点焊工艺处理基本知识

合集下载

点焊方法和工艺

点焊方法和工艺

点焊方法和工艺一、点焊方法分类对焊件馈电进行电焊时,应遵循下列原则:①尽量缩短二次回路长度及减小回路所包含的空间面积,以节省能耗;②尽量减少伸入二次回路的铁磁体体积,特别是避免在焊接不同焊点时伸入体积有较大的变化,以减小焊接电流的波动,保证各点质量衡定(在使用工频交流时)。

1.双面单点焊所有的通用焊机均采用这个方案。

从焊件两侧馈电,适用于小型零件和大型零件周边各焊点的焊接。

2.单面单点焊当零件的一侧电极可达性很差或零件较大、二次回路过长时,可采用这个方案。

从焊件单侧馈电,需考虑另一侧加铜垫以减小分流并作为反作用力支点(图1d)。

图1c为一个特例。

3.单面双点焊从一侧馈电时尽可能同时焊两点以提高生产率。

单面馈电往往存在无效分流现象(图1f及g),浪费电能,当点距过小时将无法焊接。

在某些场合,如设计允许,在上板二点之间冲一窄长缺口(图1f)可使分流电流大幅下降。

4.双面双点焊图1b及j为双面双点的方案示意。

图2-12b方案虽可在通用焊机上实施,但两点间电流难以均匀分配,较难保证两点质量一致。

而图1j由于采用推挽式馈电方式,使分流和上下板不均匀加热现象大为改善,而且焊点可布置在任意位置。

其唯一不足之处是须制作二个变压器,分别置于焊件两侧,这种方案亦称推挽式点焊。

两变压器的通电需按极性进行。

5.多点焊当零件上焊点数较多,大规模生产时,常采用多点焊方案以提高生产率。

多点焊机均为专用设备,大部分采用单侧馈电方式见图1h、i,以i方式较灵活,二次回路不受焊件尺寸牵制,在要求较高的情况下,亦可采用推挽式点焊方案。

目前一般采用一组变压器同时焊二或四点(后者有二组二次回路)。

一台多点焊机可由多个变压器组成。

可采用同时加压同时通电、同时加压分组通电和分组加压分组通电三种方案。

可根据生产率、电网容量来选择合适方案。

二、点焊循环点焊过程由预压、焊接、维持和休止四个基本程序组成焊接循环,必要时可增附加程序,其基本参数为电流和电极力随时间变化的规律。

焊装工艺知识(合并版)

焊装工艺知识(合并版)

第1篇一、活动背景为了提高教育教学质量,促进教师专业成长,我校特举办本次复习教研活动。

本次活动旨在通过集体备课、教学研讨、经验交流等形式,帮助教师深入理解教材,优化教学方法,提升复习效率。

二、活动目标1. 提高教师对复习阶段教学的认识,明确复习阶段的教学重点和难点。

2. 通过集体备课,优化复习教学设计,提高复习教学质量。

3. 促进教师之间的交流与合作,分享复习教学经验,共同提高。

4. 培养教师的教学研究能力,提升教师的专业素养。

三、活动时间本次复习教研活动将于2023年X月X日至X月X日举行,为期两天。

四、活动地点学校会议室五、活动流程第一部分:开幕式(X月X日上午9:00-9:30)1. 主持人致辞:介绍活动背景、目的和意义。

2. 领导讲话:对本次活动提出要求和期望。

3. 活动安排介绍:详细介绍活动流程和时间安排。

第二部分:集体备课(X月X日上午9:30-11:30)1. 分组讨论:将教师按照学科进行分组,每组负责一个学段的复习内容。

2. 教材分析:各组对教材内容进行深入分析,明确复习重点和难点。

3. 教学设计:根据教材分析和教学目标,各组设计复习教学方案,包括教学目标、教学方法、教学步骤等。

4. 交流分享:各组进行教学设计方案交流,互相学习,取长补短。

第三部分:教学研讨(X月X日下午1:30-3:30)1. 分组讨论:针对上午集体备课中提出的问题和教学方案,进行深入讨论。

2. 案例分析:选取典型案例进行分析,探讨复习教学中遇到的问题及解决方法。

3. 专家点评:邀请教学经验丰富的专家对讨论内容进行点评,提出改进建议。

第四部分:经验交流(X月X日下午3:30-5:00)1. 优秀教师经验分享:邀请在复习教学方面有突出成绩的教师分享经验。

2. 分组讨论:教师们分组讨论,结合自身教学实际,提出改进复习教学的具体措施。

3. 总结发言:活动主持人对本次教研活动进行总结,提出下一步工作要求。

第五部分:闭幕式(X月X日下午5:00-5:30)1. 活动总结:对本次活动进行总结,肯定成绩,指出不足。

点焊工艺基础知识要点

点焊工艺基础知识要点

点焊工艺基础知识版本:A/01 主题内容与适用范围2 焊点的形成及对其质量的一般要求焊接是两种或两种以上同种或异种材料通过分子或原子间的结合和扩散而连成一体的工艺加工过程。

焊接包括:熔化焊、压焊、钎焊。

压焊包括:电阻焊、锻焊、摩擦焊、高频焊、超声波焊等等。

电阻焊包括:点焊、凸焊、对焊、缝焊。

电阻焊就是将工件置于两个电极之间加压,通以电流,利用工件的电阻产生热量并形成局部熔化,或达到塑性状态。

断电后,压力继续作用,形成牢固接头。

2.1焊点的形成点焊过程可分为彼此相联的三个阶段:预加压力、通电加热和锻压。

2.1.1预加压力预加电极压力是为了使焊件在焊接处紧密接触。

若压力不足,则接触电阻过大,导致焊件烧穿或将电极工作面烧损。

因此,通电前电极力应达到预定值,以保证电极与焊件、焊件与焊件之间的接触电阻保持稳定。

2.1.2通电加热通电加热是为了供焊件之间形成所需的熔化核心。

在预加电极压力下通电,则在两电极接触表面之间的金属圆柱体内有最大的电流密度,靠焊件之间的接触电阻和焊件自身的电阻,产生相当大的热量,温度也很高。

尤其是在焊件之间的接触面处,首先熔化,形成熔化核心。

电极与焊件之间的接触电阻也产生热量,但大部分被水冷的铜合金电极带走,于是电极与焊件之间接触处的温度远比焊件之间接触处为低。

正常情况下是达不到熔化温度。

在圆柱体周围的金属因电流密度小,温度不高,其中靠近熔化核心的金属温度较高,达到塑性状态,在压力作用下发生焊接,形成一个塑性金属环,紧密地包围着熔化核心,不使熔化金属向外溢出。

在通电加热过程中有两种情况可能引起飞溅:一种是开始时电极预压力过小,熔化核心周围未形成塑性金属环而向外飞溅;另一种是加热结束时,因加热进间过长,熔化核心过大,电极压力下,塑性金属环发生崩溃,熔化金属从焊件之间或焊件表面溢出。

2.1.3锻压锻压是在切断焊接电流后,电极继续对焊点挤压的过程,对焊点起着压实作用。

断电后,熔化核心是在封闭的金属“壳”内开始冷却结晶的,收缩不自由。

点焊工艺基础知识

点焊工艺基础知识
影响分流的因素很多,零件材料、结构、点距、表面和装 配质量等都能影响分流的大小。实质上分流的大小是取决 于焊接区的总电阻与分路阻抗之比,分路阻抗越小,则分 流就越大,
减少分流
选择合适的点距:为了减小分流,通常按焊件材料的电阻率和厚 度规定点距的最小值。材料的电阻率越小,板厚越大,焊件层数 越多,则分流越大,所允许的最小点距也应增大。
► 增加IW、和tW,都使熔核尺寸和焊透率增大,提高焊点的抗剪强度。如果对这两个工艺 参数进行不同的配合调节,就会得出加热速度快慢不同的两种焊接条件,即强条件(规 范)。
► 强条件是焊接电流大、焊接时间短。其效果是加热速度快、焊接区温度分布陡、加热区窄、 接头表面质量好,过热组织少,接头的综合性能好,生产率高。因此,只要焊机功率允许, 各工艺参数控制精确,均应采用。但由于加热速度快,这就要求加大电极力和散热条件与 之配合,否则易的大部分热量
是从上、下电极传导而散失,被焊板件越 薄,其散失的热量就越多。焊接厚度为 1mm的低碳钢,电极散走的热量约占输入 点总热量的70%-80%。
复合电极
▪ 把钨(钼)棒或钨(钼)片镶嵌于铜合金电极的头部构
成复合电极,可提高电极的导电性,改善钨极的 散热效果。此外,可以防止钨极在焊接时受冲击 而碎裂。
❖ 当焊件厚度较大,(铝合金为1.6-2mm,钢板为5-6mm)时, 因熔核周围金属壳较厚,常需增加锻压力。加大压力的时间须 控制好。过早,会把熔化金属挤出来变成飞溅,过晚,熔化 金属已凝固而失去作用。一般断电后在0-0.2秒内加大锻压力。
点焊电极
是点焊机中重要但又易损耗的零 件,它的材质、结构形状直接影 响焊接质量、生产成本和劳动生 产率,也对自身使用寿命有影响
❖ 低碳钢和低合金钢在大气中耐腐蚀能力弱,在运输、存放和加工过程中 常用抗蚀油保护,若涂油表面未被脏物或其他不良导电材料所污染,在 电极压力下,油膜很容易被挤开,不影响接头质量。对未经酸洗过的热 轧钢板,焊前必须用喷砂、喷丸或用化学腐蚀的方法清除氧化皮。有镀 层的钢板,除少数外,一般不用特殊清理就可以进行焊接。镀铝钢板则 需要用钢丝刷或化学腐蚀清理。

点焊重要基础知识点

点焊重要基础知识点

点焊重要基础知识点点焊是一种常见的焊接方法,其基础知识点对于学习和理解这一技术非常重要。

下面将介绍一些关键的基础知识点。

1. 点焊的原理和特点:点焊是通过在焊接区域施加高电流和短暂的时间来形成焊接接头。

它具有快速、高效、自动化程度高等特点,适用于薄板材料和小型工件的焊接。

2. 点焊机的构成:点焊机主要由焊接电源、焊接钳、控制系统以及电缆组成。

焊接电源提供所需的电流和电压,焊接钳用于夹持工件并施加电流,控制系统用于控制焊接参数和时间,电缆连接各个部件。

3. 焊接接头的准备:在进行点焊之前,需要对要焊接的接头进行准备。

这包括清洁接头表面,去除油脂、氧化物和其他污染物,以确保焊接电流能够通过接触面。

4. 点焊参数的选择:点焊中的关键参数包括焊接电流、时间和压力。

这些参数的选择取决于所使用的材料和接头的厚度。

一般来说,焊接电流和时间的大小应根据材料的导电性、热导率和厚度来决定。

5. 焊接过程的控制:在点焊过程中,需要确保电流的正确传输和持续施加,温度的适当升高以及接触面的紧密结合。

控制系统可以通过传感器和反馈机制来监测和调整焊接过程中的参数,以确保焊接质量。

6. 焊接后的处理:焊接完成后,需要对焊接接头进行后处理。

这包括修整焊接点的凸起部分,清除焊渣和氧化物,以及进行必要的表面处理,例如研磨、抛光或涂层。

以上所述只是点焊的一些重要基础知识点,实际上,点焊还有很多进阶技术和应用领域,例如电阻焊、脉冲点焊等。

通过深入学习和实践,我们可以进一步了解和掌握这一重要的焊接技术,为应用于工业生产中的焊接操作提供支持。

焊接基础知识及工艺培训

焊接基础知识及工艺培训

三、设计文件工艺性审查
▪ 1、工艺性审查的主要内容 ▪ 2、结构件材料的选择 ▪ 3、焊接接头设计与选择
1、工艺性审查的主要内容:
▪ 1.1 设计图纸材料选择是否适宜,材料的可焊性如何,要 防止采用焊接性低劣的母材用于重要承载部件和受压部件。
▪ 1.2 结构件是否有足够的焊接空间,焊接位置是否适宜, 接头位置的可见度、可达性和可检查性。
▪ 应用范围:适用于于工件厚度0.5~4.0 ㎜范围内的钢及 有色金属全位置连接焊接;以及堆焊。
▪ 3.4 熔化极气体保护焊〔MSG;MIG 131/MAG 135〕
▪ 原理:熔化极惰性气体保护焊〔MIG〕和熔化极活性气体 保护焊〔MAG〕均属于熔化极气体保护焊接法。通过软 管束,将保护气体、焊接电流和作为焊接填充材料的焊 丝送入焊炬。送丝机构通过焊炬导电咀的滑动接触面将 焊接电流传输到焊炬中正在移动着的焊丝上。在焊丝与 工件之间可见的燃烧电弧供给焊丝熔化和工件所需要的 能量,电弧温度约高达10000℃。焊接有色金属时,用惰 性气体保护熔池;焊接碳钢、低合金钢和高合金钢时, 一般采用通过导电咀直接传输到离电弧很近的部位,如 此可使焊丝具有较高的电流承载能力从而也提高了熔敷 率。
6.1 国标324焊缝表示符号
6.2 ISO2553焊缝表示
焊缝的补充说明
焊接位置图示
7.常用的坡口类型
▪ 国标985坡口型式
德标DIN8551坡口型式
美标AWS D1.1局部熔透坡口型式
美标AWS D1.1完全熔透坡口型式
二、公司常用焊接标准
▪ 1、国家及行业标准 ▪ 2、企业标准
5.熔焊接头与根本类型
▪ 焊接接头:焊接接头是指把零件或部件用焊 接的方法相互连接起来的区域。

点焊工艺基础知识27页PPT

点焊工艺基础知识27页PPT
45、自己的饭量自己知道。——苏联
点焊工艺基础知识
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬

点焊工艺基础知识

点焊工艺基础知识

锥台形电极头端面尺寸增大
ΔD<15%D,水冷端距离:低碳钢
点焊h≥3mm,铝合金h≥4mm
精选ppt课件
29
5、焊件表面状况
焊件表面上带有氧化物、铁锈或其他杂质等不均 匀覆层时,会因接触电阻的不一致,各个焊点产生的 热量就会大小不一致,引起焊接质量的波动。
所以焊前彻底清理待焊表面是获得优质焊接接头的 必备条件。
11
1、预压阶段
特点:Fw>0、I=0;
作用:克服构件刚性,获得低而均匀的接触电阻,以保 证焊接过程中获得重复性好的电流密度;
对厚板或刚度大的冲压零件,可在此期间先加大预 压力,再回复到焊接时的电极压力,使接触电阻恒定 而又不太小,以提高热效率,或通过预热电流以达上 述目的。
精选ppt课件
12
2、通电加热阶段
在生产中选用强条件还是弱条件要取决于金属的性 质、厚度和所用焊接电源的功率。
精选ppt课件
31
硬规范特点: 加热不平稳,焊接质量对规范参数波动敏感性高,焊点强度 稳定性差; 温度场分布不平稳,塑性区小,,接头缩孔、裂纹倾向大; 有淬硬倾向的材料,接头冷裂倾向大; 设备容量大,设备价格高; 焊点压痕小,接头变形小,表面质量高; 电极磨损小,生产效率高。
在确定电极压力时,还必须考虑到备料或装配质量,如 果工件已经变形,以致焊接区不能紧密接触,则需采用较 高的电极压力以克服这种变形。
精选ppt课件
26
精选ppt课件
27
精选ppt课件
28
4、电极形状及其材料
电极的接触面积决定着电流密度和熔核的大小, 电极材料的电阻率和导热性关系着热量的产生和散失。 电极必须有合适的强度和硬度,不至于在反复加压过程中发生 变形和损耗,使接触面积加大,接头强度下降。 电极头端面尺寸增加,焊接区电流密度减小,散热增强导致熔 核尺寸减小,接头承载能力降低。

点焊工艺及参数资料

点焊工艺及参数资料

点焊工艺及参数资料
(一)焊接工艺要求
1、点焊是由深焊和浅焊两种焊接方法组成,点焊是在每一焊点上只能做一遍,焊接后不能再焊接。

2、焊点的形状应现场决定,熔核和熔池大小是通过选择合适的焊接参数和实践熔核把握的,焊接时要避免过多的焊点堆积。

3、焊接参数的控制:根据熔核和熔池的尺寸,焊接参数应根据不同焊方式及被焊件的物理性质变化,根据熔核尺寸,焊接参数应选择合适的温度,直流焊接时考虑电流大小,选择合适的电流,焊接时考虑焊材的厚度,选择合适的焊接频率。

4、焊点质量检测:焊点质量检测应按照焊接质量检测标准进行,焊点应符合技术要求,焊点表面应均匀,不应有外观缺陷,接触电阻和接触电压应达到规定的要求。

(二)焊接参数
1、焊接电流:焊接电流应根据焊点的熔核深度和厚度来选择,正常情况下,焊接电流大小低于50A,常规焊电流在7~18A之间,而对于厚如2mm及以上的电缆,焊接电流可以超过100A。

2、焊接频率:焊接频率是指一次焊接完成过程中有多少次变化的频率。

一般的焊接频率为50〜1000Hz,具体可根据使用的焊接电源参数来确定。

焊接工艺基础知识

焊接工艺基础知识
使用焊接性:焊接接头或整个结构满足产品技术 要求条件规定的使用性能和要求。
焊接性不仅与材料本身的固有性能有关;同时也 与许多焊接工艺条件有关。
通过焊接试验来评定的主要标准,是产生裂纹的 可能性和裂纹的多少,以及有无气孔的产生。
焊接工艺基础知识
➢ 金属材料的焊接性能与金属材料的化学成分有 很大关系;如:碳钢的焊接性能就比合金钢好;合金 元素含量低的材料比合金元素含量高的焊接性能好; 含碳量低的碳钢的焊接性能比含碳量高的好
✓ 尽可能减少不必要的焊缝:尽可能采用各种型材、 冲压件和锻件。
✓ 合理地安排焊缝位置:尽可能使焊缝布置对称于结 构截面的中性轴,或者靠近中性轴。
焊接工艺基础知识
工艺措施:
✓ 反变形法:是焊接生产中常用的工艺措施
✓ 刚性固定法:在装配时可以用夹具 专用胎具、 压铁、临时工艺支撑杆等来对构件进行刚性固定。
➢ 压焊:在焊接过程中;必须对焊件施加压力加热或不加热, 以完成焊接的方法,称为压焊
加热压焊有电阻焊 气压焊、高频焊、锻焊、接触焊、摩 擦焊等;
不加热压焊有的方法有冷压焊、超声波焊、爆炸焊等。 ➢ 钎焊:是硬钎焊和软钎焊的总称,是采用比母材熔点低 的金属作填充材料,将焊件和钎料加热到高于钎料熔点,低 于母材熔点的温度,利用液态钎料湿润母材,并填充接头间 隙并与母材相互扩散实现连接焊件的方法。
焊接工艺基础知识
四 焊接过程中的保护原理及方法:
➢ 目的:对焊接区域进行保护的目的是防止空气 侵入熔滴和熔池;以减少焊缝金属中的H N、O等含 量 保护一般分为三种: 气体保护:Ar、CO2等目前公司主要采用富氩 气体保护,成分为80%Ar+20%CO2; 渣保护:埋弧焊(采用焊剂HJ431、HJ330 等; 气—渣联合保护:焊条电弧焊(焊接材料采用 电焊条)。

点焊工艺

点焊工艺

点焊培训资料1.1点焊利用电流通过圆柱形电极和搭接的两焊件产生电阻热,将焊件加热并局部熔化,形成一个熔核(其周围为塑性状态),然后在压力作用下熔核结晶,形成一个焊点。

1.2气动式交流点焊机电极的运动和对焊件的加压,均由气路系统来实现,采用交流电,实现点焊功能的机械设备。

2设备结构主要由机身、焊接变压器、压力传动装置、气路、水路系统、上下电极以及脚踏开关等部分组成。

2.1机身机身用箱体式结构,全部结构件均由钢板折弯成型后焊接而成。

该结构体积小、重量轻,能承受较大的冲击力,上悬臂安装加压传动装置及上电极部分,下悬臂安装有下电极部分,机身内部装有焊接变压器、进出水管、机身上面装有电磁气阀及气动三大件,机身下部的底脚上设有四个地脚安装孔,正常焊接时,必须装上4只 M10以上的地螺栓紧固后,方可使用。

2.2焊接变压器焊接变压器为单相壳式结构,变压器的次级线圈由单只内置冷却铜水管的铸铜绕组组成,通过软铜带与上电极相联接,紫铜板与下电极相联接,焊接1变压器采用调节可控硅导通角来调节焊接变压器的初级电压,从而达到调节次级电压的目的,同时改变了焊接电流,适应不同的焊接规范,次级电压的调节范围,按焊接规范要求可连续可调。

2.3压力传动装置压力传动装置主要由活塞、气缸、支承座与滑块下端与上电极部分相联,活塞杆与上电极连为一体,当活塞杆上下移动时,使上电极在支承座导轨内上下移动。

气缸供气采用电磁气阀控制,推出或推进气缸右侧的行程插销,可调节二档上电极的工作行程。

而三气室工作头则可在0~100mm行程范围内无级可调。

2.4气路系统点焊机电极的运动和对焊件的加压,均由气路系统来实现,气路系统由带有气压表的减压阀和电磁阀等组成。

从而达到控制上电极上下运动,电极压力的大小根据工件厚度和相应工艺规范确定。

2.5上下电极部分电极部分由电极压块、电极座、端头、电极杆及电极头组成,电极压块内部通有冷却水,它的后端分别由软铜带和导电排与焊接变压器次级线圈相连接。

点焊工艺知识培训课件

点焊工艺知识培训课件
点焊工艺知识培训 课件
目 录
• 点焊工艺基础知识 • 点焊工艺参数及选择 • 点焊质量检查与评定 • 点焊工艺优化与改进 • 点焊工艺实例分析 • 点焊工艺培训总结与展望
01
点焊工艺基础知识
点焊的定义和分类
点焊定义
点焊是一种电阻焊方法,通过电极对工件加压并通电,利用电流通过工件时产 生的电阻热将工件局部加热至熔化状态,形成焊点,实现工件的连接。
点焊分类
根据电极形状和加压方式的不同,点焊可分为单边点焊、双边点焊和多点点焊 等。
点焊的特点及应用
点焊特点
生产效率高、焊接质量好、焊接 变形小、适应性强等。
点焊应用
点焊广泛应用于汽车、航空航天 、电子、家电等制造行业,用于 连接各种金属薄板、线材等。
点焊的安全与卫生
焊接烟尘
点焊过程中会产生焊接烟尘,长 期吸入会对人体健康造成危害。 因此,应佩戴防护口罩,定期通 风换气,保持工作场所空气流通
电极压痕
检查电极压痕的深度和分布,压痕过深或分布不 均可能影响焊接质量。
内部质量评定
焊缝强度
通过拉伸试验、弯曲试验等方法检测焊缝的强度,确保满足设计 要求。
气孔与夹杂
采用X射线探伤、超声波探伤等方法检测焊缝内部的气孔、夹杂等 缺陷,确保焊接质量。
微观组织
观察焊缝金相组织,检查是否存在组织不均匀、晶粒粗大等问题, 以评定焊接质量。
未来点焊工艺将更加注重环保、 高效、智能化发展,提高生产效
率和产品质量。
THANKS
感谢观看
电子元器件引脚焊接
通过点焊工艺将电子元器件引脚与电路板进行连接,确保 电路板的导电性能。
散热器焊接
采用点焊工艺将散热器各部件进行连接,确保散热器的散 热效果。

干货机器人点焊焊接工艺基础讲解

干货机器人点焊焊接工艺基础讲解

01焊接工艺概述Chapter焊接定义与分类焊接定义焊接分类根据焊接过程中金属所处的状态及工艺特点,焊接可分为熔化焊、压力焊和钎焊三大类。

点焊焊接原理及特点点焊焊接原理点焊特点机器人点焊技术应用现状机器人点焊技术概述机器人点焊技术应用领域机器人点焊技术优势02机器人点焊系统组成Chapter关节型机器人直角坐标机器人并联机器人030201机器人本体结构点焊枪及电极设计点焊枪类型电极材料电极形状与尺寸控制系统与传感器配置控制系统采用PLC、工业计算机等控制方式,实现自动化点焊过程。

传感器配置包括位置传感器、力传感器、温度传感器等,用于实时监测和调整点焊参数,确保焊接质量。

数据采集与处理通过传感器采集点焊过程中的实时数据,进行分析和处理,为优化工艺参数提供依据。

03点焊焊接工艺参数设置与优化Chapter电流、电压和时间的设置原则电压设置电流设置电压需与电流匹配,以保证焊接过程的稳定性和熔核的形成。

过高或过低的电压都会影响焊接质量。

时间设置压力分布电极压力应均匀分布在焊接区域,避免出现局部压力过大或过小的情况,以保证焊接质量。

压力大小电极压力需根据工件材料和厚度进行调整。

合适的压力能够保证焊接过程的稳定性和熔核的形成。

压力调整方式通过调整电极间隙、电极形状或采用弹性夹持装置等方式,实现电极压力的合理调整。

电极压力调整方法工艺参数优化策略试验法数值模拟法专家系统法机器学习法04机器人点焊操作技巧与注意事项Chapter机器人编程与调试技巧编程前准备01编程过程02调试与优化03电极磨损监测及更换时机判断电极磨损监测更换时机判断1 2 3设备安全操作安全环境安全安全防护措施建议05质量检测与评价标准Chapter外观质量检查方法目视检查通过肉眼或借助放大镜等工具观察焊缝表面,检查是否存在裂纹、夹渣、气孔等明显缺陷。

尺寸测量使用卡尺、游标卡尺等测量工具,对焊缝的尺寸进行测量,如焊缝宽度、高度、余高等,确保符合设计要求。

点焊工艺

点焊工艺

公司焊接要求 点焊 实现点焊的空间要求: 焊接面尽可能是平面; 有足够的焊钳进出零件的空间; 能够实现点焊面与焊钳极臂垂直; 有电极焊接时的运动空间; 有足够的可视空间,至少能看见一个极臂与板件 的接触点; 零件不能与焊钳钳身、悬挂钢缆、焊钳转盘相干 涉。 板厚的要求 在产品设计过程中,多使用两层板点焊,减少三层板焊接, 杜绝三层以上板件搭接点焊,对于点焊搭接料厚要求如下:
尽可能避免在同道工序内,点焊、弧焊等各种焊接方式反复交叉, 尽可能实现弧焊工序、螺柱焊工序的集中,减少焊接弧光的干扰, 并利于生产线的编排和生产组织。 焊点数量要求 焊点数量以满足强度要求为准,过多、过密的焊点只能增加焊接 的成本,同时过密的焊点由于焊接分流的加大,焊接强度降低。 同时与标杆车型的对比是一个重要的参考指标,过多的焊点反映 出的不足是车身结构性差和焊点布置不合理。
搭接量是指接头从叠部分的尺寸。最小搭接量通常是最小边距的 两倍,若搭接量太小,则边距必然不足,就会出现半点焊
3、点距 指相邻两焊点中心的距离。设计时规定最小点距主要考虑分 流的影响,该最小值与焊件料厚、导电率、表面清洁度及 其熔核直径有关。
4、装配间隙 必须使相互配合的焊件装在一起,沿接头方向上没有间隙或只有 极小的间隙,因为靠压力消除将耗去一部分电极力,使焊接的压 力降低。若装配间隙不均匀,则造成焊接压力的波动,从而引起 各焊点强度不一致,过大的间隙会引起严重的飞溅。许用间隙取 决于焊件的刚性和厚度,刚性和厚度越大,许用间隙越小,通常 取0.1~2mm. 5、厚度比 点焊两个或更多个不同厚度的同种金属时,有一个能有效焊接的最 大厚度比,它是根据外侧工件的厚度决定的。 当点焊两种厚度的碳钢时,最大厚度比为4:1;点焊三种厚度的接 头时,外侧两板的厚度比不的大于 ,如果厚度比大于此数, 需从工艺方面采取措施来保证外侧焊件的焊透率。通常薄板的焊 透率不得小于10%,厚件的焊透率应达到20%~30%。

点焊基础知识

点焊基础知识

点焊基础知识点焊通常分为双面点焊和单面点焊两大类。

双面点焊时,电极由工件的两侧向焊接处馈电。

典型的双面点焊方式是最常用的方式,这时工件的两侧均有电极压痕。

大焊接面积的导电板做下电极,这样可以消除或减轻下面工件的压痕。

常用于装饰性面板的点焊。

同时焊接两个或多个点焊的双面点焊,使用一个变压器而将各电极并联,这时,所有电流通路的阻抗必须基本相等,而且每一焊接部位的表面状态、材料厚度、电极压力都需相同,才能保证通过各个焊点的电流基本一致采用多个变压器的双面多点点焊,这样可以避免c的不足。

点焊简介点焊是一种高速、经济的连接方法。

它适于制造可以采用搭接、接头不要求气密、厚度小于3mm的冲压、轧制的薄板构件。

是把焊件在接头处接触面上的个别点焊接起来。

点焊要求金属要有较好的塑性。

如图1所示,为最简单的应用点焊的例子。

图1 最简单点焊焊接时,先把焊件表面清理干净,再把被焊的板料搭接装配好,压在两柱状铜电极之间,施加压力P压紧,如图2所示。

当通过足够大的电流时,在板的接触处产生大量的电阻热,将中心最热区域的金属很快加热至高塑性或熔化状态,形成一个透镜形的液态熔池。

继续保持压力P,断开电流,金属冷却后,形成了一个焊点。

如图3所示,是一台点焊机的示意图。

图2点焊过程图3点焊机点焊由于焊点间有一定的间距,所以只用于没有密封性要求的薄板搭接结构和金属网、交叉钢筋结构件等的焊接。

如果把柱状电极换成圆盘状电极,电极紧压焊件并转动,焊件在圆盘状电极只间连续送进,再配合脉冲式通电。

就能形成一个连续并重叠的焊点,形成焊缝,这就是缝焊。

它主要用于有密封要求或接头强度要求较高的薄板搭接结构件的焊接,如油箱、水箱等。

点焊方法单面点焊时,电极由工件的同一侧向焊接处馈电,典型的单面点焊方式,单面单点点焊,不形成焊点的电极采用大直径和大接触面以减小电流密度。

无分流的单面双点点焊,此时焊接电流全部流经焊接区。

有分流的单面双点点焊,流经上面工件的电流不经过焊接区,形成风流。

点焊知识

点焊知识


缺少产品定义

图示中的焊点

补充:工艺参数过大或过小导致的质量缺陷&不良现象:
飞溅、过 烧、焊穿 、粘电极 、电极损 耗快。
过烧、 焊穿、 粘电极、 电极损 耗快。
工作 时间 延长。
未焊透。
未焊透。
电极 寿命 降低。


焊 接
焊 接
预 压
电 极
极 端
极 修
过大(多)
电 流
时 间
时 间
压 力
面 直
1. 生产效率高; 2. 快速; 3. 简单、可靠; 4. 易用于镀层材料; 5. 成本低; 6. 易于自动化;
焊接最大&最小压力取各组平均值{1900}和{3850}
机器人点焊系统:焊枪选择使压力满足所有板组所有焊接压力要求。
与RSW相比较,PSW一般无参数切换,同一套焊接系统只能输出一种焊接压力和焊接 电流;因此,在焊接参数设定时需要对压力和焊接电流进行修正。
焊点分割原则: 1、 PSW焊枪 焊接压力设定矫正:同一把焊钳取所有焊点推荐焊接压力平均值。 2、当同一把焊枪所有焊点推荐的最大的焊接压力和最小的焊接压力的差值大于2000N 需要重新分割焊点,将差别大的焊点分出去;
7 、焊点质量缺陷(8种) 7-1、虚焊:无熔核或熔核尺寸小于规定值。 焊点熔着径参考标准:TS66-0034
分流 脱焊原因:1、电流小(分流)、通电时间短、焊接压力偏大;2、电极头研磨不良、焊 接姿态不垂直板件。3、板件搭接不良,间隙太大。 对策:1、调整焊接参数2.研磨好电极头;3.调整好持枪角度。
2-2、常见的手工点焊焊钳有X型、C型及特制型等,X型、C型结构示意图如下:
X型焊钳主要用来焊接水平或基本处于水平位 置的工件; C型焊钳主要用来焊接垂直或近似垂直位置的 工件;

点焊焊接工艺

点焊焊接工艺

点焊焊接工艺1.点焊接头形式及焊前准备1)点焊接头形式点焊时,零件采用的接头形式如图10-30所示,分为单剪搭接接头,双剪搭接接头、带垫片对接接头以及弯边搭接接头等,其中单剪搭接接头应用最广。

根据接头的强度要求及零件、组合件的结构特点,焊点可以采用单排、双排或多排的。

2)搭接边的选用点焊接头的搭接边的大小必须选用适当。

搭接边太大,既增加产品质量,又浪费材料;搭接边太小,则点焊过程中,加热金属被挤向一边,给装配带来困难,同时,还会在点焊过程中产生飞溅。

点焊接头的搭接边最小尺寸A可参考表10-6所列的数据。

弯边搭接接头中,当圆角半径r小于两倍板厚时,尺寸A可按表10-6中的值。

若弯边或型材的圆角半径r大于板厚两倍时,则弯边尺寸A应相应增大。

3) 焊点间距的选用点焊接头的强度取决于焊点数目,而焊点数目又取决于焊点中心间距离,焊点间距小,焊点密,接头强度就高。

但是焊点间距不能太小,因为点距越小,电流分流越严重。

对于铝合金,由于电阻系数小。

分流现象比较严重,则焊点间距应比焊黑色金属时大,若须提高接头强度,自能采用双排或多排焊点,点焊时,焊点间的最小间距如表10-7所列。

4)焊件的焊前清理当焊件表面存在油脂、赃物及氧化膜时,使焊件与焊件、电极与焊件间的接触显著增加,甚至出现局部不导电区。

这样,破坏了电流和热量的正常分布,在电流密度特别大的地方,发生金属局部熔化、飞溅和焊件表面过烧,严重者,将烧穿焊件,从而影响焊件质量,如图10-31所示。

所以在焊接之前,必须除去焊件表面进行清理。

焊前对焊件的清理,首先必须用有机溶剂(如丙酮、汽油等)和碱性溶液除去焊件表面的油漆和油脂,然后再除去金属表面的氧化膜。

清理的方法视不同焊件金属及其表面状态而定。

对于无氧化膜的冷轧结构钢,可用金刚砂布、钢丝直径不大于0.2mm的金属刷或带中等粒度的金刚砂毡轮清理,使接头处两面约20mm宽度上露出金属光泽。

当用金刚砂布清理时,砂布号码不宜过小。

点焊工艺

点焊工艺

硬规范特点:
加热不平稳,焊接质量对规范参数波动敏感性高,焊点强度
稳定性差; 温度场分布不平稳,塑性区小,,接头缩孔、裂纹倾向大; 有淬硬倾向的材料,接头冷裂倾向大; 设备容量大,设备价格高;
焊点压痕小,接头变形小,表面质量高;
电极磨损小,生产效率高。
适用于铝合金、A不锈钢、低碳钢及不等 厚板材的焊接
或逆变式精密点焊设备。
一种可直接焊接漆包线引出接点的平行间隙焊新技术:
电容贮能点焊机输出的脉冲电流Io流经二个电极尖端的接触部分, 产生电火花,使一部分绝缘漆被烧除,其余部分熔化自动向外侧退缩, 使金属裸露出来;在焊接压力和电阻热的作用下,被焊工件间的接触 电阻小于SW焊头尖端的接触电阻,大量电阻I2转而流入裸露的金属线 和基底,实现焊接,同时,仅有一少量电流I1成为分流。这就实现了 用同一电流脉冲完成除漆和焊接。 焊接技术要点: 1) SW焊头的设计和制造至关重要:采用烧结材料作电极,尖端外 形为笔尖形,两个电极尖端的接触是不变的线接触。 2) SW焊头对焊接参数的设臵,双其他电阻焊要求更加精细。同时, 应优化脉冲幅度(电压)、脉冲宽度(时间)、焊接压力等焊 接参数。
接头承载能力与电极压力
4、电极形状及其材料
电极的接触面积决定着电流密度和熔核的大小, 电极材料的电阻率和导热性关系着热量的产生和散失。 电极必须有合适的强度和硬度,不至于在反复加压过程中发 生变形和损耗,使接触面积加大,接头强度下降。 电极头端面尺寸增加,焊接区电流密度减小,散热增强导 致熔核尺寸减小,接头承载能力降低。
软规范特点:
加热平稳,焊接质量对规范参数波动敏感性低,焊点强度稳
定性好; 温度场分布平稳,塑性区宽,压力作用下接头缩孔、裂纹倾 向小,但易变形; 有淬硬倾向的材料,接头冷裂倾向小;

点焊基础知识

点焊基础知识

第一章
1.1 1.2
目 点焊的定义
点焊技术的特点 点焊的工作原理 点焊熔核形成过程 点焊熔核形成过程 点焊工艺参数的影响 影响点焊强度的因素
概述

第二章
2.1 2.2 2.3 2.4
点焊的工作原理及工艺参数影响
第三章 第四章
4.1 4.2 4.3 4.4 4.5
电焊的设备 点焊操作的注意事项
试片试验 电极修磨 焊接点距和点的位置 焊枪操作 每日点检项
(3)与焊枪有关的
a 电极臂和电极杆的保护 如果电极臂或电极杆有 可能与工件或夹具接触而导致短路时,就要提供外部保 护条件。 b 检查漏气 如果与气缸或气管相连的地方有空气 泄露,通知PM。 C x焊钳杆的润滑 用抹布檫净焊机杆并把润滑油涂 到杆A和杆B上。
e.试板试验每次要进行三个点或三个点以上。
4.2 电极修磨
点焊是通过在电极头上施压,通过一个大电流来加热 和熔化受压的部位,由于电流是通过电机头施加,电极修 磨就很重要,因为焊接质量取决于电机头的形状。 (1)电极修磨的频次,出现下面的情况时进行修磨 a. a.电极头直径大于标准时; b.电极端面很脏的时候; c.电机头上下不能对中的时候; (2)换电极头的时间 当电极头厚度用到3mm或小于3mm时,在电极头上 会产生凹坑,使熔核迅速减小,强度变低。这时候就要更 换电极头了。 判断更换电极头的方法: a.以电极头上刻的环作为基准; b.用卡尺。
4.4.焊枪操作 .
即使在适当的焊接参数下也可能发生缺陷,这些缺陷 是由于焊枪操作不规范产生的。在操作焊枪时给电极一个
适当角度的压力是很有必要的。如果焊枪操作姿势不正确, 也会导致不好的焊接质量。 需要注意的是如果电极头角度倾斜超出10º,也会导致 强度的降低,且电极的角度在使用铜板的时候也会影响强 度。 焊枪操作的注意事项: 焊枪操作的注意事项: a.焊接区要使用正确的焊枪角度; b.焊枪操作要将焊枪按容易操作的方式悬挂的外观检查:*焊接压痕是否合适(铜板是否 安装合适) *是否分流 b 半破坏检查:*焊接强度是否足够 *检查频次是否正确 *是否填检查单 (4)操作完成后
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉兴园金属有限责任公司点焊工艺基础知识版本:A/01 主题内容与适用范围2 焊点的形成及对其质量的一般要求焊接是两种或两种以上同种或异种材料通过分子或原子间的结合和扩散而连成一体的工艺加工过程。

焊接包括:熔化焊、压焊、钎焊。

压焊包括:电阻焊、锻焊、摩擦焊、高频焊、超声波焊等等。

电阻焊包括:点焊、凸焊、对焊、缝焊。

电阻焊就是将工件置于两个电极之间加压,通以电流,利用工件的电阻产生热量并形成局部熔化,或达到塑性状态。

断电后,压力继续作用,形成牢固接头。

2.1焊点的形成点焊过程可分为彼此相联的三个阶段:预加压力、通电加热和锻压。

2.1.1预加压力预加电极压力是为了使焊件在焊接处紧密接触。

若压力不足,则接触电阻过大,导致焊件烧穿或将电极工作面烧损。

因此,通电前电极力应达到预定值,以保证电极与焊件、焊件与焊件之间的接触电阻保持稳定。

2.1.2通电加热通电加热是为了供焊件之间形成所需的熔化核心。

在预加电极压力下通电,则在两电极接触表面之间的金属圆柱体内有最大的电流密度,靠焊件之间的接触电阻和焊件自身的电阻,产生相当大的热量,温度也很高。

尤其是在焊件之间的接触面处,首先熔化,形成熔化核心。

电极与焊件之间的接触电阻也产生热量,但大部分被水冷的铜合金电极带走,于是电极与焊件之间接触处的温度远比焊件之间接触处为低。

正常情况下是达不到熔化温度。

在圆柱体周围的金属因电流密度小,温度不高,其中靠近熔化核心的金属温度较高,达到塑性状态,在压力作用下发生焊接,形成一个塑性金属环,紧密地包围着熔化核心,不使熔化金属向外溢出。

在通电加热过程中有两种情况可能引起飞溅:一种是开始时电极预压力过小,熔化核心周围未形成塑性金属环而向外飞溅;另一种是加热结束时,因加热进间过长,熔化核心过大,电极压力下,塑性金属环发生崩溃,熔化金属从焊件之间或焊件表面溢出。

2.1.3锻压锻压是在切断焊接电流后,电极继续对焊点挤压的过程,对焊点起着压实作用。

断电后,熔化核心是在封闭的金属“壳”内开始冷却结晶的,收缩不自由。

如果此时没有压力作用,焊点易出现缩孔和裂纹,影响焊点强度。

如果有电极挤压,产生的挤压变形使熔核收缩自由并变得密实。

因此,电极压力必须在断电后继续维持到熔核金属全部凝固之后才能解除。

锻压持续时间视焊件厚度而定。

对于厚度1-8mm的钢板一般为0.1-2.5秒。

当焊件厚度较大,(铝合金为1.6-2mm,钢板为5-6mm)时,因熔核周围金属壳较厚,常需增加锻压力。

加大压力的时间须控制好。

过早,会把熔化金属挤出来变成飞溅,过晚,熔化金属已凝固而失去作用。

一般断电后在0-0.2秒内加大锻压力。

以上是焊点形成的一般过程。

在实际生产中,往往根据不同材料、结构以及对焊接质量的要求,采用一些特殊的工艺措施。

例如:对热裂纹倾向较大的材料,可采用附加缓冷脉冲的点焊工艺,以降低熔核的凝固速度;对调质材料的焊接,可在两电极之间作焊后热处理,以改善因快速加热、冷却而产生的脆性淬火组织;在加压方面,可以采用马鞍形、阶梯形或多次阶梯形等电极压力循环。

以满足不同质量要求的零件焊接。

2.2对焊点质量的一般要求点焊接头的强度决定于焊点的几何尺寸及其内外质量。

焊点的几何尺寸如图1所示,一般要求熔核直径随板厚增加而增大。

通常用下式表示:δd5=n电极在焊件表面上留下压痕的深度,是熔核获得锻压的标志,但不能过深,否则影响焊件表面美观和光滑,减小该处断面尺寸,造成过大的应力集中,使焊点强度下降。

当电极压力越大,焊接时间越长,或焊接电流越大时,压痕就越深。

为了减少压痕深度,可采用较硬的规范及较大的电极端面尺寸。

3 点焊方法的种类点焊方法很多,按供电方向和在一个焊接循环中所能形成焊点数可归纳为表1所列的种类。

表1 点焊方法的种类及其特点与应用4 点焊接头的设计设计点焊接头时应考虑下列因素:4.1 接头的可达性是指点焊电极必须能方便地抵达构件的焊接部位。

为此,须熟悉点焊设备的各种类型、注意电极和电极夹头的形状和尺寸,要使装到焊机上的电极都能达到每个待焊点。

4.2 边距与搭接量边距是指从熔核中心到板边的距离。

该距离上的母材金属应能承受焊接循环中熔核内部产生的压力。

若焊点太靠近板边,则边缘处母材过热并向外挤压,减弱对熔核的拘束,还可能导致飞溅,最小边距取决于被焊金属的种类、厚度、电极面形状和焊接条件。

对于屈服点高的金属、薄件或用强条件焊时,可取较小值。

搭接量是指接头重叠部分的尺寸。

最小搭接量通常是最小边距的两倍,若搭接量太小,则边距必然不足,推荐最小搭接量见表2。

表2 点焊接头的最小搭接量(单位:mm)4.3 点距是指相邻两焊点的中心距离。

设计时规定点距最小值是主要考虑分流的影响。

该最小值与被焊金属的厚度、导电率、表面清洁度以及熔核直径有关。

表3为推荐的点距最小值。

表3 点焊接头的最小点距(单位:mm)4.4 装配间隙必须使互相配合的焊件装在一起时,沿接头方向上没有间隙或只有极小的间隙,因为靠压力消除间隙将耗去一部分电极力,使焊接的压力降低。

若装配间隙不均匀,则造成焊接压力的波动,从而引起各焊点强度不一致。

过大的间隙会引起严重飞溅。

许用间隙取决于焊件刚性和厚度,刚性与厚度越大,许用间隙越小,通常取0.1-2mm。

4.5 厚度比点焊两个或更多个不同厚度的同种金属时,有一个能有效焊接的最大厚度比,它是根据外侧工件的厚度决定的。

当点焊两种厚度的碳钢时,最大厚度比为4:1;点焊三种厚度的接头时,外侧两板的厚度比不得大于2.5:1。

如果厚度比大于此数,则须从工艺方面采取措施(如改变电极形状或成分等)来保证外侧焊件的焊透率。

通常薄板的焊透率不能小于10%,厚件的焊透率应达到20%-30%。

点焊三层板件时,推荐的最小点距比点焊两块较厚外侧板的点距大30%。

5 点焊电极点焊电极是点焊机中重要但又易损耗的零件,它的材质、结构形状直接影响焊接质量、生产成本和劳动生产率,也对自身使用寿命有影响。

5.1电极功能及基本要求5.1.1电极功能可归纳为传输电流、传递压力和迅速散热。

a.传输电流:点焊时焊接电流靠电极传输,流过电极工作面的电流密度很大,表4为三种金属材料点焊的一般电流密度范围。

表4 三种金属材料点焊电极工作面电流密度范围(单位:A/mm2)从表中看出,点焊时的电流密度是常用导线电流密度的数十到数百倍,已超过一般导线所能承受能力。

b.传递压力:点焊时须通过电极向焊件施加一定的焊接压力和锻压力。

按被焊材料不同,电极压力高达几十千牛。

焊接低碳钢时其内部压强达30-140MPa,焊不锈钢时为250-400MPa,焊高温合金时,高达400-900MPa。

电极工作面直接接触焊点,它承受着焊接产生的高温,所以电极必须具有足够的高温强度,否则会导致电极工作面迅速变形与压溃而无法进行工作。

c.散热作用:点焊时,焊接区的大部分热量是从上、下电极传导而散失,被焊板件越薄,其散失的热量就越多。

焊接厚度为1mm的低碳钢,电极散走的热量约占输入点总热量的70%-80%。

5.1.2对电极材料的基本要求从上述可见点焊电极工作条件复杂、恶劣。

为了发挥其功能,保证焊接质量和延长其使用寿命,所使用的电极材料必须:a.在高温与常温下都有合适的导电、导热性能,具有高的耐氧化能力,并与焊件材料形成合金的倾向性小;b.有足够的高温硬度和强度,再结晶温度高;c.电极与焊件之间的接触电阻应足够低,以防止工件表面熔化。

5.2点焊电极的分类点焊电极的形式和种类较多,在生产中大量采用标准电极,此外也根据需要采用许多专用的特殊形状的电极。

按电极的结构形式分为整体式、分体式和复合式三大类。

整体式电极是指构成电极的头部、杆部和尾部用同一材料制成整体;分体式电极只包括其中的两部分,通常是头部分开;复合式电极是指头部用特殊极材料制成并镶嵌到杆部上。

在每一大类中又按每部分的构造特点分成若干小类,见表5。

5.3点焊电极的结构5.3.1构造图3为应用最广整体式直电极的构造及各部分名称。

头部是电极与焊件接触进行焊接部分,焊接工艺参数中的电极直径是指此接触部分的工作面直径。

杆部是电极的基体,多为圆柱体,其直径在加工中简称它为电极直径D,是电极的基本尺寸,其长度由焊接工艺需要决定。

123l1-工作长度l2-插入长度L-电极长度尾部是电极与握杆或直接与电极臂配合(连接)的接触部分。

须保证顺利传输焊接电流和电极压力。

接触面的接触电阻要小,密封而不漏水。

5.3.2头部形状点焊的标准直电极的头部形状有尖头、圆锥、球面、弧面、平面和偏心等六种,其形状特征与适用场合。

5.3.3尾部形状点焊电极的尾部形状取决于它与握杆的连接形式。

在电极与握杆的连接中最常用的是锥柄连接,其次是直柄连接和螺纹连接。

与之相应,电极尾部的形状就有锥柄、直柄和螺旋等三种。

如果锥柄的锥度与握杆孔的锥度相同,则电极的装拆简单,不易漏水,适用于压力较高场合;直柄连接具有快速拆卸的特点,也适用于压力较高的焊接,但电极尾部应有足够好的尺寸精度,以便与握杆孔紧密相配,使导电良好。

螺纹连接的最大缺点是电接触较差,其使用寿命不如锥柄电极。

表5 点焊电极分类5.4点焊电极的基本尺寸5.4.1标准直电极的基本尺寸直电极的应用面广量大,其基本尺寸已标准化。

表6是《电阻点焊直电极》(JB/T3158-1999)中规定标准直电极的基本尺寸。

是适用于焊接低碳钢、低合金钢、不锈钢和一般条件下焊接铝及铝合金的电极尺寸。

5.4.2弯电极的基本尺寸只要焊件结构允许,都应尽可能选用标准直电极,因为直电极结构简单,承载能力强,变形小,冷却效果好,加工方便、成本低。

只有直电极无法焊接的部位才采用弯电极。

弯曲极的缺点是焊接时承受偏心力距,易出现挠曲,使上、下电极工作面对中不良,因此允许的电极力比直电极小。

它的加工较复杂、成本高。

表8 点焊用双弯电极尺寸(单位:mm)5.4.3帽式电极的基本尺寸帽式电极由电极帽与电极接杆组成。

表9和表10分别列出它们的基本尺寸。

表9 点焊用电极帽的尺寸(JB/T3948-1999) (单位:mm)5.4.4复合电极及其关部尺寸把钨(钼)棒或钨(钼)片镶嵌于铜合金电极的头部构成复合电极,可提高电极的导电性,改善钨极的散热效果。

此外,可以防止钨极在焊接时受冲击而碎裂。

由于用纯钨(钼)作电极的镶嵌件,其尺寸受到限制而不能做得过大,且电极形式有限。

因此,用得较多的是铜-钨和银-钨粉末烧结材料,可加工成不同形状和尺寸的电极。

这些钨(钼)镶嵌件或烧结材料均用钎焊焊于电极主体的头部。

表11为复合电极的头部尺寸。

表11 点焊用复合电极的头部尺寸(AWS标准)6 点焊工艺6.1焊前工件表面清理当焊件表面有油污、水分、油漆、氧化膜及其它脏物时,使表面接触电阻急剧增大,且在很大范围内波动,直接影响到焊接质量的稳定。

相关文档
最新文档