机制,为医学诊断和治疗提供理论支持。

解决高速飞行时的高温问题,保证航空航天器的安全运行。

机械工程用于优化机械设备的散热设计,提高设备运行效率和可靠性。

能源工程用于提高能源利用效率和开发新能源技术,如太阳能、地热能等。

建筑工程在建筑设计中考虑保温、隔热和通风等因素,提高建筑能效。

传热学应用领域02导热现象与规律导热基本概念及定律导热定义物体内部或物体之间由于温度差异引起的热量传递现象。

热流密度单位时间内通过单位面积的热流量,表示热量传递的强度和方向。

热传导定律描述导热过程中热流密度与温度梯度之间关系的定律,即傅里叶定律。

导热系数影响因素材料性质不同材料的导热系数差异较大,如金属通常具有较高的导热系数,而绝缘材料则具有较低的导热系数。

温度温度对导热系数的影响因材料而异,一般情况下,随着温度的升高,导热系数会增加。

压力对于某些材料,如气体,压力的变化会对导热系数产生显著影响。

稳态与非稳态导热过程稳态导热物体内部各点温度不随时间变化而变化的导热过程。

在稳态导热过程中,热流密度和温度分布保持恒定。

非稳态导热物体内部各点温度随时间变化而变化的导热过程。

传热学基本知识PPT课件

传热学基本知识PPT课件
热传导与对流传热共 同起作用; (3)湍流区:
充满漩涡,混合很好, 对流为主,热阻小,温差 小。
第32页/共74页
传热学基本知识
4、对流换热方程
热对流
对流传热计算公式—牛顿冷却定律
Q At
Q A
t 1
t R
一侧对流传热推动力 一侧对流传热热阻
t (t1 t2 )
一般为传热壁面的温度与流体主体的平均温度之差。
度 再
差 乘
⊿以t温均度是t 差先修按正逆系流数计

对数平均 ,即


t均 t t逆
第18页/共74页
第19页/共74页
③错流和折流时的平均温度差
各种流动情况下的温度差修正系数,可以根据
两个参数查图
R T1 T2 热流体的温降 t2 t1 冷流体的温升
P t2 t1 T1 t1
冷流体的温升 两流体的最初温差
3)流体的物理性质对给热系数的影响 导热系数、比热容c、密度越大,动力粘度越小,对流传 热系数越大
第34页/共74页
传热学基本知识
热对流
2)流体有相变发生时
蒸汽的冷凝 液体的沸腾
膜状冷凝 滴状冷凝(传热系数大)
自然对流
泡状沸腾或泡核沸腾(传热系数大)
膜状沸腾
第35页/共74页
蒸汽冷凝时的对流传热
现2场.测采得用流经体的验流数量据,由流体在换热器进出口的状态变化而求得。
表5-2列出了常见的列管式换热器的传热系数经验值的大致范围。
3.计算法
传热系数的计算公式可利用串联热阻叠加原则导出。对于间壁式换热 器,传热过程的总阻力应等于两个对流传热阻力与一个导热阻力之和。 传热总阻力的倒数就是传热系数。

清华大学热工基础课件工程热力学加传热学第一章

清华大学热工基础课件工程热力学加传热学第一章

pv RT
17
(3)状态参数坐标图 以独立状态参数为坐标的坐标图。 在以两个独立状态参数为坐标的平面坐
标图上,每一点都代表一个平衡状态。
18
1-4 准平衡过程和可逆过程
(1)热力过程 系统由一个状态到达另一个状态的变化过程。
19
(2)准平衡过程(准静态过程)
所经历的每一个状态都无限地接近平衡状 态的过程。
热力学温标取水的三相点为基准点,并定 义其温度为273.16 K。温差1K相当于水的三 相点温度的1/273.16。
热力学温标与摄氏温标的关系: 温差:1 K = 1 ℃
t = T – 273.15 K 14
国际单位制(SI)采用热力学温度T作 为基本状态参数。 4) 温度的测量
a. 接触式 水银温度计、酒精温度计 热电偶、电阻温度计等。
闭口 系统
边界 外界
4
(2)开口系统
与外界有物质交
进口
换的系统。系统的容
积始终保持不变,也
称为控制容积系统。
(3)绝热系统 与外界没有热量交换的系统。 出口
(4)孤立系统
与外界既无能量(功、热量) 交换又无物质交换的系统。
5
1-2 平衡状态及基本状态参数
1. 平衡状态
(1)状态(热力状态)
系统在某一瞬间所呈现的宏观物理状 况称为系统的热力状态,简称状态。
9
压力测量:
绝对压力 p、大气压力pb、表压力pe、真空度pv
p =pb +pe
p =pb -pv
只有绝对压力 p 才是状态参数。
10
(2)温度
1)温度的物理意义
温度是反映物体冷热程度的物理量。温度的 高低反映物体内部微观粒子热运动的强弱。

传热学基本知识ppt课件

传热学基本知识ppt课件

传热学基本知识ppt课件目录•传热学概述•热传导基本知识•热对流基本知识•热辐射基本知识•传热过程与换热器设计•传热学实验方法与测量技术•传热学在工程领域应用案例01传热学概述传热学定义与研究对象传热学定义研究热量传递规律的科学,主要研究物体之间或物体内部热量传递的过程、机理和计算方法。

研究对象包括导热、对流换热和辐射换热三种基本传热方式,以及传热过程与热力学、流体力学、电磁学等学科的交叉问题。

01020304能源与动力工程建筑工程机械工程电子工程传热学应用领域涉及燃烧、锅炉、内燃机、汽轮机、航空发动机等领域的热量传递问题。

研究建筑物的保温、隔热、采暖、通风等热工性能,提高建筑能效。

解决电子设备散热问题,如计算机、手机、电子元器件等的冷却技术。

研究各种机械设备的热设计、热分析和热控制,如散热器、冷却系统、热交换器等。

理论分析实验研究数值模拟传热学研究方法通过建立数学模型和方程,对传热过程进行定量描述和预测。

通过实验手段测量传热过程中的各种物理量,验证理论分析和数值模拟的正确性。

利用计算机进行数值计算,模拟传热过程的详细情况,为优化设计和控制提供依据。

02热传导基本知识热传导定义及物理意义热传导定义物体内部或物体之间由于温度差异引起的热量传递现象。

物理意义热传导是热量传递的三种基本方式之一,对于研究物体的热行为和热设计具有重要意义。

热传导基本定律与公式热传导基本定律傅里叶定律,即单位时间内通过单位面积的热量与温度梯度成正比。

热传导公式Q = -kA(dT/dx),其中Q为热量,k为热传导系数,A为传热面积,dT/dx为温度梯度。

热传导系数及其影响因素热传导系数定义表征材料导热性能的物理量,即单位时间、单位温度梯度下,通过单位面积的热流量。

影响因素材料的种类、温度、压力、湿度等都会对热传导系数产生影响。

例如,金属材料的热传导系数通常较高,而非金属材料的热传导系数较低。

03热对流基本知识热对流定义及物理意义热对流定义热对流是指热量通过流体的宏观运动而传递的过程。

清华大学热工基础课件工程热力学加传热学1绪论

清华大学热工基础课件工程热力学加传热学1绪论

列中间状态,最终回到初始状态。
工程热力学的发展历程
早期发展
工程热力学起源于古代人类对火的使用和对蒸汽的认识。 随着工业革命的兴起,人们对热能转换和利用的研究逐渐 深入。
基础理论建立
19世纪末,卡诺、焦耳等科学家通过实验研究,建立了热 力学的理论基础,包括卡诺循环、焦耳定律等。
现代发展
随着科技的不断进步,工程热力学在能源转换、环境保护 、航空航天等领域的应用越来越广泛,成为能源、动力、 化工等学科的重要基础。
要关注热力系统能量的转换与传递过程,以及系统状态变化的规律。
02
热力系统
热力系统是指可以与周围环境进行热量交换的封闭系统。系统内的能量
转换与传递过程遵循热力学的第一定律和第二定律。
03
热力循环
在工程热力学中,热力循环是一系列连续的热力学过程,包括吸热、膨
胀、放热、压缩等过程。循环中,系统从某一初始状态出发,经过一系
19世纪末,傅里叶、牛顿等科学家对传热学进行了系统 的研究和总结,奠定了传热学的基础。
20世纪以来,随着科技的发展和工业的进步,传热学在 理论和实践方面都取得了长足的进步。
传热学的研究对象和内容
01
传热学的研究对象是热量传递过程中的规律和现象,主要 研究导热、对流、辐射三种传热方式。
02
导热是指热量在物体内部通过分子、原子等微观粒子的运动传递 ;对流是指流体在运动过程中将热量传递给固体壁面;辐射是指
热力循环与热效率
介绍各种热力循环,如蒸汽循环 、燃气循环等,以及如何提高循 环效率和减少能量损失。
传热学部分大纲
导热基本定律与稳态导热
介绍导热基本定律,即傅里叶定律,以 及稳态导热的分析方法和计算。
对流换热

清华大学热能工程教学课件-第7章 对流受热面传热计算(1)

清华大学热能工程教学课件-第7章 对流受热面传热计算(1)

对于后屏 x p 按下式计算:
b 2 b x p ( ) 1 s1 s1

对于大屏
xp
按相互垂直具有一公共边的矩形平面间
的角系数,由图 11-1 确定。在上式和图中,b 为屏宽度; s1 为屏间距离;h 为屏高度。
7.1 基本方程
7.1 基本方程

屏进口截面对出口截面的角系数 xp
对于中低压锅炉取为33~63 KJ/Kg 对于高压锅炉取为42~84 KJ/Kg 如果不设减温器取为0 KJ/Kg

省煤器入口烟气焓
I
' sm
I gr Ilk
' gr
0
D '' ' 1 xnz (igr igr i jw ) Bj
Qch
7.1 基本方程
Bj
a ─屏间烟气黑度;
'' Ap ─屏后热面烟窗截面积,
m2
;
T pj
p
─屏间烟气平均温度,K; x ─屏进口截面对出口截面的角系数; r ─考虑燃料影响的修正系数,对煤及重油
r =0.5;对天燃气 r =0.7;对页岩 r =0.2。
7.1 基本方程

屏进口截面对出口截面的角系数 xp
D Qd (i i ) Bj
ky 2 )( I rk o I lk o ) ( I rk o I lk o )
Qky ( ky "
7.1 基本方程

屏式过热器所吸收来自炉膛的辐射热计算 (KJ/Kg)
Qf Q'f Q''f

屏入口截面(炉膛出口截面)所吸收的炉膛辐射热量:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[导入与导出净热量] + [内热源发热量] = [热力学能的增加] 1、导入与导出微元体的净热量
dτ 时间内、沿 x 轴方向、经 x 表面导入的热量:
dQx = qx ⋅ dydz ⋅ dτ [J]
dτ 时间内、沿 x 轴方向、
经 x+dx 表面导出的热量:
dQx+dx = qx+dx ⋅ dydz ⋅ dτ [J]
物体的温度场通常用等温面或等温线表示
三、温度梯度 (Temperature gradient)
等温面上没有温差,不会 有热传递
不同的等温面之间,有温 差,有导热
∆t ≠ ∆t ∆n ∆s
温度梯度:沿等温面法线方向上的温度增量 与法向距离比值的极限,gradt
grad t = Lim ∆t n = ∂t n ∆n→0 ∆n ∂n
(2) 非金属的热导率: 非金属的导热:依靠晶格的振动传递热量;比较小
建筑和隔热保温材料: λ ≈ 0.025 ~ 3 W (mD C)
T ↑⇒ λ ↑
大多数建筑材料和绝热材料具有多孔或纤维结构 多孔材料的热导率与密度和湿度有关
ρ ↓ 、湿度 ↓ ⇒ λ ↓
保温材料:国家标准规定,温度低于350度时热导率 小于 0.12W/(mK) 的材料(绝热材料)
j
− λ ∂t k
∂z
qx
=
−λ
∂t ∂x
;
qy
=
−λ
∂t ∂y
;
qz
=
−λ
∂t ∂z
注:傅里叶定律只适用于各向同性材料 各向同性材料:热导率在各个方向是相同的
有些天然和人造材料,如:石英、木材、叠层塑料板、 叠层金属板,其导热系数随方向而变化
—— 各向异性材料
各向异性材料中:

qx
=
λxx
∂t ∂x
q x + dx
=
qx
+
∂qx ∂x
dx
dτ 时间内、沿 x 轴方向导入与导出微元体净热量:
dQx

dQx + dx
=

∂qx ∂x
dxdydz ⋅ dτ
[J]
dτ 时间内、沿 x 轴方向
导入与导出微元体净热量:
− ∂qx dxdydz ⋅ dτ [J]
∂x
dτ 时间内、沿 y 轴方向
导入与导出微元体净热量:
+
λxy
∂t ∂y
+
λxz
∂t ∂z

qy
=
λ yx
∂t ∂x
+
λ yy
∂t ∂y
+
λ yz
∂t ∂z
− qz
= λzx
∂t ∂x
+ λzy
∂t ∂y
+ λzz
∂t ∂z
§1-2 热导率( Thermal conductivity )
λ= q
— 物质的重要热物性参数
- grad t
热导率的数值就是物体中单位温度梯度、单位时间、
气体的温度升高时:气体分子运动速度和定容比热 随T升高而增大。 气体的热导率随温度升高而增大
混合气体热导率不能用部分求和的方法求; 只能靠实验测定
分子质量小的气体(H2、He)热导率较大 — 分子运动速度高
2、液体的热导率 λ液体 ≈ 0.07 ~ 0.7 W (mD C)
20D C : λ水 = 0.6 W (mD C)
ρc
(Thermal diffusivity)
∇2 — 拉普拉斯算子
热扩散率 a 反映了导热过程中材料的导热能力( λ ) 与沿途物质储热能力( ρ c )之间的关系
a值大,即 λ 值大或 ρ c 值小,说明物体的某一部分
一旦获得热量,该热量能在整个物体中很快扩散
热扩散率表征物体被加热或冷却时,物体内各部分 温度趋向于均匀一致的能力
液体的导热:主要依靠晶格的振动(声子,phonon)
晶体的状态(晶态):完全有序的周期性排列是固 体中分子聚集的最稳定的状态
晶格:理想的晶体中分子在无限大空间里排列成周 期性点阵,即所谓晶格
在分子力和分子运动的竞争中,液态是两者势均力 敌的状态
理想气体中分子运动占绝对优势——完全无序模型
理想晶体中分子力占主导地位——完全有序模型
完全无序模型和完全有序模型的理论都很成熟
液体的情况介于两个极端之间,非常难以处理,至今 没有统一的理论模型
通常研究液体的办法是从两头逼近:或者把它看作非 常稠密的实际气体,或者把它看作热运动非常剧烈的 破损晶体,两方面各自能说明一些问题
中子衍射表明:液体中分子在局部结构改组之前大约
在原地附近振动10次到100次 — 液态分子结构大致图象
通过单位面积的导热量 [W ] (m⋅D C)
热导率的数值表征物质导热能力大小。实验测定 影响热导率的因素:物质的种类、材料成分、温度、
湿度、压力、密度等
λ金属 > λ非金属; λ固相 > λ液相 > λ气相
λ纯铜 = 398 W (mDC); λ大理石= 2.7W (mDC)
0D C : λ冰 = 2.22 W (mD C); λ水 = 0.551W (mD C) λ蒸汽 = 0.0183W (mD C)
纯金属的导热:依靠自由电子的迁移和晶格的振动 主要依靠前者
金属导热与导电机理一致;良导电体为良导热体:
λ银 > λ铜 > λ金 > λ铝
T ↑⇒ λ ↓
— 晶格振动的加强干扰自由电子运动
10K : λCu = 12000 W (mD C) 15K : λCu = 7000 W (mD C)
合金:金属中掺入任何杂质将破坏晶格的完整性,
干扰自由电子的运动 ⇒ λ ↓
λ合金 < λ纯金属
如:常温下: λ纯铜 = 398 W (mDC),λ黄铜 = 109 W (mDC)
(黄铜:70%Cu,30%Zn)
金属的加工过程也会造成晶格的缺陷 ⇒ λ ↓
合金的导热:依靠自由电子的迁移和晶格的振动; 主要依靠后者
T ↑⇒ λ ↑
温度升高、晶格振动加强、导热增强
不同物质热导率的差异:构造差别、导热机理不同
1、气体的热导率 λ气体 ≈ 0.006 ~ 0.6 W (mDC)
0D C : λ空气 = 0.0244 W (mD C) ; 20D C : λ空气 = 0.026 W (mD C)
气体的导热:由于分子的热运动和相互碰撞时发生的 能量传递
气体分子运动理论:常温常压下气体热导率可表示为:
(2) 热导率、比热容和密度均为已知
(3) 物体内具有内热源;强度 qv [W/m3];
化学反应 发射药 熔化过程
内热源均匀分布;qv 表示单位体积的导热
体在单位时间内放出的热量 qV = ρAQ0e−E RT
在导热体中取一微元体
热力学第一定律:
Q = ∆U + W
W = 0, ∴ Q = ∆U dτ 时间内微元体中:
ρc ∂t ∂τ
=
∂ (λ
∂x
∂t ) + ∂x
∂ (λ ∂t ) +
∂y ∂y
∂ (λ
∂z
∂t ∂z
)
+
qv
若物性参数 λ、c 和 ρ 均为常数:
∂t = a( ∂2t + ∂2t + ∂2t ) + qv ; or ∂t = a∇2t + qv
∂τ ∂x2 ∂y2 ∂z 2 ρc
∂τ
ρc
a = λ — 热扩散率(导温系数) [m2 s]
液体导热系数经验公式:λ
=
Acpρ
4 3
1
M 3 ; Acp = const
大多数液体(分子量M不变): T ↑⇒ ρ ↓⇒ λ ↓
水和甘油等强缔合液体,分子量变化,并随温度而变 化。在不同温度下,热导率随温度的变化规律不一样
液体的热导率随压力p的升高而增大 p ↑⇒ λ ↑
3、固体的热导率
(1) 金属的热导率: λ金属 ≈ 12 ~ 418 W (mD C)
λ
=
1 3
uρlcv
u:气体分子运动的均方根速度
l :气体分子在两次碰撞间平均自由行程 ρ :气体的密度;cv:气体的定容比热
气体的压力升高时:气体的密度增大、平均自由行程 减小、而两者的乘积保持不变。
除非压力很低或很高,在2.67*10-3MPa ~ 2.0*103MPa 范围内,气体的热导率基本不随压力变化
第一章 导热的理论基础
§1-1 导热的基本概念及傅立叶定律
一、温度场(Temperature field)
● 某时刻空间所有各点温度分布的总称
温度场是时间和空间的函数,即:t = f (x, y, z,τ )
t — 温度; x, y, z — 空间坐标; τ —时间
稳态温度场: ∂t = 0 ⇒ 稳态导热
dQy

dQ y + dy
=

∂q y ∂y
dxdydz ⋅ dτ
[J]
dτ 时间内、沿 z 轴方向导入与导出微元体净热量:
dQz

dQz + dz
=

∂qz ∂z
dxdydz ⋅ dτ
[J]
− ∂qx dxdydz ⋅ dτ [J]
∂x
− ∂qy dxdydz ⋅ dτ [J]
∂y
− ∂qz dxdydz ⋅ dτ [J]

[J]
2、微元体中内热源的发热量
dτ 时间内微元体中
内热源的发热量:
[2] = qv ⋅ dxdydz⋅ dτ [J]
相关文档
最新文档