九年级上学期期中考试数学试卷
上海市建平实验中学2024-2025学年九年级上学期11月期中考试数学试题
上海市建平实验中学2024-2025学年九年级上学期11月期中考试数学试题一、单选题1.在ABC V 中,90C ∠=度,3AC =,4BC =,则cos A 的值为()A .35B .45C .34D .432.已知线段a b c d ,,,,如果a cb d =,那么下列式子中不一定正确的是()A .ac bd ==,B .ad bc =C .a c a b c d =++D .=a c a b d b ++3.已知点C 是线段AB 的中点,下列结论中,正确的是()A .12CA AB = B .12CB AB =C .0AC BC +=D .0AC CB += 4.如图,点D 、E 、F 分别在ABC V 的边上,且,DE BC EF AB ∥∥,下列四个选项中,不成立的是()A .AD AE AB AC =B .AE BF EC FC =C .AD BF BD FC =D .EF DE AB BC =5.如图,在梯形ABCD 中,AD BC ∥,对角线AC BD 、交于点O ,且:1:2AD BC =,有下面四个结论①ABC DBC S S = ;②BAD CAD S S = ;③AOB COD S S =△△;④2AOD BOC S S =△△;其中正确的个数是()A .1个B .2个C .3个D .4个6.如图,在平行四边形ABCD 中,对角线AC BD 、相交于点O ,过O 作AC 的垂线交AD 于点,E EC 与BD 相交于点F ,且ECD DBC ∠=∠,那么下列结论 错误的是()A .EA EC =B .DOC DCO ∠=∠C .4BD DF =D .BC CD CE BF=二、填空题7.已知:353x y x y +=-,则x y =.8.已知点P 是线段AB 的黄金分割点,较长线段4AP =厘米,则线段AB 的长是厘米.9.如果23a b c a b c +=-= ,,那么用b 表示a = .10.如图,直线123l l l 、、分别交直线4l 于点、、A B C ,交直线5l 于点D E F 、、,且123l l l ∥∥,如果576DE EF BC ===,,,那么AB =.11.已知菱形ABCD 的边长为6,对角线AC 与BD 相交于点O ,OE ⊥AB ,垂足为点E ,AC =4,那么sin ∠AOE =.12.如图,在ABCD 中,E 是AB 延长线的一点,DE 与边BC 相交于点F ,如果37BE AE =,那么BF FC 的值为.13.如图,在Rt △ABC 中,∠ACB =90°,点G 是△ABC 的重心,CG =2,sin ∠ACG =23,则BC 长为.14.如图,在边长相同的小正方形组成的网格中,点A 、B 、O 都在这些小正方形的顶点上,那么sin ∠AOB 的值为.15.如图,在平行四边形ABCD 中,点E 在边BC 上,2EC BE ,连接AE 交BD 于点F ,若BFE △的面积为2,则平行四边形ABCD 的面积为.16.如图,在梯形AEFB 中,AB ∥EF ,AB =6,EF =10,点C 、D 分别在边AE 、BF 上且CD ∥AB ,如果AC =3CE ,那么CD =.17.《周髀算经》中的“赵爽弦图”(如图),图中的四个直角三角形都全等,如果正方形ABCD的面积是正方形EFGH 面积的13倍,那么ABE ∠的余切值是.18.如图,在等腰△ABC 中,AB=AC=4,BC=6点D 在底边BC 上,且∠DAC=∠ACD ,将△ACD 沿着AD 所在直线翻折,使得点C 落到点E 处,联结BE ,那么BE 的长为.三、解答题19.计算:02000tan 30cos 45cot 30sin 602cos 30-+ .20.如图,已知△ABC ,点D 在边AC 上,且AD =2CD ,AB ∥EC ,设BA =a ,BC =b .(1)试用a 、b 表示CD ;(2)在图中作出BD 在BA 、BC 上的分向量,并直接用a 、b 表示BD .21.如图,已知在梯形ABCD 中,AD ∥BC ,∠ABD =∠C ,AD =4,BC =9,锐角∠DBC 的正弦值为23.求:(1)对角线BD 的长;(2)梯形ABCD 的面积.22.如图,在ABC 中,90ACB ∠=︒,D 是A 延长线上一点,且BD BC CE CD =⊥,交A 于E .(1)求证:ACE ADC ∽;(2)若32BEEA =∶∶,求sin A ∠的值.23.如图,已知菱形ABCD ,点E 是AB 的中点,AF ⊥BC 于点F ,连接EF 、ED 、DF ,DE 交AF 于点G ,且AE 2=EG •ED .(1)求证:DE ⊥EF ;(2)求证:BC 2=2DF •BF .24.已知:在矩形AOBC 中,4,3OB OA ==,分别以,OB OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系,F 是边BC 上的一个动点(不与B 、C 重合),过F 点的反比例函数()0k y k x=>的图象与AC 边交于点E .(1)求证:AOE △与FOB △的面积相等.(2)记OEF ECF S S S =- ,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,请直接写出点F 的坐标,若不存在,请说明理由.25.在Rt ABC △中,90,2C BC ∠=︒=,Rt ABC △绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,连接AE ,过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合如图1,求cot BAE ∠的值;(2)若点M 在边BC 上如图2,设边长,AC x BM y ==,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若BAE EBM ∠=∠,求斜边AB 的长.。
河南省鹤壁市2024-2025学年九年级上学期11月期中考试数学试题
河南省鹤壁市2024-2025学年九年级上学期11月期中考试数学试题一、单选题1.下列不是最简二次根式的是()AB C D 2.若53a b =,则a b a -的值为()A .23B .25C .35D .23-3.下列计算正的是()A .=B 123=C3=D 3=-4.若a ,b ,c 是△ABC 的三边长,则关于x 的方程()22104x a b x -++=的根的情况是()A .无实数根B .有两相等的实数根C .有两不相等的实数根D .无法确定5.已知0xy <,则化简二次根式)AB C .D .6.已知,m n 是关于x 的方程2220210x x --=的根,则代数式2422024m m n --+的值为()A .4040B .4041C .2022D .20237.如图,12∠=∠,要使ABC ADE △△∽,只需要添加一个条件即可,这个条件不可能是()A .B D ∠=∠B .C E ∠=∠C .AD ABAE AC=D .AC BCAE DE=8.某旅游景点的商场销售一款山西文创产品,平均每天可售出100件,每件获利30元.为了尽快减少库存,商场决定采取适当的降价措施.调查发现,如果这款文创产品的售价每降低1元,那么平均每天可多售出10件.商场要想平均每天获利3640元,这款文创产品每件应降价多少元?设这款文创产品每件降价x 元,根据题意可列方程为()A .()()30100103640x x +-=B .()()30100103640x x ++=C .()()30100103640x x -+=D .()()30100103640x x --=9.如图,在四边形ABCD 中,90ABC ∠=︒,2AB BC ==,E ,F 分别是AD ,DC 的中点,连接BE ,BF ,EF ,点P 为边BE 上一点,过点P 作PQ EF ∥,交BF 于点Q ,若12BPQ BEFS S =,则PQ 的长为()A .12B .1CD10.如图所示,在Rt ABC △中,90,BAC AD BC ∠=︒⊥于点,D ACB ∠的平分线CE 交AB 于点E ,交AD 于点F .若,,BD a DF b DC c ===,则关于x 的一元二次方程240ax bx c ++=的根的情况()A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定二、填空题11有意义的x 的取值范围是.12.若()133)05(m m m x x----+=是关于x 的一元二次方程,则m 的值为.13.若23a <<=.14.如图,在梯形ABCD 中,AD BC ∥,对角线AC 和BD 交于点O ,若13ABD BCD S S =△△,则AODBOCSS =△△.15.如图,在边长为4的等边三角形ABC 中,E 是AB 边上一点,且3BE =,D 为BC 边上一动点,作EDF ∠交AC 边于点F ,若60EDF ∠=︒,则AF 的最小值为.三、解答题16.计算:-(2))21-.17.解方程:(1)22630x x -+=;(2)()()25225x x x -=-.18.如图,正方形网格中,每个小正方形的边长都是一个单位长度, ABC 的顶点都在格点上.(1)以点O 为位似中心,画出 ABC 的位似图形 A 1B 1C 1,使 ABC 与 A 1B 1C 1的位似比为1:2.(2)以点O 为坐标原点,建立平面直角坐标系,若点M (a ,b )在线段AC 上,请直接写出点M 经过(1)的位似变换后的对应点M '的坐标.19.如图,在ABC V 中,90C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,DE BD ⊥,交AB 于点E ,(1)求证:ADE ABD △△∽;(2)若103AB BE AE ==,,求线段AD 长.20.已知关于x 的方程()2110m x mx -++=.(1)求证:不论m 取什么实数时,这个方程总有实数根;(2)当m 为何正整数时,关于x 的方程()2110m x mx -++=有两个整数根?21.如图,某农户准备用长34米的铁栅栏,一边利用墙,其余边用铁栅栏围成长方形羊圈ABCD 和一个边长为1米的正方形狗屋CEFG .设AB x =米.(1)请用含x 的代数式表示BC 的长(直接写出结果);(2)设山羊活动范围即图中阴影部分的面积为S 平方米,请用含x 的代数式表示S ;(写出过程)(3)求出山羊活动范围面积S 的最大值.22.已知:如图,四边形ABCD 是平行四边形,在边AB 的延长线上截取BE =AB ,点F 在AE 的延长线上,CE 和DF 交于点M ,BC 和DF 交于点N ,联结BD .(1)求证:△BND ∽△CNM ;(2)如果AD 2=AB •AF ,求证:CM •AB =DM •CN .23.如图:在矩形ABCD 中,m 6AB =,8m BC =,动点Р以2m /s 的速度从A 点出发,沿AC 向C 点移动,同时动点Q 以1m /s 的速度从点C 出发,沿CB 向点B 移动,设P 、Q 两点移动的时间为t 秒()05t <<.(1)AP =______m ,PC =______m ,CQ =_____m (用含t 的代数式表示)(2)t 为多少秒时,以P 、Q 、C 为顶点的三角形与ABC V 相似?(3)在P 、Q 两点移动过程中,四边形ABQP 与 CPQ 的面积能否相等?若能,求出此时t 的值;若不能,请说明理由.。
陕西省西安市爱知中学2024-2025学年上学期九年级期中考试数学试题
陕西省西安市爱知中学2024-2025学年上学期九年级期中考试数学试题一、单选题1.下列数中是无理数的是()A .1BC .0D .2-2.如图,该几何体的俯视图是()A .B .C .D .3.如图,a b ∥,1100∠=︒,245∠=︒,则3∠的度数是()A .45︒B .50︒C .55︒D .65︒4.下列计算正确的是()A .235a b ab +=B .()325a a =C .()222a b a b +=+D .()31236a a--=-+5.正比例函数的图象经过(),1M m ,()2,N n 两点,则mn 的值为()A .2B .2-C .1D .46.如图,在ABC V 中tan 1,6,30B AC C ==∠=︒,则AB 的长为()A .3B .C .D .7.如图,四边形ABCD 是菱形,对角线AC 、BD 相交于点,O DH BC ⊥于点H ,连接,56OH BAD ∠=︒,则DHO ∠的度数是()A .38︒B .34︒C .28︒D .24︒8.如右图,在平面直角坐标系xOy 中,已知正比例函数512y x =-与一次函数184y x =-的图象交于点A .设x 轴上一点(),0P a ,过点P 作x 轴的垂线(垂线位于y 轴的左侧),分别交512y x =-和184y x =-的图象于点B 、C ,若1613BC OA =,则a 的值为()A .13-B .12-C .11-D .10-二、填空题90.5(填“>”“<”或“=”)10.如图,在平面直角坐标系中,ABC V 与DEF 是以坐标原点O 为位似中心的位似图形,且点A 、D 均在x 轴正半轴上.若点A 坐标为1,0, 1.5, 4.5AB DE ==,则点D 的坐标为.11.如图,在正方形网格中,每个小正方形的顶点叫格点.ABC V 的顶点都在格点上,则cos ABC ∠的值为.12.如图,一次函数()0y ax b a =+≠图象与反比例函数()0k y k x=≠的图象在第一象限内交于点A 、B ,与x 轴交于点C,AB BC =.若OAC 的面积为7,则k 的值为.13.如图,在ABC V 中,45,4,3,BAC BD CD AD BC ︒∠===⊥,将ADB 沿AB 翻折得到AMB ,将ADC △沿AC 翻折得到ANC ,则AD 的长为.三、解答题14()()2234-+-⨯15.解不等式组()3112235x x x x -⎧+>⎪⎨⎪--≥⎩.16.化简:2221211x x x x x x x ⎛⎫-÷+- ⎪-+-⎝⎭17.如图,在ABC V 中,求作线段CD ,点D 在AB 上,且::ACD BCD S S AC BC =△△.(要求尺规作图,保留作图痕迹,不写作法)18.如图,在ABC V 和ADE V 中,点C 在AD 上,AE BC ∥,BAC E ∠=∠,AC AE =,求证:BC DA =.19.在“融通古今,厚植文化自信”校园文化建设活动中,数学文化社团的小童和小龄计划从古代的赵爽、秦九韶,现代的陈景润、陈省身四名数学家中,各查找两名数学家的资料制作成文化宣传材料.为了明确分工以及提高效率,小童和小龄决定按如下方式抽签确定分工:将写有四名数学家名字且除所写名字外完全相同的小球放入不透明的盒子中,摇匀后放在桌面上,两人轮流摸球,每次摸出一球,不放回,最后根据各自小球上数学家的名字制作宣传材料.(1)若小童先摸,第一次摸中写有秦九韶名字的小球的概率是______;(2)若小童先摸,然后小龄再摸,请利用画树状图或列表的方法,求两人第一次摸出的小球上名字恰好是一名古代数学家和一名现代数学家的概率.20.某校组织师生去春游,如果单独租用30座客车若干辆,刚好坐满;如果单独租用40座客车,可少租一辆,且余20个座位.求该校参加春游的人数.(请列方程解答......)21.如图,小知想测量自家小区居民楼下一棵大树AB 的高度,由于大树旁边还有其他灌木无法直接到达大树下面测量,他先通过查询建筑说明得到居民楼CD 的高度为28m ,接着在居民楼CD 的顶端C 处测得大树的顶端A 的俯角为22︒,某一时刻在太阳光的照射下,大树AB 顶端A 的影子落在地面上的点E 处,居民楼CD 顶端C 的影子落在地面上的点F 处,测得10m,30.8m DE DF ==,已知大树和居民楼均垂直于地面,且点,,,B E D F 在同一条直线上,求大树的高度AB .结果精确到0.1m ,参考数据:sin220.37︒≈,cos220.93︒≈,tan220.40︒≈)22.为激发学生兴趣,提高学生素质,促进学生全面发展,某校在课后延时服务期间开展了丰富多彩的选修课,艾老师为大家开展了《我是小小理财家》的选修课,在这节选修课后,同学们为了解全校2400名学生平均每天使用零花钱的情况,他们随机调查了部分学生平均每天使用零花钱的金额,并用得到的数据绘制了如图所示的统计图:根据以上信息,解答下列问题:(1)本次接受随机调查的学生有______人,图①中m 的值是______;(2)本次调查获取样本数据的众数为______元,中位数为______元;(3)根据样本数据,估计该校平均每天使用零花钱的金额大于15元的学生人数.23.某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示.(1)求1y 和2y 的表达式;(2)九年级学生小爱计划暑期前往该俱乐部健身7次,应选择哪种方案所需费用更少?说明理由.24.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点B 作AC 的平行线交DC 的延长线于点E .(1)求证:BD =BE ;(2)若BE =10,CE =6,连接OE ,求△ODE 的面积.25.如图,在平面直角坐标中,点O 是坐标原点,一次函数1y kx b =+与反比例函数()230y x x=>的图象交于()1,A m 、(),1B n 两点.(1)求直线AB 的解析式;(2)根据图象,当30kx b x+->时,x 的取值范围为______;(3)如图,y 轴正半轴上有一点P ,当四边形OPAB 的面积为5时,求点P 的坐标.26.【问题提出】(1)如图①,在菱形ABCD 中,6,60AB ABC =∠=︒,点E 、F 分别是AD 、BC 上的点,且EF 平分菱形ABCD 的面积,求EF 的最小值.【问题解决】(2)如图②,m 和n 是两条平行的路,在两条路之间有一块四边形空地,即四边形ABCD .为了美化环境,市政府决定将这块空地改造为一个“口袋公园”,种植两种花卉.现在打算过点C 修一条笔直的通道CE ,交AD 于点E ,以方便市民观赏花卉.并要求通道两侧种植的两种花卉面积相等.经过测量,CD n ⊥,垂足为点D ,AB =,CD =,150m AD =,1tan 2ADC ∠=.如果将通道记为CE ,请求出AE 和通道CE 的长(通道的宽度忽略不计).。
山东省济南市历下区2024-2025学年九年级上学期11月期中考试数学试题
山东省济南市历下区2024-2025学年九年级上学期11月期中考试数学试题一、单选题1.2024年巴黎奥运会,中国体育健儿勇夺91枚奖牌,如图是本届奥运会的领奖台,其左视图是()A .B .C .D .2.已知点()13,A y -,()21,B y -和()32,C y 都在反比例函数()0ky k x=>的图象上,则1y ,2y 和3y 的大小关系是()A .312y y y <<B .213y y y <<C .123y y y <<D .321y y y <<3.如图1是某班级的花架,图2是其侧面示意图,已知AB CD EF ∥∥,36cm AC =,35BD DF =,则AE 的长为()A .48cmB .60cmC .96cmD .120cm4.10月16日是世界粮食日.某校组织了粮食安全公益活动,现有“节粮宣讲员”、“光盘示范员”和“爱粮监督员”三类志愿者岗位身份,小霞和小艺从中任选一类,则她们恰好选到同一类岗位的概率是()A .14B .13C .12D .235.函数y kx k =-和()210k y k x+=-≠在同一平面直角坐标系中的图象可能是()A .B .C .D .6.“黄金比例分割法”是启功先生研究的一套楷书结构法,是将正方形按照黄金分割的比例来分割,形成“黄金格”(如图,四条与边平行的线的交点都是黄金分割点),汉字的笔画至少要穿过两个黄金分割点才美观.若正方形“黄金格”的边长为8cm ,四个黄金分割点组成的正方形的边长为()A .()4cmB .()16cmC .(12cm-D .(24cm-7.如图,直线y x =-与双曲线()0ky k x=≠交于A ,B 两点,已知OA =表达式为()A .3y x=B .3y x=-C .9y x=D .9y x=-二、填空题8.如图,圭表是度量日影长度的一种天文仪器,垂直于地面的直杆叫“表”,水平放置于地面上刻有刻度以测量影长的标尺叫“圭”.当正午太阳照射在表上时,日影便会投影在圭面上,冬至日影最长,夏至日影最短.圭面上冬至线与夏至线之间的距离AB 的长为3.5m ,则表高为()(参考数据:冬至时,0.5≈表高影长;夏至时,3≈表高影长)A .2.1mB .2.4mC .56m .D .5.8m三、单选题9.如图,点光源O 射出的光线沿直线传播,将胶片上的建筑物图片AB 投射到与胶片平行的屏幕上,形成影像CD .已知3cm AB =,胶片与屏幕的距离EF 为定值,设点光源到胶片的距离OE 长为x (单位:cm ),CD 长为y (单位:cm ),y 随x 的变化而变化,且当60x =时,43y =,则y 与x 的函数关系可表示为()A .4360y x =B .233y x =+C .24003y x=+D .2580y x=10.已知反比例函数()22a y a x-=≠,点()11,M x y 和()22,N x y 是反比例函数图象上的两点.若对于12x a =,256x ≤≤,都有12y y >,则a 的取值范围是()A .502a -<<或522a <<B .532a -<<且2a ≠,0a ≠C .532a -<<-或02a <<D .5522a -<<且2a ≠,0a ≠四、填空题11.若()304n m m =≠,则n mm+=.12.近年来,济南环境保护效果显著,越来越多的候鸟选择来济过冬.为了解候鸟的情况,生物学家采用“捕获—标记—再捕获”的方法估计候鸟的数量.先随机捕捉40只候鸟,戴上标记卡并放回,经过一段时间后,重复进行5次捕捉.记录数据如下表,由此估计该区域约有只候鸟.累计捕捉数量(只)100200350420480带有标记卡数量(只)132444526013.坐落于济南市大明湖的超然楼是一座拥有700年历史的名楼,《周髀算经》中有“偃矩以望高”的测高方法,“矩”在古代指两条边呈直角的曲尺(即图中的ABC ),小明受到启发,利用“矩”测量超然楼DE 的高度.通过调整自己的姿势和“矩”的摆放位置,使AC 保持水平,点A 、B 、D 在同一直线上,90AFE DEF ∠=∠=︒,测得0.15m AB =,0.2m BC =, 1.7m AF =,37.5m EF =,则超然楼的高度DE =m .14.如图,点P ,Q ,R 在反比例函数()0ky x x=>的图象上,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为1S ,2S ,3S .若OE ED DC ==,2320S S +=,则k =.15.如图,在ABCD 中,4AB =,6AD =,45A ∠=︒,点E 为边AD 上的一个动点,连接EC 并延长至点F ,使得12CF CE =,以EB ,EF 为邻边构造BEFG ,连接CG ,则CG 的最小值为.五、解答题16.如图,一次函数4y kx =+的图象与反比例函数()0my x x=<的图象交于A ,B 两点,与y 轴交于点C ,()1,3B -,连接OA ,OB .(1)求k 和m 的值;(2)求AOB V 的面积.17.图1是小亮沿广场道路AB 散步的示意图,线段CD 表示直立在广场上的灯柱,点C 表示照明灯的位置,已知小亮身高1.5m ,6m CD =.(1)如图2,小亮站在E 处时与灯柱的距离9m ED =,则此时小亮的影长AE =m ;(2)如图3,小亮继续行至G 处时,发现其影长KG 恰为身高的一半,求此时小亮与灯柱的距离.18.如图,在平面直角坐标系中,ABC V 的顶点坐标分别是()2,6A ,()6,2B ,()10,0C .(1)以原点O 为位似中心画111A B C △,使它与ABC V 位似.若1112A B AB =在第一象限内画出111A B C △;(2)在(1)的条件下,求点1A的坐标.19.如图1,直角尺是机械行业中检验工件垂直度的常用工具.如图2,在矩形ABCD中,直角尺的顶点G在CD上滑动,当点E落在BD上时,另外两个顶点恰好与A,B重合.若==,求BD的长.BE AE22420.2024年8月8日是中国第16个“全民健身日”.为提高学生身体素质,积极倡导全民健身,某校开展了一分钟跳绳比赛.数学兴趣小组随机抽取了部分学生成绩,并对数据进行统计整理,以下是不完整的统计图表.一分钟跳绳成绩统计表成绩等级一分钟跳绳次数频数x≥nA160x≤<75B120160x≤<69C80120x<36D80请根据以上信息,完成下列问题.(1)随机抽取的学生人数为人,统计表中的n=,统计图中B等级对应扇形的圆心角为度;(2)该校共有800人参加比赛,请你估计该校成绩达到B等级及以上的有多少人?(3)该比赛服务组有两名男生和两名女生,现从中随机挑选两名同学负责跳绳发放工作,请用树状图法或列表法求出恰好选中“一男一女”的概率.21.如图1,在平面直角坐标系中,直线y x b =+与双曲线()10ky k x=≠交于()4,1A m +,(),3B m -.(1)求一次函数和反比例函数的表达式;(2)根据图象,直接写出关于x 的不等式kx b x+<的解集;(3)如图2,将直线y x b =+向上平移a 个单位长度得到直线l ,直线l 与反比例函数()2130y x x=-<的图象交于C ,D 两点,与双曲线1k y x =在第一象限内交于点E ,连接BD ,EA ,若四边形ABDE 是平行四边形,求a 的值.22.2024年9月,济南港—寿光港集装箱业务的首船作业,标志着小清河复航业务再结硕果.集装箱搬运车是为了更高效地对集装箱进行搬运和叠放,当液压撑杆与吊臂垂直且吊臂完全伸展开时,集装箱搬运车的抓手可以达到最大高度.如图1是抓手达到最大高度时的示意图,四边形ABCD 为矩形,5m AB =,0.9m BC =,AE BF ⊥,延长FB DC ,交于点H , 1.2m CH =.(1)求此时液压撑杆AE 的长;(2)已知吊臂BF 最长为9.5m ,抓手0.5m FG =,某批集装箱的长宽高如图2所示,使用该款搬运车最多能将集装箱在地面上叠放几层?请通过计算说明.23.小光根据学习函数的经验,探究函数11y x =-的图象与性质.(1)刻画图象①列表:下表是x ,y 的几组对应值,其中a =,b =;x …4-2-1-0122334544332234 (11)x -…15-13-12-1-2-a4-4321b13…②描点:如图所示;③连线:请用平滑的曲线顺次连接.(2)认识性质观察图象,完成下列问题:①当1x >时,y 随x 的增大而;②函数11y x =-的图象的对称中心是.(填写点的坐标)(3)类比探究①小光发现,函数11y x =-的图象可以由反比例函数1y x =的图象经过平移得到.请结合图象说明平移过程;②函数43y x =-的图象经平移可以得到函数42=+y x 的图象,请说明平移过程.24.(1)在ABC V 和DEC 中,AB AC =,DE DC =,90BAC EDC ∠==︒.①如图1,当CE 与AC 重合时,BEAD=;②如图2,DEC 绕点C 逆时针旋转一定角度,连接AD ,BE ,BEAD的值是否改变?请说明理由;(2)如图3,正方形ABCD 的边长为2,E 为边AB 上一动点,以CE 为斜边在正方形ABCD 内部作等腰直角CFE △,90CFE ∠=︒,连接AF ,BF ,当AFE ABF ∠=∠时,求BE 的长.25.某数学兴趣小组学习了反比例函数后,进一步研究反比例函数8y x=的图象,他们在平面直角坐标系内选定点133,2P ⎛⎫- ⎪⎝⎭,过点P 作直线,并将图象沿该直线按一定的操作翻折,探究过程如下:【动手操作】操作1:如图1,过点P 作x 轴的平行线l ,将直线l 上方的反比例函数图象沿直线l 翻折得到新图象,与第一、三象限未翻折的图象组成“X 图象”.操作2:如图2,过点P 作y 轴的平行线m ,将直线m 左侧的反比例函数图象沿直线m 翻折得到新图象,与第一、三象限未翻折的图象组成“Y 图象”.操作3:如图3,过点P 作直线n :152y x =-+,将第一象限内反比例函数的图象在直线n 下方的部分沿直线n 翻折得到新图象,与直线n 下方的图象组成的封闭图象是“Z 图象”.试卷第11页,共11页【解决问题】(1)如图1,求“X 图象”与x 轴的交点C 的坐标;(2)过x 轴上一点(),0Q t 作y 轴的平行线,与“Y 图象”交于点M ,N .若3MN QN =,求t 的值;(3)如图3,反比例函数()80y x x =>的图象与直线n 交于点E ,F ,已知点G 和点H 是“Z 图象”上的两个动点,当以点E ,G ,F ,H 为顶点的四边形面积最大时,直接写出点G 和点H 的坐标.。
山西省临汾市2024—2025学年九年级上学期11月期中考试数学试题
山西省临汾市2024—2025学年九年级上学期11月期中考试数学试题一、单选题1x 的取值范围是()A .2x >B .2x ≥C .2x <D .2x ≤2.下列式子中,属于最简二次根式的是()AB C D 3.下面四组线段中,成比例的是()A .2a =,3b =,4c =,5d =B .1a =,2b =,2c =,4d =C .4a =,6b =,8c =,10d =D .a =b =3c =,d =4.一元二次方程2x 2﹣3x +1=0的根的情况是()A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根5.如图,123l l l ,32AB BC =,15DF =,则DE =()A .6B .8C .9D .106.老师设计了一个接力游戏,用合作的方式解一元二次方程,规则是:每人只能看到前一人计算的结果,并进行一步计算,再将结果传递给下一人,最后得到方程的解.部分过程如图所示,接力中,谁负责的一步开始出现错误()A .甲B .乙C .丙D .丁7.如图,已知12∠=∠,添加下列一个条件后,仍无法判定ABC ADE △△∽的是()A .C E ∠=∠B .B ADE ∠=∠C .AB BCAD DE=D .AB ACAD AE=8.2021年是中国共产党建党100周年暨红军长征胜利85周年.长征是中国共产党和中国革命事业从挫折走向胜利的伟大转折点.如图是红一方面军长征路线图,如果表示瑞金的点的坐标为(4,﹣3),表示遵义会议的点的坐标为(12,﹣2),那么表示吴起镇会师的点的坐标为()A .(3,0)B .(0,3)C .(3,1)D .(1,3)9.2023年7月28日第31届世界大学生夏季运动会在成都东安湖体育公园开幕.如图,贝贝想测量东安湖A ,B 两点间的距离,他在东安湖的一侧选取一点O ,分别取OA OB ,的中点M ,N ,但M ,N 之间被障碍物遮挡,故无法测量线段MN 的长,于是贝贝在AO BO ,延长线上分别选取P ,Q 两点,且满足OP ON OQ OM ==,,贝贝测得线段90PQ =米,则A ,B 两点间的距离是()米.A .120B .140C .160D .18010.如图,D 、E 分别是ABC V 的边AB BC 、上的点,∥DE AC ,若:1:3BDE CDE S S = ,则DOE AOC S S :的值为()A .13B .14C .19D .116二、填空题11.若32a b =,则a ba+=.12.如图,四边形ABCD ∽四边形A B C D '''',则a ∠的度数是.13.用配方法将方程2230x x --=变为2()x a b +=的形式,则a b +=.14.如图所示,某市世纪广场有一块长方形绿地长18m ,宽15m ,在绿地中开辟三条道路后,剩余绿地的面积为2224m ,如图,设道路的宽为m x ,则可列方程为.15.如图,在ABC V 中,D 在AC 边上,:1:2AD DC =,O 是BD 的中点,连接AO 并延长交BC 于点E ,若3BE =,则BC 的长为.三、解答题16.计算)112+17.下面是张老师讲解一元二次方程的解法时在黑板上的板书过程,请认真阅读并完成下列任务.解方程:23610x x -+=解:2123x x -=-第一步1x -=第四步212113x x -+=-+第二步11x =+21x =-第五步22(1)3x -=第三步(1)任务一:①张老师解方程的方法是____________.A .直接开平方法B .配方法C .公式法D .因式分解法②第二步变形的依据是____________;(2)任务二:请你用“公式法”解该方程:(3)任务三:请你按要求解方程:223(2)4x x -=-(因式分解法)18.如图,在平面直角坐标系中,ABC 的顶点坐标分别为()()()2,0,3,2,5,2A B C -.以原点O 为位似中心,在y 轴的右侧将ABC 放大为原来的两倍后得到A B C ''' .(1)画出A B C ''' ;(2)点B '的坐标为____________,点C '的坐标为____________.19.如图,正方形ABCD 中,M 为BC 上一点,F 是AM 的中点,EF ⊥AM ,垂足为F ,交AD 的延长线于点E ,交DC 于点N .(1)求证:△ABM ∽△EFA ;(2)若AB =12,BM =5,求DE 的长.20.2023年第19界杭州亚运会吉祥物为“琮琮”、“莲莲”、“宸宸”,一经推出,深受广大人民的喜欢.(1)某工厂九月份共生产2500个,为增大生产量,该工厂平均每月生产量增长率相同,十一月份该工厂生产了3600个,求该工厂平均每月生产量的增长率是多少?(2)已知某商店吉祥物平均每天可销售20个,每个盈利40元,在每个降价幅度不超10元的情况下,每降价1元,则每天可多售5件,如果每天要盈利1440元,则每个吉祥物应降价多少元?21.阅读理解:二次根式的除法,要化去分母中的根号,需将分子、分母同乘以一个恰当的二次根式.=拓展延伸:宽与长的比是12的矩形叫黄金矩形.如图1,已知黄金矩形ABCD 的宽AB .(1)求黄金矩形ABCD 中BC 边的长;(2)如图2,将图1中的黄金矩形裁剪掉一个以AB 为边的正方形ABEF ,得到新的矩形DCEF ,猜想矩形DCEF 是否为黄金矩形,并证明你的结论.22.下表是小明数学学科项目化学习时候的记录表,填写活动报告的部分内容.项目主题:测量河流的宽度.项目探究:河流宽度不能直接测量,需要借助一些工具,比如:标杆,皮尺,自制的直角三角形模板…各组确定方案后,选择测量工具,画出测量示意图,并进行实地测量,得到具体数据,从而计算出河流的宽度.项目成果:下面是小明进行交流展示的部分测量方案及测量数据:题目测量河流宽度AB目标示意图测量数据 1.5m BC =,10m BD =, 1.8mDE =如果你参与了这个项目学习,请你完成下列任务.任务一:(1)请你借助小明的测量数据,计算河流的宽度AB ;(2)请你写出这个方案中求河流宽度时用到的相似三角形的知识.____________(写出一个即可)任务二:(3)小宇选择的测量工具是标杆和皮尺,如图是该方案的示意图.其中线段AB 表示河宽,请直接写出需要测量的线段有哪些?23.综合与探究问题情境小丽在学习全等三角形的知识时,发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化时,始终存在一对全等三角形.它们类似大手拉着小手,这种模型称为“手拉手模型”.小丽进行了如下操作:(1)问题发现如图1,在OAB △和OCD 中,OA OB =,OC OD =,40AOB COD ∠=∠=︒,连接AC ,BD 交于点M .小丽发现这就是手拉手模型,易证AOC BOD ≌ ,进而可以得知:①ACBD的值为______;②AMB ∠的度数为______.(2)类比探究如图2,在OAB △和OCD 中,若90AOB COD ∠=∠=︒,CO AODO BO=AC 交BD 的延长线于点M ,AO 与BM 交于点P .小丽发现不等腰的三角形也可得到手拉手模型.请你求出此时ACBD的值及AMB ∠的度数,并说明理由;(3)拓展延伸在(2)的条件下,将OCD 绕点O 在平面内任意旋转,AC ,BD 所在直线交于点M ,若1OD =,OB =,请直接写出当点C 与点M 重合时AC 的长.。
山东省青岛市2024-2025学年九年级上学期11月期中考试数学试题
山东省青岛市2024-2025学年九年级上学期11月期中考试数学试题一、单选题1.若一元二次方程2352x x =+的二次项系数是3,则它的常数项是()A .2-B .2C .5-D .52.围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有黑白两色棋子共10枚,每枚棋子除颜色外都相同.将盒子中的棋子搅拌均匀,从中随机摸出一枚棋子,记下它的颜色后再放回盒子中.不断重复这一过程,共摸了100次,发现有71次摸到白色棋子,则盒子中黑色棋子可能有()A .2.9枚B .3枚C .7枚D .7.1枚3.某学校致力于劳动教育的探索与实践,在校内设立了“田园风光”和“耘梦园”两个相似的矩形劳动场所,它们的相似比是1:2.若两个劳动场所种植相同品种的蔬菜,在每平方米所需农资成本(主要包括化肥、农药以及灌溉用水)不变的情况下,“田园风光”的农资成本为200元,则“耘梦园”的农资成本为()A .800元B .400元C .100元D .50元4.如图,四边形ABCD 是正方形,ADE V 是等边三角形,则ECB ∠的度数是()A .15︒B .30°C .60°D .75︒5.黄金分割在文艺复兴时期被视为金子般的比例,比值约等于0.618.有研究发现,成人的理想体重与身高的关系是:体重(kg )=身高()()cm 10.618⨯-.若王老师的身高是170cm ,下列选项中,最接近她的理想体重的是()A .60kgB .63kgC .65kgD .67kg6.关于x 的一元二次方程257x mx +=的根的情况是()A .无法确定B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根7.如图,在菱形ABCD 中,2BAD ABC ∠=∠,4cm AC =,则BD 的长为()A .2cmB .C .4cmD .8.秋冬季是支原体肺炎的感染高发期,佩戴口罩是遏制支原体肺炎病毒传播的一种有效途径.若有一个人患了支原体肺炎,经过两轮传染后共有81人患了支原体肺炎(假设每个人每轮传染的人数同样多).设每轮传染中平均一个人传染了x 个人,可列方程为()A .()181x x +=B .()181x x x ++=C .2181x x ++=D .()1181x x x +++=9.某学校开展“校园文化艺术节”文艺汇演活动,现打算从5名(2名男生和3名女生)候选人中随机选取3人担任本次活动的主持人,则选中的3人恰好都是女生的概率是()A .25B .35C .110D .31010.如图,把矩形ABCD 和矩形CEFG 拼成如图所示的图案,已知3AB =,4BC =,6CE =,8EF =,M 是AF 的中点,则CM 的长为()A .5BCD .二、填空题11.在中华人民共和国75周年华诞到来之际,某学校开展了“我心绘版图美丽白纸坊”手绘地图活动.小明绘制了一张比例尺为1:10000的青岛城区交通游览图,栈桥的图上长度约为4.4cm ,则栈桥的实际长度约为m .12.在正常情况下,10米跳台跳水运动员必须在距水面不小于5m 时完成规定的翻腾动作,并且调整好入水姿势,否则就容易出现失误.假设运动员距离水面的高度h (m )和运动员起跳后的运动时间t (s )之间满足关系:210 2.55h t t =+-,则当5h =时,210 2.555t t +-=即2220t t --=.t1.1 1.2 1.3 1.42220t t --=0.68-0.32-0.080.52根据表格中的对应值,可判断运动员完成动作的时间最多不超过s .(精确到0.1)13.为了加强学生国防教育,某校举办了主题为“爱我中华,强我国防”的演讲比赛,甲、乙、丙、丁四名学生分在同一个小组,赛前需要以抽签的方式确定出场顺序,主持人将表示出场顺序的卡片(除正面分别写有1,2,3,4外,其余完全相同)背面朝上放在桌面上,洗匀后先由甲随机抽取一张,然后由乙随机抽取一张,甲、乙抽到的出场顺序相邻的概率为.14.如图,在ABCD 中,对角线AC 与BD 相交于点O ,ABO 是等边三角形.若3AB =,则ABCD 的面积=.15.如图,一次函数25y x =+的图象交x 轴于点A ,交y 轴于点B ,点P 在线段AB 上(不与点A ,B 重合),过点P 作OB 的垂线,垂足为C ,连接OP ,过点C 作CD OP ∥,交x 轴于点D .若四边形PCDO 的面积为2,则点P 的坐标为.16.在平面直角坐标系中,Rt OAB 的位置如图所示,在直线OA 上依次取点1A ,2A ,3A …n A ,使12AA OA =,123A A OA =,234A A OA =,…,()11n n A A n OA -=+,分别过点1A ,2A ,3A …n A 作OA 的垂线,交x 轴于点1B ,2B ,3B …n B ,依次连接1AB ,12A B ,23A B …1n n A B -.若OAB △的面积为1,则1n n n A A B - 的面积=.三、解答题17.解下列方程(1)254x x =;(2)2412x x +=;(3)22760x x -+=;(4)()()2351x x --=.18.“回文”是指正读反读都能读通的句子,是古今中外都有的一种修辞手法和文字游戏.例如“处处飞花飞处处,潺潺碧水碧潺潺”等.在数学中,如果一个正整数从左往右读与从右往左读都一样,那我们称之为回文数,例如11,22,121…都是回文数.将牌面数字分别为0,1,2,3四张纸牌(除牌面数字外,其余均相同)背面朝上,洗匀后放在桌面上,小明先从中随机抽取一张,记下数字后放回并洗匀,小红再从中随机抽取一张.将小明、小红抽取的数字分别作为一个四位数(该四位数的千位数字和个位数字均为2)的百位和十位数字.请用列表或画树状图的方法求组成的四位数是回文数的概率.19.对于几何图形,我们通常是从它的定义、性质、判定和应用等方面进行研究,并且都是从组成图形的元素及相关元素之间的关系进行探究.观察、实验、归纳、类比、猜想、证明等是我们常用的探究方法.【定义】如图①,在四边形ABCD 中,BA BC =,DA DC =,我们把这种有两组邻边分别相等的四边形叫做筝形.不相邻的两个顶点连成的线段叫做它的对角线,线段AC 就是它的一条对角线.【性质】请结合图①,写出筝形ABCD 具有的性质.(任意写出2条你认为正确的即可)例如:∵四边形ABCD 是筝形∴BA BC =,DA DC=性质1:______;性质2:______.【判定】下列条件能够判定四边形ABCD 是筝形的有______.(将所有正确的序号填在横线上)①AB BC =且AD CD =;②BAD BCD ∠=∠;③AC BD ⊥且OA OC =;④ABD CBD ∠=∠.【应用】如图②,在筝形ABCD 中,AB AD =,BC CD =,请利用无刻度的直尺和圆规,在筝形ABCD 内部找一点P ,连接PB ,PD ,使折线B P D --恰好将筝形ABCD 的面积分为相等的两部分.(保留作图痕迹,不写作法)20.如图,在Rt ABC △中,90BAC ∠=︒,D 为BC 中点,连接AD ,取AD 的中点E ,过点D 作DF AC ∥,交CE 的延长线于点F ,连接AF .(1)求证:AC DF =;(2)已知______(从以下两个条件中任选一个作为已知,填写序号),请判断四边形AFDC 的形状,并证明你的结论.条件①:30B ∠=︒;条件②:CF 平分ACD ∠.(注:如果选择条件①条件②分别进行解答,按第一个解答计分)21.面向日益严峻的气候变化形势,以发展新能源汽车推动道路交通领域零碳转型已成为全球共识.我国政府不断加大对新能源汽车的支持和推动,新能源汽车的市场需求正在不断增加.下表是一款某品牌新能源热门车型7月份和9月份的全国销量情况:月份7月9月销量/万辆 2.5 3.6(1)求该款车销量的月平均增长率.(2)青岛一个该品牌4S 店购进一批该款车型进行销售,已知进价为每辆6万元.经试销发现:当该款汽车售价为7.5万元时,平均每月销量为150辆;而当售价每降低0.1万元时,平均每月就能多售出15辆.为了扩大销量,该4S 店决定降价促销,若该4S 店想要维持利润不变,该款车的售价应为每辆多少万元?22.如图,点P 为线段AB 上一点,在AB 的同侧作等腰直角三角形PAC 和等腰直角三角形PBD ,AD 与BC ,PC 分别相交于点E ,F ,BC 与PD 交于点H .(1)求证:APD CPB △∽△;(2)求FEH ∠的度数.23.如图,在菱形ABCD 中,对角线12AC cm =,16BD cm =,在Rt QEF 中,90QEF ∠=︒,边QE 和BO 重合,边EF 和OC 重合.如图②,QEF △从图①所示位置出发,沿B 方向匀速运动,速度为1/s cm ;同时,动点P 从点D 出发,沿DA 方向匀速运动,速度为2/s cm .连接AQ ,PE .设运动时间为()s t ()05t <<.解答下列问题:(1)当t 为何值时,AOQ △为等腰三角形?(2)当PE AQ 时,求t 的值;(3)在运动过程中,是否存在某一时刻t 值,使DPE 与EFQ △相似?若存在,求出t 的值;若不存在,请说明理由.。
重庆市南开中学校2024-2025学年九年级上学期期中数学试题(解析版)
重庆南开中学2024-2025学年度上学期期中考试初2025届数学试题(全卷共三个大题,满分150分,考试时间120分钟)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1.17−的相反数是( ).A.17− B.17C. −7D. 7【答案】B【解析】【分析】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,只有符号不同的两个数是互为相反数, 0的相反数是0.【详解】解:17−的相反数是17,故选:B.2. 下列化学仪器示意图中,是轴对称图形的是()A. 蒸馏烧瓶B. 烧杯C. 圆底烧瓶D. 分液漏斗【答案】C【解析】【分析】本题考查了轴对称图形的定义,熟练掌握轴对称图形的定义是解答本题的关键.根据轴对称图形的定义逐项分析即可.【详解】解:选项A、B、D均不能找到这样的一条直线,使图形沿该直线对折后直线两旁的部分能够完全重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿该直线对折后直线两旁的部分能够完全重合,所以是轴对称图形.故选C .3. 二次函数()20y ax bx c a ++≠的图象如图所示,则下列选项正确的是( )A. 0a >B. 0b >C. 240b ac −<D. 0c >【答案】A【解析】 【分析】本题考查根据二次函数图象判断各项系数和式子的符号,熟练掌握二次函数图象与系数的关系是解题的关键.根据抛物线的开口方向和对称轴的位置确定a 、b 的符号,由抛物线与x 轴的交点个数确定∆的符号,由抛物线与y 轴的交点位置确定c 的符号,即可得出答案.【详解】解:A 、∵抛物线的开口向上,∴0a >,故此选项符合题意;B 、∵抛物线的对称轴在y 轴右侧,∴02b a−>, ∵0a >,∴0b <,故此选项不符合题意;C 、∵抛物线与x 轴的两个交点,∴240b ac ∆=−>,故此选项不符合题意;D 、∵抛物线与y 轴的交点在负半轴上,∴0c <,故此选项不符合题意;故选:A .4. 将ABC 沿BC 方向平移至DEF ,点A ,B ,C 的对应点分别是D ,E ,F ,使得:5:3BC EC =,则ABC 与GEC 的周长之比为( )A. 2:3B. 2:5C. 5:3D. 3:5【答案】C【解析】 【分析】本题考查平移的性质,相似三角形的判定与性质,熟练掌握平移的性质、相似三角形的判定与性质是解题的关键.根据平移的性质得到AB GE ∥,从而可得到ABC GEC △∽△,利用相似三角形周长于相似比可得答案. 【详解】解:∵ABC 沿BC 方向平移至DEF ,∴AB DE ∥,即AB GE ∥,∴A EGC ∠=∠,B GEC ∠=∠,∴ABC GEC △∽△,∴ABC 与GEC 的周长之比:5:3BCEC =, 故选:C .5. 中国选手郑钦文顺利入围2024年WTA 年终总决赛女子单打项目,该项目第一阶段采用组内循环赛制,即每两名选手之间比赛一场.现计划安排28场组内循环赛,共有几名选手参加组内循环赛?设一共有x 名选手参加组内循环赛,根据题意可列方程为( )A. ()128x x −=B. ()128x x +=C. ()11282x x +=D. ()11282x x −= 【答案】D【解析】【分析】此题主要考查了有实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.设一共有x 名选手参加组内循环赛,则每个队参加()1x −场比赛,则共有()112x x −场比赛,可以列出一个一元二次方程. 【详解】解:由题意可列方程为:()11282x x −=, 故选:D .6. 估计+)A. 6和7之间B. 7和8之间C. 8和9之间D. 9和10之间【答案】D【解析】【分析】本题考查二次根式的混合运算,无理数的估算,解题的关键是熟练掌握二次根式的运算法则.先利用二次根式的运算法则将原式化简,再对无理数进行估算.【详解】解:++,3<<∵67∴9310+<故选:D.7. 南南用相同的小圆圈按照一定的规律摆成了“中”字,第①个图形中有10个小圆圈,第②个图形中有16个小圆圈,第③个图形中有22个小圆圈,…,按照此规律排列下去,则第⑧个图形中小圆圈的个数是()A. 42B. 52C. 46D. 58【答案】B【解析】【分析】考查了图形的变化类问题,解题的关键是仔细观察图形并找到进一步解题的规律,难度不大.仔细观察图形变化,找到图形变化规律,利用规律求解.×+=个小圆圈,【详解】第①个图形中一共有16410×+=个小圆圈,第②个图形中一共有26416×+=个小圆圈,第③个图形中一共有36422…,∴第n 个图形中一共有()64n +个小圆圈,∴第⑧个图形中小圆圈的个数是86452×+=,故选:B .8. 如图,AB 是O 的直径,AE 、CE 、CB 为O 的弦,132AO =,12AE =,则sin BCE ∠=( )A. 512B. 1312C. 513D. 125【答案】C【解析】【分析】本题考查了圆周角定理,求一个角的正弦值,勾股定理;根据AB 是O 的直径,得出90AEB ∠=°,再运用勾股定理算出5BE ,再结合 EBEB =,则BCE BAE ∠=∠,所以5sin sin 13BE BCE BAE AB ∠=∠==,即可作答. 【详解】解:连接BE ,如图:∵AB 是O 的直径,∴90AEB ∠=°, ∵132AO =, ∴13AB =,在Rt ABE △中,5BE ,∵ EBEB =,∴BCE BAE ∠=∠, ∴5sin sin 13BE BCE BAE AB ∠=∠==, 故选:C . 9. 如图,在正方形ABCD 中,O 是对角线BD 的中点,E 为正方形内的一点,连接BE ,CE ,使得CB CE =,延长BE 与ECD ∠的角平分线交于点F .若BEC α∠=,连接OF ,则FOD ∠的度数为( )A. 290α−°B. 1452α°+C. 1902α°−D. 245α−°【答案】A【解析】 【分析】连接DF ,先证明∴()SAS CEF CDF ≌,得到CEF CDF ∠=∠,从而得180CDF CEF α∠=∠=°−,继而90BFD ∠=°,然后利用直角 三角形的性质,得出OF OB =,从而有45OFB OBF α∠=∠=−°,然后由三角形外角的性质可求解.【详解】解:连接DF ,如图,∵正方形ABCD∴BC CD =,45CBD CDB ∠=∠=°,∵CB CE =∴CE CD =,CBE BEC α∠=∠=, ∴45DBE α∠=−°,∵CF 是ECD ∠角平分线∴ECF DCF ∠=∠ ∵CF CF =,ECF DCF ∠=∠,CE CD =, ∴()SAS CEF CDF ≌∴CEF CDF ∠=∠,∴180CDF CEF α∠=∠=°−∴18045135BDFCDF CDB αα∠=∠−∠=°−−°=°− ∴1354590BDF DBE αα∠+∠=°−+−°=° ∴90BFD ∠=°∵O 是对角线BD 的中点,∴OF OB =∴45OFB OBF α∠=∠=−° ∴4545290FOD OFB OBF ααα∠=∠+∠=−°+−°=−° 故选:A .【点睛】本题考查正方形的性质,直角三角形的性质,等腰三角形的性质,三角形外角的性质,全等三角形的判定与性质,证明90BFD ∠=°是解题的关键.10. 给定三个互不相等的代数式,先将任意两个代数式作差(相同的两个代数式只作一次差),再将这些差“绝佳操作”.例如:对于m ,n ,p 作“绝佳操作”,得到m n m p n p −+−+−.下列说法:①对2,4−,5作“绝佳操作”结果是18;②对m ,n ,p 作“绝佳操作”的结果一共有8种;③对22a ,66a −,42a 作“绝佳操作”的结果为28,则a的值为1−或1−;其中正确的个数为( )A. 0B. 1C. 2D. 3【答案】B【解析】【分析】本题考查新定义和绝对值化简,解一元二次方程,理解万岁新定义是解题的关键,注意分类讨论. 利用绝对值的性质进行逐个计算判断即可. 【详解】解:①()242545−−+−+−−的的18=,故①正确;②当m n p >>时,则22m n m p n p m n m p n p m p −+−+−=−+−+−=−,当m p n >>时,则22m n m p n p m n m p n p m n −+−+−=−+−−+=−,当n m p >>时,则22m n m p n p m n m p n p n p −+−+−=−++−+−=−, 当n p m >>时,则22m n m p n p m n m p n p n m −+−+−=−+−++−=− 当p m n >>时,则22m n m p n p m n m p n p p n −+−+−=−−+−+=−当p n m >>时,则22m n m p n p m n m p n p p m −+−+−=−+−+−+=− ∴对m ,n ,p 作“绝佳操作”的结果一共有6种,故②错误;③当226642a a a >−>−时,则()()()22266242664228a a a a a a −−+−−+−−−=,化简得:2260a a −−=,解得:1a =+1a =−; 当224266a a a >−>−时,则()()()22266242664228a a a a a a −−+−−+−−−=, 化简得:2340a a −−=,解得:4a =(舍去)或1a =−;当266242a a a −>>−时,则()()()22266242664228a a a a a a −−+−−+−−−=, 化简得:6828a −=,解得:6a =(舍去); 当266422a a a −>−>时,则()()()22266242664228a a a a a a −−+−−+−−−=, 化简得:23100a a −+=,∵()234110310∆=−−××=−<∴无解;当242266a a a −>>−时,则()()()22266242664228a a a a a a −−+−−+−−−=, 化简得:8a −=,解得:8a =−(舍去), 当242662a a a −>−>时,则()()()22266242664228a a a a a a −−+−−+−−−=, 化简得:4828a −+=,解得:5a =−(舍去),综上,a 的值为11−,故③错误;∴只有①正确,共1个,二、填空题:(本题共8个小题,每小题4分,共32分)请将每个小题的答案直接填在答题..卡.中对应的横线上. 11. 计算:()01tan3012−°−−=________. 【答案】12##0.5 【解析】【分析】本题主要考查实数混合运算,零指数幂,负整理指数幂,特殊角的三角函数,解题的关键是掌握分负整数指数幂、零指数幂的规定,熟记特殊锐角的三角函数值.【详解】解:()01tan3012−°−−112 =−−112=− 12=. 故答案为:12. 12. 正八边形每个外角的度数为_____.【答案】45°##45度【解析】【分析】本题主要考查了正多边形外角和定理,根据任何一个多边形的外角和都是360°求解即可.【详解】解:因为任何一个多边形的外角和都是360°,所以正八边形的每个外角的度数是:360845°÷=°.故答案为:45°.13. 为了全面推进素质教育,助力学生健康成长,公能学校开设了多门选修课程.其中南南和开开想从刺绣、糖画、国家疆土、巧匠工坊中选修一门课程,两名同学恰好选修同一门课程的概率为________. 【答案】14【解析】【分析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.【详解】解:用A 、 B 、C 、D 分别表示刺绣、糖画、国家疆土、巧匠工坊,画树状图如图,共有16种等可能的结果,其中他们两人恰好选修同一门课程的结果数为4, 所以他们两人恰好选修同一门课程的概率为:41164=. 14. 如图,点A 在反比例函数()0k yk x=≠图象上,过点A 作AB x ⊥轴于点B ,连接OA ,若ABO 的面积为2,则k =________.【答案】4【解析】【分析】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于k .本知识点是中考的重要考点,同学们应高度关注.根据在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是122k =,再根据反比例函数的图象位于第二象限即可求出k 的值. 【详解】解:根据题意可知:221AOB S k == , 又反比例函数的图象位于第一象限,0k >,则4k =.故答案为:4.15. 若二次函数232y x x =−+过点(),3m ,则代数式2262023m m −+=________. 【答案】2025【解析】【分析】本题考查的是抛物线的性质.掌握“点在抛物线上,则点的坐标满足函数解析式”是解本题的关键.由于抛物线经过点(),3m ,则231m m −=,把2262023m m −+整理后整体代入即可. 【详解】∵二次函数232y x x =−+过点(),3m , ∴2323m m −+=, ∴231m m −=,∴()222620232320232120232025m m m m −+=−+=×+=. 故答案为:2025.16. 关于x 的一元一次不等式组()341221x x x x m − ≤−+≥−+至少有2个整数解,且关于y 的分式方程13222m y y−=−−−的解为非负整数,则符合条件的整数m 的值之和为________. 【答案】2 【解析】【分析】本题考查了分式方程的解,以及解一元一次不等式组,掌握相应的计算方法是关键. 先解不等式组,确定m 的取值范围25<≤m ,再把分式方程去分母转化为整式方程,解得22m y −=,由分式方程有非负整数解,确定出的值,即可解答.【详解】解:()341221x x x x m − ≤−+≥−+①② 解①得:2x ≤, 解②得:23m x −≥, ∴223m x −≤≤, ∵不等式组至少有2个整数解, ∴213m −≤, 解得:5m ≤;13222m y y−=−−−, 去分母得:1243m y −=−+, 解得:2my =, ∵分式方程的解为非负整数,且2y ≠ ∴0m ≥且4m ≠的偶数, 又∵5m ≤ ∴2m =,0∴符合条件的整数m 的值之和为202+=. 故答案:2.17. 如图,在矩形ABCD 中,4=AD ,点E 为AB 中点,将矩形沿着EF 所在的直线翻折至矩形ABCD 所在的平面,点B ,C 的对应点分别是B ′,C ′,B E ′与CD 交于点G ,使得CF GF =,连接AB ′,B F ′,AF ,若25B G GF ′=,则GF =________;AB F S ′= ________.【答案】 ①. 5 ②. 985【解析】【分析】过点G 作GH C F ′⊥,则四边形B C HG ′′是矩形,根据矩形的性质,结合折叠的性质可得4GH B C ′′==,GF GE =,令5GF CF a ==,则2B G C H a ′′==,5CF C F a ′==,可知3HF C F C H a ′′=−=,根据勾股定理即可求解,则2B G ′=,7BE B E ′==,令AB ′与CD 交于点O ,过点B ′作B M CD ′⊥,则90D B MO ′∠=∠=°,再证明B OG B AE ′′△∽△,DOA MOB ′△∽△,结合相似三角形的性质求得2855B M AD ′==,由1122AB F AOF B OF S S S OF AD OF B M ′′′=+=⋅+⋅△△△,即可求解. 【详解】解:在矩形ABCD 中,4AD BC ==,AB CD =,90B C D ∠==∠=°,AB CD ∥,则BEF DFE ∠=∠,由折叠可知,BE B E ′=,CF C F ′=,4BC B C ′′==,90C C ′∠=∠=°,90EB C B ′∠=∠=°,BEF B EF ′∠=∠,则B EF DFE ′∠=∠, ∴GF GE =,为过点G 作GH C F ′⊥,则四边形B C HG ′′是矩形, ∴4GHB C ′′==,B G C H ′′=, ∵25B G GF ′=,CF GF =,令5GFCF a ==,则2B G C H a ′′==,5CF C F a ′==, ∴3HF C F C H a ′′=−=,由勾股定理可得:222GH GF HF =−,即:()()222453a a =−,解得:1a =,∴5GF =,则2B G ′=,7BEB E ′==, 令AB ′与CD 交于点O ,过点B ′作B M CD ′⊥,则90D B MO ′∠=∠=°,∵点E 是AB 的中点,∴7AE BE ==,即14ABCD ==, ∵AB CD ∥,∴B OG B AE ′′△∽△,B G B O GF OA ′′==∴OG B GAE B E ′=′,即277OG =, ∴2OG =,∴7OF OG GF =+=,则2OD CD OF CF =−−=, ∵DOA MOB ′∠=∠ ∴DOA MOB ′△∽△,∴25B M B O AD OA ′′==,则2855B M AD ′==, ∴1118987422255AB F AOF B OF S S S OF AD OF B M ′′′=+=⋅+⋅=××+=, 故答案为:5,985. 【点睛】本题考查矩形与折叠问题,勾股定理,相似三角形的判定及性质,平行线分线段成比例等知识点,熟练掌握相关图形的性质是解决问题的关键.18. 一个四位数M 各数位上的数字均不为0,若将M 的千位数字和个位数字对调,百位数字和十位数字对调,得到新的四位数N ,则称N 为M 的“翻折数”,规定()11M NF M +=.例如:1235的“翻折数”为5321,()12355321123559611F +==,则()2678F =________;若()5001200101M x y =+++(M ,y 为整数,59x ≤≤,18y ≤≤),M 的“翻折数”N 能被17整除,则()F M 的最大值为________. 【答案】 ①. 1040 ②. 757 【解析】【分析】根本题主要考查了有理数的混合运算,二元一次方程的解,列代数式,本题是阅读型题目,准确理解题干中的定义和公式并熟练应用是解题的关键.据()11M NF M +=代入求解()2678F 即可;首先表示出s 和t 的“翻折数”,然后求出3153x y ++的取值范围,进而分类讨论求得x ,y 的值,然后代入()11M NF M +=求解即可. 【详解】根据题意可得,()267887622678104011F +==;∵()5001200101M x y =+++(M ,y 为整数59x ≤≤,18y ≤≤), ∴M 的千位数字为6,百位数字为210x −,十位数字为1y +,个位数字为1, ∴M 的“翻折数”N 为()()10001001102106y x +++−+201001006x y =++()175593153x y x y =+++++,∵59x ≤≤,18y ≤≤, ∴333153150x y ≤++≤, ∵M 的“翻折数”N 能被17整除, ∴3153x y ++能被17整除, ∵x ,y 都是整数, ∴3153x y ++是整数,∴431533x y +=+,51,68,85,102,119,136,∴当431533x y +=+时,x ,y 无整数解, 当131535x y +=+时,13x y = = (舍去)或62x y = =,当831536x y +=+时,x ,y 无整数解, 当531538x y +=+时,x ,y 无整数解, 当2315310x y +=+时,36x y == (舍去)或85x y = = ,当9315311x y +=+时,x ,y 无整数解, 当6315313x y +=+时,x ,y 无整数解,∴当62x y = =时,()5001200610216231M =+×+×+=,1326N =,()6231132668711F M +==, 当85x y = =时,()5001200810516661M =+×+×+=,1666N =,()6661166675711F M +==, ∴()F M 的最大值为757, 故答案为:1040,757.三、解答题:(本大题共8个小题,第19题8分,其余每题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上. 19. 计算:(1)()22()m m n m n +−+(2)2214123a a a a −+÷ +【答案】(1)2n −; (2)321a a +−. 【解析】【分析】本题考查了整式的运算和分式的混合运算.解题的关键是掌握整式和分式混合运算顺序和运算法则.(1)利用完全平方公式和单项式乘多项式展开,再合并即可;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果即可. 【小问1详解】解:()22()m m n m n +−+2222(2)m mn m mn n =+−++22222m mn m mn n =+−−− 2n =−;【小问2详解】解:2214123a a a a −+÷ + 2221413a a a a a+−÷+ ()()()321·2121a a a a a a ++=+− 321a a +=−. 20. 为了全面了解学生对校史的掌握情况,公能学校开展了校史知识竞赛.现从七、八年级的学生中各随机抽取20名学生的比赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分为四组:A .90100x <≤;B .8090x <≤;C .7080x <≤;D .6070x <≤;),下面给出了部分信息: 七年级20名学生的竞赛成绩为:68,76,78,79,84,85,86,86,86,86, 88,89,89,91,91,94,94,95,95,100.八年级20名学生的竞赛成绩在B 组的数据为:80,83,86,87,87,89,89. 七、八年级所抽学生的校史知识竞赛成绩统计表年级 七年级 八年级 平均数8787中位数 87 b众数 a92根据以上信息,解答下列问题:(1)填空:a =________;b =________;m =________;(2)根据以上数据分析,你认为在此次知识竞赛中,该校七、八年级中哪个年级学生对校史的掌握情况更好?请说明理由(写出一条理由即可);(3)公能学校七年级有500名学生、八年级有600名学生参加此次校史知识竞赛,请估计七、八年级参加此次知识竞赛的成绩优秀(90)x >的学生共有多少人? 【答案】(1)86;87;40(2)八年级学生安全知识竞赛成绩较好,理由见解析 (3)415 【解析】【分析】(1)根据众数和中位数定义求a 、b 值,先求出B 组人数占的百分比为35%,即可由%110%15%35%m =−−−求出m 值;(2)根据两个年级成绩的平均数相同,但八年级的中位数高于七年级,可得出结论; (3)用各年级的总人数乘以年级的优秀率,再相加,列式计算即可求解. 【小问1详解】解:在七年级20名学生的竞赛成绩中86出现的次数最多,故众数86a =; ∵八年级20名学生的竞赛成绩在B 组的数据为:80,83,86,87,87,89,89. ∴B 组人数占的百分比为:7100%35%20×=, ∵C 组人数占的百分比为15%,D 组人数占的百分比为10%, ∴A 组人数占的百分比为%110%15%35%40%m =−−−=,即40m =. ∴八年级20名学生竞赛成绩的中位数在B 组,的∴把八年级20名学生的竞赛成绩从小到大排列,排在中间的两个数分别是87,89,故中位数8789872b +=, 故答案:86;87;40. 【小问2详解】解:八年级学生安全知识竞赛成绩较好,理由如下:因为两个年级成绩的平均数相同,但八年级的中位数高于七年级,所以得到八年级学生安全知识竞赛成绩较好(答案不唯一); 【小问3详解】 解:750060040%20×+× 175240+415=(人), 答:估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数大约是415人.【点睛】本题考查众数,中位数,统计表,扇形统计图,用样本估计总体,掌握相关统计量的意义以及计算方法是解答本题的关键.21. 在学习了平行四边形与正方形的相关知识后,智慧小组进行了更深入的探究.他们发现,如图所示的正方形ABCD ,分别取BC ,CD 的中点M ,N ,连接AM ,DN 交于点E ,过B 作AM 的垂线,交AM 于点Q ,交AD 于点P .则四边形BPDN 是平行四边形.(1)用尺规完成以下基本作图:过B 作AM 的垂线,交AM 于点Q ,交AD 于点P (只保留作图痕迹).(2)根据(1)中所作图形,智慧小组发现四边形BPDN 是平行四边形成立,并给出了证明,请补全证明过程.证明:∵四边形ABCD 是正方形,∴AD CD BC ==,90ADC C ∠=∠=°,AD BC ∥.又∵M ,N 分别为BC ,CD 的中点,∴12DM CD =,12CN BC =,∴ ① ,在ADM 与DCN 中,为AD CD ADM C DM CN =∠=∠ =∴()ADM DCN SAS ≌.∴ ② .又∵90CDN ADN ∠+∠=°,∴90DAM ADN ∠+∠=°,∴90AED ∠=°,又∵BP AE ⊥,∴90AQP AED ∠=∠=°,∴ ③ .又∵DP BN ∥ ∴四边形BPDN 是平行四边形.进一步思考,智慧小组发现任取BC ,CD 的上点N ,M (M 不与C ,D 重合),DM CN =,连接AM ,DN ,过B 作AM 的垂线,交AD 于点P ,则四边形BPDN 是 ④ .【答案】(1)见解析 (2)DM CN =;DAM CDN ∠=∠;∥BP DN ;进一步思考:四边形BPDN 是平行四边形 【解析】【分析】(1)利用尺规基本作图——经过直线外一点作已知直线的第一线作法作出图形即可;(2)先证明()SAS ADM DCN ≌,得到DAM CDN ∠=∠.从而证得90AQP AED ∠=∠=°,即可得到∥BP DN .又由正方形的性质得DP BN ∥,即可得出结论;进一步思考:证明()SAS ADM DCN ≌,得到DAM CDN ∠=∠,再证明∥BP DN ,又由正方形的性质得DP BN ∥,即可得出结论. 【小问1详解】解:如图所示,BP 就是所求作的经过点B 垂直于AM 于Q ,交AD 于P 的直线,【小问2详解】证明:∵四边形ABCD 是正方形,∴AD CD BC ==,90ADC C ∠=∠=°,AD BC ∥. 又∵M ,N 分别为BC ,CD 的中点, ∴12DM CD =,12CN BC =, ∴DM CN =,在ADM 与DCN 中,AD CD ADM C DM CN =∠=∠ =∴()SAS ADM DCN ≌. ∴DAM CDN ∠=∠. 又∵90CDN ADN ∠+∠=°, ∴90DAM ADN ∠+∠=°, ∴90AED ∠=°, 又∵BP AE ⊥,∴90AQP AED ∠=∠=°, ∴∥BP DN . 又∵DP BN ∥∴四边形BPDN 是平行四边形. 进一步思考:如图,∵四边形ABCD 是正方形,∴AD CD BC ==,90ADC C ∠=∠=°,AD BC ∥. 在ADM 与DCN 中,AD CD ADM C DM CN =∠=∠ =∴()SAS ADM DCN ≌. ∴DAM CDN ∠=∠. 又∵90CDN ADN ∠+∠=°, ∴90DAM ADN ∠+∠=°, ∴90AED ∠=°, 又∵BP AE ⊥,∴90AQP AED ∠=∠=°, ∴∥BP DN . 又∵DP BN ∥∴四边形BPDN 是平行四边形. 故答案为:平行四边形.【点睛】本题考查正方形的性质,全等三角形的判定与性质,尺规基本作图—作垂线,平行四边形的判定.熟练掌握正方形的性质,和平行四边形的判定是解题的关键.22. 重庆金沙天街某家蛋糕店推出了“流沙羊角”和“开心果羊角”两款特色蛋糕.(1)购买1个“流沙羊角”和1个“开心果羊角”需要37元,购买1个“流沙羊角”和2个“开心果羊角”需要54元,求“流沙羊角”和“开心果羊角”的单价分別为多少元?(2)国庆节当天,蛋糕店进行促销活动,将“流沙羊角”的单价降低了2m 元,“开心果半角”单价降低了m 元,节日当天“流沙羊角”的销量是“开心果羊角”销量的1.2倍,且“流沙羊角”的销售额为960元,“开心果羊角”的销售额为750元,求m 的值.【答案】(1)“流沙羊角”的单价为20元,“开心果羊角”的单价为17元 (2)2 【解析】【分析】本题考查二元一次方程组的应用,分式方程的应用,正确列出方程组或方程是解题的关键. (1)设“流沙羊角”的单价为x “开心果羊角”的单价为y 元,根据购买1个“流沙羊角”和1个“开心果羊角”需要37元,购买1个“流沙羊角”和2个“开心果羊角”需要54元,列出方程组,求解即可. (2)根据销量等于销售额除以销售单价,以“流沙羊角”的销量是“开心果羊角”销量的1.2倍,列出分式方程求解即可. 【小问1详解】解:设“流沙羊角”的单价为x 元,“开心果羊角”的单价为y 元,根据题意,得37254x y x y +=+= , 解得:2017x y = =, 答:“流沙羊角”的单价为20元,“开心果羊角”的单价为17元. 【小问2详解】 解:根据题意,得960750 1.220217m m=×−−, 解得:2m =,经检验,2m =是方程的解且符合题意, ∴m 的值为2.23. 如图1,在菱形ABCD 中,5AB =,8BD =,动点P 从点A 出发,沿着A B C −−的路线运动,到达C 点停止,过点P 作PQ BD ∥交菱形的另一边于点Q .设动点P 行驶的路程为x ,点P 、Q 的距离为y .(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数y 的图象,并写出函数y 的一条性质;(3)函数11y x b 2=+与函数y 只有一个交点,求b 的取值范围. 【答案】(1)()()80558165105x x y x x ≤≤ =−+<≤ ; (2)作图见解析,当05x ≤≤时,y 随x 的增大而增大;当510x <≤时,y 随x 的增大而减小; (3)50b −≤<或112b =. 【解析】【分析】(1)分点P 在AAAA 上和点P 在BC 上两种情况讨论,利用相似三角形的判定及性质构造等量关系,即可得到答案;(2)根据(1)所得函数关系式,利用描点法画图,再写出该函数的性质即可;(3)结合函数图象,将()5,8、()0,0和()10,0代入11y x b 2=+,分别求出b 的值,即可得出b 的取值范围.【小问1详解】解:如图,点P 在AAAA 上时,05x ≤≤,∵PQ BD ∥, ∴APQ ABD ∽,∴AP PQ AB BD =即58x y=, ∴85y x =, ∵5AB =,如图,点P 在BC 上时,∵四边形ABCD 是菱形, ∴5BC AB ==, ∴10PC x =−,当点P 在BC 上时,510x <≤, ∵PQ BD ∥, ∴CPQ CBD ∽,∴CP PQ CB BD =即1058x y −=, ∴8165y x =−+,综上可知,y 关于x 的函数表达式为()()80558165105x x y x x ≤≤ =−+<≤ 【小问2详解】解:由(1)所得关系式可知,x0 5 8 10 y83.2函数图象如下:性质:当05x ≤≤时,y 随x 的增大而增大;当510x <≤时,y 随x 的增大而减小;(答案不唯一) 【小问3详解】解:如图,由图象可知,函数11y x b 2=+的图象在3l 和2l 之间时,与函数y 只有一个交点, 将()5,8代入11y x b 2=+,得:1852b =×+,解得:112b =, 将()0,0代入11y x b 2=+,得:0b =, 将()10,0代入11y x b 2=+,得:5b =−, ∴b 的取值范围为50b −≤<或112b =.【点睛】本题考查了菱形的性质,相似三角形的判定及性质,求一次函数解析式,描点法画函数图象,一次函数图象和性质,两直线交点问题等知识,利用数形结合和分类讨论的思想解决问题是关键.24. 如图,M 为沙坪坝区物流中心,N ,P ,Q 为三个菜鸟驿站,N 在M 的正南方向4.3km 处,Q 在M 的正东方向,P 在Q 的南偏西37°方向2.5km 处,N 在P 南偏西64°方向.(sin370.60°≈,cos370.80°≈,tan370.75°≈,sin640.90°≈,cos640.44°≈,tan64 2.05°≈)(1)求驿站P ,驿站N 之间的距离(结果精确到0.1km ); (2)“双11”期间,派送员从沙坪坝区物流中心M 出发,以30km/h 的速度沿着M N P Q ———的路线派送快递到各个驿站,派送员途径N ,P 两个驿站各停留6min 存放快递,请计算说明派送员能否在40min 内到达驿站Q ?【答案】(1)5.2km (2)能,理由见解析 【解析】【分析】本题考查解直角三角形的应用,将实际问题转化成解直角三角形的问题,利用解直角三角形的 知识求解是解题的关键.(1)过点P 作PA MN ⊥于A ,PB MQ ⊥于B ,先解Rt PBQ △,求得2km PB =,再证明2km AM PB ==,从而得出 2.3km AN =,然后解Rt PAN △,即可求解. (2)求出派送员所需总时间,再与40min 比较即可得出答案. 【小问1详解】解:过点P 作PA MN ⊥于A ,PBMQ ⊥于B ,如图,根据题意,得37BPQ PQD ∠=∠=°,64PNA NPC ∠=∠=°, 4.3km MN =, 2.5km PQ =, 在Rt PBQ △中,∵cos PB BPQ PQ∠=, ∴()cos 2.5cos37 2.50.802km PBPQ BPQ =⋅∠=×°≈×=, ∵PA MN ⊥,PBMQ ⊥,90NMQ ∠=°,∴四边形AMBP 是矩形, ∴2km AM PB ==,∴()4.32 2.3km AN MN AM =−=−=,在Rt PAN △中,∵cos PNA ∠∴()2.3 2.3 5.2km cos cos 640.44ANPNPNA ==≈≈∠°,答:驿站P ,驿站N 之间的距离约为5.2km . 【小问2详解】解:∵30km/h 0.5km/min =,∴()()4.3 5.2 2.50.56236min ++÷+×=, ∵36min<40min ,∴派送员能在40min 内到达驿站Q .25. 如图1,在平面直角坐标系中,直线112y x =−+与抛物线()230y ax x a =−+≠交于A ,B 两点,且点A 在x 轴上,直线与y 轴交于点C .(1)求抛物线的表达式;(2)P 是直线AB 上方抛物线上一点,过P 作PQ y ∥轴交直线AB 于点Q ,求PQ AQ 的最大值,并求此时点P 的坐标;(3)在(2)PQ AQ 的最大值的条件下,连接BP ,将抛物线沿射线BA 方向平移,使得点A 在新抛物线的对称轴上,M 是新抛物线上一动点,当MAB BPQ ∠=∠时,直接写出所有符合条件的点M 的坐标.【答案】(1)2134y x x =−−+(2)PQ AQ +的最大值为4,()2,4P −(3)点M 的坐标为()2,2或 【解析】【分析】(1)先由一次函数解析式求出点()2,0A ,再把()2,0A 代入23y ax x =−+,求出a 值即可;(2)延长PQ 交y 轴于D ,证明OAC DAQ ∽,得AC OC AQ DQ =1DQ =,求得DQ AQ =,再设21,34P x x x −−+ ,则1,12Q x x−+ ,则211242PQ x x =−−+,112QD x =−+,所以()21244PQ AQ PQ QD PD x +=+==−++,利用二次函数最值即可求解. (3)根据平移的性质求得抛物线平移后的解析式为2114y x x =−++,再分两种情况:当点M 在直线AB 上方时,当点M 在直线AB 下方时,分别求解即可. 【小问1详解】解:对于直线112y x =−+, 令0y =,则1102x −+=,解得:2x =, ∴()2,0A ,把()2,0A 代入23y ax x =−+,得0423a −+, 解得:14a =−, ∴抛物线的表达式2134y x x =−−+. 【小问2详解】解:延长PQ 交y 轴于D ,对于直线112y x =−+, 令0x =,则1y =, ∴CC (0,1), ∵()2,0A∴AC ==∵PQ y ∥轴,即QD OC ∥, ∴OAC DAQ ∽∴AC OC AQ DQ =1DQ=,∴DQ AQ =, 设21,34P x x x −−+ ,则1,12Q x x −+,∴2211113124242PQ x x x x x=−−+−−+=−−+,112QD x =−+∴()221132444PQ AQ PQ QD PD x x x =+==−−+=−++ ∵104−< ∴当2x =−时,PQ AQ +的最大值为4; ∴()2,4P −. 【小问3详解】解:联立,2134112y x x y x =−−+=−+, 解得:1143x y =− = ,2220x y = = ,∴()4,3B −,由(2)知,在PQ AQ +的最大值的条件下,抛物线的顶点为点()2,4P −,对称为直线PQ , 当2x =−时,则()12122y =−×−+=, ∴()2,2Q −, 则2PQ =,PB QB∴BPQ BQP ∠=∠, ∵将抛物线沿射线BA 方向平移,使得点A 在新抛物线的对称轴上, ∴点Q 平移后与点A 重合, ∵()2,2Q −,()2,0A ,∴抛物线沿射线BA 方向平移,是向下平移了2个单位,向右平移了4个单位,∴抛物线顶点()2,4P −平移后到点()2,2P ′,点()4,3B −平移后到点()0,1B ′,即B ′与C 重合,∴BPQ B P A ′′ ≌,抛物线平移后的解析式为()221122144y x x x =−−+=−++,∴BPQ B P A ′′∠=∠, ∵()0,1B ′,()2,2P ′,∴P B =′=′∵()0,1B ′,()2,0A ,∴AB ′=,∴P B AB ′′′=, ∴B AP B P A ′′′′∠=∠, 当点M 在直线AB 上方时,∵MAB BPQ ∠=∠, ∴MAB B P A ′′∠=∠, ∴点M 与点P ′重合, ∴()2,2M ,当点M 在直线AB 下方时,设21,14M x x x−++, 过点M 作ME PQ ∥,交AB 于E ,交x 轴于N ,则MEA BQP ∠=∠,1,12E x x−+, 则AOC ANE △∽△,∴AC OCAE EN=,则E AE EN AC =⋅=, ∵MAB BPQ ∠=∠, ∴BPQ MAE △∽△,∴BQ PQ ME AE=,则BQ ME PQ AE =,=,整理得:32E M y y =−, 即:231111224x x x −+=−−++,解得:x =(x =,此时,M y =∴M , 综上,符合条件的点M 的坐标为()2,2或. 【点睛】本题属二次函数综合题目,主要去向不明了待定系数法求抛物线解析式,抛物线的性质,抛物线的平移,相似三角形的判定与性质,综合性较强,熟练掌握相关性质是解题的关键.26. 在ABC 中,AC BC =,D 为线段AB 上一点,连接CD .(1)如图1,若30B ∠=°,AC AD =,过A 作AE CD ⊥于O ,交BC 于E ,2CE =,求线段BE 的长;(2)如图2,过点B 作BF CD ⊥交CD 延长线于点F ,以BC 为斜边在ABC 的右侧作等腰直角三角形BCG ,过点G 作GH AB ∥,交DC 的延长线于点H ,HC FB =.猜想线段AD ,BD ,CD 的数量关系,并证明你的猜想;(3)如图3,60ACB ∠=°,过A 作AQ BC ⊥于Q ,作ACB ∠的角平分线交AQ 于M ,取CM 的中点N ,连接QN .点K 为直线BC 上的动点,连接NK ,将QKN 沿着NK 所在直线翻折至ABC 所在平面得到Q KN ′ ,连接MQ ′,取MQ ′中点P ,连接CP .将12CD 绕着点D 顺时针旋转至直线AB 上方DR 处,使得BDR ACD ∠=∠.当CP 取得最小值时,连接AP ,PR ,AR ,当ARP △以AP 为腰的等腰三角形时,请直接写出DR AP的值. 【答案】(1)(2)AD BD =+(3 【解析】【分析】(1)利用等腰三角形的性质得120ACB ∠=°,75ACD ∠=°,得45DCE ∠=°,根据线段垂直平分线性质,得2CE DE ==,得90CED ∠=°,即得BE = (2)过点C 作CI AB ⊥于I ,得AI BI =,根据等腰直角BCG 中,90BG CG BGC =∠=°,,BF CD ⊥,得点G 、C 、F 、B 在以BC 为直径的圆上,得GCH GBF ∠=∠,结合HC FB =,得()SAS GCH GBF ≌,得GF GH BGF CGH =∠=∠,, 得90FGH ∠=°,证明45IDC H ∠=∠=°,得DI =,根据BI BD DI =+,AD AI DI =+,即得AD BD =+;(3)证明当'Q 与C 重合时,点P 与点N 重合,PC 取得最小值,当AP AR =时,设CD 中点为T ,连接RT BR CR ,,,由对称性知,点R 在ABC ∠的平分线上,得CR AR =,由BDR ACD ∠=∠,得60CDR CAD ∠=∠=°,根据RT DT CT ==,得DTR 是等边三角形,得30RCT ∠=°,90CRD ∠=°,得tan DR DCR CR ∠=;②延长CM 交AB 于L ,过B 作BS AC ∥,交DR 延长线于S ,连接CS ,则AL BL =,60CBS ACB ∠=∠=°,得60CBS CDS ∠=∠=°,得B 在过C 、D 、S 三点的圆上,得60CSD CBD ∠=∠=°,得 CDS 是等边三角形,当D 与点B 重合时,T 与Q 重合,点R 在BS 上,根据150NQB NQR ∠=∠=°,BQ RQ NQ NQ ==,,得()SAS BQN RQN ≌,得BN RN =,得AN RN =,设ABC 的边长为2,则1AL =,CL =,根据23CM CL =,N 是CM 中点,得NL =,得AN =DR AP =【小问1详解】解:AC BC = ,30B ∠=°。
2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)
20232024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)一、选择题(每题2分,共40分)1. 下列选项中,哪个是方程的正确表示形式?A. 2x + 3 = 7B. x + y = 5C. 3x 4yD. 2(x + 1) = 62. 下列哪个选项是二元一次方程组?A. 3x + 4y = 7B. 2x y = 5C. 4x + 3y = 8D. 3x + 2y = 6, 2x y = 43. 下列哪个选项是二次方程?A. x^2 5x + 6 = 0B. 2x + 3 = 7C. x^2 + 3x + 2D. 3x^2 4x4. 下列哪个选项是一次函数的图像?A. y = x^2B. y = 2x + 3C. y = x^3D. y = 1/x5. 下列哪个选项是反比例函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^36. 下列哪个选项是二次函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^37. 下列哪个选项是等差数列的通项公式?A. a_n = a_1 + (n 1)dB. a_n = a_1 + ndC. a_n = a_1 + (n + 1)dD. a_n = a_1 + (n 2)d8. 下列哪个选项是等比数列的通项公式?A. a_n = a_1 r^(n 1)B. a_n = a_1 r^nC. a_n = a_1 r^(n + 1)D. a_n = a_1 r^(n 2)9. 下列哪个选项是概率的基本性质?A. 0 <= P(A) <= 1B. P(A) > 1C. P(A) < 0D. P(A) = 210. 下列哪个选项是勾股定理的表述?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^2二、填空题(每题2分,共20分)1. 一元一次方程的解是________。
上海市普陀区2024-2025学年九年级上学期数学期中考试试卷(含答案)
2024学年第一学期九年级数学学科期中考试试卷2024.10(时间:100分钟,满分:150分)一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列函数中,一定为二次函数的是()A. B. C. D.2.已知点P是线段AB的黄金分割点,且,那么下列结论正确的是()A. B.C.D.3.如图,在中,点D、E和F分别在边AB、AC和BC上,,,如果,那么下列结论中正确的是()A. B. C. D.4.下列关于向量的说法中,正确的是()A.如果,那么B.如果,,那么C.已知是单位向量,如果,那么D.如果,,其中是非零向量,那么5.在同一平面直角坐标系中,画出直线与抛物线,这个图形可能是()A. B.21yx=()()11y x x=+-2y ax=()21y x x x=-+BP AP>2BP AP AB=⋅2AP BP AB=⋅APAB=BPAP=ABC△DE BC∥DF AC∥34ADBD=34DEBC=34BFCF=37CFBC=37DFAC=k=0ka=2a=1b=2a b=e4a=4ea=23a b c+=2b c=ca b∥y ax b=+2y ax b=+C. D.6.已知在中,点D 、E 分别在边AB 和AC 上,联结CD 、BE 交于点F ,下列条件中,不一定能得到和相似的是( )A. B. C. D.二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.已知,且,那么_______.8.抛物线与y 轴的交点坐标为_______.9.已知二次函数的图像经过点、,那么该二次函数图像的对称轴为直线_______.10.已知二次函数的图像在对称轴的左侧部分是上升的,那么m 的取值范围是_______.11.如图,已知在中,,CD 是边AB 上的高,如果,,那么_______.12.如图,在中,,点D 和点E 在边BC 上,,,那么_______.13.如图,已知,且,那么_______.ABC △ADE △ABC △DF EF BF CF =DF EF CF BF=BDE BFC ∠=∠BDF CEFS S =△△234a b c k ===0k ≠c a c b-=+223y x x =+-()20y x bx c a =++≠()1,1A --()5,1B -()21y m x =+ABC △90ACB ∠=︒3AD =2BD =CD =ABC △3AB AC ==4BE =BAE ADC ∠=∠CD =AD EF BC ∥∥::2:5:7AD EF BC =:AE AB =14.如图,在中,点D 在边BC 上,线段AD 经过重心G ,向量,向量,那么向量______.(用向量、表示)15.如图,一条河的两岸有一段是平行的,在河的南岸边每隔10米种一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P 处看北岸,发现北岸有两根相邻的电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有一棵树,那么这段河的宽度为_______米.16.如图,在中,点D 在边AB 上,,点E 和F 分别在边BA 和CA 的延长线上,且,如果,那么_______.17.定义:如果将抛物线上的点的横坐标不变,纵坐标变为点A 的横、纵坐ABC △BA a = BC b = AG =a b ABC △ACD B ∠=∠CD EF ∥::3:4:2EA AD DB =AEF ABCS S =△△()20y ax bx c a =++≠(),A x y标之和,就会得到一个新的点,我们把这个点叫做点A 的“简朴点”,已知抛物线上一点B 的简朴点是,那么该抛物线上点的简朴点的坐标为_______.18.如图,在矩形ABCD 中,,在边CD 上取一点E ,将沿直线BE 翻折,使点C 恰好落在边AD 上的F 处,的平分线与边AD 交于点M ,如果,那么_______.三、解答题(本大题共7题,满分78分)19.(本题满分10分)如图,已知两个不平行的向量、,求作,满足.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的向量.)20.(本题满分10分,第(1)小题5分,第(2)小题5分)已知点在二次函数的图像上.(1)求二次函数图像的对称轴和顶点坐标;(2)将二次函数的图像先向左平移4个单位,再向上平移t 个单位后图像经过点,求的值.21.(本题满分10分,第(1)小题5分,第(2)小题5分)已知二次函数的图像经过原点,顶点坐标为.(1)求二次函数的解析式;(2)如果二次函数的图像与x 轴交于点A (不与原点重合),联结OP 、AP ,试判断的形状并说明理由.22.(本题满分10分,第1小题5分,第2小题5分)如图,已知在中,点D 在边AC 上,过点A 作,交BD 的延长线于点E ,点F 是BE 延长线上一点,联结CF ,如果.(1)求证:;(2)如果,,求的值.()1,A x x y +1A 241y ax x =-+()12,3B ()1,C m 1C 1AB =BCE △ABF ∠2AD MF =BC =a bx x ()2a x b x -=- ()3,1-2y x bx b =-++()1,5-t ()2,2P -AOP △ABC △AE BC ∥2BD DE DF =⋅AB CF ∥2DE =6EF =AB CF23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在中,CD 是AB 边上的高,点E 是边AC 的中点,联结ED 并延长交CB 的延长线于点F ,且.(1)求证:;(2)如果,求证:.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在平面直角坐标系xOy 中,二次函数的图像与x 轴交于点,与y 轴交于点.(1)求该二次函数的解析式;(2)如果点是二次函数图像对称轴上的一点,联结AD 、BD ,求的面积;(3)如果点P 是该二次函数图像上位于第二象限内的一点,且,求点P 的横坐标.ABC △BD BF =ADE FDB ∽△△2DF AC CF AD=2BC BD AB =⋅22y x bx c =-++()2,0A -()0,4B (),1D m -ABD △PB AB ⊥25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在矩形ABCD 中,,,点E 是射线D A 上的一点,点F 是边AB 延长线上的一点,且.联结CE 、EF ,分别交射线DB 于点O 、点P ,联结CF 、CP .(1)当点E 在边AD 上时,①求证:;②设,,求y 关于x 的函数解析式;(2)过点E 作射线DB 的垂线,垂足为点Q ,当时,请直接写出DE 的长.2AB =1BC =2DE BF =DCE BCF ∽△△DE x =CP y =14OQ PQ =2024学年第一学期九年级数学学科期中考试卷2024.10参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.B ;2.A ;3.C ;4.D ;5.D ;6.C.二、填空题:(本大题共12题,每题4分,满分48分)7.;8.;9.;10.;;12.;13.;14.;15.;16.;17.;18.三、解答题:(本大题共7题,其中第19—22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解: ,20.解:(1)∵点在二次函数的图像上,∴把,代入,得.解得.∴二次函数的解析式为.∴对称轴为直线.顶点的坐标为.(2)二次函数的解析式化为.∵将二次函数的图像先向左平移4个单位,再向上平移t 个单位,∴平移后新二次函数的解析式为.∵平移后图像经过点,∴把,代入,得.解得.21.解:(1)∵二次函数图像的顶点坐标为,∴设二次函数的解析式为.∵二次函数的图像经过原点,∴把,代入得..27()0,3-2x =1m <-94352133a b -+ 45238()1,05322a x b x -=- 2x a b =- ()3,1-2y x bx b =-++3x =1y =-2y x bx b =-++193b b -=-++2b =222y x x =-++1x =()1,3()213y x =--+()233y x t =-+++()1,5-1x =5y =-()233y x t =-+++5163t -=-++8t =()2,2P -()222y a x =--0x =0y =()222y a x =--()20022a =--解得.∴这个二次函数的解析式为.(2)∵二次函数的图像与x 轴交于点A ,∴把,代入得,(舍去).得点A 的坐标为.∴.∵,∴.∵,∴是等腰直角三角形.22.解:(1)∵,∴.∵,∴.∴∴.(2)∵,,∴.∵,∴.∵,∴,∴.23.证明:(1)∵,∴.∵CD 是AB 边上的高,点E 是边AC 的中点,∴在中.又∵,∴.∴.∵,∴.∴.(2)∵,∴.∴.∵,∴∴∴.∵,∴.∴.∴.24.解:(1)∵二次函数的图像与x 轴交于点,与y 轴交于点,12a =()21222y x =--0y =()21222y x =--14x =20x =()4,04OA =OP ==AP ==OP AP =222OP AP OA +=AOP △AE BC ∥AD DE CD BD=2BD DE DF =⋅DE BD BD DF=AD BD CD DF=AB CF ∥2DE =6EF =8DF DE EF =+=216BD DE DF =⋅=4BD =AB CF ∥AB BD CF DF =12AB CF =BD BF =F BD ∠=∠Rt ACD △12DE AC =12AE AC =AE DE =A ADE ∠=∠ADE BDF ∠=∠A F ∠=∠ADE FDB ∽△△2DF AC CF AD =DF AE CF AD =DF CF AE AD=A F ∠=∠ADE FCD ∽△△ADE FCD ∠=∠A FCD ∠=∠ABC CBD ∠=∠ABC CBD ∽△△BD BC BC AB=2BC BD AB =⋅22y x bx c =-++()2,0A -()0,4B得解得.∴二次函数的解析式为.(2)∵点是二次函数图像对称轴上的一点,又∵二次函数图像的对称轴为直线.∴,点D 坐标为.设直线AB 的表达式为.∵直线AB 经过,,得,解得,∴直线AB 的表达式为.设抛物线的对称轴与直线AB 交于点E ,得点E 坐标为.∴.∴.(3)过点P 作轴,垂足为H .设点.∴,.∵,又∵,∴.∵,∴.∴.∴.∴(舍去),.即点P 的横坐标是.25.解:(1)∵四边形ABCD 是矩形,∴,,∵,∴.()202224b c c⎧=-⨯--+⎪⎨=⎪⎩2b =-2224y x x =--+(),1D m -12x =-12m =-1,12⎛⎫-- ⎪⎝⎭()0y px q p =+≠()2,0A -()0,4B 024p q q =-+⎧⎨=⎩24p q =⎧⎨=⎩24y x =+1,32⎛⎫- ⎪⎝⎭4DE =1142422ABD ADE BDE S S S DE AO =+=⋅=⨯⨯=△△△PH y ⊥()2,224P t t t --+PH t =-222BH t t =--ABO ABP P PHB ∠+∠=∠+∠90ABP PHB ∠=∠=︒ABO BPH ∠=∠90AOP PHB ∠=∠=︒ABO BPH ∽△△PH BH BO AO =22242t t t ---=10t =234t =-34-2AB CD ==90CDE ABC ∠=∠=︒90CBF ∠=︒CDE CBF ∠=∠∵,∴.∵,∴.∴.∴.(2)∵,∴.即.∵,∴.∴.∴.∵,∴.∴.又∵且,∴.∴.∵,∴.∴.∴.∵在中,,,∴.同理可得∴∴(3)1BC =12BC CD =2DE BF =12BF DE =BF BC DE CD=DCE BCF ∽△△DCE BCF ∠=∠DCE BCE BCF BCE ∠+∠=∠+∠BCD ECF ∠=∠,CD CE CB CF =CD CB CE CF=DCB ECF ∽△△PEC BDC ∠=∠EOP DOC ∠=∠EOP DOC ∽△△OE OP OD OC=OE OD OP OC=DOE COP ∠=∠DOE COP ∽△△EDO PCO ∠=∠EDO DBC ∠=∠PCE DBC ∠=∠ECP DBC ∽△△PC EC BC BD=Rt CDE △DE x =2CD =CE =BD =1y =y =1DE =2DE =3DE =。
江西省景德镇市2024-2025学年上学期11月九年级数学期中考试数学试卷
江西省景德镇市2024-2025学年上学期11月九年级数学期中考试数学试卷一、单选题1.下列方程是关于x 的一元二次方程的是()A .11x x-=B .()221x x x -=-C .2210x xy -+=D .210x -=2.一个菱形的面积是120,其中一条对角线的长为10,则另一条对角线长是()A .10B .12C .24D .263.化学课上张老师在讲解《物质的变化与性质》时,为了增加课堂的趣味性,特意准备了四张卡片,卡片上分别写有:酒精挥发、水结成冰、铁生锈、粮食酿酒,将四张卡片背面朝上放在讲台上(背面完全一样),老师让小华从中抽取一张,则小华抽到显示化学变化的卡片的概率是()A .12B .13C .14D .344.如果一个三角形两边的长分别等于一元二次方程217660x x -+=的两个实数根,那么这个三角形的第三边长可能是()A .19B .18C .17D .165.如图1,是古希腊时期的帕提侬神庙(Parthenon ),如图把虚线表示的矩形画出图2中的ABCD ,以矩形ABCD 的宽为边在其内部作正方形AEFD ,我们惊奇的发现点E 是AB 的黄金分割点,则BEAB=()A B C D .126.如图,在ABCD 中,4AB =,AD AB >,60ABC ∠=︒,45DAC ∠=︒,点P 在边AD 上运动且不与点A 、D 重合,连接BP ,取BP 的中点E ,过点P 作PF AC ⊥,垂足为点F ,连接EF ,则EF 的最小值为()A .2B .1C .32D .22二、填空题7.若52a b =,则a b b-=.8.对一批灯泡进行抽检,统计合格灯泡的只数,得到合格灯泡的频率见下表:抽取只数/只501001505001000200010000合格频率0.820.830.820.840.840.840.84估计从该批次灯泡中任抽一只灯泡是合格品的概率为.9.在平面直角坐标系中,将ABC V 的每一个顶点的横纵坐标均乘以2-,得到新的A B C ''' ,若24A B C S '''=△,则ABC S =.10.我国南宋数学家杨辉在1275年提出的一个问题:“直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步?若设阔(宽)为x 步,则可列方程.11.如图,四边形ABCD 为正方形,点E 是BC 延长线上一点,且AC EC =,连接AE ,交CD 于点F ,则DAE ∠的度数为⋅12.如图,矩形ABCD 的长为8,宽为4,点E 在边BC 上,3BE =,在AD 上找一点P ,使AEP △为等腰三角形,则DP 的长为.三、解答题13.解方程(1)2670x x --=(2)210x x --=14.如图,在四边形ABCD 中,90C D ∠=∠= ,E 为CD 的中点,AE BE =,求证:四边形ABCD 为矩形.15.今年暑假,我市各中小学试行“阳光分班”方案,以树立教育公平为基本方向,实现机会均等,确保每个孩子享有公平而有质量的教育.某校七年级共设4个教学班,班号依次为1、2、3、4,分班过程分两批完成,第一批由家长代表抽签确定各班学生,第二批抽签确定各班学生对应的班主任.(1)充亮被抽到1班是_____事件(填“必然”“随机”)(2)求充亮和班主任计老师分到同一个班的概率(请用画树状图或列表的方法求解).16.如图,四边形ABCD 为菱形,120BCD ∠=︒,过点D 作DE BC ⊥交BC 延长线于点E ,请仅用无刻度直尺,按下列要求作图;(1)如图1,在边CD 上找一点F ,使13CF CD =;(2)如图2,在边AD 上找一点G ,使13AG CD =.17.请用配方法讨论关于x 的一元二次方程2220x x c --+=的根的情况.18.如图所示的小孔成像实验中,若物距EO 为12cm ,像在光屏上且像距FO 为18cm ,蜡烛火焰成倒立的像CD 的高度为9cm ,则:(1)点燃的蜡烛的火焰高度AB 是多少?(2)若将蜡烛沿着正对小孔的方向靠近小孔移动4cm ,光屏位置保持不变,则此时火焰星倒立的像的高度CD 为多少?19.已知关于x 的方程2230x x m -+-=有两个不相等的实数根.(1)求m 的取值范围;(2)化简:2m --.20.以下是我市热点新闻,请你从中挖掘数学信息,解决相关问题:(1)热点新闻1:2024年国庆期间,我市某景区接待游客约64.8万人次,接待游客量再创新高,继续推动我市旅游业高质量发展.数据显示,2022年该景区接待游客约45万人次,若该景区每年接待游客人数的增长率相同,则年平均增长率为多少?(2)热点新闻2:2024“望陶杯”江西省首届“NBA”篮球选拔赛在景德镇市成功举办,经历小组赛、淘汰赛的多轮角逐,黑猫集团代表队夺得了本次比赛的冠军.小组赛赛制为单循环制(每两队之间赛一场),已知小组赛共进行比赛28场,则此次参赛一共有多少个球队?21.在Rt ABC △中,90ACB ∠=︒,60BAC ∠=︒,D 为BC 的中点,过点D 作AC 的平行线交AB 于点E ,过点A 作CE 的平行线交DE 的延长线于点F .(1)求证:四边形ACEF 为菱形;(2)连接BF ,若2AC =,求BF 的长.22.追本溯源题(1)是北师大版初中数学九年级上册第57页复习题,请你完成解答,提炼方法后,完成题(2)、题(3).(1)解方程()()215140x x ---+=时,我们可以将1x -看成一个整体,设1x y -=,则原方程可化为2540y y -+=,解得11y =,24y =.当1y =,即11x -=,解得2x =;当4y =,即14x -=,解得5x =.所以原方程的解12x =,25x =.请你利用这种方法解方程:()()23543530x x +-++=.方法应用:(2)已知a 、b 、c 为ABC V 的三边,若()()22222340a b a b +-+-=,2c =,请判断ABC V 的形状,说明理由.(3)已知x 为实数且满足()()2221120x x x x -+--+-=,请直接写出21x x -+的值.23.马超同学在学完相似三角形的性质后对截任意三角形边的线段展开了如下探究:如图①,ABC V 中,点D 、E 分别是边AB 、AC 的中点,连接BE 、CD 、线段BE 、CD 交于点F ,已知ABC V 的面积为12.(1)ABE S = __________;:DF FC =__________;(2)ADFE S =四边形_____;如图②,ABC V 中,点D 为边AB 上的动点,过点D 作射线分别交边AC 及边BC 的延长线于点E 、F ,此时,马超同学发现,线段DF 与ABC V 的三边(或其延长线)都产生了交点,他把线段DF 称为的ABC V 的截线段;深入探究:(3)截线段上的三个交点D 、E 、F 与ABC V 的三个顶点A 、B 、C 所组成的线段(特别是交点所在边所形成的线段如AD 、:DB BF 、FC 等)之间是否存在某种数量关系?爱思考的马超同学立刻展开探究;根据已有的知识经验,为了找线段之间的关系,可尝试先考虑线段的比,因此,可尝试构造平行线从而得到相似三角形,进而得出线段之间比的关系:对任意ABC V ,过点A 作∥AG DF 交线段BF 的延长线于点G ,易得AD GFDB FB=,通过多次对比,马超得出了1AD BF CEDB FC EA⋅⋅=的重要结论,请根据图②沿着马超的思路尝试着证明该结论;通过以上结论,马超同学发现了一个有趣的事实,对于结论1AD BF CEDB FC EA⋅⋅=,该结论从结构上看,作为分子的三条线段首字母为ABC V 的三个顶点(A 、B 、C 顺序排列),而作为分母的三条线段的第二个字母恰为上方三个字母的延续如()AB BC CA 、、,而如字母D 、F 、E 恰为线段AB 、BC 、CA 边上(或延长线上)的点.方法应用:(4)如图③,ABC V 中,D 、E 、H 为边AB 、AC 、BC 上的点,34AD DB =,3AE EC=,若点H 为BC 的中点,连接AH 交线段DE 于点G ,请直接写出AGGH的值.。
湖北省荆州市2024-2025学年九年级上学期11月期中考试数学试题(含答案)
2024~2025学年度上学期学情监测九年级数学试题(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔。
一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1.中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是( )A.B. C. D.2.一元二次方程根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.两根互为相反数3.如图,紫荆花绕它的旋转中心,按下列角度旋转,能与其自身重合的是( )A. 60°B. 120°C. 144°D. 180°4.如图,是的直径,,则的度数是( )A. 30°B. 40°C. 50°D. 60°5.若是方程的一个根,则的值为( )A. 2024B. C. D. 10156.用配方法解方程时,配方正确的是()2210x x --=AB O e 30CDB ∠=︒ABC ∠x m =2210090x x --=2246m m -+2012-1003-2840x x --=A. B. C. D.7.函数和函数(a 是常数,且)在同一平面直角坐标系中的图象可能是( )A.B. C. D.8.小聪以二次函数的图象为模型设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )A. B. C. D.9.如图,小程爸爸用一段长的铁丝网围成一个一边靠墙(墙长)的矩形鸭舍,其面积为,在鸭舍侧面中间位置留一个宽的门(由其它材料制成),则的长为( )A. 8m 或5mB. 4m 或2.5mC. 8mD. 5m 10.如图,开口向上的抛物线()与x 轴交于点,其对称轴为直线,结合图象给出下列结论:①;②;③当时,y 随x 的增大而减小;④当时,关于x 的一元二次方程有两个不相等的实数根.其中正确的结论是( )A.①③④ B.②③④ C.②③ D.①②④二、填空题(共5题,每题3分,共15分)11.在平面直角坐标系中,点关于原点对称的点的坐标是______.12.抛物线向左平移2个单位长度,向下平移1个单位长度后的图象解析式为______.13.如图,是的直径,弦于点E ,,,则的长为______cm.()2412x -=()2420x -=()2868x -=()2860x -=y ax a =+221y ax x =--+0a ≠()292616y x =-+8cm AB =4cm DE =CE 13cm 12cm 15cm 9cm12m 6m 220m 1m BC 2y ax bx c =++0a ≠()4,01x =a c b +>20a b +=0x <m a b c >++2ax bx c m ++=()2,3-()2234y x =-+AB O e CD AB ⊥16cm CD =4cm BE =OC14.已知关于x 的方程,若等腰三角形的一边长,另外两边长b ,c 恰好是这个方程的两个根,则这个三角形的周长为______.15.如图,的半径为2,圆心M 的坐标为,点P 是上的任意一点,,且,与x 轴分别交于A ,B 两点,若点A ,点B 关于原点O 对称,则的最小值为______.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(6分)解方程:(1),(2).17.(6分)已知二次函数.(1)写出该函数图象的开口方向;(2)求出该函数图象的对称轴和顶点坐标;(3)当x 满足什么条件时,y 随x 增大而减小?18.(6分)如图,在平面直角坐标系中,已知点,,.(1)画出关于原点O 成中心对称的;(2)画出绕点逆时针旋转90°后得到的.19.(8分)已知关于x 的一元二次方程有两个不相等的实数根.(1)求m 的取值范围;(2)若该方程的两个实数根分别为,,且,求m 的值.20.(8分)如图,已知抛物线和直线相交于点和.()23230x k x k -+++=4a =M e ()3,4M e PA PB ⊥PA PB AB 2240x x --=23100x x --=247y x x =-+-()2,0A ()1,1B ()4,2C ABC △111A B C △ABC △()0,1Q -222A B C △()222110x m x m -++-=1x 2x 22124x x +=21y x bx c =-++21522y x =+()1,A m -(),4B n(1)求m 和n 的值;(2)求抛物线的解析式;(3)结合图象直接写出满足的x 的取值范围.21.(8分)如图,为的直径,点C ,D 为直径同侧圆上的点,且点D 为的中点,过点D 作于点E ,交于点G ,延长,交于点F .图① 图②(1)如图①,若,求证:;(2)如图②,若,,求的半径.22.(10分)我市某镇是全国著名的蓝莓产地,某蓝莓基地近几年不断改良种植技术,产量明显增加,2022年的产量是5000千克,2024年的产量达到7200千克。
九年级上学期数学期中考试试卷及答案解析
九年级上学期数学期中考试试卷及答案解析一、选择题(每题4分,共40分)1. 有下列四个数:-1, 0, 1, √2,其中无理数是()A. -1B. 0C. 1D. √2答案:D解析:无理数是指不能表示为两个整数比的数,√2无法表示为两个整数的比,故选D。
2. 下列各数中,与-3的平方相等的是()A. 3B. -3C. 9D. -9答案:C解析:-3的平方为9,故选C。
3. 已知a = 2,b = -3,则a² - 2ab + b²的值为()A. 25B. -25C. 1D. -1答案:A解析:将a和b的值代入a² - 2ab + b²,得(2)² -22(-3) + (-3)² = 4 + 12 + 9 = 25,故选A。
4. 下列等式中,正确的是()A. (a²)³ = a⁶B. (a³)² = a⁶C. (a²)³ = a⁹D. (a³)² = a⁹答案:B解析:幂的乘方规则,(a³)² = a³² = a⁶,故选B。
5. 已知|a| = 5,且a < 0,则a的值为()A. 5B. -5C. 10D. -10答案:B解析:绝对值表示一个数的非负值,|a| = 5表示a的绝对值为5,由于a < 0,所以a = -5,故选B。
6. 下列函数中,奇函数是()A. y = x²B. y = x³C. y = |x|D. y = x² + 1答案:B解析:奇函数的定义是f(-x) = -f(x),y = x³满足这个条件,故选B。
7. 下列关于x的不等式中,有解的是()A. x² < 0B. x² ≤ 0C. x² > 0D. x² ≥ 0答案:D解析:任何数的平方都是非负数,所以x² ≥ 0对所有的x都有解,故选D。
九年级数学上册期中考试试卷及答案
九年级数学上册期中考试试卷及答案(试卷满分:150分;考试时间:120分钟)一.选择题(共10小题,每小题4分,共40分)1.﹣2023的绝对值是()A.﹣2023B.12023C.﹣12023D.20232.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200用科学记数法表示应为()A.2912×102B.29.12×104C.2.912×105D.2.912×1064.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.55.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a37.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2 B.3 C.7 D.109.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>bC.ab>0D.﹣a>c①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020二.填空题(共6小题,每小题4分,24分共)11.比较大小:﹣7﹣5.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=.15.用符号(a,b)表示a、b两数中较小的一个数,用符号[a,b]表示a、b两数中较大的一个数,计算[﹣2,1]﹣(﹣1,﹣2.5)=.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为.三.解答题(共7小题)17.(12分)(1)(﹣12)﹣5+(﹣14)﹣(﹣39)(2)(﹣+﹣)×(﹣24)(3)(﹣)÷+(﹣)÷(﹣15)(4)﹣14﹣×[2﹣(﹣3)2]18.(6分)(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.19.(6分)化简.(1)(6m﹣5n)﹣(7m﹣8n)(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)20.(8分)先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.21.(6分)如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是.22.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.23.(12分)校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?24.(10分)书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?25.(12分)探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=+.(2)像这样继续排列下去,你会发现一些有趣的规律,﹣n2=+.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.26.(12分)已知|a+30|+(c﹣20)2=0,在数轴上点A表示的数是a,点C表示的数是c,A,C两点之间的距离AC=|a﹣c|.(1)直接写出a、c的值,a=,c=;(2)若数轴上有一点D满足CD=3AD,且点D在A,C之间,则D点表示的数为;(3)点M从原点O出发在O,A之间以v1的速度沿数轴负方向运动,点N从点C出发在O,C之间以v2的速度沿数轴负方向运动,运动时间为t,点Q为O,N之间一点,且QN=AN,若M,N运动过程中MQ的值固定不变,求的值.参考答案一.选择题(共10小题)1.﹣2023的绝对值是()A.﹣2023B.C.D.2023【分析】一个数在数轴上对应的点到原点的距离即为这个数的绝对值,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,据此即可求得答案.【解答】解:|﹣2023|=2023故选:D.【点评】本题考查绝对值的定义及绝对值的性质,此为基础且重要知识点,必须熟练掌握.2.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.【分析】根据每一个几何体的特征判断即可.【解答】解:A、将所示图形绕直线旋转一周,可以得到圆柱,故A符合题意;B、将所示图形绕直线旋转一周,可以得到球体,故B不符合题意;C、将所示图形绕直线旋转一周,可以得到圆锥,故C不符合题意;D.将所示图形绕直线旋转一周,可以得到圆台,故D不符合题意;故选:A.【点评】本题考查了点、线、面、体,熟练掌握每一个几何体的特征是解题的关键.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200A.2912×102B.29.12×104C.2.912×105D.2.912×106【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正整数,当原数绝对值小于1时,n是负整数;由此进行求解即可得到答案.【解答】解:291200=2.912×105.故选:C.【点评】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.4.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.5【分析】根据绝对值、有理数的乘方、负数解决此题.【解答】解:∵8>0,﹣0.5<0,﹣|﹣2|=﹣2<0,0,(﹣3)2=9>0,﹣12=﹣1<0∴负数有﹣0.5,﹣|﹣2|,﹣12,共3个.故选:B.【点评】本题主要考查绝对值、有理数的乘方、负数,熟练掌握绝对值、有理数的乘方、负数是解决本题的关键.5.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【分析】根据用一个平行于圆锥底面的平面截圆锥,截面的形状是圆即可得出答案.【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆故选:B.【点评】本题考查了截一个几何体,掌握用一个平行于圆锥底面的平面截圆锥,截面的形状是圆是解题的关键.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a3【分析】A.根据去括号法则,去掉括号,进行判断即可;B.根据合并同类项法则,进行合并,然后判断;C,D选项均观察各个加数是不是同类项,能否合并,进行判断即可.【解答】解:A.∵﹣(x+6)=﹣x﹣6,∴此选项计算正确,故符合题意;B.∵﹣y2﹣y2=﹣2y2,∴此选项计算错误,故不符合题意;D.∵a和a2不是同类项,不能合并,∴此选项计算错误,故不符合题意;故选:A.【点评】本题主要考查了整式的加减运算,解题关键是熟练掌握去括号法则和合并同类项法则.7.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【解答】解:A、﹣的系数是﹣,此选项错误;B、单项式x的系数为1,次数为1,此选项错误;C、﹣22xyz2的次数是4,此选项错误;D、xy+x﹣1是二次三项式,此选项正确;故选:D.【点评】此题主要考查了单项式,关键是掌握单项式的系数、次数的定义,以及多项式的次数的计算方法.8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2B.3C.7D.10【分析】由代数式2x2﹣x+3的值是4,可得2x2﹣x=1,再将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5,再整体代入计算即可.【解答】解:∵2x2﹣x+3的值是4,即2x2﹣x+3=4∴2x2﹣x=1∴﹣4x2+2x+5=﹣2(2x2﹣x)+5=﹣2×1+5=﹣2+5=3故选:B.【点评】本题考查代数式求值,将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5是正确解答的关键.9.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>b C.ab>0D.﹣a>c【分析】根据数轴上点的位置,先确定a、b、c对应点的数,再逐个判断得结论.【解答】解:A、由数轴知:﹣4<a<﹣3,故选项A错误;B、由数轴知,a<b,故选项B错误;C、因为a<0,b>0,所以ab<0,故选项C错误;D、因为﹣4<a<﹣3,所以3<﹣a<4,因为2<c<3,所以﹣a>c,故选项D正确.故选:D.【点评】本题考查了数轴及有理数乘法的符号法则.认真分析数轴得到有用信息是解决本题的关键.10.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020【分析】通过计算可知从第4次开始,运算结果1,4循环出现,则第2022次“F”运算的结果与第1次运算结果相同,再求解即可.【解答】解:当n=13时第1次运算结果为13×3+1=40第2次运算结果为=5第3次运算结果为5×3+1=16第4次运算结果为=1第5次运算结果为1×3+1=4第6次运算结果为=1第7次运算结果为1×3+1=4……∴从第4次开始,运算结果1,4循环出现∵(2022﹣3)÷2=1009 (1)∴第2022次“F”运算的结果是1故选:A.二.填空题(共6小题)11.比较大小:﹣7 <﹣5.【分析】根据两个负数,绝对值大的其值反而小判断即可.【解答】解:∵|﹣7|=7,|﹣5|=5而7>5∴﹣7<﹣5.故答案为<.【点评】本题考查了有理数大小比较,关键是掌握有理数大小比较法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.【分析】根据正数与负数的意义可直接求解.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故答案为零下3℃.【点评】本题主要考查正数与负数,理解正数与负数的意义是解题的关键.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是﹣7.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:由图可知:﹣4与﹣3相对∴﹣4+(﹣3)=﹣7故答案为:﹣7.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=﹣1.【分析】根据同类项的定义判断出a,b的值,可得结论.【解答】解:由题意a=3,b=2∴b﹣a=2﹣3=﹣1.故答案为:﹣1.【点评】本题考查整式的加减,解题的关键是理解题意,灵活运用所学知识解决问题.1,﹣2.5)= 3.5.【分析】根据定义,所求式子可化为1﹣(﹣2.5),再求值即可.【解答】解:[﹣2,1]﹣(﹣1,﹣2.5)=1﹣(﹣2.5)=1+2.5=3.5故答案为:3.5.【点评】本题考查有理数的加减法,熟练掌握有理数的加减法运算,会比较有理数的大小,弄清定义是解题的关键.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为2035.【分析】根据题中所给“任意相邻三个数的和为同一个常数”可求出这一列数,进而可解决问题.【解答】解:由题知因为这列数中任意相邻三个数的和为同一个常数所以a1+a2+a3=a2+a3+a4则a1=a4.同理可得a1=a4=a7=…=a100a2=a5=a8=…=a98a3=a6=a9=…=a99所以这列数按2002,﹣2023,22循环出现.又因为100÷3=33余1且2002+(﹣2023)+22=1所以a1+a2+a3+…+a98+a99+a100=1×33+2002=2035.故答案为:2035.【点评】本题考查数字变化的规律,能根据题意得出这列数按2002,﹣2023,22循环出现是解题的关键.三.解答题(共7小题)17.(1)(﹣12)﹣5+(﹣14)﹣(﹣39);(2)(﹣+﹣)×(﹣24);(3)(﹣)÷+(﹣)÷(﹣15);(4)﹣14﹣×[2﹣(﹣3)2].【分析】(1)先把减法转化为加法,再根据加法法则计算即可;(2)根据乘法分配律计算即可;(3)先算除法,再算加法即可;(4)先算乘方和括号内的式子,再算括号外的乘法,最后算减法即可.【解答】解:(1)(﹣12)﹣5+(﹣14)﹣(﹣39)=(﹣12)+(﹣5)+(﹣14)+39=8;(2)(﹣+﹣)×(﹣24)=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=20+(﹣9)+6=17;(3)(﹣)÷+(﹣)÷(﹣15)=(﹣)×9+(﹣)×(﹣)=﹣24+=﹣23;(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.18.(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.【分析】(1)在数轴上准确找到各数对应的点,即可解答;(2)利用(1)的结论,即可解答.【解答】解:(1)如图:(2)由(1)可得:.【点评】本题考查了有理数的大小比较,数轴,绝对值,准确熟练地在数轴上找到各数对应的点是解题的关键.19.化简.(1)(6m﹣5n)﹣(7m﹣8n);(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y);【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可;【解答】解:(1)(6m﹣5n)﹣(7m﹣8n)=6m﹣5n﹣7m+8n=﹣m+3n;(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)=15x2y﹣5xy2+4xy2﹣8x2y=7x2y﹣xy2;20.先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b)=﹣a2b﹣8ab2﹣a2b﹣10ab2+2a2b=﹣18ab2当a=﹣1,b=时原式=﹣18×(﹣1)×()2=2.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是48cm3.【分析】(1)根据三视图的定义画图即可.(2)用1个小立方块的体积乘以小方块的个数即可.【解答】解:(1)如图所示.(2)该几何体的体积是23×6=48(cm3).故答案为:48cm3.【点评】本题考查作图﹣三视图,解题的关键是理解三视图的定义,难度不大.22.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.【分析】(1)根据题意可知:所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1),然后计算即可;(2)将x=﹣2代入(1)中的结果计算即可.【解答】解:(1)由题意可得所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1)=﹣x2﹣4x﹣3+2x2﹣2x+1=x2﹣6x﹣2;(2)当x=﹣2时,x2﹣6x﹣2=(﹣2)2﹣6×(﹣2)﹣2=4+12﹣2=14.【点评】本题考查整式的加减、代数式求值,解答本题的关键是明确去括号法则和合并同类项的方法.23.校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是10米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处4次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?【分析】(1)分别求出小明每次运动后的位置,即可得到答案;(2)结合(1),在数轴上标出最后位置即可;(3)由运动过程可求出经过仲裁处的次数;(4)根据每步行1米消耗0.04卡路里列式计算即可.【解答】解:(1)∵+10﹣8=2;2+6=8;8﹣13=﹣5;﹣5+7=2,2﹣12=﹣10;﹣10+2=﹣8;﹣8﹣2=﹣10;∴小明离主席台最远是10米;故答案为:10;(2)如图所示,点A即为所求;(3)从主席台出发,+10经过仲裁处,由+10到﹣8经过仲裁处,﹣8到+6经过仲裁处,+6到﹣13经过仲裁处∴经过仲裁处4次;故答案为:4;(4)(10+8+6+13+7+12+2+2)×0.04=60×0.04=2.4(卡路里)答:小明在拍照过程中步行消耗2.4卡路里.【点评】本题考查有理数混合运算,解题的关键是读懂题意,理解小明的运动过程.24.书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?【分析】(1)由题意列式计算即可;(2)当x=2cm时,求出包书纸长和宽,即可解决问题.【解答】解:(1)小海所用包书纸的周长为:2(18.5×2+1+2x)+2(26+2x)=2(38+2x)+2(26+2x)=(8x+128)cm答:小海所用包书纸的周长为(8x+128)cm;(2)当x=2cm时,包书纸长为:18.5×2+1+2×2=42(cm)包书纸宽为:26+2×2=30(cm)∴包书纸的面积=42×30﹣2×2×4﹣2×1×2=1240(cm2)答:包书纸的面积为1240cm2.【点评】本题考查了矩形的性质以及列代数式,熟练掌握矩形的性质是解题的关键.25.探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=5+4.(2)像这样继续排列下去,你会发现一些有趣的规律,(n+1)2﹣n2=n+1+n.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.【分析】(1)根据所给的等式的形式进行求解即可;(2)根据(1)进行总结,从而可求解;(3)利用(2)中的规律进行求解即可.【解答】解:(1)由题意得:图③空白部分小正方形的个数是52﹣42=5+4故答案为:5,4;(2)(n+1)2﹣n2=n+1+n故答案为:(n+1)2,n+1,n;(3)(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012=(2024+2023+2022+2021+2020+2019+2018+…+2+1)÷1012=[(2024+1)+(2023+2)+(2022+3)+…+(1013+1012)]÷1012=2025×1012÷1012=2025.【点评】本题主要考查数字的变化规律,解答的关键是由所给的等式总结出存在的规律.26.已知|a +30|+(c ﹣20)2=0,在数轴上点A 表示的数是a ,点C 表示的数是c ,A ,C 两点之间的距离AC =|a ﹣c |.(1)直接写出a 、c 的值,a = ﹣30 ,c = 20 ;(2)若数轴上有一点D 满足CD =3AD ,且点D 在A ,C 之间,则D点表示的数为 ﹣ ; (3)点M 从原点O 出发在O ,A 之间以v 1的速度沿数轴负方向运动,点N 从点C 出发在O ,C 之间以v 2的速度沿数轴负方向运动,运动时间为t ,点Q 为O ,N 之间一点,且QN =AN ,若M ,N 运动过程中MQ 的值固定不变,求的值.【分析】(1)根据绝对值和平方的非负性求解即可;(2)根据两点间距离公式求解即可;(3)写出MQ 距离的代数式,根据MQ 距离不变,得出v 1,v 2的比值即可.【解答】解:(1)∵|a +30|≥0,(c ﹣20)2≥0,|a +30|+(c ﹣20)2=0∴|a +30|=0,(c ﹣20)2=0∴a =﹣30,c =20故答案为:﹣30,20.(2)设D 点表示的数为x则有:20﹣x =3{x ﹣(﹣30)}解得:x =﹣故答案为:﹣.(3)OM 的长度为:v 1t ,CN 的长度为v 2t∴AM =﹣v 1t ﹣(﹣30)=﹣v 1t +30,AN =20+20﹣v 2t =50﹣v 2t∵QN =AN∴AQ =AN =(50﹣v 2t )∴MQ =AQ ﹣AM =(50﹣v 2t )﹣(﹣v 1t +30)=+(v 1﹣v 2)t∵MQ 的长度不随t 的变化而变化∴v 1﹣v 2=0 ∴=.【点评】本题主要考查了数轴,确定MQ 长度不变的条件是本题解题的关键.。
江苏省盐城市大丰区2024-2025学年九年级上学期11月期中考试数学试题
江苏省盐城市大丰区2024-2025学年九年级上学期11月期中考试数学试题一、单选题1.已知x =1是方程x 2+ax +2=0的一个根,则a 的值是()A .﹣2B .﹣3C .2D .32.已知O 的半径为5,若4OP =,则点P 与O 的位置关系是()A .在圆内B .在圆上C .在圆外D .不确定3.下列方程中,有两个相等的实数根的方程是()A .260x x -=B .260x -=C .2290x x -+=D .2690x x -+=4.已知圆锥的底面半径为3cm ,母线长为5cm ,则圆锥的侧面积是A .215cm πB .215cmC .220cm πD .220cm 5.一组数7、9、111115、、,若将每个数都加20,下列不会改变的量是()A .平均数B .众数C .中位数D .方差6.如图,AB 是O 的直径,弦CD AB ⊥于点M ,2AM =,8BM =,则CD 的长为()A .4B .5C .8D .167.如图,点A 、B 、C 是O 上三点,130AOC ∠=︒,则CBD ∠等于()A .50︒B .60︒C .65︒D .70︒8.如图,点O 是ABC V 的内心,80A ∠=︒,则BOC ∠的度数是()A .120︒B .130︒C .140︒D .160︒二、填空题9.已知样本6、2、1、4的极差是.10.在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是2 1.2S =甲,2 1.6S =乙,则关于甲、乙两人在这次射击训练中成绩稳定的.(填“甲或乙”)11.已知1x ,2x 是方程2310x x --=的两根,则12x x +=12.已知223x x +的值是10,则代数式2461x x ++的值是.13.某校竞选学生会干部,分学生一日常规知识笔试和演讲比赛两个环节,总分均为100分,并按4:6比例计算平均成绩,小明笔试成绩95分,演讲成绩90分,最终平均成绩为.14.正n 边形的每个内角均为135︒,则n =.15.如图,半径为6的O 沿弦AB 折叠,弧AB 恰好经过圆心O ,则阴影部分的面积为.16.如图,已知90MON ∠=︒,斜边为10cm 的等腰直角三角板ABC 如图放置,顶点C 与O 点重合,现将点C 沿OM 滑至点P ,点B 随之在NO 上滑至点O ,则滑动过程中点A 所走过的路径长为cm .三、解答题17.当x 为何值时,()23x -与3x -值相等?18.正六边形ABCDEF 的边长为4,求对角线AC 的长和正六边形的面积.19.如图,等腰PAB ,AP BP =,过A 、B 两点的O 与两腰分别交于C 、D 两点.求证:AC BD =.20.如图,用长6m 的铝合金条制成“日”字形窗框,窗框的宽和高各是多少时,窗户的透光面积为1.5m2(铝合金条的宽度不计)?21.已知关于x 的一元二次方程()22210x k x k k -+++=.(1)求证:方程有两个不相等的实数根;(2)若其中一根为2-,求k 的值.22.小亮对《数书九章》中的“遥度圆城”问题进行了改编:如图,一座圆形城堡有正东、正南、正西和正北四个门,出南门向东走一段路程后刚好看到北门外的一棵大树,向树的方向走9里到达城堡边,再往前走6里到达树下.求:(1)大树到城堡南门的距离;(2)城堡外圆的半径.23.公司生产A 、B 两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A 、B 型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g ),并进行整理、描述和分析(除尘量用x 表示,共分为三个等级:合格8085x ≤<,良好8595x ≤<,优秀95x ≥),下面给出了部分信息:10台A 型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B 型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94抽取的A 、B 型扫地机器人除尘量统计表型号平均数中位数众数方差“优秀”等级所占百分比A9089a 26.640%B 90b 903030%根据以上信息,解答下列问题:(1)填空:a =_________,b =_________,m =_________;(2)这个月公司可生产B 型扫地机器人共3000台,估计该月B 型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).24.已知:ABC V 是边长为8cm 的等边三角形,点O 在边AB 上,O 过点B 且分别与边AB ,BC 相交于点D ,E ,EF AC ⊥,垂足为F .(1)求证:直线EF 是O 的切线;(2)当直线DF 与O 相切时,求:O 的半径.25.自2021年全国大力整治非国标电动车以来,各地新国标电动自行车销量猛增,盐城市大丰区A 品牌新国标电动自行车销量由2021年的3000辆增至2023年的5070辆.(1)若2021年至2023年两年间销量的年平均增长率相同,试求年平均增长率;(2)2024年随着整改期限的临近,新国标电动自行车销售更加火爆,1月至9月,A 品牌新国标电动自行车的进价为2500元/辆,售价为3200元/辆,平均每月可售500辆.现商家决定涨价销售,以获取更大利润,经市场调研发现,售价每上涨100元/辆,月销量就减少30辆,为使10月份销售利润达410000元,又要让顾客不过分吃亏,则售价每辆上涨多少元比较合适?26.操作与实践【示范操作】法1.苏科教材九上P12配方法解一元二次方程:22240x x +-=,变形为()224x x +=,配方的过程转化为图形的“割”、“拼”、“补”,如图1.得()221241x +=+,法2.古代数学家赵爽著《勾股圆方图注》中的配方方法更加简捷,只用了“拼”完成了配方,用4个长为2x +,宽为x ,面积为24的长方形,拼成如图2的大正形,利用大正方形的面积等于4个长方形的面积加中空的小正方形面积得:()2224242x x ++=⨯+.【模仿实践】(1)仿法2配方解25140x x +-=,先变形为______,如图3,每个小长方形的长为______,宽为______,利用图形的面积关系得配方后的方程为______,解为______.【深入探究】(2)仿法2配方解2253x x +=,自己画图分析,写出解题过程.【总结提升】小敏同学质疑法2的局限性:2530x x ++=,变形为()53x x +=-,没法拼图了呀?小聪同学发现:法2中的拼图就是七下:()()224a b ab a b +=+-模型,于是有了法3,设x a =,5x b +=,则有35ab a b =-⎧⎨-=-⎩,()()()22435a b +=⨯-+-,()2513x x ++=,配方成功,从数到形,又从形回归到数.(3)请你用小聪的法3配方解2720x x -+=,写出解题过程.27.定义:经过已知直线外一点且和这条直线相切的圆称为点和直线的等距圆,圆心称为点和直线的等距点.例如图1,G 过点P ,且与直线l 相切,G 为点P 和直线l 等距圆.【概念理解】(1)在图2中用尺规法作出点A 和直线m 的等距圆F ,且与直线m 的切点为B 点.(不写作法,但要保留作图痕迹)【初步运用】(2)如图3,已知点()0,2M ,()0,6N ,D 既为点M 和x 轴的等距圆,又为点N 和x 轴的等距圆,求点D 的坐标.【探索发现】(3)如图4,已知点()0,2M ,D 为点M 和x 轴的等距圆,易见等距圆和等距点均有无数个,设等距点(),D x y ,求出y 与x 的函数关系式.【拓展提高】(4)已知点()0,2M ,D 为点M 和x 轴的等距圆,圆D 被y 轴分得的较大部分的弧长不小于D 周长的34,直接写出D 点横坐标x 的取值范围______.。
广东省汕头市潮南区峡山街道联考2024-2025学年上学期期中考试九年级数学试题(含答案)
2024~2025学年度第一学期九年级期中考试数学试卷(S )说明:1、本卷满分120分;2、考试时间120分钟;3、答案请写在答题卷上.一、选择题(每小题3分,共30分)1.关于的一元二次方程(为实数)根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定2.已知二次函数,当时,随增大而增大,则实数的取值范围是( )A. B. C. D.3.下列四幅图案是四所大学校徽的主体标识,其中是中心对称图形的是( )A. B.C. D.4.二次函数图象的顶点所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限5.是一元二次方程的一个根,则代数式的值是( )A. B.2017 C. D.20256.某商品原价200元,连续两次降价后售价为148元,下列所列方程正确的是( )A. B.C. D.7.如图,是一个中心对称图形,为对称中心,若,,,则的长为( )B.D.48.若直角三角形的两边长分别是方程的两根,则该直角三角形的面积是( )A.6B.12C.12D.6x 220x kx --=k 2(1)y a x =-0x >y x a 0a >1a >1a ≠1a <2(1)2y x =-++m 220x x ++=2222021m m +-2017-2025-%a 2200(1%)148a +=()22001%148a -=200(12%)148a -=2200(1%)148a -=A 90C ∠=︒60BAC ∠=︒1BC =CC '27120x x -+=9.已知抛物线,则当时,函数的最大值为( )A. B. C.0 D.210.如图,抛物线经过正方形的三个顶点,,,点在轴上,则的值为( )A. B. C. D.二、填空题(每小题3分,共15分)11.已知关于的方程有一个根1,那么__________.12.若二次函数的图象与轴有且只有一个交点,则的值为________.13.如图,在正方形中,,E 为的中点,连接,将绕点按逆时针方向旋转得到,连接,则的长为_________.14.在平面直角坐标系中,将抛物线先绕原点旋转,再向下平移5个单位,所得到的抛物线的顶点坐标是_________.15.观察下列图形规律:当_________时,图形“”的个数是“”的个数的2倍.三、解答题(一)(每小题7分,共21分)16.用配方法解一元二次方程:17.如图,在中,,点、点分别为、的中点,连结,将绕点旋转得到.试判断四边形的形状,并说明理由.221y xx =--03x ≤≤2-1-2y axc =+OABC A B C B y a c 1-2-3-4-x 20ax bx c ++=a b c ++=2(1)42y a x x a =--+x a ABCD 4AB =AB DE DAE △D 90︒DCF △EF EF 221y xx =+-180︒n =∆∙2213x x+=ABC △2AB BC =D E AB AC DE ADE △E 180︒CFE ∆BCFD18.已知开口向上的抛物线经过点.(1)确定此拋物线的解析式;(2)当取何值时,有最小值,并求出这个最小值.四、解答题(二)(每小题9分,共27分)19.如图,在边长均为1个单位长度的小正方形组成的网格中,点,点,点均为格点(每个小正方形的顶点叫做格点).【实践与操作】(1)作点关于点的对称点;(2)连接,将线段绕点顺时针旋转得点对应点,画出旋转后的线段;【应用与计算】(3)连接,求出四边形的面积.20.如图,二次函数(为常数)的图象的对称轴为直线.(1)求的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式。
安徽省合肥市庐阳中学2024-2025学年九年级上学期11月期中考试数学试题
安徽省合肥市庐阳中学2024-2025学年九年级上学期11月期中考试数学试题一、单选题1.下列y 与x 之间的函数表达式是二次函数的是()A .1y x =-+B .322y x x =-+C .()1y x x =-D .21y x x=+2.已知二次函数22(1)3y x =---,下列说法正确的是()A .对称轴为直线1x =-B .函数的最大值是3C .抛物线开口向上D .顶点坐标为()1,3-3.当1x =-时,函数222y x x =--函数值是()A .1B .2-C .3D .24.对于反比例函数5y x=,下列说法正确的是()A .图象经过点(2,3)-B .图象位于第一、三象限C .当0x <时,y 随x 的增大而增大D .当0x >时,y 随x 的增大而增大5.如果线段a ,b ,c ,d 是成比例线段,则下列等式成立的是()A .ac bd=B .ad bc=C .11b c a d--=D .b ac db c++=6.已知点C 把线段AB 分成两条线段AC ,BC ,下列说法错误的是()A .如果BC AC =C 是线段AB 的黄金分割点B .如果12BC AB =,那么C 是线段AB 的黄金分割点C .如果BC ACAB BC=,那么C 是线段AB 的黄金分割点D .如果BC AC AB BC=,那么BCAC 叫做黄金比7.二次函数2y ax bx c =++的图象如图所示,则一次函数y ax b =+与反比例函数cy x=在同一平面直角坐标系中的大致图象为【】A .B .C .D .8.如图,直线123l l l ∥∥,直线AC 分别交1l ,2l ,3l 于点A ,B ,C ,直线DF 分别交1l ,2l ,3l 于点D ,E ,F ,AC 与DF 相交于点H ,若2AH =,3HB =,6BC =,4DE =,则EF 等于()A .245B .265C .285D .2759.如图,A 是双曲线()0ky x x=>上的一点,点C 是OA 的中点,过点C 作y 轴的垂线,垂足为D ,交双曲线于点B ,且ABD △的面积是3,则k =()A .4B .6C .8D .1010.已知,二次函数()2211y ax a x =+-+的对称轴为y 轴,将此函数向下平移4个单位,若点M 为二次函数图象在()11x -≤≤部分上任意一点,O 为坐标原点,连接OM ,则OM 长度的最小值是()AB .2C D .2二、填空题11.23a cb d ==,9b d +=,则ac +=;12.若反比例函数21m y x-=的图象在第二、四象限,则m 的取值范围是.13.已知抛物线2y ax bx c =++,()0a <过()1,0-,且对称轴是直线1x =,则当0y >时,自变量x 的取值范围是;14.如图,ABD △中,E ,F 分别是AB 、AD 上的点,连接EF 并延长交BD 的延长线于C .(1)若1AEBE =,13BD CD =,则AF DF =;(2)连接AC ,作射线BF 与AC 交于G ,则在(1)的条件下AGGC=三、解答题15.已知某二次函数的图象的顶点为()2,2-,且过点()1,3-.(1)求此二次函数的关系式.(2)判断点()1,9P 是否在这个二次函数的图象上,并说明理由.16.已知1y 与x 成正比例,2y 与x 成反比例,函数12y y y =+的图像经过点()1,3、92,2⎛⎫⎪⎝⎭,求y 与x 的函数关系式.17.已知线段a 、b 满足a :b =3:2,且a +2b =28(1)求a 、b 的值.(2)若线段x 是线段a 、b 的比例中项,求x 的值.18.如图,一次函数y ax b =+的图象与反比例函数()0ky k x=≠的图象交于()2,M m ,()1,4N --两点.(1)求这两个函数的表达式;(2)根据图象写出当反比例函数值小于一次函数值时x 的取值范围;(3)连接OM ,ON ,求OMN 的面积19.一人一盔安全守规,一人一带平安常在!某摩托车配件店经市场调查,发现进价为40元的新款头盔每月的销售量(y 件)与售价(x 元)的相关信息如下:售价x (元)60708090…销售量y (件)280260240220…(1)试用你学过的函数来描述与x 的关系,这个函数可以是(填“一次函数”或“二次函数”),写出这个函数解析式为.(2)若获利不得高于进价的80%,那么售价定为多少元时,月销售利润达到最大?20.如图,AD 是ABC V 外角CAE ∠的平分线,且交BC 的延长线于点D .(1)求证:BD ABCD AC=;(2)若90ACB ∠=︒,3AC =,4BC =,求CD 的长.21.如图,矩形ABCD 的两个顶点A 、B 都在反比例函数ky x=的图象上,AB 经过原点O ,对角线AC 垂直于x 轴,垂足为E ,已知点A 的坐标为()1,2.(1)求直线AB 和反比例函数的解析式;(2)求B 到AC 的距离;(3)直接写出BC 长.22.抛物线2y ax bx c =++上有点()1,A m 和()3,B n ,与y 轴交于点()0,C c ,对称轴为直线x h =.(1)当0m n ==,3c =时,求抛物线解析式;(2)若m n c <<,试求h 的取值范围.23.正方形ABCD 中,E 、F 和G 分别在边BC 、AB 和CD 上的点,123∠=∠=∠(1)求证:90AEG ∠=︒;(2)试证:BF CG BE +=;(3)4AB =,当E 在BC 上运动时,试求BF CE +的最小值.。
江苏省盐城市盐城经济技术开发区2024-2025学年九年级上学期11月期中考试数学试题(含答案)
2024年秋学期九年级数学期中考试试卷一、选择题(每题3分,计24分)1. 下列方程是一元二次方程的是( )A. 3x 2-6x +2B. ax 2-bx +c =0C.D. x 2=02. 用配方法解方程,配方正确是()A. B. C. D. 3. 如图,已知四边形是的内接四边形,且,那么等于( )A B. C. D. 4. 一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A. 12B. 9C. 15D. 12或155.如图,小球从口往下落,在每个交叉口都有向左或向右两种可能,且可能性相同,则小球最终从口落出的概率为( )A. B. C. D.6.电影(长津湖》讲述了一段波澜壮阔的历史,一上映就获得全国人民的追捧,某地第一天票房约亿元,三天后票房收入累计达亿元,若把增长率记作( )A .;B .;C .;D .7.如图,是的直径,圆上的点D 与点C ,E 分布在直线的两侧,,则( )的.212x x +=2240x x --=()213x -=()214x -=()215x -=()213x +=ABCD O e 120ABC ∠=︒AOC ∠125︒120︒110︒100︒A G 18161412310x ()3110x +=()23110x +=()233110x ++=()()23313110x x ++++=AB O e 50BCD ∠=︒AED =∠A .B .C .D .8.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点与之间的距离为,双翼的弧与弧的长都为,且与闸机侧立面夹角.当双翼收起时,可以通过闸机的物体的最大宽度为( )A .B .C .D .二、填空题(每题3分,计30分)9.一组数据19,15,10,x ,4,它的中位数是13,则这组数据的平均数是 .10.已知一元二次方程的其中一个根为,则的值为 .11.关于的一元二次方程有两个实数根,那么的取值范围是 .12.已知,如图,是的弦,,点在弦上,连结并延长交于点,,则的度数是 .14.设m 、n 为关于x 的方程x 2+4x ﹣2023=0的两个实数根,则m 2+5m +n = .60︒50︒45︒40︒A B 10cm AP BQ 12π30PCA BDQ ︒∠=∠=72cm 10cm 10cm 82cm 250ax bx +-=2x =1632a b +-x ()22114x m x m +-=-m AB AD O e 30B ∠=︒C AB CO O e D 35D ∠=︒BAD ∠15.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为170cm ,方差为acm 2.第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是170cm ,此时全班同学身高的方差为bcm 2,那么a 与b 的大小关系是a b .(填“<”,“>”或“=”)D=_______°.18.如图,在矩形ABCD 中,AB=3,⊙O 与边BC ,CD 相切,现有一条过点B 的直线与⊙O 相切于点E ,连接BE ,△ABE 恰为等边三角形,则⊙O 的半径为.第17题 第18题三、解答题(共9题,计96分)19.解方程:(1);(2);20.“秋风响,蟹脚痒”,正是食蟹好时节.某蟹农在今年五月中旬向自家蟹塘投放蟹苗1200只,为赶在食蟹旺季前上市销售,该蟹农于九月中旬在蟹塘中随机试捕了4次,获得如下数据:(1)、四次试捕中平均每只蟹的质量为____________;(2)、若蟹苗的成活率为,试估计蟹塘中蟹的总质量为_______;(3)、若第3次试捕的蟹的质量(单位:g )分别为:166,170,172,a ,169,167.①____________;②求第3次试捕所得蟹的质量数据的方差.21.唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮航行模式之先导.如图,某桨轮船数量/只平均每只蟹的质量/g 第1次试捕4166第2次试捕4167第3次试捕6168第4次试捕6170()24190x --=2250x x --=g 75%kg =a的轮子被水面截得的弦AB 长8m ,设圆心为O ,OC ⊥AB 交水面AB 于点D ,轮子的吃水深度CD 为2m ,求该桨轮船的轮子直径.22.已知,内接于,为的直径,点为优弧的中点.(1)如图1,连接,求证:;(2)如图2,过点作,垂足为.若,求的半径.23.已知关于的一元二次方程.求证:无论取何值,方程总有两个不相等的实数根.ABC V O e AC O e D BC OD DO BC ⊥D DE AC ⊥E 38AE BC ==,O e x 22(3)10x m x m ++-+=m(2)已知关于 x 的方程﹣(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程”,求 m 的值;(3)若关于 x 的方程 a +bx+1=0(a 、b 是常数,a >0)是“邻根方程”,令 t =8a-,试求 t 的最大值.25.小明大学毕业后和同学创业,合伙开了一家网店,暑期销售原创设计的手绘图案T 恤衫.已知每件T 恤衫的成本价为60元,当销售价为100元时,每天能售出20件;经过一段时间销售发现,当销售价每降低1元时,每天就能多售出2件.(1)若降价8元,则每天销售T 恤衫的利润为多少元?(2)小明希望每天获得的利润达到1050元并且优惠最大,则每件T 恤衫的销售价应该定为多少?26.如图,是直角三角形的外接圆,直径,过C 点作的切线,与延长线交于点D ,M 为的中点,连接,,且与相交于点N .(1)求证:与相切;(2)当时,在的圆上取点F ,使,补全图形,并求点F 到直线的距离.27.(1)如图1,四边形ABCD 为⊙O 的内接四边形,AC 为⊙O 的直径,则∠B =∠D = 度,∠BAD +∠BCD = 度.(2)如果⊙O 的内接四边形ABCD 的对角线AC 不是⊙O 的直径,如图2,求证:圆内接四边形的对角互补.知识运用(3)如图3,等腰三角形ABC 的腰AB 是⊙O 的直径,底边和另一条腰分别与⊙O 交于点 D ,E ,F 是线段CE 的中点,连接DF ,求证:DF 是⊙O 的切线.2x 2x 2b O e ABC 4AC =O e AB CD BM OM BC OM BM O e 60A ∠=︒O e 15ABF ∠=︒AB参考答案1-4DCBC 5-8CDDD9.12.2 10.7 11.12. 13.86 14.2019 15.>16.b>-3 17.3018.19.(1),(2),20.(1)168(2)(3)①164 ②721.解:设半径为rm,则OA =OC =rm ,∴OD =(r ﹣2)m .∵AB =8m ,OC ⊥AB ,∴AD =4m .在Rt △ODA 中有OA 2=OD 2+AD 2,即r 2=(r ﹣2)2+4,解得r =5m则该桨轮船的轮子直径为10m .22.(1)(1)证明:如下图,延长交于,∵点为优弧的中点,∴,12m ≤65︒112x =-252x =11x =21x =151200DO BC F D BC »»BD CD =∴,即;(2)23.证明:一元二次方程中,a =2,,,,一元二次方程总有两个不相等的实数根.24.(1)不是邻根方程;是邻根方程(2)或(3)25.(1)解:由题意得,每天销售T 恤衫的利润为:(元).答:降价8元,则每天销售T 恤衫的利润为1152元.(2)解:设此时每件T 恤衫降价x 元,由题意得,,整理得,解得或.又∵优惠最大,∴.∴此时售价为(元).答:小明希望每天获得的利润达到1050元并且优惠最大,则每件T 恤衫的销售价应该定为75元.26.(1)根据题意可得,根据直径所对的圆周角是直角,得出,进而得出,证明,得出,即可得证;(2)DF BC ⊥DO BC ⊥256()22310x m x m ++-+=3b m =+1c m =-+24b ac∴∆=-()()23421m m =+-⨯⨯-+26988m m m=+++-2217m m =-+()22116m m =-++()21160m =-+>∴()22310x m x m ++-+=260x x --=2210x -=0m =2m =-4t =最大值()()10086020281152--⨯+⨯=()()100602021050x x --+=2301250x x -+=5x =25x =25x =1002575-=OM AD ∥90ABC ∠=︒OM BC ⊥OBM OCM V V ≌90OBM ∠=︒21-27.(1)∵四边形ABCD为⊙O的内接四边形,AC为⊙O的直径,∴∠B=∠D=90度,∵∠BAD+∠BCD+∠B+∠D=360°∴∠BAD+∠BCD=360°−∠B−∠D=180°故答案为:90,180(2)证明:如图,连接AO并延长,交⊙O于点E,连接BE,DE.由(1)可知,∠ABE=90°,∠ADE=90°,∴∠ABE+∠ADE=180°∴∠BAD+∠BED=180°∵∠BED=∠C,∠CDE=∠CBE∴∠BAD+∠C=180°,∠ABC+∠ADC=180°即圆内接四边形的对角互补(3)证明:连接OD,DE,如图所示.∵OB=OD,∴∠B=∠ODB∵AB=AC,∴∠B=∠C∴∠ODB=∠C∴OD∥AC∵四边形ABDE是圆内接四边形,∴∠B+∠AED=180°∵∠DEC+∠AED=180°,∴∠B=∠DEC∴∠C=∠DEC∴DC=DE∵F是线段CE的中点,∴DF⊥AC∴DF⊥OD∵OD是⊙O的半径,∴DF是⊙O的切线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上学期期中考试数学试卷
友情提示:
亲爱的同学,你好!今天是展示你才能的时候了,只要你仔细审题、认真答题,把平常的水平发挥出来,你就会有出色的表现,放松一点,相信自己的实力!
一、细心填一填:(每小题2分,共20分) 1.若二次根式12-x 有意义,则x 的取值必须满足的条件是
___________________.
2.一元二次方程02322=--x x 的二次项系数是___一次项系数是___常数项是______.
3.若b <0,化简3
ab -的结果是 .
4.⑴22___)(96+=++x x x ⑵ 计算:=⨯1002
1
_____________. 5.已知2是方程062
=-+kx x 的一个根,则另一个根是______,k 的值是________.
6.已知△ABC 是等边三角形,O 为△ABC 的三条中线的交点,△ABC 以O 为旋转中心,按顺时针方向至少旋转________与原来的三角形重合.
7. 若点P (m ,2)与点Q (3,n )关于X 轴对称,则m =__________,n=______________.
8.已知圆锥的半径是5cm ,母线长是13cm ,则圆锥的侧面积为____________. 9.两圆的半径分别为3cm 和4cm,圆心距为5cm,则两圆的位置关系为______. 10.如图,一条公路的转弯处是一段圆弧(图中的AB 弧), 点O 是这段弧的圆心,AB =120m ,C 是AB 弧是一点, OC ⊥AB 于D ,CD =20m ,则该弯路的半径为 . 二、精心选一选:(每小题2分,共20分)
11.下列二次根式中,是最简二次根式的个数有( )
①3a ②2
x
③22x y + ④2222a b - ⑤2x + ⑥8ab
A 1个
B 2个
C 3个
D 4个 12.一元二次方程092=-x 的根是( )
A 、x=3
B 、x=4
C 、x 1=3,x 2=-3
D 、x 1=3,x 2=-3
13.计算:)27)(27(-+的结果是( ) A 、53 B 、5 C 、5 D 、5-
14.将方程0982=++x x 左边变成完全平方式后,方程是( ) A 、25)4(2=+x B 、7)4(2=+x C 、9)4(2-=+x D 、7)4(2-=+x 15.下列图案都是由字母“m ”经过变形、组合而成的.其中不是中心对称图形的是( )
16.下列
二次根式中,与3能够合并的是( )
A .18
B 、27
C .
23 D .3
2
17.在等边三角形,平行四边形,矩形,菱形,正方形,圆,正五边形,正六边形中,是中心对称图形但不是轴对称图形的有( ) A 1个 B 2个 C 3个 D 4个
18.关于x 的方程(m+1)x 2
+2mx -3=0是一元二次方程,则m 的取值是( ) A 、任意实数 B 、m ≠1 C 、m ≠-1 D 、m>-1
19. 如图,A 、B 、C 是圆O 上的三个点,若∠AOC=100°则∠ABC 的度数是( ) A 80° B 130° C 200° D 150°
20. 如图,在△ABC 中,∠C =90°,BC =3,AC =4,则它的内切圆半径是( ) A .
2
3
B .32
C .2
D .1
三、认真答一答:(共60分) 21. 计算(8分)
O
A
B
C
D
E
F
D
C
B
A
O
C
O
A
O
7
4
A
F
C
B
E (1)(48+1
4
6)÷27 (2)(2-3)2+2
-18
22.解方程 (8分)
(1) 2430x x --= (2) 2(3)2(3)0x x x -+-=
23.如图,已知△ABC 和点O ,画出与△ABC 关于点O 对称的△C B A '''.(5分) ·
24. 四边形ABCD 是正方形,△ADF 旋转一定角度后得到△ABE ,如图所示,如果AF=4,AB=7,(6分)
求:(1)指出旋转中心和旋转角度 (2)求DE 的长度
(3)BE 与DF 的位置关系如何?
25.如图,AB 是⊙O 的弦(非直径),C 、D 是AB 上的两点,并且AC=BD 。
求证:OC=OD 。
(8分)
26.如图,已知AB 为⊙O 的直径,CE 切⊙O 于C 点,过B 点的直线BD 交直线CE 于D 点,如果BC 平分∠ABD 。
求证:BD ⊥CE 。
(8分)
27.莆田国货商场销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元。
为了迎接“十·一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。
经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件。
要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少?(8分)
A
B
C
28.“国运兴衰,系于教育”图中给出了我国从1998─2002年每年教育经费投入的情况.(9分)
(1)由图可见,1998─2002年的五年内,我国教育经费投入呈现出_______趋势;
(2)根据图中所给数据,求我国从1998年到2002年教育经费的年平均数;
(3)如果我国的教育经费从2002年的5480亿元,增加到2004年7891亿元,那么这两年的教育经费平均年增长率为多少?(结果精确到0.01,1.440=1.200)
命题人:董村中学杨奎华。