第三章_沉降与过滤
化工原理第三章沉降与过滤PPT
利用真空泵降低过滤介质两侧 的压力差进行过滤,适用于易 产生泡沫或悬浮液中含有大量
气体的场合。
过滤设备与操作
板框压滤机
由滤板和滤框组成,适 用于各种颗粒分离,但
操作较繁琐。
转筒真空过滤机
叶滤机
袋式过滤器
结构简单,操作方便, 但只适用于颗粒较大的
分离。
适用于精细颗粒的分离, 但设备成本较高。
过滤原理
利用颗粒大小、形状、密度等物 理性质的差异,使不同颗粒在过 滤介质两侧形成不同的速度或动 量,从而实现分离。
过滤操作的分类
恒压过滤
在恒定压力下进行过滤,适用 于颗粒粒度较小、悬浮液粘度
较大的情况。
变压过滤
在改变压力下进行过滤,适用 于颗粒粒度较大、悬浮液粘度 较小的情况。
热过滤
在加热条件下进行过滤,适用 于悬浮液中含有热敏性物质的 情况。
设备
沉降槽、沉降池、离心机等。
操作
将悬浮液引入沉降设备中,在重力作用下使固体颗粒下沉,上清液从上部排出, 底部沉积的固体经过排出装置排出。操作过程中需控制适当的温度、流量和停留 时间等参数,以保证分离效果。
02
过滤
过滤的定义与原理
过滤定义
通过多孔介质使固体颗粒截留, 从而使液体与固体分离的操作。
实验步骤 1. 准备实验装置,包括过滤器、压力计、流量计等。
2. 将过滤介质放入过滤器中。
过滤实验操作
3. 将待测流体引入过滤器,并施加一定的压力。 5. 收集过滤后的流体样本,测量其中颗粒的浓度。
4. 记录不同时刻的流量和压差数据。
注意事项:确保过滤器密封性好,避免流体泄漏;保持 恒定的流体流量和压力,以获得准确的实验数据。
化工原理第三章 沉降
2 d p ( p ) g
1.86 10 Pa s
5
18
(40 106 )2 9.81 ( 2600 1.165) 18 1.86 10 5
0.12m s
校核:
Re dut 0.3 2
(正确)
6.非球形颗粒的沉降速度
同样条件下 因此
1 3
1 则:Re k 18
令
Rep 1
则
k 2.62
层流区:
k 2.6 2 采用斯托克斯公式
过渡区:
湍流区:
2.62 k 60.1
60.1 k 2364
采用阿伦公式
采用牛顿公式
试差法: 假设 流型 选择 公式
验算
计算
ut
计算
Re t
例:求直径40μm球形颗粒在30℃大气中的自由沉降 速度。已知ρ颗粒为2600kg/m3,大气压为0.1MPa。 解: 查30℃、0.1MPa空气: 1.165kg m3 设为层流,则:
ζ是流体相对于颗粒运动时的雷诺数的函数,
(Re) (d pu / )
层流区 过渡区 湍流区
10 4 Re 2
24 Re
2 Re 500
500 Re 2 10
5
10 0.5 Re 0.44
第二节 重力沉降
目的:流体与固体颗粒分离
上部易形成涡流 ——倾斜式、 旁路 尘粒易带走 ——扩散式
螺旋面进口:结构复杂,设计制造不方便。
蜗壳形进口:结构简单,减小阻力。
轴向进口:常用于多管式旋风分离器。
常用型式
标准型、CLT/A型、CLP型、扩散式等。
化工原理第三章沉降和过滤课后习题和答案解析
第三章 沉降与过滤沉 降【3-1】 密度为1030kg/m 3、直径为400m μ的球形颗粒在150℃的热空气中降落,求其沉降速度。
解 150℃时,空气密度./30835kg m ρ=,黏度.524110Pa s μ-=⨯⋅颗粒密度/31030p kg m ρ=,直径4410p d m -=⨯ 假设为过渡区,沉降速度为()(.)()./..1122223345449811030410179225225241100835p t p g u d m s ρρμρ--⎡⎤-⎡⎤⨯==⨯⨯=⎢⎥⎢⎥⨯⨯⨯⎢⎥⎣⎦⎣⎦验算 .Re ..454101790.835=24824110p t d u ρμ--⨯⨯⨯==⨯ 为过渡区【3-2】密度为2500kg/m 3的玻璃球在20℃的水中和空气中以相同的速度沉降。
试求在这两种介质中沉降的颗粒直径的比值,假设沉降处于斯托克斯定律区。
解 在斯托克斯区,沉降速度计算式为()/218t p p u d g ρρμ=- 由此式得(下标w 表示水,a 表示空气)()()2218= p w pw p a pat w ad d u g ρρρρμμ--=pw pad d =查得20℃时水与空气的密度及黏度分别为./,.339982 100410w w kg m Pa s ρμ-==⨯⋅ ./,.35120518110a a kg m Pa s ρμ-==⨯⋅已知玻璃球的密度为/32500p kg m ρ=,代入上式得.961pw pad d ==【3-3】降尘室的长度为10m ,宽为5m ,其中用隔板分为20层,间距为100mm ,气体中悬浮的最小颗粒直径为10m μ,气体密度为./311kg m ,黏度为.621810Pa s -⨯⋅,颗粒密度为4000kg/m 3。
试求:(1)最小颗粒的沉降速度;(2)若需要最小颗粒沉降,气体的最大流速不能超过多少m/s? (3)此降尘室每小时能处理多少m 3的气体?解 已知,/./.6336101040001121810pc p d m kg m kg m Pa s ρρμ--=⨯===⨯⋅,, (1) 沉降速度计算 假设为层流区().()(.)./.26269811010400011001181821810pc p t gd u m s ρρμ---⨯⨯-===⨯⨯验算..Re .66101000111000505221810pc t d u ρμ--⨯⨯⨯===<⨯. 为层流(2) 气体的最大流速max u 。
第三章 沉降与过滤习题及答案讲课讲稿
第三章沉降与过滤习题及答案第三章沉降与过滤习题及答案一、选择题1、一密度为7800 kg/m3的小钢球在相对密度为1.2的某液体中的自由沉降速度为在20℃水中沉降速度的1/4000,则此溶液的粘度为(设沉降区为层流)。
DA.4000 mPa·s;B.40 mPa·s;C.33.82 Pa·s;D.3382 mPa·s3、降尘室的生产能力取决于。
BA.沉降面积和降尘室高度;B.沉降面积和能100%除去的最小颗粒的沉降速度;C.降尘室长度和能100%除去的最小颗粒的沉降速度;D.降尘室的宽度和高度。
4、降尘室的特点是。
DA.结构简单,流体阻力小,分离效率高,但体积庞大;B.结构简单,分离效率高,但流体阻力大,体积庞大;C.结构简单,分离效率高,体积小,但流体阻力大;D.结构简单,流体阻力小,但体积庞大,分离效率低5、在降尘室中,尘粒的沉降速度与下列因素无关。
CA.颗粒的几何尺寸 B.颗粒与流体的密度C.流体的水平流速; D.颗粒的形状6、在讨论旋风分离器分离性能时,临界粒径这一术语是指。
CA.旋风分离器效率最高时的旋风分离器的直径;B.旋风分离器允许的最小直径;C.旋风分离器能够全部分离出来的最小颗粒的直径;D.能保持滞流流型时的最大颗粒直径7、旋风分离器的总的分离效率是指。
DA.颗粒群中具有平均直径的粒子的分离效率;B.颗粒群中最小粒子的分离效率;C.不同粒级(直径范围)粒子分离效率之和;D.全部颗粒中被分离下来的部分所占的质量分率8、对标准旋风分离器系列,下述说法哪一个是正确的。
CA.尺寸大,则处理量大,但压降也大; B.尺寸大,则分离效率高,且压降小;C.尺寸小,则处理量小,分离效率高; D.尺寸小,则分离效率差,且压降大。
9、恒压过滤时,如滤饼不可压缩,介质阻力可忽略,当操作压差增加1倍,则过滤速率为原来的。
BA. 1倍;B. 2倍;C.倍;D.1/2倍10、助滤剂应具有以下性质。
制药工程专业化工原理.
附录查得,20℃时水的密度为998.2kg/m3,μ=1.005×10-3Pa.s
2019/9/9
制药工程专业《化工原理》
23
2019/9/9
制药工程专业《化工原理》
19
思考题:
影响重力沉降速度的主要因素是什么?为了增大沉降速 度以提高除尘器的生产能力,你认为可以采取什么措施?
2019/9/9
制药工程专业《化工原理》
20
重力沉降速度的计算
ut 试差法:
设流型
ut
重设
ut
Y
Re
ut 正确
N
2019/9/9
制药工程专业《化工原理》
沉降分离法--利用微粒受重力、离心力或惯性力作用 过滤分离法--利用固体微粒不能通过过滤介质的性质 此外还有液体洗涤除尘法、电除尘法即湿法净制; 静电除尘:高压电场中,带电粒子定向运动,聚集分离。
2019/9/9
制药工程专业《化工原理》
4
分离 连续相与分散相 机械 分散相和连续相
分离
不同的物理性质
2019/9/9
制药工程专业《化工原理》
2
非均相物系分离的依据是连续相与分散相具有不同 的物理性质(如密度),故可用机械方法进行分离。利 用密度差进行分离时,必须使分散相与连续相产生相对 运动,因此,分离非均相物系的单元操作遵循流体力学 的基本规律,按两相运动方式的不同分为沉降和过滤。
非均相物系的分离主要用于:
重力沉降应用—分级沉降(补充)
一.分级沉降
第三章沉降与过滤
&第三章沉降与过滤第一节沉降教学目标:了解颗粒和颗粒群的特性及有关参数的计算方法。
理解重力沉降和离心沉降的意义,掌握颗粒在层流和团粒状态下自由沉降速度的计算公式。
掌握重力沉降设备的结构和工作原理。
掌握碟片式离心机、高速管式离心机、旋风分离器、旋液分离器等离心分设被的结构、工作原理及使用方法。
教学重点:碟片式离心机、高速管式离心机、旋风分离器等离心分设被的结构、工作原理及使用方法。
教学难点:自由沉降速度的计算公式的应用。
教学内容:一、颗粒的基本性质非均相体系的不连续相常常是固体颗粒。
由于不同的条件和过程将形成不同性质的固体颗粒,且组成颗粒的成分不同则其理化性质也不同,所以在分离操作过程中就要采用不同的工艺,因而有必要认识颗粒的性质。
1.颗粒的特性按照颗粒的机械性质可分为刚性颗粒和非刚性颗粒。
如泥砂石子、无机物颗粒属于刚性颗粒。
刚性颗粒变形系数很小,而细胞则是非刚性颗粒,其形状容易随外部空间条件的改变而改变。
常将含有大量细胞的液体归属于非牛顿型流体。
因这两类物质力学性质不同,所以在生产实际中应采用不同的分离方法。
如果按颗粒形状划分,则可分为球形颗粒和非球形颗粒。
球形颗粒的体积为334136V r d ππ== (3——1)其表面积为 224S r d ππ== (3——2)颗粒的表面积与其体积之比叫比表面积,用符号0S 表示,单位23m /m 。
其计算式为:06S S V d ==将非球形颗粒直径折算成球形颗粒的直径,这个直径叫当量直径e d 。
在进行有关计算时,将e d 代入相应的球形颗粒计算公式中即可。
根据折算方法不同,当量直径的具体数值也不同。
常见当量直径有:体积当量直径d e d e =3P6πV (3——3)表面积当量直径d es d es =πPS (3——4)球形度(形状系数)φs =PS S (3——5) 2.颗粒群的特性 由大小不同的颗粒组成的集合称为颗粒群。
在非均相体系中颗粒群包含了一系列直径和质量都不相同的颗粒,呈现出一个连续系列的分布,可以用标准筛进行筛分得到不同等级的颗粒。
化工原理第三章沉降与过滤课后习题包括答案.doc
第三章沉降与过滤沉 降【 3-1 】 密度为 1030kg/m 3、直径为 400 m 的球形颗粒在 150℃的热空气中降落,求其沉降速度。
解 150℃时,空气密度0.835kg / m 3 ,黏度 2.41 10 5 Pa s颗粒密度p 1030kg / m3,直径 d p 4 10 4 m假设为过渡区,沉降速度为4 g 2 ( p)214 9 81 2 103013234u td p( . ) ( ) 4 101.79 m / s225225 2.41 10 50.835d p u t44101 79 0.835验算Re=.24 82 41 105..为过渡区3【 3-2 】密度为 2500kg/m 的玻璃球在 20℃的水中和空气中以相同的速度沉降。
解 在斯托克斯区,沉降速度计算式为u td 2ppg / 18由此式得(下标w 表示水, a 表示空气)18pw d pw2( pa )d pa2 u t =gwad pw ( d pa(pa )wpw)a查得 20℃时水与空气的密度及黏度分别为w998 2 3w 1 . 004 10 3 . kg / m , Pa s 1 205 3a1 81 10 5 Pa sa . kg / m , .已知玻璃球的密度为p2500 kg / m 3 ,代入上式得dpw( 2500 1 205 ) 1 . 004 10.d pa( 2500998 2 1 . 81 10. )359.61【 3-3 】降尘室的长度为10m ,宽为 5m ,其中用隔板分为 20 层,间距为 100mm ,气体中悬浮的最小颗粒直径为10 m ,气体密度为1.1kg / m 3 ,黏度为 21.8 10 6 Pa s ,颗粒密度为4000kg/m 3。
试求: (1) 最小颗粒的沉降速度;(2) 若需要最小颗粒沉降,气体的最大流速不能超过多少m/s (3) 此降尘室每小时能处理多少m 3 的气体解 已知 d pc10 10 6 m, p4000kg / m 3 ,1.1kg / m 3 ,21.8 10 6 Pa s(1) 沉降速度计算假设为层流区gd pc 2 (p) 9 . 81 ( 10 10 6 2 ( 4000 1 1u t)6 . ) 0.01m / s1818 21.8 10d pc u t10 10 6 0 01 1 1000505. 2 验算 Re21 8 10 6 为层流.(2) 气体的最大流速 umax 。
第3章 沉降与过滤-化工原理讲解
dr d p2 ( p ) r 2 d p2 ( p ) ui2
d
18
18 r
分离变量,积分求得沉降时间;
60
沉降时间 ≤ 颗粒旋转n圈(平均半径rm)的停留时间:
d pc 3
b n( p )ui
ui ——进口气流的流速,m/s
b——入口宽度,m n ——气流旋转的圈数, 计算时通常取n=5。
20 2 9.81 0.3
136
48
二、 离心沉降速度
切向速度 u
合
径向速度 ur 合成u合
dr
ur d
49
离心力:FC
m
u2 r
6
d p3 p
u2 r
径向向外
浮力:
Fb
6
d p3
u2 r
指向中心
阻力:
Fd
A ur2
2
4
d
2 p
ur2
2
指向中心
受力平衡时,径向速度ur为该点的离心沉降速度。
61
d pc 3
b n( p )ui
33
沉降室设计
一定粒径的颗粒,沉降室的生产能力只与与底面积
WL和 utc有关,而与H 无关。
故沉降室应做成扁平形,或在室内均匀设置多层隔板。 气速u不能太大,以免干扰颗粒沉降,或把沉下来的
尘粒重新卷起。一般u不超过3m/s。
34
净化气体
含尘气体 粉尘 隔板
多层隔板降尘室示意图
若加入n个隔板,则: qV (n 1)WLut
4
d p2
u2
2
化工原理答案 第三章 沉降与过滤
第三章 沉降与过滤沉 降【3-1】 密度为1030kg/m 3、直径为400m μ的球形颗粒在150℃的热空气中降落,求其沉降速度。
解 150℃时,空气密度./30835kg mρ=,黏度.524110Pa sμ-=⨯⋅颗粒密度/31030p kg m ρ=,直径4410p d m -=⨯ 假设为过渡区,沉降速度为()(.)()./..1122223345449811030410179225225241100835p t p g u d m s ρρμρ--⎡⎤-⎡⎤⨯==⨯⨯=⎢⎥⎢⎥⨯⨯⨯⎢⎥⎣⎦⎣⎦验算.R e ..454101790.835=24824110p t d u ρμ--⨯⨯⨯==⨯为过渡区【3-2】密度为2500kg/m 3的玻璃球在20℃的水中和空气中以相同的速度沉降。
试求在这两种介质中沉降的颗粒直径的比值,假设沉降处于斯托克斯定律区。
解 在斯托克斯区,沉降速度计算式为()/218t p p u d g ρρμ=-由此式得(下标w 表示水,a 表示空气)()()2218=pw p wp a pat wad d u gρρρρμμ--=pw pad d =查得20℃时水与空气的密度及黏度分别为./,.339982 100410w w kg m Pa s ρμ-==⨯⋅./,.35120518110a a kg m Pa s ρμ-==⨯⋅已知玻璃球的密度为/32500p kg m ρ=,代入上式得.961pw pad d =【3-3】降尘室的长度为10m ,宽为5m ,其中用隔板分为20层,间距为100mm ,气体中悬浮的最小颗粒直径为10m μ,气体密度为./311kg m ,黏度为.621810Pa s -⨯⋅,颗粒密度为4000kg/m 3。
试求:(1)最小颗粒的沉降速度;(2)若需要最小颗粒沉降,气体的最大流速不能超过多少m/s? (3)此降尘室每小时能处理多少m 3的气体?解 已知,/./.6336101040001121810p c p d m k g m k g m P a sρρμ--=⨯===⨯⋅,, (1) 沉降速度计算 假设为层流区().()(.)./.26269811010400011001181821810p c p t gd u m sρρμ---⨯⨯-===⨯⨯验算..R e.66101000111000505221810pc t d u ρμ--⨯⨯⨯===<⨯. 为层流(2) 气体的最大流速m ax u 。
第三章 沉降与过滤
分散相的密度差异,使之发生相对运动而分离的操作。
一、 沉降速度
1、自由沉降 单个颗粒在流体中沉降,或者颗粒群在流体中充分分 散,颗粒之间互不接触、互不碰撞的条件下的沉降。
2、沉降速度推导
将表面光滑、刚性的球形颗粒置于静止的流体中 ,进行受 力分析 F g:重力 F b:浮力 F d:阻力
du d d P 2 u 2
1 2 q qe q K K
作τ/q ~ q 图, τ/q 与q之间具有线性关系,斜率为 1/K,截距为2q e/K
四、过滤设备
板框压滤机(间歇操作)、转筒真空过滤机(连 续操作)、离心过滤机
1、板框压滤机
1)结构:
滤板和滤框交替排列组装
非洗涤板:一钮板
洗涤板 :三钮板
框:二钮板
组装顺序:1—2—3—2—1—2—3
过滤阻力
r v(V Ve ) Rc Rm A
过滤推动力
p pc pm
过滤速度方程
dV p Ad r v(V Ve ) / A
过滤速率方程
dV Ap d r v(V Ve ) / A
三、恒压过滤
1、滤液体积与过滤时间的关系 积分得:
A2 p (V Ve )dV 0 d rv
N
转筒旋转一周获得的滤液量为:Q/N 单位面积的滤液量为:
Q q AN
代入过滤速率方程:
Q Q ) K( ) 2qe ( AN N AN
2
解方程可得:
2 Q AN ( qe
K qe ) N
忽略过滤介质阻力
Q A KN
3、离心过滤机
4、影响沉降因素
化工原理第三章---过滤
2、过滤基本方程的推导 简化模型:假定: (1)流体的流动空间等于床层中颗粒之间的全部空隙体积。 (2)细管的内表面积等于全部颗粒的表面积。
u 空床速度(表观速度)
p1
L
u le
de
真 实 速 度
u1
流体在固定床内流动的简化模型
讨论: 设滤饼的体积为Vc,颗粒的比表面积为a
① u1与u的关系
滤饼层的空隙体积
说明:随着过滤过程的进行,滤饼逐渐加厚,过滤阻力不断 增加,可以想见,如果过滤压力不变,即恒压过滤时,过滤 速度将逐渐减小。因此上述定义为瞬时过滤速度。
(二)涉及的几个术语
1. 空隙率: 单位体积床层中的空隙体积,用ε表示。 ε=空隙体积 / 床层体积 m3/m3
2. 颗粒比表面积:单位体积颗粒所具有的表面积,用a表示。 a=颗粒表面 / 颗粒体积
③多孔固体介质:具有很多微细孔道的固体材料,如多孔陶 瓷、多孔塑料、多孔金属制成的管或板,能拦截1-3m的微细 颗粒。
④多孔膜:用于膜过滤的的各种有机高分子膜和无机材料膜。 醋酸纤维素和芳香酰胺系两大类有机高分子膜。可用于截留 1m以下的微小颗粒。
4、滤饼的压缩性及助滤剂
1)滤饼的可压缩性
滤饼
对基本过滤方程积分,得
积分得: V22VV eK2 A
或
q22qq e K
若过滤介质阻力可忽略不计,则
V2 KA2
或
q2 K
恒压过滤 方程
△p
u 表观速度
K ——过滤常数 由物料特性及过滤压强差所决定 ,m2/s
复 习:
1. 过滤的定义及相关术语(滤浆;滤液;滤饼;过滤介质)
2. 过滤基本方式(滤饼过滤;深层过滤;膜过滤)
化工原理第三章沉降与过滤
解决方案:优化过滤工艺,如增加过滤层数、调整过滤压力等
问题:过滤效果不佳,杂质残留 解决方案:优化过滤工艺,如增加过滤层数、调整过滤压力等
解决方案:定期维护设备,更换易损件,提高设备可靠性
问题:设备故障率高,维护成本高 解决方案:定期维护设备,更换易损件,提高设备可靠性
生物化工:利用生物技术,开发新型化工产品
纳米化工:纳米材料,提高产品性能和应用范围
环保化工:环保型化工产品,减少环境污染
汇报人:
感谢您的观看
离心过滤机:过滤速度快,过滤效果好,但设备复杂,成本高
袋式过滤机:结构简单,操作方便,过滤面积大,过滤效率高,但过滤精度低
陶瓷过滤机:过滤精度高,耐腐蚀,但设备复杂,成本高
膜过滤机:过滤精度高,过滤效果好,但设备复杂,成本高
04
沉降与过滤的比较
操作原理的比较
沉降:利用重力作用使悬浮颗粒下沉,达到分离目的
离心沉降应用:污水处理、食品加工、制药等领域
沉降原理:利用颗粒间的重力差进行分离工艺流程: a. 进料:将待分离的混合物送入沉降器 b. 沉降:颗粒在重力作用下沉降,液体上升 c. 澄清:液体澄清后从顶部流出 d. 排渣:沉降后的颗粒从底部排出沉降器类型: a. 重力沉降器:利用重力进行沉降 b. 离心沉降器:利用离心力进行沉降沉降效果影响因素: a. 颗粒大小:颗粒越大,沉降速度越快 b. 液体密度:液体密度越大,沉降速度越快 c. 颗粒形状:颗粒形状影响沉降速度 d. 液体黏度:液体黏度影响沉降速度沉降应用: a. 污水处理:去除悬浮物和颗粒物 b. 化工生产:分离固体和液体 c. 食品加工:分离固体和液体 d. 环境监测:监测颗粒物浓度
化工原理第三章沉降3-1
由此可知:
一定粒径的颗粒,沉降室的生产能力只与与底面积WL和 utc 有关,而与H无关。
故沉降室应做成扁平形,或在室内均匀设置多层隔板。
气速u不能太大,以免干扰颗粒沉降,或把沉下来的尘粒重新 卷起。一般u不超过3m/s。
降尘室
结构:入口截面为矩形气体
进口
思考1:为什么气体进入降尘 室后,流通截面积要扩大?
2.停留时间与沉降时间
L W
气体出口
降尘室底面积:A0=W×L
气体入口
H
含尘气流通截面积:S= W×H 颗粒因沉降被除去的条件: 停留时间>沉降时间 停留时间:t =L/u 沉降时间:0=H/ut
集尘斗 净 化 气 体
颗粒
含 尘 气 体 降尘室操作示意图
L H u ut
3.临界粒径dpc(critical particle diameter): 临界粒径:能100%除去的最小粒径。
ut非球<ut球
。
对于细微颗粒(d<0.5m),应考虑分子热运动的影响,不能用 沉降公式计算ut;
沉降公式可用于沉降和上浮等情况。
(2) 壁效应 (wall effect) : 当颗粒在靠近器壁的位置沉降时,由于器壁的影响,其沉 降速度较自由沉降速度小,这种影响称为壁效应。
(3)干扰沉降(hindered settling):
第三章 沉降与过滤
重点:过滤和沉降的基本理论、基本方程
难点:过滤基本方程的应用、过滤设备
概 述
一、非均相物系的分离 混合物有: 均相混合物(物系):物系内部各处物料性质均匀,无相界面。 例:混合气体(天然气)、 溶液(石油)
非均相混合物(物系):物系内部有隔开的相界面存在,而在相
化工原理 第三章 沉降与过滤-例题
18×1.005×10
−3
= 9.797×10−3m/ s
核算流型
Rt= e dut ρ 95×10−6 ×9.797×10−3 05×10
−3
=0.9244 1 <
原假设滞流区正确,求得的沉降速度有效。
例 : 拟采用降尘室除去常压炉气中的球形尘粒。降尘室 的宽和长分别为2m和6m,气体处理量为1标m3/s,炉气温度为 427℃,相应的密度ρ=0.5kg/m3 ,粘度µ=3.4×10-5Pa.s,固体 密度ρS=400kg/m3 操作条件下,规定气体速度不大于0.5m/s, 试求: 1.降尘室的总高度H,m; 2.理论上能完全分离下来的最小颗粒尺寸; 3. 粒径为40µm的颗粒的回收百分率; 4. 欲使粒径为10µm的颗粒完全分离下来,需在降降尘室内设 置几层水平隔板?
解:1)降尘室的总高度H
273+t 273+427 V =V =1× = 2.564m3 / s S 0 273 273 V 2.564 H= S = . m bu 2×0.5 = 2 564
2)理论上能完全出去的最小颗粒尺寸
Vs 2.564 ut = = = 0.214m/ s bl 2×6
用试差法由ut求dmin。 假设沉降在斯托克斯区
例 : 试计算直径为95µm,密度为3000kg/m3 的固体颗粒在 20℃的水中的自由沉降速度。 解:1)在20℃水中的沉降。 用试差法计算 先假设颗粒在滞流区内沉降 ,
d2(ρs − ρ)g ut = 18µ
附录查得,20℃时水的密度为998.2kg/m3,µ=1.005×10-3Pa.s
(95×10 ) (3000−998.2)×9.81 u=
18µut 18×3.4×10−5 ×0.214 dmin = = = 5.78×10−5m (ρs −ρ)g (4000−0.5) ×9.807
第三章 沉降与过滤
r
5
2
(1
3
)2
则:
dV Apc Apc
d rL R
第四节 过滤
3. 滤饼的过滤速度
单位时间通过单位过滤面积的滤液体积。
dV pc pc
Ad rL R
对于过滤介质:
dV Apm Apm
d rLe Rm dV pm pm
Ad rLe Rm
其中:Le为过滤介质的当量滤饼厚度,或称虚拟滤饼厚度
Ve
e
(V Ve )d (V Ve ) kA2p1s d ( e )
0
0
V Ve
e
(V Ve )d (V Ve ) kA2p1s d ( e )
Ve
• 压力降 原因:ⅰ.进气管和排气管及主体器壁所引起的摩擦阻力
ⅱ.局部阻力 ⅲ.气体旋转运动所产生的动能损失
d ui2
2
第三节 离心沉降及设备
⑶旋风分离器类型与选用
①CLT/A型 采用倾斜螺旋面进口的 旋风分离器。
CLT/A型
第三节 离心沉降及设备
②CLP型 CLP型是带有半螺旋
线和螺旋线的旁路分离室 的旋风分离器。
第四节 过滤
若产生厚度为Le的滤饼所获得的滤液体积为Ve,则:
Le
Ve
A
其中,Ve 为虚拟滤液体积;Le为虚拟滤饼厚度
第四节 过滤
不可压缩滤饼的过滤基本方程式
dV A2p
d r (V Ve )
dV Ap
Ad r (V Ve )
第四节 过滤
可压缩滤饼的过滤基本方程式
r r(p)s
dV
d
A2p1s
CLP/B型
第三节 离心沉降及设备
③扩散式 它主要的特点是圆筒以
第三章 沉降与过滤
横穿洗涤: 洗涤液由总管入板 滤布 滤饼 滤布 非洗涤板
排出
洗涤面=(1/2)过滤面积
置换洗涤:
洗涤液行程与滤液相同。洗涤面=过滤面 说明 ①间歇操作——过滤、洗涤、卸渣、整理、装合 ②主要优缺点
XAZ /2000-UB系列
Rc r V / A
Байду номын сангаас
Rm r Ve / A
P Pc Pm R Rc Rm
,对应克服介质阻力的压力为P m
dV p 将上式代入,可得 Ad r V Ve) A ( / dV Ap 过滤速率方程 d r V Ve) A ( /
嵌入式滤布的滤板
XASL /630-UB系列
XAZ /800-UB系
XKZ系列全自动快开式压滤机
DY-Q 带式压榨过滤机
2、叶滤机
NYB系列高效板式密闭过滤机
MYB型全自动板式密闭过滤机
WYB系列卧式叶片过滤机 SYB系列水平叶片过滤机
3、转筒过滤机 结构与工作原理
水平转筒分为若干段,滤布蒙于侧壁 段—管—分配头转动盘(多孔)——分配头固定盘 (凹槽2、凹槽1、凹槽3) —三个通道的入口 滤液真空管 洗水真空管 吹气管
第三章 沉降与过滤
第一节 概述
一、非均相物系的分离 气态:含烟尘和含雾的气体 液态:悬浮液、乳浊液及泡沫液 分散相和连续相 二、非均相物系分离的目的
回收分散物质
净制分散介质
劳动保护和环境卫生
过滤法
常用的方法 沉降法
液体洗涤除尘法
电除尘法 三、颗粒与流体相对运动时所受的阻力 流体与固体颗粒之间有相对
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ρg
2
ρ u
2
d
F
g
流体输送机械
6
由动量定理:
du F = Fg − Fb − Fd = m dτ
d ρg − ξ
3 p
π
6
d ρpg −
3 p
π
6
π
4
d
2 p
ρu 2
du = d ρp 2 6 dτ
3 p
π
颗粒在流体内作重力沉降运动的过程将经历先加速后匀速 的运动过程,其最终的速度称重力沉降速度(ut ),且颗粒 的加速运动过程很短,一般情况下不予考虑。 当
流体输送机械
W
L
16
H
ut
u
已知气体的体积流量为qvs,,求临界粒径dpc
L H ≥ u ut
q vs u = HW
ut
q vs ≥ WL
2 d p (ρ p − ρ )g
临界速度
ut =
d pc =
18 µ
临界粒径
18 µ q vs × ( ρ p − ρ ) g WL
流体输送机械
W
L
17
H
ut
ξ =
24 R e
10 ξ = Reξ = 0Βιβλιοθήκη . 44流体输送机械8
将用沉降速度ut表示的颗粒雷诺数Re代入层流 区沉降速度公式中:
24 R et = ξ = µ Re 2 d p (ρ p − ρ )g ut = 18 µ
d put ρ
ut =
4 gd p ( ρ p − ρ ) 3 ρξ
即层流区沉降速度计算式,也称斯托克斯(Stokes)公式。 另外,还有艾仑(Allen)公式和牛顿(Neton)公式分 别计算自由沉降过程中过渡区和湍流区的沉降速度。
rω 2 rN 2 Kc = ≈ g 900 2πN 其中,ω = ,N:r/min 60
流体输送机械
26
与颗粒在重力场中相似,颗粒在离心力场中 也受到三个力的作用,即惯性离心力、向心 力和阻力。当三力平衡时,颗粒在径向上相 对于流体的速度即为颗粒在此位置上的离心 沉降速度ur
2 2 π 3 uT uT 离心力: F = m = d ρS 方向向外 R 6 R 2 π 3 uT 向心力: FC = d ρ 方向向内 6 R π 2 ρ u r2 阻力: Fd = ζ d 方向向内 4 2
流体输送机械
42
第四节 过滤
第四节 过滤
一、过滤操作的基本概念 过滤:利用能让液体通过而截留固体颗粒的多孔介质(过 滤介质),使悬浮液中固液得到分离的单元操作。 滤浆:过滤操作中所处理的悬浮液 滤浆:通过多孔介质的液体 滤渣(滤饼):被截留住的固体物质 实现过滤操作的外力有重力、压力、离心力,化工中应用 最多的是压力过滤。
流体输送机械
29
流体输送机械
30
流体输送机械
31
2、旋风分离器的性能
临界粒径dpc 临界粒径随分离器直径增大而增大 分离效率 反映旋风分离器的除尘能力,有总效率和粒级效率之分。 压降△p 压降也是衡量旋风分离器性能的重要指标。压降与进口气 速有关,气速低则分离效率不高,过高则压降大、能耗高, 且涡流加剧对分离不利。
1
第三章 沉降与过滤
掌握重力沉降的基本原理、典型设备及应用; 了解并熟悉旋风分离器的工作原理及其性能参数; 重点了解过滤的基本操作过程、典型的设备,熟练 掌握恒压过滤的操作及计算; 了解混合气体的过滤方法及设备。
流体输送机械
2
第一节 概述
均相混合物与非均相混合物的概念 均相混合物物系:内部各处物料性质均匀而且不存在 相界面的混合物。例如:互溶溶液及混合气体 非均相混合物:物系内部有隔开两相的界面存在且界 面两侧的物料性质截然不同的混合物。例如:固体颗 粒和气体构成的含尘气体;固体颗粒和液体构成的悬 浮液 ;不互溶液体构成的乳浊液;液体颗粒和气体构 成的含雾气体
流体输送机械
11
ut的计算方法: 试差法(先假设颗粒的沉降类型,计算ut值,然后 将ut代入颗粒雷诺数验算是否与假设相符)
40μ 30℃大气中的自由沉降速。 例 3.1 用试差法求直径为 40μm 的球形颗粒在 30℃大气中的自由沉降速。 3 已知固体颗粒密度为 2600kg/m ,大气压强为 0.1MPa。 设沉降属于层流,应用斯托克斯公式计算。30℃ 解:设沉降属于层流,应用斯托克斯公式计算。30℃,0.1MPa 下空气的密 3 空气的粘度μ 1.86× -5 度ρ=1.165kg/m ,空气的粘度μ=1.86×10 ·Pa·s,则:
du = 0 dτ
时,u=ut,则: d 3 ρ p g − p
6
π
π
6
d 3 ρg − ξ p
π
4
2 dp
ρ u t2
2
=0
整理得
ut =
4 gd p ( ρ p − ρ ) 3 ρξ
流体输送机械
7
球形颗粒的阻力系数ξ是颗粒雷诺数的函数,需实验测定。
阻力系数ξ-Re关系曲线,分三个区: 层流区(斯托克斯区):阻力主要为摩擦阻力。 过渡区(阿仑区):此时阻力为摩擦阻力和形体 阻力之和。 湍流区(牛顿区):此时阻力主要为形体阻力。
流体输送机械
12
二、典型重力沉降设备 根据非均相混合物的种类不同,主要有降尘室和沉降槽。 水平流动型降尘室 1、结构:
流体输送机械
13
2、工作原理:
滞流流动的气态非均相物系沿水平运动,固体颗粒则 作平抛运动,即水平方向随气体一起运动,竖直方向则作 沉降运动。
流体输送机械
14
如果颗粒在降尘室的停留时间(水平运动的时间τ)大于 颗粒从室顶到出口下侧边缘所在的水平面所需的时间τt, 即τ> τt,则颗粒必将留在降尘室,从而实现了物系的分离 (固体颗粒和气体的分离)。
流体输送机械
15
W
L
τt =
H
H ut
L τ = u
ut
u
颗粒能被分离出的条件是: τ≥τt
L H ≥ u ut
显然,若处于入口端顶部的直径为dp颗粒能够除 掉,则处于其它位置的直径为dp的颗粒都能被除掉, 因此上式是气体中直径为dp的颗粒完全被分离下来的 条件。计算中dp和ut应按照需分离的最小颗粒的值进 行计算。
校核流型
= 0.12m / s ρd put 40×10−6 ×0.12×1.165 10−4<Ret = = = 0.3< 1 −5 µ 1.86×10
(40×10−6 )2 × 9.81× (2600−1.165 ) ut = 18×1.86×10−5
故初始假设正确, 0.12m/s。 故初始假设正确,沉降速度为 0.12m/s。
3
V= π/6 d3 S=πd2 S/V=6/d
6V P
π
表面积当量直径des des =
SP
π
流体输送机械
5
第一节 重力沉降
一、沉降速度
F
颗粒受力分析:以球形颗粒为研究对象
d
重力: F g =
1 πd 6
3 p
ρ
p
g
F
b
流体对颗粒的浮力:F 流体对颗粒的阻力: F
b
1 = πd 6
= ξ A
P
3 p
4g (ρp − ρ) ut = 225µρ
2
2 1/ 3
dp
ut =
(ρ 3.03g
p
− ρ)dp
ρ
流体输送机械
9
层流区沉降速度计算式
ut = d (ρ p − ρ ) g
2 p
18µ
?
流体输送机械
10
沉降速度与颗粒和流体的密度差成正比关系,与颗粒直径成 平方关系。 不同密度的颗粒,沉降速度不同 不同粒径的颗粒,沉降速度也不同。 -这是利用重力沉降分离非均相混合物的基本原理。
流体输送机械
19
流体输送机械
20
流体输送机械
21
沉降槽(悬浮液中固体颗粒的分离:澄清液与稠浆)
特点:利用颗粒的自然沉降性实现的分离,但由于分离效 果差,一般得到含固体颗粒50%的增稠液,所以也叫增稠器。 生产能力:一般以澄清液溢出量表示
流体输送机械
22
流体输送机械
23
为了提高沉降槽的生产能力,可以采用向槽内添加絮凝剂 的方法。常用的絮凝剂主要有: 无机絮凝剂:石灰、硫酸、明矾、硫酸亚铁、苛性钠、盐 酸和氯化锌等; 天然高分子絮凝剂:有淀粉和含淀粉的蛋白质物质,如马 铃薯、玉米粉、红薯粉及动物胶等; 合成高分子絮凝剂:有离子和非离子型高分子聚合物,如 聚丙烯酰胺、羰基纤维素和聚乙烯基乙醇等。
35
管式离心机的结构
转鼓的三部分组成:顶盖、带 空心轴的底盖和管状转筒。 离心机的转鼓由顶盖、带空心 轴的底盖和管状转筒组成。机 壳2内装有管状转鼓4,转鼓悬 挂于离心机上端的挠性驱动轴7 上,下部由底盖形成中空轴并 置于机壳底部的导向轴衬内。
流体输送机械
36
管式离心机的工作原理
待处理的物料以一定压力由进料管经底 部空心轴进入鼓底,靠圆形折转挡板1 分布于鼓四周。鼓内设有十字形挡板3, 液体在鼓内由挡板被加速到转鼓速度, 在离心力场作用下,乳浊液(或悬浮液) 沿轴向上流动的过程被分成轻液相和重 液相,通过上方溢环状流口排出。 转速:15000rpm, Kc=50000左右 加长转鼓长度的目的:增加物料在转鼓 内的留停时间。
流体输送机械
38
流体输送机械
39
碟片式离心机的结构
密闭转鼓内设有数十个至上百个 锥角为60~120的锥形碟片 简单的碟式离心机没有自动排渣 装置 自动除渣碟式离心机在四壁上开 设若干喷嘴(或活门)