数控机床伺服系统的分类
第4章 数控机床伺服系统
第4章 数控机床伺服系统
第4章 数控机床伺服系统 工作原理:假设是单三拍通电工作方式。 (1)A 相通电时,定子A 相的五个小齿和转子对 齐。此时,B 相和 A 相空间差120,含 1 120/9 = 13 齿 3 2 A 相和 C 相差240,含240/ 9 = 26 个 3 齿。所以,A 相的转子、定子的五个小齿对 齐时,B 相、C 相不能对齐,B相的转子、 定子相差 1/3 个齿(3),C相的转子、定 子相差2/3个齿(6)。
mz2 k
式中:n —转速(r/min); f —控制脉冲频率,即每秒输入步进电动机的脉冲数; 由上式可知:工作台移动的速度由指令脉冲的频率所控制。
第4章 数控机床伺服系统 特点:
(1)来一个脉冲,转一个步距角。
(2)控制脉冲频率,可控制电机转速。
(3)改变脉冲顺序,改变方向。
种类:
有励磁式和反应式两种。两种的区别在于励磁式步进电机的转 子上有励磁线圈,反应式步进电机的转子上没有励磁线圈。
第4章 数控机床伺服系统
计算机数控系统 机床 I/O 电路和装置 操作面板 键盘 输入输出 设备 机 床
PLC
计算机 数 装 控 置
主轴伺服单元
主轴驱动装置
进给伺服单元 测量装置
进给驱动装置
主进辅 运给助 传控 动 动制 机机机 构构构
数控机床的组成
第4章 数控机床伺服系统
第4章
数控机床伺服系统
第4章 数控机床伺服系统
360o s mz2 k
第4章 数控机床伺服系统
每个步距角对应工作台一个位移值,这个位移值称为脉 冲当量。 因此,只要控制指令脉冲的数量即可控制工作台移动的 位移量。步距角越小,它所达到的位置精度越高,因此实际 使用的步进电动机一般都有较小的步距角。 步进电动机的转速公式为:n 60 f
数控机床的伺服系统
第6章 数控机床的伺服系统
伺服驱动装置
位置控制模块 速度控制单元
工作台 位置检测
速度环 速度检测 位置环
伺服电机
测量反馈
图6-1 闭环进给伺服系统结构
数控机床闭环进给系统的一般结构如图,这是一个双闭环系统,内 环为速度环,外环为位置环。速度环由速度控制单元、速度检测装置等构成。 速度控制单元是一个独立的单元部件,它是用来控制电机转速的,是速度控 制系统的核心。速度检测装置有测速发电机、脉冲编码器等。位置环是由 CNC装置中的位置控制模块、速度控制单元、位置检测及反馈控制等部分组 成。
第6章 数控机床的伺服系统
A C1 B4 2 B 3C A
逆时针转30º
C 4 B
A 1 2 3 A
B
C 1 B
A 2
B 3 C
C
逆时针转30º
4 A
第6章 数控机床的伺服系统
采用三相双三拍控制方式,即通电顺序按AB→BC→CA→AB(逆时针 方向)或AC→CB→BA→AC(顺时针方向)进行,其步距角仍为30。由于 双三拍控制每次有二相绕组通电,而且切换时总保持一相绕组通电,所以 工作比较稳定。
第6章 数控机床的伺服系统
设 A 相首先通电,转子齿与定子 A 、 A′ 对齐(图 3a )。然后在 A 相继续通电的情 况下接通 B 相。这时定子 B 、 B′ 极对转子 齿 2 、 4 产生磁拉力,使转子顺时针方向转 动,但是 A 、 A′ 极继续拉住齿 1 、 3 ,因 此,转子转到两个磁拉力平衡为止。这时转 子的位置如图 3b 所示,即转子从图 (a) 位 置顺时针转过了 15° 。接着 A 相断电, B 相继续通电。这时转子齿 2 、 4 和定子 B 、 B′ 极对齐(图 c ),转子从图 (b) 的位置又 转过了 15° 。其位置如图 3d 所示。这样, 如果按 A→A 、 B→B→B 、 C→C→C 、 A→A… 的顺序轮流通电,则转子便顺时针 方向一步一步地转动,步距角 15° 。电流 换接六次,磁场旋转一周,转子前进了一个 齿距角。如果按 A→A 、 C→C→C 、 B→B→B 、 A→A… 的顺序通电,则电机 转子逆时针方向转动。这种通电方式称为六 拍方式。
数控机床进给伺服系统的组成和分类
机床加工,大多是低速时进行切削,即在低速时进给驱动要有大的转矩输出。
二、进给伺服系统的组成如图所示为数控机床进给伺服系统的组成。
从图中可以看出,它是一个双闭环系统,内环是速度环,外环是位置环。
位置环的输入信号是计算机给出的指令信号和位置检测装置反馈的位置信号,这个反馈是一个负反馈,即与指令信号的相位相反。
指令信号是向位置环送去加数,而反馈信号向位置环送去减数。
位置检测装置通常有光电编码器、旋转变压器、光栅尺、感应同步器或磁栅尺等。
它们或者直接对位移进行检测,或者间接对位移进行检测。
开环伺服系统开环伺服系统是最简单的进给伺服系统,无位置反馈环节。
如图所示,这种系统的伺服驱动装置主要是步进电动机、功率步进电动机、电液脉冲电动机等。
由数控系统发出的指令脉冲,经驱动电路控制和功率放大后,使步进电动机转动,通过齿轮副与滚珠丝杠螺母副驱动执行部件。
闭环伺服系统闭环伺服系统原理图如图所示。
系统所用的伺服驱动装置主要是直流或交流伺服电动机以及电液伺服阀—液压马达。
与开环进给系统最主要的区别是:安装在执行部件上的位置检测装置,测量执行部件的实际位移量并转换成电脉冲,反馈到输入端并与输人位置指令信号进行比较,求得误差,依此构成闭环位置控制。
由于采用了位置检测反馈装置,所以闭环伺服系统的位移精度主要取决于检测装置的精度。
闭环伺服系统的定位精度一般可达±0.01mm~±0.005 mm。
半闭环伺服系统半闭环伺服系统如图所示。
将检测元件安装在中间传动件上,间接测量执行部件位置的系统称为半闭环系统。
闭坏系统可以消除机械传动机构的全部误差,而半闭环系统只能补偿系统环路内部分元件的误差,因此,半闭环系统的精度比闭环系统的精度要低一些,但是它的结构与凋试都比较简单。
全数字伺服系统随着微电子技术、计算机技术和伺服控制技术的发展,数控机床的伺服系统已经开始采用高速度、高精度的全数字伺服系统。
使伺服控制技术从模拟方式、混合方式走向全数字方式。
数控技术 第七章 数控机床的进给伺服系统
三 步进电动机的基本控制方法
(2) 双电压功率放大电路 优点:功耗低,改善了脉冲 优点:功耗低, 前沿。 前沿。 缺点:高低压衔接处电流波 缺点: 形呈凹形, 形呈凹形,使步进电机 输出转矩降低, 输出转矩降低,适用于 大功率和高频工作的步 进电机。 进电机。
三 步进电动机的基本控制方法
(3) 斩波恒流功放电路 优点: 优点:1)R3较小(小 R3较小( 较小 于兆欧) 于兆欧)使整个 系统功耗下降, 系统功耗下降, 效率提高。 效率提高。 2)主回路不串 电阻, 电阻,电流上升 快,即反应快。 即反应快。 3)由于取样绕 组的反馈作用, 组的反馈作用, 绕组电流可以恒定在确定的数值上, 绕组电流可以恒定在确定的数值上,从而保证在很大频率范 围内,步进电机能输出恒定的转矩。 围内,步进电机能输出恒定的转矩。
二 数控机床对伺服系统的基本要求
1 高精度 一般要求定位精度为0.01~0.001mm; ; 一般要求定位精度为 高档设备的定位精度要求达到0.1um以上。 以上。 高档设备的定位精度要求达到 以上 2 快速响应 3 调速范围宽 调速范围指的是 max/nmin 。 调速范围宽:调速范围指的是 调速范围指的是:n 进给伺服系统:一般要求 进给伺服系统 一般要求0~30m/min,有的已达到 一般要求 ,有的已达到240m/min 主轴伺服系统:要求 主轴伺服系统 要求1:100~1:1000恒转矩调速 要求 恒转矩调速 1:10以上的恒功率调速 以上的恒功率调速
一 直流伺服电动机调速原理
7-30 直流电动机的机械特性
二 直流电动机的PWM调速原理 直流电动机的 调速原理
7-24 脉宽调制示意图 脉宽调制示意图
Ud =
τ
T
U = δ T U δ T 称为导通率
数控加工编程技术试题库及答案
<〈数控加工编程技术>>试题库一、填空1.数控机床按伺服系统的形式分类,可分为:开环控制、全闭环控制、半闭环控制。
2.DNC是指直接数字控制系统。
FMC则是柔性制造单元。
3.NC机床的含义是数控机床,CNC机床的含义是( 计算机数字控制), FMS的含义是( 柔性制造系统)。
4.数控机床中的标准坐标系采用右手笛卡尔直角坐标系,并规定增大刀具与工件之间距离的方向为坐标正方向。
5.刀具补偿包括_半径补偿_和_长度补偿_。
6.编程时可将重复出现的程序编成子程序,使用时可以由主程序多次重复调用。
7.在数控铣床上加工整圆时,为了避免在工件表面产生刀痕,刀具应该从起始点沿圆弧表面的切线方向进入,进行圆弧铣削加工;整圆加工完毕退刀时,顺着圆弧表面的切线方向退出。
8.铣削平面轮廓曲线工件时,铣刀半径应小于工件轮廓的最小凹圆半径。
9.数控机床按控制系统功能特点分类分为:点位控制、直线控制和轮廓控制机床。
10.数控机床主要由加工程序、输入装置、数控装置、伺服驱动装置、检测反馈装置、辅助控制装置、机床本体等组成。
11.数控车床的混合编程是指在编程时可以采用绝对编程和增量编程12.机床接通电源后的回零操作是使刀具或工作台退回到机床参考点。
13.数控系统是由_数控装置、伺服驱动装置、检测反馈装置、辅助控制装置_组成。
14.第一台数控机床是由__美国___的帕森Parsons公司与美国的麻省理工学院(MIT)于_1952__年合作研制成功的15.切削用量包括_切削速度_、进给速度__和__吃刀深度。
16.数控机床中的标准坐标系采用右手笛卡尔直角坐标系。
17.数字控制是用___数字化____信号进行控制的一种方法.。
32、在数控编程时,使用( 刀具补偿)指令后,就可以按工件的轮廓尺寸进行编程,而不需按照刀具的中心线运动轨迹来编程。
33、圆弧插补时,通常把与时钟走向一致的圆弧叫( 顺圆 ),反之称为(逆圆 )。
数控机床伺服系统的分类
数控机床伺服系统的分类数控机床伺服系统按用途和功能分为进给驱动系统和主轴驱动系统;按控制原理和有无检测反馈环节分为开环伺服系统、闭环伺服系统和半闭环伺服系统;按使用的执行元件分为电液伺服系统和电气伺服系统。
1.按用途和功能分:(1)进给驱动系统:是用于数控机床工作台坐标或刀架坐标的控制系统,控制机床各坐标轴的切削进给运动,并提供切削过程所需的力矩。
主要关心其力矩大小、调速范围大小、调节精度高低、动态响应的快速性。
进给驱动系统一般包括速度控制环和位置控制环。
(2)主轴驱动系统:用于控制机床主轴的旋转运动,为机床主轴提供驱动功率和所需的切削力。
主要关心其是否有足够的功率、宽的恒功率调节范围及速度调节范围;它只是一个速度控制系统。
2.按使用的执行元件分:(1)电液伺服系统其伺服驱动装置是电液脉冲马达和电液伺服马达。
其优点是在低速下可以得到很高的输出力矩,刚性好,时间常数小、反应快和速度平稳;其缺点是液压系统需要供油系统,体积大、噪声、漏油等。
(2)电气伺服系统其伺服驱动装置伺服电机(如步进电机、直流电机和交流电机等)。
其优点是操作维护方便,可靠性高。
其中,1)直流伺服系统其进给运动系统采用大惯量宽调速永磁直流伺服电机和中小惯量直流伺服电机;主运动系统采用他激直流伺服电机。
其优点是调速性能好;其缺点是有电刷,速度不高。
2)交流伺服系统其进给运动系统采用交流感应异步伺服电机(一般用于主轴伺服系统)和永磁同步伺服电机(一般用于进给伺服系统)。
优点是结构简单、不需维护、适合于在恶劣环境下工作;动态响应好、转速高和容量大。
3.按控制原理分(1)开环伺服系统系统中没有位置测量装置,信号流是单向的(数控装置→进给系统),故系统稳定性好。
开环伺服系统的特点:1. 一般以功率步进电机作为伺服驱动元件。
2. 无位置反馈,精度相对闭环系统来讲不高,机床运动精度主要取决于伺服驱动电机和机械传动机构的性能和精度。
步进电机步距误差,齿轮副、丝杠螺母副的传动误差都会反映在零件上,影响零件的精度。
数控试题库及答案
数控试题库及答案一、单选题1. 数控机床的数控系统通常由哪几部分组成?A. 计算机硬件、计算机软件、输入输出设备B. 计算机硬件、计算机软件、伺服系统C. 计算机硬件、伺服系统、输入输出设备D. 计算机软件、伺服系统、输入输出设备答案:B2. 以下哪个不是数控机床的伺服系统?A. 步进电机B. 直流电机C. 交流电机D. 液压系统答案:D3. 数控机床的编程语言中,G代码表示什么?A. 准备功能B. 辅助功能C. 刀具功能D. 主轴功能答案:A4. 在数控加工中,刀具半径补偿的作用是什么?A. 改变刀具的切削速度B. 改变刀具的切削深度C. 修正刀具半径对加工路径的影响D. 修正刀具长度对加工路径的影响答案:C5. 数控机床的坐标系中,X轴通常表示什么方向?A. 横向B. 纵向C. 垂直方向D. 旋转方向答案:A二、多选题1. 数控机床的组成部分包括哪些?A. 床身B. 传动系统C. 控制系统D. 刀具E. 工件答案:ABC2. 数控加工的特点有哪些?A. 高精度B. 高效率C. 灵活性D. 批量生产E. 复杂性答案:ABC3. 数控编程中,M代码用于表示什么?A. 主轴转速B. 刀具更换C. 冷却液的开关D. 程序结束E. 程序暂停答案:CDE三、判断题1. 数控机床的伺服系统是数控系统的核心部分。
(对)2. 数控机床的编程语言中,G代码用于表示辅助功能。
(错)3. 数控机床的坐标系中,Z轴通常表示横向。
(错)4. 数控加工中,刀具半径补偿可以修正刀具长度对加工路径的影响。
(错)5. 数控机床的编程语言中,M代码用于表示准备功能。
(对)四、简答题1. 简述数控机床的工作原理。
答:数控机床的工作原理是通过数控系统接收输入的程序代码,经过处理后控制机床的运动和动作,实现工件的加工。
2. 数控机床的伺服系统有哪些类型?答:数控机床的伺服系统主要有步进电机伺服系统、直流伺服系统和交流伺服系统。
3. 数控编程中,刀具半径补偿的作用是什么?答:刀具半径补偿的作用是在数控编程中修正由于刀具半径存在而对加工路径产生的影响,以保证加工精度。
数控机床伺服系统的分类及其应用要求
数控机床伺服系统的分类及其应用要求数控机床伺服系统又称为位置随动系统,简称为伺服系统。
数控机床伺服系统是把数控信息转化为机床进给运动的执行机构,在许多自动化控制领域广泛应用。
数控机床伺服系统的种类繁多、技术原理各具特色,这对其应用带来很大的困扰,本文就数控机床伺服系统的分类及其应用要求做简单介绍。
一、数控机床伺服系统的分类数控机床伺服系统按其用途和功能分为进给驱动系统和主轴驱动系统;按其控制原理和有无位置检测反馈环节分为开环系统和闭环系统;按驱动执行元件的动作原理分为电液伺服驱动系统和电气伺服驱动系统。
电气伺服驱动系统又分为直流伺服驱动系统和交流伺服驱动系统。
1.进给驱动与主轴驱动进给驱动是用于数控机床工作台或刀架坐标的控制系统,控制机床各坐标轴的切削进给运动,并提供切削过程所需的转矩。
主轴驱动控制机床主轴的旋转运动,为机床主轴提供驱动功率和所需的切削力。
一般地,对于进给驱动系统,主要关心它的转矩大小、调节范围的大小和调节精度的高低,以及动态响应速度的快慢。
对于主轴驱动系统,主要关心其是否具有足够的功率、宽的恒功率调节范围及速度调节范围。
2.开环控制和闭环控制数控机床伺服驱动系统按有无位置反馈分两种基本的控制结构,即开环控制和闭环控制,如图5--1所示。
由此形成位置开环控制系统和位置闭环控制系统。
闭环控制系统又可根据位置检测装置在机床上安装的位置不同,进一步分为半闭环伺服驱动控制系统和全闭环伺服驱动控制系统。
若位置检测装置安装在机床的工作台上,构成的伺服驱动控制系统为全闭环控制系统;若位置检测装置安装在机床丝杠上,构成的伺服驱动控制系统则为半闭环控制系统。
现代数控机床的伺服驱动多采用闭环控制系统。
开环控制系统常用于经济型数控或老设备的改造。
3.直流伺服驱动与交流伺服驱动70年代和80年代初,数控机床多采用直流伺服驱动。
直流大惯量伺服电机具有良好的宽调速性能,输出转矩大,过载能力强,而且,由于电机惯性与机床传动部件的惯量相当,构成闭环后易于调整。
数控机床的进给伺服系统概述
• 当步进电机励磁绕组相数大于3时,多相通电多数 能提高输出转矩。
• 所以功率较大的步进电机多数采用多于三相的励磁 绕组,且多相通电。
3、启动转矩Mq
AB C Mq
e
当电机所带负载ML<Mq时,电机可不失步的启动。
2、最高启动频率和最高工作频率
最高启动频率fg: 步进电机由静止突然启动,并不失步地进 入稳速运行,所允许的启动频率的最高值。 最高启动频率fg与步进电机的惯性负载J有 关。
故电动机的转速n为:
n f (r/s) 60 f (r/min) f ——控制脉冲的频率
mzk
mzk
SB-58-1型五定子轴向分相反应式步进电机。
• 定子和转子都分为5段,呈轴向分布;有16个 齿均匀分布在圆周上,
• 齿距=360º/16=22.5º;各相定子彼此径向错开 1/5个齿的齿距;
如按5相5拍通电,则步距角为:
4)电动机定子绕组每改变一次通电方式——称为一拍 5)每输入一个脉冲信号,转子转过的角度——步距角αº • 上述通电方式称为:三相单三拍。(三相三拍) • 单——每次通电时,只有一相绕组通电; • 双——每次通电时,有两相绕组通电; • 三拍——经过三次切换绕组的通电状态为一个循环; • 除此之外的通电方式还有: • 三相双三拍: AB—BC—CA—AB • 三相单双六拍: A—AB—B—BC—C—CA—A
第三节 数控机床的检测装置
1、检测装置的作用
• 检测装置是数控机床闭环伺服系统的重要组成部分 • 其作用是:检测位移和速度,发送反馈信号,构成
(1) 直线进给系统 已知:进给系统的脉冲当量δmm;步进电机的
步距角αº;滚珠丝杠的导程t mm;
求: 齿轮传动比 i。
数控机床的伺服驱动系统
数控机床的伺服驱动系统
伺服系统是指以机械位置或角度作为控制对象的自动控制系统,而在数控机床中,伺服系
2
统主要指各坐标轴进给驱动的位置控制系统,它由执行组件(如步进电机、交直流电动机
等)和相应的控制电路组成,包括主驱动和进给驱动。伺服系统接收来自CNC装置的进给
脉冲,经变换和放大,再驱动各加工坐标轴按指令脉冲运动。这些轴有的带动工作台,有
(4)步进电动机的主要特点
步进电动机受脉冲信号的 控制,每输入一个脉冲, 就变换一次绕组的通电状 态,电动机就相应转动一 步。因此角位移与输入脉 冲个数成严格的比例关系。
一旦停止送入控制脉冲, 只要维持控制绕组电流不 变,电动机可以保持在其 固定的位置上,不需要机 械制动装置。
输出转角精度高,虽有相 邻齿距误差;但无积累误 差。
4.3.2.2 直流伺服电动机
直流伺服电动机是数控机床伺服系统中应用最早的,也是使用最广泛的 执行组件。直流伺服电动机有永磁式和电磁式两种结构类型。随着磁性 材料的发展,用稀土材料制作的永磁式直流伺服电动机的性能超过了电 磁式直流伺服电动机,目前广泛应用于机床进给驱动。直流伺服电动机 的工作原理与普通直流电动机完全相同,但工作状态和性能差别很大。 机床进给伺服系统中使用的多为大功率直流伺服电动机,如低惯量电动 机和宽调速电动机等。
θb =
从上面的分析可以看 出,步进电动机转动 的角度取决于定子绕 组的相数、转子齿数 及供电的逻辑状态。 若以θb表示步距角, 则有
(4-12)
360
mzK 式中 m—步进电动机相数;z—转子齿数;K—由 步进电动机控制方式确定的拍数和相数的比例系 数,如三相三拍时,K=1;而三相六拍制时,K =2。 为了提高加工精度,一般要求步距角很小,数控 机床中常用的步进电动机步距角为0.36o~3o
数控机床按伺服控制方式分类
数控机床按伺服控制方式分类数控机床有很多分类方式,可以按工艺用途分类、机床运动控制轨迹分类、伺服控制方式分类、数控系统功能水平分类。
泊头巨人重工机械有限公司是一家专业生产、立车、数控立车、数控龙门铣床、龙门加工中心、数控落地镗铣床的生产厂家。
对数控机床分类很有心得,下面我们讲解一下按伺服控制方式分类。
(1)开环控制数控机床开环控制没有榆测反馈装置,数控系统发出的指令脉冲信号是单方向的,没有反馈信号,因此其加工精度主要取决于伺服系统的性能。
开环控制系统的驱动元件主要是步进电动机,控制电路每变换一次指令脉冲信号,电动机就转过一个步距角。
开环控制结构简单,造价低,调试维修方便,但控制精度一般不高,多应用于经济型数控机床或旧机床的数控化改造。
图1-10所示为开环控制系统框图。
(2)半闭环控制数控机床半闭环控制采用的是角位移检测装置,安装在伺服电动机或丝杠端部,通过检测伺服电机的转角或丝杠转角,间接测得工作台的实际位移值,与输入指令值比较后,用差值控制运动部件。
由于丝杠、工作台等惯性较大的运动部件不在控制环内,比较容易获得稳定的控制特性,角位移检测装置可与伺服电机设计成一个整体,使系统的结构简单,安装调试方便,但机械传动的误差无法得到校正和消除。
只要榆测装置的精度高,分辨率高,丝杠螺母机构的精度高。
具有可行的间隙消除措施,半闭环控制系统就能具有较高的控制精度,日前广泛应用于中小型数控机床上。
图1-1l所示为半闭环控制系统框图。
(3)闭环控制数控机床闭环控制采用的是直线位移检测装置,安装在机床工作台上,直接榆测工作台的实际位移值,与输入指令比较后,用差值控制运动部件。
闭环控制在位置环内还有一个速度环,其日的是减少因负载等因素而引起的进给速度的波动,改善位置环的控制品质。
由于将机械传动部分全部包括在闭环之内,从理论上讲,闭环控制的精度取决于检测装置的精度,而与机械传动的误差无关,因而定位精度高,速度快。
但闭环控制系统技术上要求高,成本较高,调试和维修比较复杂,此外机床的结构、传动装置及传动间隙等非线性因素都会影响其控制精度,严重时系统会产生振荡,降低系统稳定性,所以在设计时应对其给予足够的重视。
数控机床的伺服系统
4.2 步进电动机驱动控制系统
4.2.3 步进电动机的驱动控制
1.步进电动机的工作方式 从一相通电换接到另一相通电称为一拍,每拍转子转过一个
步距角。按A→B → C → A → …的顺序通电时,电动机的转 子便会按此顺序一步一步地旋转;反之,若按A → C → B → A→…的顺序通电,则电动机就会反向转动,这种三相依次 单相通电的方式,称为三相单三拍式运行,“单”是指每次 只有一相绕组通电,“三拍”是指一个循环内换接了三次, 即A、B、C三拍。单三拍通电方式每次只有一相控制绕组通 电吸引转子,容易使转子在平衡位置附近产生振荡,运行稳 定性较差;另外,在切换时一相控制绕组断电而另一相控制绕 组开始
4.2.2 步进电动机的工作原理与主要特 性
1.步进电动机的工作原理
上一页 下一页 返回
4.2 步进电动机驱动控制系统
步进电动机的工作原理实际上是电磁铁的作用原理。下面以 图4-2所示的一个最简单步进电动机结构为例说明步进电动机 的工作原理。其定子上分布有6个齿极,每两个相对齿极装有 一相励磁绕组,构成三相绕组。
也称为数组的长度。
下一页 返回
6.1 一维数组
对数组的定义应注意以下几点。 (1)数组的类型实际上是指数组元素的取值类型。对于同一
个数组,其所有元素的数据类型都是相同的。 (2)数组名的书写规则应符合标识符的书写规定。 (3)数组名不能与其他变量名相同。 (4)不能在方括号中用变量来表示元素的个数,但是可以用
按伺服控制方式不同,数控机床伺服系统可分为开环、闭环 和半闭环系统。开环型采用步进电动机驱动,控制方式简单, 信号单向传递,无位置反馈,所以精度不高,适用于要求不 高的经济型数控机床中。而闭环控制系统采用直流、交流伺 服电动机驱动,位置检测元件安装于机床运动部件上,
伺服系统的分类和特点
伺服系统的分类和特点一、引言伺服系统,作为现代工业自动化的重要组成部分,其性能和特点在很大程度上决定了整个系统的性能和稳定性。
伺服系统能够根据输入的指令信号,自动、快速、准确地控制执行机构的位移、速度和加速度,实现对目标值的精确跟踪。
本文将对伺服系统的分类和特点进行详细的阐述,以便更好地理解和应用伺服系统。
二、伺服系统的分类伺服系统可以根据工作原理和应用领域进行分类。
1.根据工作原理分类根据工作原理,伺服系统可以分为电气伺服系统和液压伺服系统两大类。
其中,电气伺服系统又可以分为直流伺服系统和交流伺服系统。
(1)直流伺服系统:直流伺服电机由定子、转子、电刷和换向器等部分组成。
其工作原理是当电流通过励磁绕组和电枢绕组时,产生磁场,驱动转子旋转。
直流伺服电机具有调速范围广、低速性能好、响应速度快等优点,但同时也存在维护成本高、易磨损等缺点。
(2)交流伺服系统:交流伺服电机由定子、转子和编码器等部分组成。
其工作原理是通过控制电机的输入电压或电流,改变电机的旋转速度和方向。
交流伺服电机具有效率高、可靠性高、维护成本低等优点,但同时也存在调速范围较窄、低速性能较差等缺点。
2.根据应用领域分类根据应用领域,伺服系统可以分为工业伺服系统和航空伺服系统两大类。
(1)工业伺服系统:工业伺服系统主要用于工业自动化生产线、数控机床、包装机械等领域。
其特点是要求精度高、稳定性好、可靠性高、响应速度快等。
常见的工业伺服系统有电机驱动控制系统、气压传动控制系统和液压传动控制系统等。
(2)航空伺服系统:航空伺服系统主要用于航空器自动驾驶系统、雷达天线控制系统等领域。
其特点是要求精度高、可靠性极高、响应速度快、抗干扰能力强等。
常见的航空伺服系统有舵机控制系统、燃油控制系统等。
三、伺服系统的特点1.精度高:伺服系统的输出量能够精确地跟踪输入指令信号,从而实现高精度的位置控制和速度控制。
2.快速响应:伺服系统具有快速的动态响应特性,能够迅速跟踪输入信号的变化,保证系统的稳定性和动态性能。
伺服系统的分类和基本组成形式
伺服系统的分类和基本组成形式伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。
伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。
分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。
数控机床伺服系统的作用在于接受来自数控装置的指令信号,驱动机床移动部件跟随指令脉冲运动,并保证动作的快速和准确,这就要求高质量的速度和位置伺服。
以上指的主要是进给伺服控制,另外还有对主运动的伺服控制,不过控制要求不如前者高。
数控机床的精度和速度等技术指标往往主要取决于伺服系统。
伺服系统的分类伺服系统按其驱动元件划分,有步进式伺服系统、直流电动机伺服系统、交流电动机伺服系统。
按控制方式划分,有开环伺服系统、闭环伺服系统和半闭环伺服系统等,实际上数控系统也分成开环、闭环和半闭环3种类型。
1、开环系统开环系统,它主要由驱动电路,执行元件和机床3大部分组成。
常用的执行元件是步进电机,平日称以步进电机作为履行元件的开环系统为步进式伺服系统,在这种系统中,假如是大功率驱动时,用步进电机作为履行元件。
驱动电路的主要任务是将指令脉冲转化为驱动执行元件所需的信号。
2、闭环系统闭环系统主要由执行元件、检测单元、比较环节、驱动电路和机床5部分组成。
在闭环系统中,检测元件将机床移动部件的实际位置检测出来并转换成电信号反馈给比较环节。
常见的检测元件有旋转变压器、感应同步器、光栅、磁栅和编码盘等。
通常把安装在丝杠上的检测元件组成的伺服系统称为半闭环系统;把安装在工作台上的检测元件组成的伺服系统称为闭环系统。
由于丝杠和工作台之间传动误差的存在,半闭环伺服系统的精度要比闭环伺服系统的精度低一些。
比较环节的作用是将指令信号和反馈信号举行比较,两者的差值作为伺服系统的跟随偏差,经驱动电路,控制履行元件带动工作台继续挪动,直到跟随偏差为零。
伺服系统的分类
伺服系统的分类主轴驱动系统→主轴的旋转运动进给驱动系统→进给轴直线运动直流驱动系统交流驱动系统伺服系统(组成)伺服电机(M)驱动信号控制转换电路电力电子驱动放大模块电流调解单元,速度调解单元相信的检测装置数控机床的伺服系统是指以机床移动部件的位移和速度作为控制系统,它是执行CNC装置所发出命令的执行机构。
因为电动机拖着一个重量很重的工作台,而且摩擦力随着季节、新旧程度、润滑状态等因素而变化,控制了一个稳定速度,精确定位,可以想象其难度之大位置环也称为外环,其输入信号是计算机给出的指令和位置检测器反馈的位置信号。
这个反馈是负反馈,也就是说与指令信号相位相反。
指令信号是相位置环送去加数,而反馈信号是送去减数。
位置环的输出就是速度环的输入位置检测器可以是光电编码器、旋转变压器,也可能是光栅尺、感应同步器或磁栅尺等。
但是,它的作用就是检测位置的,有时可能是直接检测位置的,有时可能是直接检测位置,但也有时是间接检测位置机床进给伺服系统高精度快响应宽调速范围低速大转矩对主轴传动提出下述要求:1、主传动电动机应有(2.2~250)KW的功率范围;2、要有大的无级调速范围,如能在1:100~1000范围内进行恒转矩速度和1:10的恒功率调速3、要求主传动有四项限的驱动能力4、为了满足螺纹车削,要求主轴能与进给实行同步控制5、在加工中心上为了自动换刀,要求主轴能进行高精度定向停位控制,甚至要求主轴具有角度控制功能等。
主轴驱动变速目前主要有两种形式:一是主轴电动机带齿轮换挡,目的在于降低主轴转速,增大传动比,放大主轴功率以适应切削的需要;二是主轴电动机通过同步齿形带或皮带驱动主轴,该类主轴电动机又称宽域电动机或强切削电动机,具有恒功率宽的特点FANUC公司主轴驱动系统主要采用交流主轴驱动系统S H P 三个系列(1.5~37、1.5~22、3.7~37KW)SIEMENS 公司主轴驱动系统直流主轴电机1GG5、1GF5交流主轴电机1PH5、1PH6主轴伺服系统的故障形式及诊断方法故障形式诊断方法速度调节器的输入作为电流调节器的给定信号来控制电动机的电流和转矩。
数控机床伺服系统类型分类之研究
数控机床伺服系统类型分类之研究摘要:数控机床的种类很多,其分类方法也很多。
其中以伺服系统类型的分类对数控机床的内在结构分析最为详细。
伺服驱动系统由伺服驱动电路和伺服驱动装置(电动机)组成,并与机床上的执行部件和机械传动部件组成数控机床的进给系统。
它根据数控装置发来的速度和位移指令控制执行部件的进给速度、方向和位移。
每个做进给运动的执行部件都配有一套伺服驱动系统。
关键词:数控机床分类伺服系统电动机脉冲开环闭环半闭环检测元件伺服驱动系统由伺服驱动电路和伺服驱动装置(电动机)组成,并与机床上的执行部件和机械传动部件组成数控机床的进给系统。
它根据数控装置发来的速度和位移指令控制执行部件的进给速度、方向和位移。
每个做进给运动的执行部件都配有一套伺服驱动系统。
伺服驱动系统有开环、半闭环和闭环之分。
在半闭环和闭环伺服驱动系统中,使用位置检测装置间接或直接测量执行部件的实际进给位移,然后与指令位移进行比较,最后按闭环原理将其差值转换放大后控制执行部件的进给运动。
一.开环数控机床开环数控机床采用开环进给伺服系统。
开环控制系统没有位置检测元件,伺服驱动部件通常为反应式步进电动机或混合式伺服步进电动机,如图1所示。
数控系统每发出一个进给指令脉冲,经驱动电路功率放大后,驱动步进电动机旋转一个角度,再经传动机构带动工作台移动。
这类系统信息流是单向的,即进给脉冲发出去以后,实际移动值不再反馈回来,所以称为开环控制。
开环控制系统的优点是结构较简单、成本较低、技术容易掌握。
但是,由于受步进电动机的步距精度和传动机构的传动精度的影响,难以实现高精度的位置控制,进给速度也受步进电动机工作频率的限制。
因此开环数控机床一般适用于中、小型控制系统的经济型数控机床,特别适用于旧机床改造的简易数控机床。
二.闭环数控机床闭环数控机床的进给伺服系统是按闭环原理工作的。
闭环控制系统如图2所示。
这类控制系统带有直线位移检测装置,直接对工作台的实际位移量进行检测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控机床伺服系统的分类数控机床伺服系统按用途和功能分为进给驱动系统和主轴驱动系统;按控制原理和有无检测反馈环节分为开环伺服系统、闭环伺服系统和半闭环伺服系统;按使用的执行元件分为电液伺服系统和电气伺服系统。1.按用途和功能分:(1)进给驱动系统:是用于数控机床工作台坐标或刀架坐标的控制系统,控制机床各坐标轴的切削进给运动,并提供切削过程所需的力矩。主要关心其力矩大小、调速范围大小、调节精度高低、动态响应的快速性。进给驱动系统一般包括速度控制环和位置控制环。
1)直流伺服系统其进给运动系统采用大惯量宽调速永流伺服电机。其优点是调速性能好;其缺点是有电刷,速度不高。2)交流伺服系统其进给运动系统采用交流感应异步伺服电机(一般用于主轴伺服系统)和永磁同步伺服电机(一般用于进给伺服系统)。
(2)主轴驱动系统:用于控制机床主轴的旋转运动,为机床主轴提供驱动功率和所需的切削力。主要关心其是否有足够的功率、宽的恒功率调节范围及速度调节范围;它只是一个速度控制系统。
2.按使用的执行元件分:(1)电液伺服系统其伺服驱动装置是电液脉冲马达和电液伺服马达。其优点是在低速下可以得到很高的输出力矩,刚性好,时间常数小、反应快和速度平稳;其缺点是液压系统需要供油系统,体积大、噪声、漏油等。(2)电气伺服系统其伺服驱动装置伺服电机(如步进电机、直流电机和交流电机等)。其优点是操作维护方便,可靠性高。其中,