数学沪科版七年级下册第一章单元测卷

合集下载

(完整版)最新沪科版七年级数学下册单元测试题及答案全册,推荐文档

(完整版)最新沪科版七年级数学下册单元测试题及答案全册,推荐文档

第6章 实数一、选择题(本大题共10小题,每小题4分,满分40分) 1.下列各数中最大的数是( )A .5 B. 3 C .π D .-8 2.4的算术平方根是( ) A .2B .±2 C. 2 D .±23.下列各数:0,32,(-5)2,-4,-|-16|,π,其中有平方根的个数是( ) A .3个 B .4个 C .5个 D .6个4.如图,数轴上的A ,B ,C ,D 四点中,与数-3表示的点最接近的是( )A .点AB .点BC .点CD .点D5.下列式子中,正确的是( ) A.3-7=-37 B.36=±6C .- 3.6=-0.6 D.(-8)2=-86.在-3.5,227,0,π2,-2,-30.001,0.161161116…(相邻两个6之间依次多一个1)中,无理数有( )A .1个B .2个C .3个D .4个7.下列说法中,正确的是( ) A .不带根号的数不是无理数B.64的立方根是±2C .绝对值等于3的实数是3D .每个实数都对应数轴上一个点8.-27的立方根与81的平方根之和是( ) A .0 B .-6 C .0或-6 D .6 9.比较7-1与72的大小,结果是( ) A .后者大 B .前者大 C .一样大 D .无法确定10.如果0<x <1,那么在x ,1x ,x ,x 2中,最大的是( )A .x B.1xC.x D .x 2二、填空题(本大题共4小题,每小题5分,满分20分) 11.-5的绝对值是________,1的算术平方根是________.12.已知x -1是64的算术平方根,则x 的算术平方根是________.13.若x ,y 为实数,且|x +2|+y -1=0,则(x +y )2018=________.14.对于“5”,有下列说法:①它是一个无理数;②它是数轴上离原点5个单位长度的点所表示的数;③若a <5<a +1,则整数a 为2;④它表示面积为5的正方形的边长.其中正确的说法是________(填序号).三、(本大题共2小题,每小题8分,满分16分) 15.将下列各数的序号填在相应的集合里:①0,②3-827,③3.1415,④π5, ⑤-0.3507··,⑥-2.3131131113…, ⑦-6133,⑧-8,⑨(-4)2,⑩0.9.16.计算:(1)|-5|+(-2)2+3-27-(-2)2-1;(2)30.125-3116×3×⎝⎛⎭⎫-182.四、(本大题共2小题,每小题8分,满分16分) 17.求下列各式中x 的值: (1)25x 2=9; (2)(x +3)3=8.18.计算:(1)3π-132+78(精确到0.01);(2)210×5÷6(精确到0.01).五、(本大题共2小题,每小题10分,满分20分)19.已知2a-1的平方根为±3,3a+b-1的算术平方根为4,求a+2b的平方根.20.如图,数轴的正半轴上有A,B,C三点,表示1和2的对应点分别为点A,B,点B到点A的距离与点C到点O的距离相等.设点C所表示的数为x.(1)请你写出数x的值;(2)求(x-2)2的立方根.六、(本题满分12分)21.某地气象资料表明:当地雷雨持续的时间t(h)可以用下面的公式来估计:t2=d3900,其中d(km)是雷雨区域的直径.(1)如果雷雨区域的直径为9km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是多少(已知3900≈9.65,结果精确到0.1km)?七、(本题满分12分)22.如图是一个数值转换器.(1)当输入x=25时,求输出的y的值;(2)是否存在输入x的值后,始终输不出y的值?如果存在,请直接写出所有满足要求的x值;如果不存在,请说明理由;(3)输入一个两位数x,恰好经过三次取算术平方根才能输出无理数y,则x=________(只填一个即可).八、(本题满分14分)23.如图①,把2个边长为1的正方形沿对角线剪开,将所得到的4个三角形拼成第1个大的正方形(如图②).(1)拼成的第1个大正方形的边长是________;(2)再把2个图②这样的大正方形沿对角线剪开,将所得的4个三角形拼成第2个大的正方形,则这个正方形的边长是________;(3)如此下去,写出拼成的第n个正方形的边长.1.A 2.C 3.B 4.B 5.A 6.C 7.D 8.C 9.B 10.B 11.51412.3 13.1 14.①③④ 15.解:①②③⑤⑦⑨(2分) ⑥⑧(4分) ③④⑨⑩(6分) ①②⑤⑥⑦⑧(8分)16.解:(1)原式=5+4-3-2-1=3.(4分) (2)原式=0.5-74×3×18=-532.(8分)17.解:(1)x 2=925,x =±925,x =±35.(4分) (2)x +3=38,x +3=2,x =-1.(8分)18.解:(1)原式≈3×3.142-3.6062+0.875≈8.50.(4分)(2)原式≈2×3.162×2.236÷2.449≈5.77.(8分)19.解:由题意得⎩⎪⎨⎪⎧2a -1=(±3)2=9,3a +b -1=42=16,解得⎩⎪⎨⎪⎧a =5,b =2.(6分)所以a +2b =5+2×2=9,所以a +2b 的平方根是±3.(10分)20.解:(1)x =2-1.(4分)(2)(x -2)2=(2-1-2)2=1,所以(x -2)2的立方根是1.(10分) 21.解:(1)当d =9时,则t 2=93900,(3分)因此t =93900=0.9.(5分) 答:如果雷雨区域的直径为9km ,那么这场雷雨大约能持续0.9h.(6分) (2)当t =1时,则d 3900=12,(8分)因此d =3900≈9.65≈9.7.(11分)答:如果一场雷雨持续了1h ,那么这场雷雨区域的直径大约是9.7km.(12分)22.解:(1)由输入x =25得25=5.因为5是有理数,不能输出,再取5的算术平方根得 5.因为5是无理数,所以输出y ,所以输入x =25时,输出的y 的值是 5.(4分)(2)x =0或1时,始终输不出y 的值.(8分) (3)81(答案不唯一)(12分)23.解:(1)2(4分) (2)2(8分)(3)两个边长为1的正方形拼成的第1个大正方形面积为2,所以它的边长为2;两个边长为2的正方形拼出的第2个大正方形面积为4,所以它的边长为2=(2)2……因此,拼成的第n 个正方形的边长为(2)n .(14分)第7章一元一次不等式与不等式组1.y 的13与z 的5倍的差的平方是一个非负数,列出不等式为( )A .5(13-y )2>0 B.13y -(5z )2≥0C .(13y -5z )2≥0 D.13y -5z 2≥02.已知a <b ,则下列不等式一定成立的是( ) A .a +5>b +5 B .-2a <-2b C.32a >32b D .7a -7b <0 3.一元一次不等式2(x +1)≥4的解集在数轴上表示为( ) A. B. C.D.4.不等式组⎩⎪⎨⎪⎧x +4>3,2x ≤4的解集是( )A .1<x ≤2B .-1<x ≤2C .x >-1D .-1<x ≤45.要使代数式3m -14-m2的值不小于1,那么m 的取值范围是( )A .m >5B .m >-5C .m ≥5D .m ≥-56.如果不等式2x -m <0只有三个正整数解,那么m 的取值范围是( ) A .m <8 B .m ≥6 C .6<m ≤8 D .6≤m <87.如果2m ,m ,1-m 这三个数在数轴上所对应的点从左到右依次排列,那么m 的取值范围是( ) A .m >0 B .m >12 C .m <0 D .0<m <128.若方程组⎩⎪⎨⎪⎧3x +y =k +1,x +3y =3的解x ,y 满足0<x +y <1,则k 的取值范围是( )A .-4<k <0B .-1<k <0C .0<k <8D .k >-49.若不等式组⎩⎪⎨⎪⎧1+x <a ,x +92+1≥x +13-1有解,则实数a 的取值范围是( )A .a <-36B .a ≤-36C .a >-36D .a ≥-36华查到网上某图书商城的报价如图所示.如果购买的《水浒传》尽可能的多,那么《水浒传》和《西游记》可以购买的套数分别是( ) A .20,10 B .10,20 C .21,9 D .9,21二、填空题(本大题共4小题,每小题5分,满分20分)11.已知y 1=x +3,y 2=-x +1,当y 1>2y 2时,x 满足的条件是________. 12.关于x 的方程kx -1=2x 的解为正实数,则k 的取值范围是________.13.若不等式组⎩⎪⎨⎪⎧2x -b ≥0,x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为____________.14.某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局反扣1分,在12局比赛中,积分超过15分就可以晋升下一轮比赛,而且在全部12轮比赛中,没有出现平局,小王最多输________局比赛.三、(本大题共2小题,每小题8分,满分16分) 15.解下列不等式:(1)3(x -1)>2x +2; (2)x -x -24>4x +35.16.解不等式组,并将解集分别表示在数轴上.(1)⎩⎪⎨⎪⎧4x -3>x ①,x +4<2x -1②; (2)⎩⎪⎨⎪⎧6x +15>2(4x +3)①,2x -13≥12x -23②.四、(本大题共2小题,每小题8分,满分16分)17.定义新运算:对于任意实数a ,b ,都有a ⊕b =a (a -b )+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5.(1)求(-2)⊕3的值;(2)若3⊕x 的值小于13,求x 的取值范围,并在如图所示的数轴上表示出来.18.已知不等式5(x -2)+8<6(x -1)+7的最小整数解为方程2x -ax =4的解,求a 的值.五、(本大题共2小题,每小题10分,满分20分)19.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =m ,2x -y =6的解满足x >0,y <0,求满足条件的整数m 的值.20.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题备受人们关注,某学校计划在教室内安装空气净化装置,需购进A ,B 两种设备.已知购买1台A 种设备和2台B 种设备需要3.5万元;购买2台A 种设备和1台B 种设备需要2.5万元.(1)求每台A 种、B 种设备的价格;(2)根据学校实际情况,需购进A 种和B 种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A 种设备多少台.六、(本题满分12分)21.用[a ]表示不大于a 的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a >表示大于a 的最小整数,例如:<2.5>=3,<4>=5,<-1.5>=-1(请注意两个不同的符号).解决下列问题:(1)[-4.5]=________,<3.5>=________;(2)若[x ]=2,则x 的取值范围是____________;若<y >=-1,则y 的取值范围是____________;(3)已知x ,y 满足方程组⎩⎪⎨⎪⎧3[x ]+2<y >=3,3[x ]-<y >=-6,求x ,y 的取值范围.七、(本题满分12分)22.为增强居民节约用电意识,某市对居民用电实行“阶梯收费”,具体收费标准见下表:某居民五月份用电190千瓦时,缴纳电费90元. (1)求x 的值和超出部分电费单价;(2)若该户居民六月份所缴电费不低于75元且不超过84元,求该户居民六月份的用电量范围.八、(本题满分14分)23.某公司有A,B两种客车,它们的载客量和租金如下表.星星中学根据实际情况,计划用A,B 型车共5辆,同时送七年级师生到校基地参加社会实践活动.(1)若要保证租金费用不超过980元,请问该学校有哪几种租车方案?(2)在(1)的条件下,若七年级师生共有150人,请问哪种租车方案最省钱?第7章参考答案与解析1.C 2.D 3.A 4.B 5.C 6.C 7.C 8.A 9.C 10.A 11.x >-13 12.k >2 13.x >3214.215.解:(1)去括号,得3x -3>2x +2,移项,得3x -2x >2+3,合并同类项,得x >5.(4分)(2)去分母,得20x -5(x -2)>4(4x +3),去括号,得20x -5x +10>16x +12,移项、合并同类项,得-x >2,x 系数化成1,得x <-2.(8分)16.解:(1)解不等式①,得x >1,解不等式②,得x >5.因此,不等式组解集为x >5.在数轴上表示不等式组的解集为(4分)(2)解不等式①,得x <92,解不等式②,得x ≥-2.因此,不等式组解集为-2≤x <92.在数轴上表示不等式组的解集为(8分)17.解:(1)因为a ⊕b =a (a -b )+1,所以(-2)⊕3=-2(-2-3)+1=10+1=11.(4分)(2)因为3⊕x <13,所以3(3-x )+1<13,9-3x +1<13,-3x <3,x >-1.在数轴上表示如图所示.(8分)18.解:解不等式得x >-3,所以最小整数解为x =-2.(4分)所以2×(-2)-a ×(-2)=4,解得a =4.(8分)19.解:解方程组得⎩⎨⎧x =6+m 3,y =2m -63.(4分)又因为x >0,y <0,所以⎩⎨⎧6+m 3>0,2m -63<0,解得-6<m <3.(7分)因为m为整数,所以m 的值为-5,-4,-3,-2,-1,0,1,2.(10分)20.解:(1)设每台A 种、B 种设备的价格分别为x 万元、y 万元,根据题意得⎩⎪⎨⎪⎧x +2y =3.5,2x +y =2.5,解得⎩⎪⎨⎪⎧x =0.5,y =1.5.(4分)答:每台A 种、B 种设备各0.5万元、1.5万元.(5分)(2)设购买A 种设备z 台,根据题意得0.5z +1.5(30-z )≤30,解得z ≥15.(9分) 答:至少购买A 种设备15台.(10分) 21.解:(1)-5 4(2分)(2)2≤x <3 -2≤y <-1(6分)(3)解方程组得⎩⎪⎨⎪⎧[x ]=-1,<y >=3,所以x ,y 的取值范围分别为-1≤x <0,2≤y <3.(12分)22.解:(1)根据题意,得160x +(190-160)(x +0.15)=90,解得x =0.45.则超出部分的电费单价是x +0.15=0.6(元/千瓦时).(5分)答:x 和超出部分电费单价分别是0.45元/千瓦时和0.6元/千瓦时.(6分) (2)设该户居民六月份的用电量是a 千瓦时,因为160×0.45=72(元),所以该户居民六月份用电量超过160千瓦时,则75≤160×0.45+0.6(a -160)≤84,解得165≤a ≤180.(11分)答:该户居民六月份的用电量在165千瓦时到180千瓦时之间.(12分)23.解:(1)设租A 型车x 辆,则租B 型车(5-x )辆,根据题意得200x +150(5-x )≤980,解得x ≤235.(4分)因为x 取非负整数,所以x =0,1,2,3,4,所以该学校的租车方案有如下5种:租A 型车0辆、B 型车5辆;租A 型车1辆、B 型车4辆;租A 型车2辆、B 型车3辆;租A 型车3辆、B 型车2辆;租A 型车4辆、B 型车1辆.(7分)(2)根据题意得40x +20(5-x )≥150,解得x ≥52.(10分)因为x 取整数,且x ≤235,所以x =3或4.当x =3时,租车费用为200×3+150×2=900(元);当x =4时,租车费用为200×4+150×1=950(元).因为900<950,所以当租A 型车3辆、B 型车2辆时,租车费用最低.(14分)第8章 整式乘法与因式分解一、选择题(本大题共10小题,每小题4分,满分40分) 1.下列运算中,结果是a 6的式子是( ) A .a 2·a 3 B .a 12-a 6 C .(a 3)3 D .(-a )62.计算(-xy 3)2的结果是( ) A .x 2y 6 B .-x 2y 6 C .x 2y 9 D .-x 2y 9 3.科学家使用铁纳米颗粒以及具有磁性的钴和碳纳米颗粒合成了直径约为0.000000012米的新型材料,这种材料能在高温下储存信息,具有广阔的应用前景.这里的“0.000000012米”用科学记数法表示为( )A .0.12×10-7米B .1.2×10-7米C .1.2×10-8米D .1.2×10-9米 4.对于多项式:①x 2-y 2;②-x 2-y 2;③4x 2-y ;④x 2-4,能够用平方差公式进行因式分解的是( ) A .①和② B .①和③ C .①和④ D .②和④5.下列各式的计算中正确的个数是( )①100÷10-1=10; ②10-4·(2×7)0=1000;③(0.1)0÷⎝⎛⎭⎫-12-3=8; ④(-10)-4÷⎝⎛⎭⎫-110-4=-1. A .4个 B .3个C .2个D .1个6.若2x =3,8y =6,则2x -3y 的值为( ) A.12 B .-2 C.62 D.327.下列计算正确的是( ) A .-3x 2y ·5x 2y =2x 2y B .-2x 2y 3·2x 3y =-2x 5y 4 C .35x 3y 2÷5x 2y =7xyD .(-2x -y )(2x +y )=4x 2-y 2 8.下列因式分解正确的是( ) A .a 4b -6a 3b +9a 2b =a 2b (a 2-6a +9) B .x 2-x +14=⎝⎛⎭⎫x -122 C .x 2-2x +4=(x -2)2D .4x 2-y 2=(4x +y )(4x -y )9.已知ab 2=-1,则-ab (a 2b 5-ab 3-b )的值等于( )A.-1 B.0C.1 D.无法确定10.越越是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a-b,x-y,x+y,a+b,x2-y2,a2-b2分别对应城、爱、我、蒙、游、美这六个汉字,现将(x2-y2)a2-(x2-y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.蒙城游C.爱我蒙城D.美我蒙城二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:(12a3-6a2)÷(-2a)=__________.12.若代数式x2-6x+b可化为(x-a)2-1,则b-a的值是________.13.若a-b=1,则代数式a2-b2-2b的值为________.14.a,b是实数,定义一种运算@如下:a@b=(a+b)2-(a-b)2.有下列结论:①a@b=4ab;②a@b =b@a;③若a@b=0,则a=0且b=0;④a@(b+c)=a@b+a@c.其中正确的结论是________(填序号).三、(本大题共2小题,每小题8分,满分16分)15.计算:(1)(a2)3·(a3)2÷(a2)5;(2)(a-b+c)(a+b-c).16.因式分解:(1)3x4-48; (2)(c2-a2-b2)2-4a2b2.四、(本大题共2小题,每小题8分,满分16分)17.先化简,再求值:(x2+3x)(x-3)-x(x-2)2+(x-y)(y-x),其中x=3,y=-2.18.已知a +b =2,ab =2,求12a 3b +a 2b 2+12ab 3的值.五、(本大题共2小题,每小题10分,满分20分) 19.张老师给同学们出了一道题:当x =2018,y =2017时,求[(2x 3y -2x 2y 2)+xy (2xy -x 2)]÷x 2y 的值.题目出完后,小明说:“老师给的条件y =2017是多余的.”小兵说:“不多余,不给这个条件,就不能求出结果.”你认为他们谁说得有道理?并说明你的理由.20.已知多项式x 2+nx +3与多项式x 2-3x +m 的乘积中不含x 2和x 3项,求m ,n 的值.六、(本题满分12分)21.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8……根据以上规律,解答下列问题:(1)(a+b)4的展开式共有________项,系数分别为____________;(2)写出(a+b)5的展开式:(a+b)5=________________________________________________________________________;(3)(a+b)n的展开式共有________项,系数和为________.七、(本题满分12分)22.将一张如图①所示的长方形铁皮四个角都剪去边长为30cm的正方形,再四周折起,做成一个有底无盖的铁盒,如图②.铁盒底面长方形的长是4a cm,宽是3a cm.(1)请用含有a的代数式表示图①中原长方形铁皮的面积;(2)若要在铁盒的外表面涂上某种油漆,每1元钱可涂油漆的面积为a50cm2,则在这个铁盒的外表面涂上油漆需要多少钱(用含有a的代数式表示)?八、(本题满分14分)23.阅读下列材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=__________;(2)因式分解:(a+b)(a+b-4)+4;(3)试说明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.第8章参考答案与解析1.D 2.A 3.C 4.C 5.D 6.A 7.C 8.B 9.C 10.C 11.-6a 2+3a 12.5 13.114.①②④ 解析:因为a @b =(a +b )2-(a -b )2=(a +b +a -b )(a +b -a +b )=2a ·2b =4ab ,①正确;因为a @b =4ab ,b @a =(b +a )2-(b -a )2=(b +a +b -a )(b +a -b +a )=2b ·2a =4ab ,所以a @b =b @a ,②正确;因为a @b =4ab =0,所以a =0或b =0或a =0且b =0,③错误;因为a @(b +c )=(a +b +c )2-(a -b -c )2=(a +b +c +a -b -c )(a +b +c -a +b +c )=2a ·(2b +2c )=4ab +4ac ,a @b =4ab ,a @c =(a +c )2-(a -c )2=(a +c +a -c )(a +c -a +c )=2a ·2c =4ac ,所以a @(b +c )=a @b +a @c ,④正确.故答案为①②④.15.解:(1)原式=a 6·a 6÷a 10=a 2.(4分)(2)原式=[a -(b -c )][a +(b -c )]=a 2-(b -c )2=a 2-b 2+2bc -c 2.(8分)16.解:(1)原式=3(x 4-16)=3(x 2+4)(x 2-4)=3(x 2+4)(x +2)(x -2).(4分)(2)原式=(c 2-a 2-b 2+2ab )(c 2-a 2-b 2-2ab )=[c 2-(a -b )2][c 2-(a +b )2]=(c +a -b )(c -a +b )(c +a +b )(c -a -b ).(8分)17.解:原式=x 3-3x 2+3x 2-9x -x (x 2-4x +4)-(x -y )2=x 3-9x -x 3+4x 2-4x -x 2+2xy -y 2=3x 2-13x +2xy -y 2.(4分)当x =3,y =-2时,原式=3×32-13×3+2×3×(-2)-(-2)2=-28.(8分)18.解:原式=12ab (a 2+2ab +b 2)=12ab (a +b )2.(4分)当a +b =2,ab =2时,原式=12×2×22=4.(8分)19.解:小明说得有道理.(2分)理由如下:原式=[2x 3y -2x 2y 2+2x 2y 2-x 3y ]÷x 2y =x 3y ÷x 2y =x .所以该式子的结果与y 的值无关,即小明说得有道理.(10分)20.解:(x 2+nx +3)(x 2-3x +m )=x 4-3x 3+mx 2+nx 3-3nx 2+mnx +3x 2-9x +3m =x 4+(n -3)x 3+(m -3n +3)x 2+(mn -9)x +3m .(5分)因为不含x 2和x 3项,所以⎩⎪⎨⎪⎧n -3=0,m -3n +3=0,所以⎩⎪⎨⎪⎧m =6,n =3.(10分)21.(1)5 1,4,6,4,1(4分)(2)a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5(8分) (3)(n +1) 2n (12分)22.解:(1)原长方形铁皮的面积是(4a +60)(3a +60)=(12a 2+420a +3600)(cm 2).(5分)(2)这个铁盒的表面积是12a 2+420a +3600-4×30×30=(12a 2+420a )(cm 2),(9分)则在这个铁盒的外表面涂上油漆需要的钱数是(12a 2+420a )÷a50=(600a +21000)(元).(12分)23.解:(1)(x -y +1)2(3分)(2)令B =a +b ,则原式=B (B -4)+4=B 2-4B +4=(B -2)2,故(a +b )(a +b -4)+4=(a +b -2)2.(8分) (3)(n +1)(n +2)(n 2+3n )+1=(n 2+3n )[(n +1)(n +2)]+1=(n 2+3n )(n 2+3n +2)+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n +1)2.(11分)因为n 为正整数,所以n 2+3n +1也为正整数,所以式子(n +1)(n +2)(n 2+3n )+1的值一定是某一个整数的平方.(14分)第9章 分式一、选择题(本大题共10小题,每小题4分,满分40分)1.要使分式3x -2有意义,则x 的取值范围是( )A .x >2B .x <2C .x ≠-2D .x ≠2 2.若分式x -2x +1的值为0,则x 的值为( )A .2或-1B .0C .2D .-13.分式1a 2-2a +1,1a -1,1a 2+2a +1的最简公分母是( )A .(a 2-1)2B .(a 2-1)(a 2+1)C .a 2+1D .(a -1)44.不改变分式2x -52y23x +y 的值,把分子、分母中各项系数化为整数,结果是( )A.2x -15y 4x +yB.4x -5y 2x +3yC.6x -15y 4x +2yD.12x -15y 4x +6y5.已知分式⎝⎛⎭⎫-x4y 22与另一个分式的商是2x 6y ,那么另一个分式是( ) A .-x 22y 5 B.x 142y 3 C.x 22y 5 D .-x2y 36.若1+2a +a 2a 2-1=1+a x ,则x 等于( )A .a +2B .a -2C .a +1D .a -1 7.已知1a -1b =4,则a -2ab -b 2a -2b +7ab 的值等于( )A .6B .-6 C.215 D .-278.下列说法:①解分式方程一定会产生增根;②方程x -2x 2-4x +4=0的根为2;③方程12x =12x -4的最简公分母为2x (2x -4);④x +1x -1=1+1x +1是分式方程.其中正确的个数为( )A .1个B .2个C .3个D .4个 9.关于x 的分式方程5x =ax -5有解,则字母a 的取值范围是( )A .a =5或a =0B .a ≠0C .a ≠5D .a ≠5且a ≠010.九年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h ,则所列方程正确的是( )A.10x =102x -13B.10x =102x -20 C.10x =102x +13 D.10x =102x+20 二、填空题(本大题共4小题,每小题5分,满分20分) 11.化简⎝⎛⎭⎫1m +1n ÷m +n n 的结果是________.12.已知x 2-4x +4与|y -1|互为相反数,则式子⎝⎛⎭⎫x y -y x ÷(x +y )的值等于________. 13.如果方程a x -2+3=1-x 2-x有增根,那么a =________.14.有一个分式,三位同学分别说出了它的一些特点:甲说:分式的值不可能为0;乙说分式有意义时,x 的取值范围是x ≠±1;丙说:当x =-2时,分式的值为1.请你写出满足上述三个特点的一个分式:________.三、(本大题共2小题,每小题8分,满分16分) 15.计算:(1)4a 2b 3cd 2·5c 2d 4ab 2÷2abc 3d ;(2)2m -n n -m +m m -n +n n -m .16.化简:(1)2x x +1-2x +6x 2-1÷x +3x 2-2x +1;(2)⎝⎛⎭⎫a a 2-b 2-1a +b ÷b b -a .四、(本大题共2小题,每小题8分,满分16分) 17.解方程:(1)1+3x x -2=6x -2;(2)1-x -32x +2=3x x +1.18.先化简,再求值:1-x -y x +2y ÷x 2-y 2x 2+4xy +4y 2,其中x ,y 满足|x -2|+(2x -y -3)2=0.五、(本大题共2小题,每小题10分,满分20分)19.观察下列等式:①1-56=12×16;②2-107=22×17;③3-158=32×18;……(1)请写出第4个等式:________________;(2)观察上述等式的规律,猜想第n 个等式(用含n 的式子表示),并验证其正确性.20.已知A =x 2+2x +1x 2-1-xx -1.(1)化简A ;(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.六、(本题满分12分)21.甲、乙两座城市的中心火车站A ,B 两站相距360km.一列动车与一列特快列车分别从A ,B 两站同时出发相向而行,动车的平均速度比特快列车快54km/h ,当动车到达B 站时,特快列车恰好到达距离A 站135km 处的C 站.求动车和特快列车的平均速度各是多少.七、(本题满分12分)22.抗洪抢险,需要在一定时间内筑起拦洪大坝,甲队单独做正好按期完成,而乙队由于人少,单独做则延期3小时才能完成.现甲、乙两队合作2小时后,甲队又有新任务,余下的由乙队单独做,刚好按期完成.求甲、乙两队单独完成全部工程各需要多少小时.八、(本题满分14分) 23.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数,如:83=6+23=2+23=223.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如x -1x +1,x 2x -1这样的分式就是假分式;再如3x +1,2x x 2+1这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:x -1x +1=(x +1)-2x +1=1-2x +1;解决下列问题:(1)分式2x 是________(填“真分式”或“假分式”);(2)将假分式x 2-1x +2化为带分式;(3)如果x 为整数,分式2x -1x +1的值为整数,求所有符合条件的x 的值.第9章参考答案与解析1.D 2.C 3.A 4.D 5.C 6.D 7.A 8.A 9.D 10.C 11.1m 12.12 13.1 14.3x 2-1(答案不唯一) 15.解:(1)原式=4a 2b 3cd 2·5c 2d 4ab 2·3d 2abc =52b2.(4分)(2)原式=2m -n n -m -m n -m +n n -m =2m -n -m +n n -m =mn -m.(8分)16.解:(1)原式=2x x +1-2(x +3)(x +1)(x -1)·(x -1)2x +3=2x x +1-2(x -1)x +1=2x +1.(4分)(2)原式=a -(a -b )(a +b )(a -b )·b -a b =-b (a +b )(a -b )·a -b b =-1a +b.(8分)17.解:(1)去分母,得x -2+3x =6,移项、合并同类项,得4x =8,x 系数化成1,得x =2.检验:当x =2时,x -2=0.所以x =2不是原方程的根,原方程无解.(4分)(2)去分母,得2x +2-(x -3)=6x ,去括号,得2x +2-x +3=6x ,移项、合并同类项,得5x =5,x 系数化成1,得x =1.检验:当x =1时,2x +2≠0,所以原方程的根是x =1.(8分)18.解:原式=1-x -y x +2y ·(x +2y )2(x +y )(x -y )=1-x +2y x +y =x +y -x -2y x +y =-yx +y .(4分)因为|x -2|+(2x-y -3)2=0,所以⎩⎪⎨⎪⎧x -2=0,2x -y =3,解得⎩⎪⎨⎪⎧x =2,y =1.当x =2,y =1时,原式=-12+1=-13.(8分)19.解:(1)4-209=42×19(3分)(2)猜想:n -5n 5+n =n 2×15+n (其中n 为正整数).(7分)验证:n -5n 5+n =n (5+n )-5n 5+n =n 25+n ,所以左式=右式,所以猜想成立.(10分)20.解:(1)A =x 2+2x +1x 2-1-x x -1=(x +1)2(x +1)(x -1)-x x -1=x +1x -1-x x -1=1x -1.(5分)(2)解不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,得1≤x <3.因为x 为整数,所以x =1或x =2.当x =1时,A =1x -1无意义;当x =2时,A =1x -1=12-1=1.(10分)21.解:设特快列车的平均速度为x km/h ,则动车的平均速度为(x +54)km/h ,由题意得360x +54=360-135x ,解得x =90.(8分)经检验,x =90是这个分式方程的解.x +54=144.(11分)答:特快列车的平均速度为90km/h ,动车的平均速度为144km/h.(12分)22.解:设甲队单独完成需要x 小时,则乙队需要(x +3)小时.由题意得2x +xx +3=1,解得x =6.(8分)经检验,x =6是方程的解.所以x +3=9.(11分)答:甲单独完成全部工程需6小时,乙单独完成全部工程需9小时.(12分)23.解:(1)真分式(2分)(2)x 2-1x +2=x 2+2x -2x -1x +2=x -2x +1x +2=x -2(x +2)-3x +2=x -2+3x +2.(8分) (3)2x -1x +1=2(x +1)-3x +1=2-3x +1,由x 为整数,分式的值为整数,得到x +1=-1,-3,1,3,解得x =-2,-4,0,2,则所有符合条件的x 值为0,-2,2,-4.(14分)第10章相交线与平行线、平移1.下列图形中∠1与∠2互为对顶角的是( )2.下列图形中,∠1和∠2不是同位角的是( )3.下列图形中,不能通过平移其中一个四边形得到的是( )4.如图,下列能判定AB ∥CD 的条件有( )①∠B +∠BCD =180°;②∠1=∠2;③∠3=∠4;④∠B =∠5. A .1个 B .2个 C .3个 D .4个第4题图第5题图5.如图,观察图形,下列说法正确的个数是( ) ①线段AB 的长必大于点A 到直线BD 的距离;②线段BC 的长小于线段AB 的长,根据是两点之间线段最短; ③图中对顶角共有9对;④线段CD 的长是点C 到直线AD 的距离. A .1个 B .2个 C .3个 D .4个6.如图,已知AB∥CD,EF平分∠CEG,∠1=80°,则∠2的度数为()A.20° B.40° C.50° D.60°第6题图第7题图7.如图,点E,F分别是AB,CD上的点,点G是BC的延长线上一点,且∠B=∠DCG=∠D,则下列判断中,错误的是()A.∠AEF=∠EFC B.∠A=∠BCFC.∠AEF=∠EBC D.∠BEF+∠EFC=180°8.如图,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么∠BAO与∠ABO之间的大小关系一定为()A.互余B.相等C.互补D.不等第8题图第9题图9.如图,若AB∥CD,CD∥EF,则∠BCE等于()A.∠2-∠1 B.∠1+∠2C.180°+∠1-∠2 D.180°-∠1+∠210.如图,将面积为5的三角形ABC沿BC方向平移至三角形DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()A.5 B.10C.15 D.20第10题图第11题图二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,请填写一个你认为恰当的条件______________,使AB∥CD.第12题图第13题图12.如图,已知∠1=82°,∠2=98°,∠3=80°,则∠4的度数为________.13.如图,折叠一张长方形纸片,已知∠1=70°,则∠2的度数是________°.14.如图,C为∠AOB的边OA上一点,过C作CD∥OB交∠AOB的平分线OE于点F,作CH⊥OB交BO的延长线于点H.若∠EFD=α,现有以下结论:①CH>CO;②∠COF=α;③CH⊥CD;④∠OCH =2α-90°.其中正确的结论是________(填序号).第14题图三、(本大题共2小题,每小题8分,满分16分)15.如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O,求∠2,∠3的度数.16.如图,∠1=∠2,∠D=50°,求∠B的度数.四、(本大题共2小题,每小题8分,满分16分)17.如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,求∠PQC的度数.18.如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.下面给出了求∠AGD的度数的过程,将此补充完整并在括号里填写依据.解:因为EF∥AD(已知),所以∠2=______(________________________).又因为∠1=∠2(已知).所以∠1=∠3(等式性质或等量代换),所以AB∥______(____________________________),所以∠BAC+________=180°(__________________________).又因为∠BAC=70°(已知),所以∠AGD=________(____________).五、(本大题共2小题,每小题10分,满分20分)19.画图并填空:(1)画出三角形ABC先向右平移6格,再向下平移2格得到的三角形A1B1C1;(2)线段AA1与BB1的关系是______________;(3)三角形ABC的面积是________平方单位.20.如图,∠BAP+∠APD=180°,∠1=∠2.试说明:∠E=∠F.六、(本题满分12分)21.如图,一个楼梯的总长度为5米,总高度为4米,楼梯宽为2米.若在楼梯上铺地毯,且每平方米地毯售价30元,则至少需要多少钱?七、(本题满分12分)22.如图,∠CDH+∠EBG=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?八、(本题满分14分)23.问题情境:如图①,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:如图②,过点P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°.问题迁移:(1)如图③,AD∥BC,点P在射线OM上运动,当点P在A,B两点之间运动时,∠ADP=α,∠BCP =β,∠CPD,α,β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P分别在射线AM和射线OB上运动时(点P与点A,B,O三点不重合),请你分别直接写出∠CPD,α,β间的数量关系.第10章参考答案与解析1.C 2.C 3.D 4.C 5.A 6.C7.C8.A9.C10.C11.∠F AB=∠FCD(答案不唯一)12.80°13.5514.②③④15.解:因为∠1=∠2,∠1=30°,所以∠2=30°.(3分)因为AB⊥CD,所以∠AOD=90°,所以∠2+∠3=90°,所以∠3=90°-∠2=90°-30°=60°.(8分)16.解:因为∠1=∠2,∠2=∠EHD,所以∠1=∠EHD,所以AB∥CD.(4分)所以∠B+∠D=180°,所以∠B=180°-∠D=180°-50°=130°.(8分)17.解:(1)如图所示.(2分)(2)如图所示.(4分)(3)因为CD∥PQ,所以根据两直线平行,同旁内角互补得∠PQC+∠DCQ=180°.又因为∠DCQ=120°,所以∠PQC=60°.(8分)18.∠3两直线平行,同位角相等DG内错角相等,两直线平行∠AGD两直线平行,同旁内角互补110°等式性质(8分)19.解:(1)三角形A1B1C1如图所示.(4分)(2)平行且相等(7分)(3)3.5(10分)20.解:因为∠BAP+∠APD=180°,所以AB∥CD,所以∠BAP=∠APC.(5分)又因为∠1=∠2,所以∠FP A=∠EAP,所以AE∥PF,所以∠E=∠F.(10分)21.解:由平移知识可知,地毯的总长度为5+4=9(米),(5分)所以其面积为9×2=18(平方米),所需费用为18×30=540(元).(11分)答:至少需要540元.(12分)22.解:(1)AE与FC平行.(1分)理由如下:因为∠CDH+∠EBG=180°,∠CDH+∠CDB=180°,所以∠CDB=∠EBG,所以AE∥FC.(4分)(2)AD与BC平行.(5分)理由如下:由(1)知AE∥FC,所以∠CDA+∠A=180°.因为∠A=∠C,所以∠CDA+∠C=180°,所以AD∥BC.(8分)(3)BC平分∠DBE.(9分)理由如下:由(1)知AE∥FC,所以∠EBC=∠C.由(2)知AD∥BC,所以∠C=∠FDA,∠DBC=∠BDA.又因为DA平分∠BDF,所以∠FDA=∠BDA,所以∠EBC=∠DBC,所以BC 平分∠DBE.(12分)23.解:(1)∠CPD=α+β.(2分)理由如下:如图③,过点P作PE∥AD交CD于点E.(3分)因为AD∥BC,所以AD∥PE∥BC,所以∠DPE=α,∠CPE=β,所以∠CPD=∠DPE+∠CPE=α+β.(6分)(2)如图④,当点P在射线AM上时,∠CPD=β-α.(10分)如图⑤,当点P在线段OB上时,∠CPD =α-β.(14分)。

沪科版七年级数学下册《实数》单元试卷检测练习及答案解析

沪科版七年级数学下册《实数》单元试卷检测练习及答案解析

沪科版七年级数学下册《实数》单元试卷检测练习及答案解析一、选择题1、9的平方根是( )A.9 B.3 C.-3 D.±32、下列各式正确的是()A.B.C.D.3、下列四个数中的负数是()A.﹣22B.C.(﹣2)2D.|﹣2|4、的算术平方根是()A.3 B.C.±3 D.±5、已知+=0,则的值为( )A.0 B.2 018 C.-1 D.16、在以下实数,,1.414,1.010010001…,42,,,中,无理数有()A.2个B.3个C.4个D.5个7、估算的值是在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间8、在实数0,﹣2,,2中,最大的是()A.0 B.﹣2 C.D.29、如图,数轴上点表示的数可能是().A.B.C.D.10、如图,数轴上的、、、四点中,与数表示的点最接近的是().A.点B.点C.点D.点二、填空题11、64的立方根是____,的平方根是_______。

12、已知x满足(x+3)3=64,则x等于_____。

13、若,,则__________________。

14、的平方根是______。

15、一个正数的平方根是2x和x-6,则这个正数是_____。

16、若一个数的算术平方根是8,则这个数的立方根是____。

17、比较下列实数的大小(填上>、<或=")."①-_____-;②_____;③______.18、若,且是正整数,则=________。

19、对有理数a,b定义运算a※b=,则3※(﹣4)=_____。

20、下列各数:①3.141、②0.33333……、③、④、⑤、⑥、⑦0.3030030003……(相邻两个3之间0的各数逐次增加1)、其中是无理数的有__________。

(填序号)三、计算题21、求下列各式中的值.(1)(2)22、计算:(1)(2)四、解答题23、已知x+12平方根是±,2x+y﹣6的立方根是2,求3xy的算术平方根.24、已知2x+y+7的立方根是3,16的算术平方根是2x﹣y,求:(1)x、y的值;(2)x2+y2的平方根.25、一个正数x的两个平方根分别是2a﹣1与﹣a+2,求a的值和这个正数x的值.26、已知和是关于x,y的二元一次方程:ax+by=1的两个解,求的值.27、已知一个正方体的体积是1000Cm³,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488Cm³,问截得的每个小正方体的棱长是多少?28、数学老师在课堂上提出一个问题:“通过探究知道:≈1.414…,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用﹣1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答:(1)的小数部分是a,的整数部分是b,求a+b﹣的值.(2)已知8+=x+y,其中x是一个整数,0<y<1,求3x+(y﹣)2018的值.参考答案1、D2、A3、A4、B5、D6、B7、B8、C9、B10、B11、4±12、1.13、1.0114、.15、16.16、417、<><18、319、20、③④⑦21、 (1);(2)x=4.22、(1)-20;(2)23、624、(1)x=6,y=8;(2)±10.25、926、1.27、截得的每个小正方体的棱长是4cm.28、(1)1(2)28【解析】1、分析:根据平方根的概念即可求解.详解:9的平方根:±3.点睛:本题考查了平方根的概念.2、【分析】根据算术平方根、立方根的定义逐一进行判断即可得.【详解】A. ,故A选项正确;B. ,故B选项错误;C. ,,故C选项错误;D. 无意义,故D选项错误,故选A.【点睛】本题考查了利用算术平方根、立方根的定义进行化简,熟知负数没有算术平方根以及算术平方根、立方根的定义是解题的关键.3、A.−22=−4<0,故A表示的数是负数;B.算术平方根是非负数,故B表示的数是非负数;C.负数的偶次幂是正数,故C表示的数是正数;D.|−2|=2,故D表示的数是正数;故选:A.4、∵=3,而3的算术平方根即,∴的算术平方根是.故选B.5、试题解析:故选D.6、分析:无理数是指无限不循环小数,本题根据定义即可得出答案.详解:本题中无理数有:1.010010001…,,,共3个,故选B.点睛:本题主要考查的就是无理数的定义,属于基础题型.初中阶段主要有以下几种形式:(1)、构造的数,如0.12122122212222...(相邻两个1之间依次多一个2)等;(2)、有特殊意义的数,如圆周率π等;(3)、部分带根号的数,如,等.7、分析:先找出19介于哪两个整数的平方之间,依据被开放数越大对应的算术平方根越大进行比较即可.详解:∵16<19<25,∴4<<5.故选:B.点睛:本题主要考查的是估算无理数的大小,夹逼法的应用是解题的关键.8、解:根据实数比较大小的方法,可得:>2>0>﹣2,故实数0,﹣2,,2其中最大的数是.故选C.9、由数轴可知点P在2和3之间,因为,所以,故选B.10、解:∵,且,∴离更近.故选B.点睛:本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.11、【分析】根据平方根、立方根的定义进行计算即可.【详解】∵43=64,∴64的立方根是4,=5,(±)2=5,∴的平方根是±.故答案为:4,±.【点睛】此题考查了平方根、立方根的定义及表示方法,熟练掌握这些定义是解题的关键.12、【分析】根据立方根的定义得出关于x的方程,解之可得.【详解】∵(x+3)3=64,∴x+3=4,解得:x=1,故答案为:1.【点睛】本题主要考查立方根,解题的关键是掌握立方根的定义与解一元一次方程的能力.13、【分析】由于1.0201比102.01小数点向左移动了二位,那么则它的平方根就向左移动一位,根据此规律即可解题.【详解】∵,∴ 1.01,故答案为:1.01.【点睛】本题主要考查了平方根的定义,解题关键是小数点的位置,要会从条件中找到规律:所求数的小数点向左移动了二位,则它的平方根就向左移动一位.14、解:(﹣)2=,的平方根是±.故答案为:±.15、∵一个正数的平方根是2x和x−6,∴2x+x−6=0,解得x=2,∴这个数的正平方根为2x=4,∴这个数是16.故答案为:16.点睛:本题考查了平方根的知识点,由于一个正数的平方根有两个,它们互为相反数,由此即可得到关于x的方程,解方程即可解决问题.16、试题解析:若一个数的算术平方根是8,则这个数是:的立方根是:故答案为:4.17、①∵3>2,∴>,∴-<-;②∵>2,∴-1>1,∴>;③=,=,∵<,∴<;故答案为:<,>,<.18、∵9<15<16,∴3,∴n=3.故答案为:3.19、试题解析:根据题中的新定义得:故答案为:20、试题分析:无理数是指无限不循环小数,本题中③、④、⑦是无理数,本题特别注意的是=,是有理数.21、试题分析:(1)利用平方根的定义解方程即可;(2)利用立方根的定义解方程即可. 试题解析:(1)(2)x-2=2x=4.22、试题分析:这是一组实数的混合运算题,按照实数的相关计算法则计算即可.试题解析:(1)原式=-10-8-2=-18-2=-20;(2)原式=.23、试题分析:由题意可知:x+12=13,2x+y﹣6=8,分别求出x,y的值即可求出3xy的值.试题解析:由题意可知:x+12=13,2x+y﹣6=8,∴x=1,y=12,∴3xy=3×1×12=36,∴36的算术平方根为624、试题分析:(1)根据立方根和平方根的定义列方程求解;(2)先求x2+y2,再求它的平方根,注意正数的平方根有两个,且互为相反数.试题解析:(1)根据题意得,解得即x=6,y=8.(2)由(1)得x=6,y=8,所以x2+y2=62+82=100,则x2+y2的平方根是±10.25、试题分析:由“一个正数的两个平方根互为相反数”可列出关于“a”的方程,解方程求得“a”的值,然后再求“x”的值;试题解析:解:∵正数x有两个平方根,分别是﹣a+2与2a﹣1,∴﹣a+2+2a﹣1=0解得a=﹣1.所以x=(﹣a+2)2=(1+2)2=9.点睛:解这道题的关键是要明白:“平方根的意义:一个正数有两个平方根,它们互为相反数”,再利用“互为相反数的两个数的和为0”可以列出关于“a”方程来求解.26、试题分析:根据方程的解满足方程,可得关于a,b的方程组,解方程组可得a、b的值,然后代入即可得答案.试题解析:由题意,得,解得,所以=3﹣2=1.27、试题分析:设截得的每个小正方体的棱长,根据已知条件可以列出方程,解方程即可求解.试题解析:设截得的每个小正方体的棱长xcm,依题意得1000-8x3=488,∴8x3=512,∴x=4,答:截得的每个小正方体的棱长是4cm.点睛:此题主要考查了立方根的应用,其中求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号.28、试题分析:(1)估算出和的大致范围,然后可求得a、b的值,然后再求代数式的值即可.(2)先求得x的值,然后再表示出y-的值,最后进行计算即可.试题解析:(1)∵4<5<9,9<13<16,∴2<<3,3<<4.∴a=﹣2,b=3.∴a+b﹣=﹣2+3﹣=1.(2)∵1<<2,∴9<8+<10,∴x=9.∵y=8+﹣x.∴y﹣=8﹣x=﹣1.∴原式=3×9+1=28.。

上海市七年级数学下册第一单元《相交线与平行线》测试卷(包含答案解析)

上海市七年级数学下册第一单元《相交线与平行线》测试卷(包含答案解析)

一、选择题1.关于平移后对应点所连的线段,下列说法正确的是()①对应点所连的线段一定平行,但不一定相等;②对应点所连的线段一定相等,但不一定平行,有可能相交;③对应点所连的线段平行且相等,也有可能在同一条直线上;④有可能所有对应点的连线都在同一条直线上.A.①③B.②③C.③④D.①②2.如图a是长方形纸带,26∠=︒,将纸带沿EF折叠成图b,再沿BF折叠成图c,DEF∠的度数是()则图c中的CFEA.102°B.112°C.120°D.128°3.下列哪个图形是由图1平移得到的()A.B.C.D .4.下列命题中,属于真命题的是( )A .相等的角是对顶角B .一个角的补角大于这个角C .绝对值最小的数是0D .如果a b =,那么a=b 5.如图,直线a 和直线b 被直线c 所载,且a//b ,∠2=110°,则∠3=70°,下面推理过程错误的是( )A .因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒B .//,13,12180a b ︒∴∠=∠∠+∠=1180218011070︒︒︒︒∴∠=-∠=-=所以370︒∠=C .因为a//b 所以25∠=∠又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=D .//,42110a b ︒∴∠=∠=,43180︒∠+∠=,∴∠3=180°−∠4=180°−110°=70° 所以3180418011070︒︒︒︒∠=-∠=-=6.如图,//AB EF ,90C ∠=︒,则α∠,β∠,γ∠之间的关系是( )A .βαγ∠=∠+∠B .180αβγ∠+∠+∠=︒C .90αβγ∠+∠-∠=︒D .90βγα∠+∠-∠=︒7.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB ∥CE ,且∠ADC =∠B :④AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A.①②B.②④C.②③D.②③④8.把一张有一组对边平行的纸条,按如图所示的方式析叠,若∠EFB=35°,则下列结论错误的是()A.∠C'EF=35°B.∠AEC=120°C.∠BGE=70°D.∠BFD=110°9.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()A.10°B.20°C.25°D.30°10.(2017•十堰)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°11.已知:如图,直线a∥b,∠1=50°,∠2=∠3,则∠2的度数为()A.50°B.60°C.65°D.75°12.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是()A.B.C.D.二、填空题∠=∠=∠=︒,则∠4的度数是___________.13.已知:如图,1235414.给出下列说法:①同角的补角相等;②相等的角是对顶角;③两点确定一条直线;④过一点有且只有一条直线与已知直线平行,其中正确的有___个.15.将长度为5cm的线段向上平移3cm后所得线段的长度为__.16.如图,AC⊥AB,AC⊥CD,垂足分别是点A、C,如果∠CDB=130°,那么直线AB与BD 的夹角是________度.17.如图,将直角三角形ABC沿斜边AC的方向平移到三角形DEF的位置,DE交BC于点G,BG=4,EF=12,△BEG的面积为4,下列结论:①DE⊥BC;②△ABC平移的距离是4;③AD=CF;④四边形GCFE的面积为20,其中正确的结论有________(只填写序号).18.如图,AB∥CD,∠1=64°,FG平分∠EFD,则∠EGF=__________________°.19.跳格游戏:如图,人从格外只能进入第1格;在格中,每次可向前跳l格或2格,那么人从格外跳到第6格可以有_________种方法.20.如图,添加一个你认为合适的条件______使//AD BC .三、解答题21.如图,AD 平分∠BAC ,点E ,F 分别在边BC ,AB 上,且∠BFE =∠DAC ,延长EF ,CA 交于点G ,求证:∠G =∠AFG .22.在ABC 中,AB AC =,直线l 经过点A ,且与BC 平行.仅用圆规完成下列画图.(保留画图痕迹,不写作法)(1)如图①,在直线l 上画出一点P ,使得APC ACB ∠=∠;(2)如图②,在直线l 上画出所有的点Q ,使得12AQC ACB ∠=∠.23.填空(请补全下列证明过程及括号内的依据)已知:如图,12,B C ∠=∠∠=∠.求证:180B BFC ︒∠+∠=证明:∵12∠=∠(已知),且1CGD ∠=∠(__________________________),∴2CGD ∠=∠(_______________________________),∴//CE BF (____________________________),∴∠___________C =∠(_________________________),又B C ∠=∠(已知),∴∠_________________B =∠(等量代换),∴//AB CD (_________________),∴180B BFC ︒∠+∠=(_________________________).24.如图,AE //CF ,∠A =∠C .(1)若∠1=35°,求∠2的度数;(2)判断AD 与BC 的位置关系,并说明理由.25.如图,已知O 为直线AD 上一点,OB 是AOC ∠内部一条射线且满足AOB ∠与AOC ∠互补,OM ,ON 分别为AOC ∠,AOB ∠的平分线.(1)COD ∠与AOB ∠相等吗?请说明理由;(2)若30AOB ∠=︒,试求MON ∠的度数;(3)若MON α∠=,请直接写出AOC ∠的度数.(用含α的式子表示)26.如图,直线AB ,CD 相交于点O ,OE 平分∠BOC ,FO ⊥CD 于点O ,若∠BOD ∶∠EOB=2∶3,求∠AOF 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平移的性质,对应点所连的线段一定平行或在一条直线上,对应点所连的线段一定相等,分别求解即可.【详解】①的说法“对应点所连的线段一定相等,但不一定平行”错误;②的说法“对应点所连的线段一定相等,但不一定平行,有可能相交”错误;③的说法“对应点所连的线段平行且相等,也有可能在同一条直线上”正确;④的说法“有可能所有对应点的连线都在同一条直线上”正确;故正确的说法为③④.故选:C.【点睛】本题主要考查了平移的性质:①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行或在一条直线上且相等.2.A解析:A【分析】根据两条直线平行,内错角相等,则∠BFE=∠DEF=26°,根据平角定义,则∠EFC=154°(图a),进一步求得∠BFC=154°-26°=128°(图b),进而求得∠CFE=128°-26°=102°(图c).【详解】解:∵AD∥BC,∠DEF=26°,∴∠BFE=∠DEF=26°,∴∠EFC=154°(图a),∴∠BFC=154°-26°=128°(图b),∴∠CFE=128°-26°=102°(图c).故选:A.【点睛】本题考查了翻折变换,平行线的性质和平角定义,根据折叠能够发现相等的角是解题的关键.3.B解析:B【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【详解】A.不是由图1平移得到的,故错误;B.是由图1平移得到的,故正确;C.不是由图1平移得到的,故错误;D.不是由图1平移得到的,故错误;故选:B .【点睛】考查平移的性质,平移前后,图形的大小和形状没有变化.4.C解析:C【分析】根据对顶角、补角、绝对值的定义与性质逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、一个角的补角不一定大于这个角,如这个角为130︒,其补角为50︒,小于这个角,此项是假命题;C 、由绝对值的非负性得:绝对值最小的数是0,此项是真命题;D 、如果a b =,那么a b =或=-a b ,此项是假命题;故选:C .【点睛】本题考查了对顶角、补角、绝对值、真命题与假命题,熟练掌握各定义与性质是解题关键.5.D解析:D【分析】根据平行线的性质结合邻补角的性质对各选项逐一进行分析判断即可得.【详解】A . 因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒,正确,不符合题意;B . //,13,12180a b ︒∴∠=∠∠+∠=,1180218011070︒︒︒︒∴∠=-∠=-=,所以370︒∠=,正确,不符合题意;C . 因为a//b ,所以25∠=∠,又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=,正确 ,不符合题意;D . //,42180a b ︒∴∠+∠=,∴∠4=180°-∠2=180°-110°=70°,43∠=∠,∴∠3=70°,故D 选项错误,故选D .【点睛】本题考查了平行线的性质,熟练掌握“两直线平行,同位角相等”、“两直线平行,内错角相等”、“两直线平行,同旁内角互补”是解题的关键.6.C解析:C【分析】分别过C 、D 作AB 的平行线CM 和DN ,由平行线的性质可得到∠α+∠β=∠C+∠γ,可求得答案.【详解】如图,分别过C 、D 作AB 的平行线CM 和DN ,∵AB//EF ,∴AB//CM //DN //EF ,∴αBCM ∠∠=,MCD NDC ∠∠=,NDE γ∠∠=,∴αβBCM CDN NDE BCM MCD γ∠∠∠∠∠∠∠∠+=++=++, 又∵BC CD ⊥,∴BCD 90∠=,∴αβ90γ∠∠∠+=+,即αβγ90∠∠∠+-=,故选C .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a//b ,b//c ⇒a//c .7.D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.8.B解析:B【分析】根据平行线的性质即可求解.【详解】A.∵AE∥BF,∴∠C'EF=∠EFB=35°(两直线平行,内错角相等),故A选项不符合题意;B.∵纸条按如图所示的方式析叠,∴∠FEG=∠C'EF=35°,∴∠AEC=180°﹣∠FEG﹣∠C'EF=180°﹣35°﹣35°=110°,故B选项符合题意;C.∵∠BGE=∠FEG+∠EFB=35°+35°=70°,故C选项不符合题意;D.∵AE∥BF,∴∠EGF=∠AEC=110°(两直线平行,内错角相等),∵EC∥FD,∴∠BFD=∠EGF=110°(两直线平行,内错角相等),故D选项不符合题意;故选:B.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.9.C解析:C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.10.B解析:B【解析】试题分析:由AB∥DE,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG⊥BC,∴∠FGB=90°﹣∠B=50°,故选B.考点:平行线的性质11.C解析:C【分析】根据平行线的性质,即可得到∠1+∠2+∠3=180°,再根据∠2=∠3,∠1=50°,即可得出∠2的度数.【详解】∵a∥b,∴∠1+∠2+∠3=180°,又∵∠2=∠3,∠1=50°,∴50°+2∠2=180°,∴∠2=65°,故选:C.【点睛】本题主要考查了平行线的性质,角平分线的定义,解题时注意:两直线平行,同旁内角互补.12.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;故选:D.【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.二、填空题13.126°【分析】由∠1=∠2及对顶角相等可得出∠1=∠5利用同位角相等两直线平行可得出l1∥l2利用两直线平行同旁内角互补可求出∠6的度数再利用对顶角相等可得出∠4的度数【详解】解:给各角标上序号如解析:126°.【分析】由∠1=∠2及对顶角相等可得出∠1=∠5,利用“同位角相等,两直线平行”可得出l1∥l2,利用“两直线平行,同旁内角互补”可求出∠6的度数,再利用对顶角相等可得出∠4的度数.【详解】解:给各角标上序号,如图所示.∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴l1∥l2,∴∠3+∠6=180°.∵∠3=54°,∴∠6=180°-54°=126°,∴∠4=∠6=126°.故答案为:126°.【点睛】本题考查了平行线的判定与性质,牢记平行线的各判定与性质定理是解题的关键.14.2【分析】根据补角的性质对顶角的性质直线的性质平行线的性质依次判断【详解】同角的补角相等故①符合题意;对顶角相等但相等的角不一定是对顶角故②不符合题意;两点确定一条直线故③符合题意;过直线外一点有且 解析:2【分析】根据补角的性质、对顶角的性质、直线的性质、平行线的性质依次判断.【详解】同角的补角相等,故①符合题意;对顶角相等,但相等的角不一定是对顶角,故②不符合题意;两点确定一条直线,故③符合题意;过直线外一点有且只有一条直线与已知直线平行,故④不符合题意;故答案为:2.【点睛】此题考查了平行线的判定等知识,掌握补角的性质、对顶角的性质、直线的性质、平行线的判定是解题的关键.15.5cm 【分析】根据平移的性质:①平移不改变图形的形状和大小;②经过平移对应点所连的线段平行且相等对应线段平行且相等对应角相等【详解】解:∵平移不改变图形的形状和大小∴线段长度不变还是5cm 故答案为: 解析:5cm【分析】根据平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.【详解】解:∵平移不改变图形的形状和大小∴线段长度不变,还是5cm .故答案为:5cm .【点睛】此题主要考查平移的基本性质,解题的关键是掌握平移的性质即可.16.50【分析】先根据平行线的判定可得再根据平行线的性质两直线的夹角的定义即可得【详解】∵∴∵∴∴直线AB 与BD 的夹角是50度故答案为:50【点睛】本题考查了平行线的判定与性质两直线的夹角的定义熟练掌握 解析:50【分析】先根据平行线的判定可得//AB CD ,再根据平行线的性质、两直线的夹角的定义即可得.【详解】∵AC AB ⊥,AC CD ⊥,∴//AB CD ,∵130CDB ∠=︒,∴18050ABD CDB ∠=︒-∠=︒,∴直线AB 与BD 的夹角是50度,故答案为:50.【点睛】本题考查了平行线的判定与性质、两直线的夹角的定义,熟练掌握平行线的判定与性质是解题关键.17.①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公式即解析:①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公式即可得出结果.【详解】解:∵直角三角形ABC沿斜边AC的方向平移到三角形DEF的位置,∴AB∥DE,∴∠ABC=∠DGC=90°,∴DE⊥BC,故①正确;△ABC平移距离应该是BE的长度,BE>4,故②错误;由平移前后的图形是全等可知:AC=DF,∴AC-DC=DF-DC,∴AD=CF,故③正确;∵△BEG的面积是4,BG=4,∴EG=4×2÷4=2,∵由平移知:BC=EF=12,∴CG=12-4=8,四边形GCFE的面积:(12+8)×2÷2=20,故④正确;故答案为:①③④【点睛】本题主要考查的是平移的性质,正确的掌握平移的性质是解题的关键.18.【分析】根据两直线平行同位角相等求出∠EFD再根据角平分线的定义求出∠GFD然后根据两直线平行内错角相等解答【详解】解:∵AB∥CD∠1=64°∴∠EFD=∠1=64°∵FG平分∠EFD∴∠GFD=解析:【分析】根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,内错角相等解答.【详解】解:∵AB∥CD,∠1=64°,∴∠EFD=∠1=64°,∵FG平分∠EFD,∴∠GFD=12∠EFD=12×64°=32°,∵AB∥CD,∴∠EGF=∠GFD=32°.故答案为:32.考点:平行线的性质.19.8【分析】理解已知条件是解答此题的关键跳格总共有6格第一次只能跳1格后面的可以跳2格或者1格当全部都是1格或者部分1格部分2格整理出所有的情况即可求出答案【详解】当全部都只跳1格时1种方法;当有1次解析:8【分析】理解已知条件是解答此题的关键,跳格总共有6格,第一次只能跳1格,后面的可以跳2格或者1格,当全部都是1格,或者部分1格部分2格,整理出所有的情况即可求出答案.【详解】当全部都只跳1格时,1种方法;当有1次跳2格,其他全部1格,有4种方法;当有2次跳2格时,其他全部1格,有3种方法;不存在3次或者更多跳2格的情况综上共有1+4+3=8种方法.【点睛】本题考查数列的递推式,实际上我们解题时抓住实际问题的本质,写出满足条件的数列,利用数列的递推式写出结果.20.∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一写一个正确的即可)【分析】根据平行线的判定方法即可求解【详解】第一种情况同位角相等两直线平行即∠ADF=解析:∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一,写一个正确的即可)【分析】根据平行线的判定方法即可求解.【详解】第一种情况,同位角相等,两直线平行,即∠ADF=∠C时,//AD BC;第二种情况,内错角相等,两直线平行,即∠A=∠ABE时,//AD BC;第三种情况,同旁内角互补,两直线平行,即∠A+∠ABC=180°或∠C+∠ADC=180°时,AD BC;//故答案为∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°.【点睛】本题考查了平行线的判定方法,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.三、解答题21.见解析【分析】先利用角平分线的定义得到∠BAD=∠DAC,结合已知条件∠BFE=∠DAC,可得∠BFE=∠BAD,根据平行线的判定可证EG∥AD,再由平行线的性质得∠G=∠DAC,∠AFG=∠BAD,则利用等量代换即可证得结论.【详解】证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠BFE=∠DAC,∴∠BFE=∠BAD,∴EG∥AD,∴∠G=∠DAC,∠AFG=∠BAD,∴∠G=∠AFG.【点睛】本题考查了平行线的判定与性质,掌握平行线的判定的方法及利用性质证明角相等是解答此题的关键.22.(1)见解析;(2)见解析【分析】(1)以C为圆心,以CA为半径画弧,交点即为所求;(2)以A为圆心,以AC为半径画弧,交点即为所求.【详解】(1)如图所示,点P即为所求,理由如下:CP CA=,//∠=∠=∠.l BC,则APC CAP ACB(2)如图所示,点12Q Q 、即为所求,理由如下:1AC AQ =,//l BC ,则11112AQ C ACQ BCQ ACB ∠=∠=∠=∠; 12CQ CQ =,则1221CQ Q CQ Q ∠=∠.【点睛】本题考查了基本作图,熟记等腰三角形的性质,平行线的性质是解题的关键.23.对顶角相等;等量代换;同位角相等,则两直线平行;BFD ;两直线平行,则同位角相等;BFD ;内错角相等,则两直线平行;两直线平行,则同旁内角互补【分析】结合题意,根据平行线的性质分析,即可得到答案.【详解】∵12∠=∠且1CGD ∠=∠(对顶角相等),∴2CGD ∠=∠(等量代换),∴//CE BF (同位角相等,则两直线平行),∴∠BFD C =∠(两直线平行,则同位角相等),又B C ∠=∠(已知),∴∠BFD B =∠(等量代换),∴//AB CD (内错角相等,则两直线平行),∴180B BFC ︒∠+∠=(两直线平行,则同旁内角互补).故答案为:对顶角相等;等量代换;同位角相等,则两直线平行;BFD ;两直线平行,则同位角相等;BFD ;内错角相等,则两直线平行;两直线平行,则同旁内角互补.【点睛】本题考查了平行线的知识;解题的关键是熟练掌握平行线、内错角、同旁内角、同位角、对顶角的性质,从而完成求解.24.(1)∠2=145°;(2)BC ∥AD ,理由见解析.【分析】(1)由平行线的性质求得∠BDC=∠1=35°,再根据邻补角的定义即可求得∠2; (2)由平行线的性质可知:∠A+∠ADC=180°,然后根据∠A=∠C ,可证得∠C+∠ADC=180°,从而可证得BC ∥AD .解:(1)∵AE ∥CF ,∴∠BDC=∠1=35°,又∵∠2+∠BDC=180°,∴∠2=180°-∠BDC=180°-35°=145°;(2)BC ∥AD .理由:∵AE ∥CF ,∴∠A+∠ADC=180°,又∵∠A=∠C ,∴∠C+∠ADC=180°,∴BC ∥AD .【点睛】本题考查平行线的性质和判定.在本题中能正确识图找出同位角和同旁内角是解题关键. 25.(1)相等,理由见解析;(2)60°;(3)90AOC α∠=︒+.【分析】(1)根据题意和邻补角的性质即可求解.(2)结合题意和角平分线的性质即可求出MON ∠.(3)结合图形和角平分线的性质与(1)的结论即可求出AOC ∠的大小.【详解】(1)∵AOC ∠与AOB ∠互补,∴180AOC AOB ∠+∠=︒,∵180AOC DOC ∠+∠=︒,∴COD AOB ∠=∠(2)∵AOB ∠与AOC ∠互补,30AOB ∠=︒,∴18030150AOC ∠=︒-︒=︒,∵OM 为AOC ∠的平分线,∴75AOM ∠=︒,∵ON 为AOB ∠的平分线,∴15AON ∠=︒,∴751560MON ∠=︒-︒=︒(3)∵AOC AOB BOC ∠=∠+∠,180AOB AOC ∠=︒-∠,∴180AOC AOC BOC ∠=︒-∠+∠.∵BOC BOM COM ∠=∠+∠,∴180AOC AOC BOM COM ∠=︒-∠+∠+∠,∵BOM MON BON ∠=∠-∠,12COM AOC ∠=∠, ∴11802AOC AOC MON BON AOC ∠=︒-∠+∠-∠+∠, 又∵MON α∠=,12BON AOB ∠=∠, ∴11180(180)22AOC AOC AOC AOC α∠=︒-∠+-︒-∠+∠, ∴90AOC α∠=︒+.本题考查邻补角和角平分线的性质.利用邻补角的性质求证COD AOB ∠=∠是解题的关键.26.45︒.【分析】设2BOD x ∠=,从而可得3EOB x ∠=,先根据角平分线的定义3EOC EOB x ∠=∠=,再根据平角的定义可得求出x 的值,然后根据垂直的定义可得90DOF ∠=︒,最后根据平角的定义即可得.【详解】设2BOD x ∠=,则3EOB x ∠=,∵OE 平分BOC ∠,∴3EOC EOB x ∠=∠=,180BOD EOB EOC ∠+∠+∠=︒,233180x x x ∴++=︒,解得22.5x =︒,45BOD ∴∠=︒,FO CD ⊥,90DOF ∴∠=︒,又180BOD DOF AOF ∠+∠+∠=︒,4590180AOF ∴︒+︒+∠=︒,解得45AOF ∠=︒.【点睛】本题考查了角平分线的定义、平角的定义、垂直的定义等知识点,熟练掌握并理解各定义是解题关键.。

七年级数学(沪科版)第一章测试题

七年级数学(沪科版)第一章测试题

七年级数学(沪科版)第一章测试题一、选择题。

1.下面运算中,结果最小的是 ( )A.1-(-2)B.1+(-2)C.1×(-2)D.1÷(-2)2.若a 为有理数,则 ( )A.1-a 的值一定比1小B.1-a 的值不大于1C.1-a 2的值一定比1小D.1-a 2的值不大于13.为了方便地表示一个数,可以使用科学记数法,那么180 000 000用科学记数法可以表示为 ( )A.1.8×109B.1.8×108C.1.8×107D.1.8×1064.甲和乙分别测量一棵树的高度,甲测得的高度约为13米,乙测得的高度约为13.0米,下列说法正确的是 ( )A.甲乙两人测得的数据一样B.甲比乙测得数据大C.甲比乙测得数据小D.无法确定5.已知有理数a 、b 在数轴上对应的点如图①所示,则下列式子正确的是 ( )A.ab >0B.∣a ∣>∣b ∣C.a-b >0D.a +b >06.已知x 表示正整数,则2)1(1nn -+一定是 ( ) A.0 B.1 C.0或1 D.无法确定二、填空题。

7.0.4的相反数的倒数是 。

8.如果把向北走3m 记作-3m ,那么向南走5m 记作 m 。

9.大于-8而小于8的所有奇数的和是 。

10.平方得81的有理数是 ,平方得本身的相反数的有理数是 。

11.若-2a 7-≤≤,-3b 36-≤≤,则a-b 的最大值是 。

12.已知x 的相反数是它本身,y 的倒数也等于它本身,那么∣a -b ∣= 。

13.如果第一个数是3=2+1,第二个数是6=3+3,第三个数是15=6+9,第四个数是42=15+27,……,观察并猜想第七个数是 。

14.已知M=a+a 2+a 3+a 4+…+a 2000,若a=1,则M= ;若a=-1,则M= 。

三、解答题。

(共58分)15.已知p 与q 互为倒数,r 与s 互为相反数,∣t ∣=1,求t 2 + 2009pq +r +s 2009 的值。

沪科版初一数学第一章有理数计算专题-普通用卷(解析版)

沪科版初一数学第一章有理数计算专题-普通用卷(解析版)

沪科版初一数学第一章有理数计算专题-普通用卷(解析版)第一章计算专题副标题题号一总分得分一、计算题(本大题共17小题,共102.0分)1.计算:(-1)2016+(-16)÷22×.2.计算:-32-(-5)3×()2-15÷|-3|3.计算:(+-)÷(-)4.计算:(-3)2÷2-(-)×(-).1 / 85.计算:.6.计算:-(-4+)÷()3.7.计算(1)(+13)+(-20);(2)(+)+(-)+(+1)+(-);(3)-6-3+(-7)-(-7);(4)-14+11-(-12)-14+(-11);(5)(-2)×(-7);(6)(--)×(-48).8..9.计算:(1)(-14)-14+(-5)-(-30)-(+2);(2)-12008-[5×(-2)-(-4)2÷(-8)].沪科版初一数学第一章有理数计算专题-普通用卷(解析版)10.计算(1)(-2)2-(++)×12(2)-14-×[2-(-3)2]÷(-7).11.(-+-)×(-48).12.化简计算(-1)2012×[(-2)5-32-÷(-)].13.(1)计算:16÷(-2)3-(-)3×(-4)+2.5;(2)计算:(-1)2017+|-22+4|-(-+)×(-24)3 / 814.计算:(1);(2)-14-(1-0.5)÷3×[2-(-3)2].15.计算:(-3)4÷(1)2-6×(-)+|-32-9|16.计算:(1)(-1)4+(1-)÷3×(2-23)(2)(--+)÷.17.计算:-24+[(-4)2-(1-32)×2].沪科版初一数学第一章有理数计算专题-普通用卷(解析版)答案和解析【答案】1. 解:原式=1-16÷4×=1-1=0.2. 解:-32-(-5)3×()2-15÷|-3|=-9-(-125)×-5=-9+20-5=11-5=63. 解:(+-)÷(-)=(+-)×(-9)=×(-9)+×(-9)-×(-9)=-1-1.5+4.5=24. 解:原式=9×-=4-=.5. 解:原式=-64×(-)-30×(-)=48+24=72.6. 解:原式=(-)×=×=.7. 解:(1)原式=13-20=-7;(2)原式=(+1)+(--)=2-1=1;(3)原式=-6-3-7+7=-9;(4)原式=(-14+12)+(11-11)-14=-2-14=-16;(5)原式=14;(6)原式=-16+12+8=4.8. 解:原式=.9. 解:(1)(-14)-14+(-5)-(-30)-(+2)=-14-14-5+30-2=-(14+14+5+2)+30=-35+30=-5;(2)-12008-[5×(-2)-(-4)2÷(-8)]=-1-[-10-16÷(-8)]=-1-[-10+2]=-1+8=7.5 / 810. 解:(1)=4-=4-4-3-2=-5;(2)=-1-=-1-=-1-=.11. 解:原式=,=8-36+4=-24.12. 解:原式=1×(-32-9+)=-38.5.13. 解:(1)原式=16÷(-8)-×4+2.5=-2-0.5+2.5=-2+2=0;(2)原式=-1+0+12-6+3=8.14. 解:(1)==-20+27-2=5;(2)-14-(1-0.5)÷3×[2-(-3)2]===.15. 解:原式=81×+1+18=36+1+18=55.16. 解:(1)原式=1+××(-6)=1-1=0;(2)原式=(--+)×36=-27-20+21=-26.17. 解:原式=-16+[16-(-8)×2]=-16+(16+16)=-16+32=16沪科版初一数学第一章有理数计算专题-普通用卷(解析版)【解析】1. 原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2. 根据有理数的混合运算顺序,求出算式的值是多少即可.此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数的混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.3. 根据有理数的混合运算的运算方法,应用乘法分配律,求出(+-)÷(-)的值是多少即可.此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.4. 原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.5. 原式第一项第一个因式表示3个-4的乘积,第二项利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,计算即可得到结果.此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时利用利用运算律来简化运算.6. 原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.7. (1)原式利用异号两数相加的法则计算即可得到结果;(2)原式结合后,相加即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式结合后,相加即可得到结果;(5)原式利用同号两数相乘的法则计算即可得到结果;(6)原式利用乘法分配律计算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8. 原式先计算乘方运算,再计算乘法运算,最后算加减运算,即可得到结果.此题考查看有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.9. (1)先简化符号,再进行有理数的加减混合运算;(2)利用有理数的运算法则进行计算,要注意运算顺序的运用.注意:-12008=-1.本题考查的是有理数的运算能力.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.10. (1)利用乘法的分配律和有理数的混合运算法则进行计算即可;(2)根据有理数去括号的法则、有理数的加减乘除的计算法则进行计算即可.本题考查有理数的混合运算,解题的关键是明确有理数混合运算的方法.11. 根据乘法算式的特点,可以用括号内的每一项与-48相乘,计算出结果.在进行有理数的乘法运算时,要灵活运用运算律进行计算.12. 原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13. (1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果.7 / 8此题考查了有理数的混合运算,绝对值,以及乘法分配律,熟练掌握运算法则是解本题的关键.14. (1)运用乘法分配律计算即可;(2)根据运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的,计算即可.本题考查有理数的混合运算.(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.15. 原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16. (1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17. 本题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.原式先计算乘方运算,再计算括号内的乘法运算和加法运算,最后算括号外的加法运算即可.。

最新沪科版七年级数学下册单元测试题及答案全册

最新沪科版七年级数学下册单元测试题及答案全册

最新沪科版七年级数学下册单元测试题及答案全册第6章 实数时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题4分,满分40分) 1.下列各数中最大的数是( )A .5 B. 3 C .π D .-8 2.4的算术平方根是( ) A .2B .±2 C. 2 D .±23.下列各数:0,32,(-5)2,-4,-|-16|,π,其中有平方根的个数是( ) A .3个 B .4个 C .5个 D .6个4.如图,数轴上的A ,B ,C ,D 四点中,与数-3表示的点最接近的是( )A .点AB .点BC .点CD .点D5.下列式子中,正确的是( ) A.3-7=-37 B.36=±6C .- 3.6=-0.6 D.(-8)2=-86.在-3.5,227,0,π2,-2,-30.001,0.161161116…(相邻两个6之间依次多一个1)中,无理数有( )A .1个B .2个C .3个D .4个7.下列说法中,正确的是( ) A .不带根号的数不是无理数B.64的立方根是±2C .绝对值等于3的实数是3D .每个实数都对应数轴上一个点8.-27的立方根与81的平方根之和是( ) A .0 B .-6 C .0或-6 D .6 9.比较7-1与72的大小,结果是( ) A .后者大 B .前者大 C .一样大 D .无法确定10.如果0<x <1,那么在x ,1x ,x ,x 2中,最大的是( )A .x B.1xC.x D .x 2二、填空题(本大题共4小题,每小题5分,满分20分)11.-5的绝对值是________,116的算术平方根是________.12.已知x -1是64的算术平方根,则x 的算术平方根是________.13.若x ,y 为实数,且|x +2|+y -1=0,则(x +y )2018=________.14.对于“5”,有下列说法:①它是一个无理数;②它是数轴上离原点5个单位长度的点所表示的数;③若a <5<a +1,则整数a 为2;④它表示面积为5的正方形的边长.其中正确的说法是________(填序号).三、(本大题共2小题,每小题8分,满分16分) 15.将下列各数的序号填在相应的集合里:①0,②3-827,③3.1415,④π5, ⑤-0.3507··,⑥-2.3131131113…, ⑦-6133,⑧-8,⑨(-4)2,⑩0.9.16.计算:(1)|-5|+(-2)2+3-27-(-2)2-1;(2)30.125-3116×3×⎝⎛⎭⎫-182.四、(本大题共2小题,每小题8分,满分16分) 17.求下列各式中x 的值: (1)25x 2=9; (2)(x +3)3=8.18.计算:(1)3π-132+78(精确到0.01);(2)210×5÷6(精确到0.01).五、(本大题共2小题,每小题10分,满分20分)19.已知2a-1的平方根为±3,3a+b-1的算术平方根为4,求a+2b的平方根.20.如图,数轴的正半轴上有A,B,C三点,表示1和2的对应点分别为点A,B,点B到点A的距离与点C到点O的距离相等.设点C所表示的数为x.(1)请你写出数x的值;(2)求(x-2)2的立方根.六、(本题满分12分)21.某地气象资料表明:当地雷雨持续的时间t(h)可以用下面的公式来估计:t2=d3900,其中d(km)是雷雨区域的直径.(1)如果雷雨区域的直径为9km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是多少(已知3900≈9.65,结果精确到0.1km)?七、(本题满分12分)22.如图是一个数值转换器.(1)当输入x=25时,求输出的y的值;(2)是否存在输入x的值后,始终输不出y的值?如果存在,请直接写出所有满足要求的x值;如果不存在,请说明理由;(3)输入一个两位数x,恰好经过三次取算术平方根才能输出无理数y,则x=________(只填一个即可).八、(本题满分14分)23.如图①,把2个边长为1的正方形沿对角线剪开,将所得到的4个三角形拼成第1个大的正方形(如图②).(1)拼成的第1个大正方形的边长是________;(2)再把2个图②这样的大正方形沿对角线剪开,将所得的4个三角形拼成第2个大的正方形,则这个正方形的边长是________;(3)如此下去,写出拼成的第n 个正方形的边长.参考答案与解析1.A 2.C 3.B 4.B 5.A 6.C 7.D 8.C 9.B 10.B 11.51412.3 13.1 14.①③④ 15.解:①②③⑤⑦⑨(2分) ⑥⑧(4分) ③④⑨⑩(6分) ①②⑤⑥⑦⑧(8分)16.解:(1)原式=5+4-3-2-1=3.(4分) (2)原式=0.5-74×3×18=-532.(8分)17.解:(1)x 2=925,x =±925,x =±35.(4分) (2)x +3=38,x +3=2,x =-1.(8分)18.解:(1)原式≈3×3.142-3.6062+0.875≈8.50.(4分)(2)原式≈2×3.162×2.236÷2.449≈5.77.(8分)19.解:由题意得⎩⎪⎨⎪⎧2a -1=(±3)2=9,3a +b -1=42=16,解得⎩⎪⎨⎪⎧a =5,b =2.(6分)所以a +2b =5+2×2=9,所以a +2b 的平方根是±3.(10分)20.解:(1)x =2-1.(4分)(2)(x -2)2=(2-1-2)2=1,所以(x -2)2的立方根是1.(10分) 21.解:(1)当d =9时,则t 2=93900,(3分)因此t =93900=0.9.(5分) 答:如果雷雨区域的直径为9km ,那么这场雷雨大约能持续0.9h.(6分) (2)当t =1时,则d 3900=12,(8分)因此d =3900≈9.65≈9.7.(11分)答:如果一场雷雨持续了1h ,那么这场雷雨区域的直径大约是9.7km.(12分)22.解:(1)由输入x =25得25=5.因为5是有理数,不能输出,再取5的算术平方根得 5.因为5是无理数,所以输出y ,所以输入x =25时,输出的y 的值是 5.(4分)(2)x =0或1时,始终输不出y 的值.(8分) (3)81(答案不唯一)(12分)23.解:(1)2(4分) (2)2(8分)(3)两个边长为1的正方形拼成的第1个大正方形面积为2,所以它的边长为2;两个边长为2的正方形拼出的第2个大正方形面积为4,所以它的边长为2=(2)2……因此,拼成的第n 个正方形的边长为(2)n .(14分)第7章一元一次不等式与不等式组时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题4分,满分40分) 1.y 的13与z 的5倍的差的平方是一个非负数,列出不等式为( )A .5(13-y )2>0 B.13y -(5z )2≥0C .(13y -5z )2≥0 D.13y -5z 2≥02.已知a <b ,则下列不等式一定成立的是( ) A .a +5>b +5 B .-2a <-2b C.32a >32b D .7a -7b <0 3.一元一次不等式2(x +1)≥4的解集在数轴上表示为( )C. D.4.不等式组⎩⎪⎨⎪⎧x +4>3,2x ≤4的解集是( )A .1<x ≤2B .-1<x ≤2C .x >-1D .-1<x ≤45.要使代数式3m -14-m2的值不小于1,那么m 的取值范围是( )A .m >5B .m >-5C .m ≥5D .m ≥-56.如果不等式2x -m <0只有三个正整数解,那么m 的取值范围是( ) A .m <8 B .m ≥6 C .6<m ≤8 D .6≤m <87.如果2m ,m ,1-m 这三个数在数轴上所对应的点从左到右依次排列,那么m 的取值范围是( ) A .m >0 B .m >12 C .m <0 D .0<m <128.若方程组⎩⎪⎨⎪⎧3x +y =k +1,x +3y =3的解x ,y 满足0<x +y <1,则k 的取值范围是( )A .-4<k <0B .-1<k <0C .0<k <8D .k >-49.若不等式组⎩⎪⎨⎪⎧1+x <a ,x +92+1≥x +13-1有解,则实数a 的取值范围是( )A .a <-36B .a ≤-36C .a >-36D .a ≥-3610.某学校七年级学生计划用义卖筹集的1160元钱购买古典名著《水浒传》和《西游记》共30套.小华查到网上某图书商城的报价如图所示.如果购买的《水浒传》尽可能的多,那么《水浒传》和《西游记》可以购买的套数分别是( ) A .20,10 B .10,20 C .21,9 D .9,21二、填空题(本大题共4小题,每小题5分,满分20分)11.已知y 1=x +3,y 2=-x +1,当y 1>2y 2时,x 满足的条件是________. 12.关于x 的方程kx -1=2x 的解为正实数,则k 的取值范围是________.13.若不等式组⎩⎪⎨⎪⎧2x -b ≥0,x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为____________.14.某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局反扣1分,在12局比赛中,积分超过15分就可以晋升下一轮比赛,而且在全部12轮比赛中,没有出现平局,小王最多输________局比赛.三、(本大题共2小题,每小题8分,满分16分) 15.解下列不等式:(1)3(x -1)>2x +2; (2)x -x -24>4x +35.16.解不等式组,并将解集分别表示在数轴上.(1)⎩⎪⎨⎪⎧4x -3>x ①,x +4<2x -1②; (2)⎩⎪⎨⎪⎧6x +15>2(4x +3)①,2x -13≥12x -23②.四、(本大题共2小题,每小题8分,满分16分)17.定义新运算:对于任意实数a ,b ,都有a ⊕b =a (a -b )+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5.(1)求(-2)⊕3的值;(2)若3⊕x 的值小于13,求x 的取值范围,并在如图所示的数轴上表示出来.18.已知不等式5(x -2)+8<6(x -1)+7的最小整数解为方程2x -ax =4的解,求a 的值.五、(本大题共2小题,每小题10分,满分20分)19.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =m ,2x -y =6的解满足x >0,y <0,求满足条件的整数m 的值.20.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题备受人们关注,某学校计划在教室内安装空气净化装置,需购进A ,B 两种设备.已知购买1台A 种设备和2台B 种设备需要3.5万元;购买2台A 种设备和1台B 种设备需要2.5万元.(1)求每台A 种、B 种设备的价格;(2)根据学校实际情况,需购进A 种和B 种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A 种设备多少台.六、(本题满分12分)21.用[a ]表示不大于a 的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a >表示大于a 的最小整数,例如:<2.5>=3,<4>=5,<-1.5>=-1(请注意两个不同的符号).解决下列问题:(1)[-4.5]=________,<3.5>=________;(2)若[x ]=2,则x 的取值范围是____________;若<y >=-1,则y 的取值范围是____________;(3)已知x ,y 满足方程组⎩⎪⎨⎪⎧3[x ]+2<y >=3,3[x ]-<y >=-6,求x ,y 的取值范围.七、(本题满分12分)22.为增强居民节约用电意识,某市对居民用电实行“阶梯收费”,具体收费标准见下表:某居民五月份用电190千瓦时,缴纳电费90元.(1)求x的值和超出部分电费单价;(2)若该户居民六月份所缴电费不低于75元且不超过84元,求该户居民六月份的用电量范围.八、(本题满分14分)23.某公司有A,B两种客车,它们的载客量和租金如下表.星星中学根据实际情况,计划用A,B 型车共5辆,同时送七年级师生到校基地参加社会实践活动.(1)若要保证租金费用不超过980元,请问该学校有哪几种租车方案?(2)在(1)的条件下,若七年级师生共有150人,请问哪种租车方案最省钱?参考答案与解析1.C 2.D 3.A 4.B 5.C 6.C 7.C 8.A 9.C 10.A 11.x >-13 12.k >2 13.x >3214.215.解:(1)去括号,得3x -3>2x +2,移项,得3x -2x >2+3,合并同类项,得x >5.(4分)(2)去分母,得20x -5(x -2)>4(4x +3),去括号,得20x -5x +10>16x +12,移项、合并同类项,得-x >2,x 系数化成1,得x <-2.(8分)16.解:(1)解不等式①,得x >1,解不等式②,得x >5.因此,不等式组解集为x >5.在数轴上表示不等式组的解集为(4分)(2)解不等式①,得x <92,解不等式②,得x ≥-2.因此,不等式组解集为-2≤x <92.在数轴上表示不等式组的解集为(8分)17.解:(1)因为a ⊕b =a (a -b )+1,所以(-2)⊕3=-2(-2-3)+1=10+1=11.(4分)(2)因为3⊕x <13,所以3(3-x )+1<13,9-3x +1<13,-3x <3,x >-1.在数轴上表示如图所示.(8分)18.解:解不等式得x >-3,所以最小整数解为x =-2.(4分)所以2×(-2)-a ×(-2)=4,解得a =4.(8分)19.解:解方程组得⎩⎨⎧x =6+m 3,y =2m -63.(4分)又因为x >0,y <0,所以⎩⎨⎧6+m 3>0,2m -63<0,解得-6<m <3.(7分)因为m为整数,所以m 的值为-5,-4,-3,-2,-1,0,1,2.(10分)20.解:(1)设每台A 种、B 种设备的价格分别为x 万元、y 万元,根据题意得⎩⎪⎨⎪⎧x +2y =3.5,2x +y =2.5,解得⎩⎪⎨⎪⎧x =0.5,y =1.5.(4分)答:每台A 种、B 种设备各0.5万元、1.5万元.(5分)(2)设购买A 种设备z 台,根据题意得0.5z +1.5(30-z )≤30,解得z ≥15.(9分)21.解:(1)-5 4(2分)(2)2≤x <3 -2≤y <-1(6分)(3)解方程组得⎩⎪⎨⎪⎧[x ]=-1,<y >=3,所以x ,y 的取值范围分别为-1≤x <0,2≤y <3.(12分)22.解:(1)根据题意,得160x +(190-160)(x +0.15)=90,解得x =0.45.则超出部分的电费单价是x+0.15=0.6(元/千瓦时).(5分)答:x 和超出部分电费单价分别是0.45元/千瓦时和0.6元/千瓦时.(6分) (2)设该户居民六月份的用电量是a 千瓦时,因为160×0.45=72(元),所以该户居民六月份用电量超过160千瓦时,则75≤160×0.45+0.6(a -160)≤84,解得165≤a ≤180.(11分)答:该户居民六月份的用电量在165千瓦时到180千瓦时之间.(12分)23.解:(1)设租A 型车x 辆,则租B 型车(5-x )辆,根据题意得200x +150(5-x )≤980,解得x ≤235.(4分)因为x 取非负整数,所以x =0,1,2,3,4,所以该学校的租车方案有如下5种:租A 型车0辆、B 型车5辆;租A 型车1辆、B 型车4辆;租A 型车2辆、B 型车3辆;租A 型车3辆、B 型车2辆;租A 型车4辆、B 型车1辆.(7分)(2)根据题意得40x +20(5-x )≥150,解得x ≥52.(10分)因为x 取整数,且x ≤235,所以x =3或4.当x =3时,租车费用为200×3+150×2=900(元);当x =4时,租车费用为200×4+150×1=950(元).因为900<950,所以当租A 型车3辆、B 型车2辆时,租车费用最低.(14分)第8章 整式乘法与因式分解一、选择题(本大题共10小题,每小题4分,满分40分) 1.下列运算中,结果是a 6的式子是( ) A .a 2·a 3 B .a 12-a 6 C .(a 3)3 D .(-a )62.计算(-xy 3)2的结果是( ) A .x 2y 6 B .-x 2y 6 C .x 2y 9 D .-x 2y 9 3.科学家使用铁纳米颗粒以及具有磁性的钴和碳纳米颗粒合成了直径约为0.000000012米的新型材料,这种材料能在高温下储存信息,具有广阔的应用前景.这里的“0.000000012米”用科学记数法表示为( )A .0.12×10-7米B .1.2×10-7米C .1.2×10-8米D .1.2×10-9米 4.对于多项式:①x 2-y 2;②-x 2-y 2;③4x 2-y ;④x 2-4,能够用平方差公式进行因式分解的是( ) A .①和② B .①和③ C .①和④ D .②和④5.下列各式的计算中正确的个数是( )①100÷10-1=10; ②10-4·(2×7)0=1000;③(0.1)0÷⎝⎛⎭⎫-12-3=8; ④(-10)-4÷⎝⎛⎭⎫-110-4=-1. A .4个 B .3个C .2个D .1个6.若2x =3,8y =6,则2x -3y 的值为( )A.12 B .-2 C.62 D.327.下列计算正确的是( ) A .-3x 2y ·5x 2y =2x 2y B .-2x 2y 3·2x 3y =-2x 5y 4 C .35x 3y 2÷5x 2y =7xyD .(-2x -y )(2x +y )=4x 2-y 2 8.下列因式分解正确的是( ) A .a 4b -6a 3b +9a 2b =a 2b (a 2-6a +9) B .x 2-x +14=⎝⎛⎭⎫x -122 C .x 2-2x +4=(x -2)2D .4x 2-y 2=(4x +y )(4x -y )9.已知ab 2=-1,则-ab (a 2b 5-ab 3-b )的值等于( ) A .-1 B .0C .1D .无法确定10.越越是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a -b ,x -y ,x +y ,a +b ,x 2-y 2,a 2-b 2分别对应城、爱、我、蒙、游、美这六个汉字,现将(x 2-y 2)a 2-(x 2-y 2)b 2因式分解,结果呈现的密码信息可能是( )A .我爱美B .蒙城游C .爱我蒙城D .美我蒙城二、填空题(本大题共4小题,每小题5分,满分20分) 11.计算:(12a 3-6a 2)÷(-2a )=__________.12.若代数式x 2-6x +b 可化为(x -a )2-1,则b -a 的值是________. 13.若a -b =1,则代数式a 2-b 2-2b 的值为________.14.a ,b 是实数,定义一种运算@如下:a @b =(a +b )2-(a -b )2.有下列结论:①a @b =4ab ;②a @b =b @a ;③若a @b =0,则a =0且b =0;④a @(b +c )=a @b +a @c .其中正确的结论是________(填序号).三、(本大题共2小题,每小题8分,满分16分) 15.计算:(1)(a 2)3·(a 3)2÷(a 2)5;(2)(a -b +c )(a +b -c ).16.因式分解:(1)3x 4-48; (2)(c 2-a 2-b 2)2-4a 2b 2.四、(本大题共2小题,每小题8分,满分16分)17.先化简,再求值:(x 2+3x )(x -3)-x (x -2)2+(x -y )(y -x ),其中x =3,y =-2.18.已知a +b =2,ab =2,求12a 3b +a 2b 2ab 3的值.五、(本大题共2小题,每小题10分,满分20分) 19.张老师给同学们出了一道题:当x =2018,y =2017时,求[(2x 3y -2x 2y 2)+xy (2xy -x 2)]÷x 2y 的值.题目出完后,小明说:“老师给的条件y =2017是多余的.”小兵说:“不多余,不给这个条件,就不能求出结果.”你认为他们谁说得有道理?并说明你的理由.20.已知多项式x2+nx+3与多项式x2-3x+m的乘积中不含x2和x3项,求m,n的值.六、(本题满分12分)21.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8……根据以上规律,解答下列问题:(1)(a+b)4的展开式共有________项,系数分别为____________;(2)写出(a+b)5的展开式:(a+b)5=________________________________________________________________________;(3)(a+b)n的展开式共有________项,系数和为________.七、(本题满分12分)22.将一张如图①所示的长方形铁皮四个角都剪去边长为30cm的正方形,再四周折起,做成一个有底无盖的铁盒,如图②.铁盒底面长方形的长是4a cm,宽是3a cm.(1)请用含有a的代数式表示图①中原长方形铁皮的面积;(2)若要在铁盒的外表面涂上某种油漆,每1元钱可涂油漆的面积为a50cm2,则在这个铁盒的外表面涂上油漆需要多少钱(用含有a的代数式表示)?八、(本题满分14分)23.阅读下列材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=__________;(2)因式分解:(a+b)(a+b-4)+4;(3)试说明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.1.D 2.A 3.C 4.C 5.D 6.A 7.C 8.B 9.C 10.C 11.-6a 2+3a 12.5 13.114.①②④ 解析:因为a @b =(a +b )2-(a -b )2=(a +b +a -b )(a +b -a +b )=2a ·2b =4ab ,①正确;因为a @b =4ab ,b @a =(b +a )2-(b -a )2=(b +a +b -a )(b +a -b +a )=2b ·2a =4ab ,所以a @b =b @a ,②正确;因为a @b =4ab =0,所以a =0或b =0或a =0且b =0,③错误;因为a @(b +c )=(a +b +c )2-(a -b -c )2=(a +b +c +a -b -c )(a +b +c -a +b +c )=2a ·(2b +2c )=4ab +4ac ,a @b =4ab ,a @c =(a +c )2-(a -c )2=(a +c +a -c )(a +c -a +c )=2a ·2c =4ac ,所以a @(b +c )=a @b +a @c ,④正确.故答案为①②④.15.解:(1)原式=a 6·a 6÷a 10=a 2.(4分)(2)原式=[a -(b -c )][a +(b -c )]=a 2-(b -c )2=a 2-b 2+2bc -c 2.(8分)16.解:(1)原式=3(x 4-16)=3(x 2+4)(x 2-4)=3(x 2+4)(x +2)(x -2).(4分)(2)原式=(c 2-a 2-b 2+2ab )(c 2-a 2-b 2-2ab )=[c 2-(a -b )2][c 2-(a +b )2]=(c +a -b )(c -a +b )(c +a +b )(c -a -b ).(8分)17.解:原式=x 3-3x 2+3x 2-9x -x (x 2-4x +4)-(x -y )2=x 3-9x -x 3+4x 2-4x -x 2+2xy -y 2=3x 2-13x +2xy -y 2.(4分)当x =3,y =-2时,原式=3×32-13×3+2×3×(-2)-(-2)2=-28.(8分)18.解:原式=12ab (a 2+2ab +b 2)=12ab (a +b )2.(4分)当a +b =2,ab =2时,原式=12×2×22=4.(8分)19.解:小明说得有道理.(2分)理由如下:原式=[2x 3y -2x 2y 2+2x 2y 2-x 3y ]÷x 2y =x 3y ÷x 2y =x .所以该式子的结果与y 的值无关,即小明说得有道理.(10分)20.解:(x 2+nx +3)(x 2-3x +m )=x 4-3x 3+mx 2+nx 3-3nx 2+mnx +3x 2-9x +3m =x 4+(n -3)x 3+(m -3n +3)x 2+(mn -9)x +3m .(5分)因为不含x 2和x 3项,所以⎩⎪⎨⎪⎧n -3=0,m -3n +3=0,所以⎩⎪⎨⎪⎧m =6,n =3.(10分)21.(1)5 1,4,6,4,1(4分)(2)a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5(8分) (3)(n +1) 2n (12分)22.解:(1)原长方形铁皮的面积是(4a +60)(3a +60)=(12a 2+420a +3600)(cm 2).(5分)(2)这个铁盒的表面积是12a 2+420a +3600-4×30×30=(12a 2+420a )(cm 2),(9分)则在这个铁盒的外表面涂上油漆需要的钱数是(12a 2+420a )÷a50=(600a +21000)(元).(12分)23.解:(1)(x -y +1)2(3分)(2)令B =a +b ,则原式=B (B -4)+4=B 2-4B +4=(B -2)2,故(a +b )(a +b -4)+4=(a +b -2)2.(8分) (3)(n +1)(n +2)(n 2+3n )+1=(n 2+3n )[(n +1)(n +2)]+1=(n 2+3n )(n 2+3n +2)+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n +1)2.(11分)因为n 为正整数,所以n 2+3n +1也为正整数,所以式子(n +1)(n +2)(n 2+3n )+1的值一定是某一个整数的平方.(14分)第9章 分式一、选择题(本大题共10小题,每小题4分,满分40分)1.要使分式3x -2有意义,则x 的取值范围是( )A .x >2B .x <2C .x ≠-2D .x ≠2 2.若分式x -2x +1的值为0,则x 的值为( )A .2或-1B .0C .2D .-13.分式1,1,1的最简公分母是( )A .(a 2-1)2B .(a 2-1)(a 2+1)C .a 2+1D .(a -1)44.不改变分式2x -52y23x +y 的值,把分子、分母中各项系数化为整数,结果是( )A.2x -15y 4x +yB.4x -5y 2x +3yC.6x -15y 4x +2yD.12x -15y 4x +6y5.已知分式⎝⎛⎭⎫-x4y 22与另一个分式的商是2x 6y ,那么另一个分式是( ) A .-x 22y 5 B.x 142y 3 C.x 22y 5 D .-x2y 36.若1+2a +a 2a 2-1=1+a x ,则x 等于( )A .a +2B .a -2C .a +1D .a -1 7.已知1a -1b =4,则a -2ab -b 2a -2b +7ab 的值等于( )A .6B .-6 C.215 D .-278.下列说法:①解分式方程一定会产生增根;②方程x -2x 2-4x +4=0的根为2;③方程12x =12x -4的最简公分母为2x (2x -4);④x +1x -1=1+1x +1是分式方程.其中正确的个数为( )A .1个B .2个C .3个D .4个 9.关于x 的分式方程5x =ax -5有解,则字母a 的取值范围是( )A .a =5或a =0B .a ≠0C .a ≠5D .a ≠5且a ≠010.九年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h ,则所列方程正确的是( )A.10x =102x -13B.10x =102x -20 C.10x =102x +13 D.10x =102x+20 二、填空题(本大题共4小题,每小题5分,满分20分) 11.化简⎝⎛⎭⎫1m +1n ÷m +n n 的结果是________.12.已知x 2-4x +4与|y -1|互为相反数,则式子⎝⎛⎭⎫x y -y x ÷(x +y )的值等于________. 13.如果方程a x -2+3=1-x 2-x有增根,那么a =________.14.有一个分式,三位同学分别说出了它的一些特点:甲说:分式的值不可能为0;乙说分式有意义时,x 的取值范围是x ≠±1;丙说:当x =-2时,分式的值为1.请你写出满足上述三个特点的一个分式:________.15.计算: (1)4a 2b 3cd 2·5c 2d 4ab 2÷2abc 3d ;(2)2m -n n -m +m m -n +n n -m .16.化简:(1)2x x +1-2x +6x 2-1÷x +3x 2-2x +1;(2)⎝⎛⎭⎫a a 2-b 2-1a +b ÷b b -a .四、(本大题共2小题,每小题8分,满分16分) 17.解方程:(1)1+3x x -2=6x -2;(2)1-x -32x +2=3x x +1.18.先化简,再求值:1-x -y x +2y ÷x 2-y 2x 2+4xy +4y 2,其中x ,y 满足|x -2|+(2x -y -3)2=0.五、(本大题共2小题,每小题10分,满分20分) 19.观察下列等式: ①1-56=12×16;②2-107=22×17;③3-158=32×18;……(1)请写出第4个等式:________________;(2)观察上述等式的规律,猜想第n 个等式(用含n 的式子表示),并验证其正确性.20.已知A =x 2+2x +1x 2-1-xx -1.(1)化简A ;(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.六、(本题满分12分)21.甲、乙两座城市的中心火车站A ,B 两站相距360km.一列动车与一列特快列车分别从A ,B 两站同时出发相向而行,动车的平均速度比特快列车快54km/h ,当动车到达B 站时,特快列车恰好到达距离A 站135km 处的C 站.求动车和特快列车的平均速度各是多少.七、(本题满分12分)22.抗洪抢险,需要在一定时间内筑起拦洪大坝,甲队单独做正好按期完成,而乙队由于人少,单独做则延期3小时才能完成.现甲、乙两队合作2小时后,甲队又有新任务,余下的由乙队单独做,刚好按期完成.求甲、乙两队单独完成全部工程各需要多少小时.八、(本题满分14分) 23.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数,如:83=6+23=2+23=223.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如x -1x +1,x 2x -1这样的分式就是假分式;再如3x +1,2x x 2+1这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:x -1x +1=(x +1)-2x +1=1-2x +1;解决下列问题:(1)分式2x 是________(填“真分式”或“假分式”);(2)将假分式x 2-1x +2化为带分式;(3)如果x 为整数,分式2x -1x +1的值为整数,求所有符合条件的x 的值.参考答案与解析1.D 2.C 3.A 4.D 5.C 6.D 7.A 8.A 9.D 10.C11.1m 12.12 13.1 14.3x 2-1(答案不唯一) 15.解:(1)原式=4a 2b 3cd 2·5c 2d 4ab 2·3d 2abc =52b2.(4分)(2)原式=2m -n n -m -m n -m +n n -m =2m -n -m +n n -m =mn -m.(8分)16.解:(1)原式=2x x +1-2(x +3)(x +1)(x -1)·(x -1)2x +3=2x x +1-2(x -1)x +1=2x +1.(4分)(2)原式=a -(a -b )(a +b )(a -b )·b -a b =-b (a +b )(a -b )·a -b b =-1a +b.(8分)17.解:(1)去分母,得x -2+3x =6,移项、合并同类项,得4x =8,x 系数化成1,得x =2.检验:当x =2时,x -2=0.所以x =2不是原方程的根,原方程无解.(4分)(2)去分母,得2x +2-(x -3)=6x ,去括号,得2x +2-x +3=6x ,移项、合并同类项,得5x =5,x 系数化成1,得x =1.检验:当x =1时,2x +2≠0,所以原方程的根是x =1.(8分)18.解:原式=1-x -y x +2y ·(x +2y )2(x +y )(x -y )=1-x +2y x +y =x +y -x -2y x +y =-yx +y .(4分)因为|x -2|+(2x-y -3)2=0,所以⎩⎪⎨⎪⎧x -2=0,2x -y =3,解得⎩⎪⎨⎪⎧x =2,y =1.当x =2,y =1时,原式=-12+1=-13.(8分)19.解:(1)4-209=42×19(3分)(2)猜想:n -5n 5+n =n 2×15+n (其中n 为正整数).(7分)验证:n -5n 5+n =n (5+n )-5n 5+n =n 25+n ,所以左式=右式,所以猜想成立.(10分)20.解:(1)A =x 2+2x +1x 2-1-x x -1=(x +1)2(x +1)(x -1)-x x -1=x +1x -1-x x -1=1x -1.(5分)(2)解不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,得1≤x <3.因为x 为整数,所以x =1或x =2.当x =1时,A =1x -1无意义;当x =2时,A =1x -1=12-1=1.(10分)21.解:设特快列车的平均速度为x km/h ,则动车的平均速度为(x +54)km/h ,由题意得360x +54=360-135x ,解得x =90.(8分)经检验,x =90是这个分式方程的解.x +54=144.(11分)答:特快列车的平均速度为90km/h ,动车的平均速度为144km/h.(12分)22.解:设甲队单独完成需要x 小时,则乙队需要(x +3)小时.由题意得2x +xx +3=1,解得x =6.(8分)经检验,x =6是方程的解.所以x +3=9.(11分)答:甲单独完成全部工程需6小时,乙单独完成全部工程需9小时.(12分) 23.解:(1)真分式(2分)(2)x 2-1x +2=x 2+2x -2x -1x +2=x -2x +1x +2=x -2(x +2)-3x +2=x -2+3x +2.(8分) (3)2x -1x +1=2(x +1)-3x +1=2-3x +1,由x 为整数,分式的值为整数,得到x +1=-1,-3,1,3,解得x =-2,-4,0,2,则所有符合条件的x 值为0,-2,2,-4.(14分)第10章相交线与平行线、平移时间:120分钟满分:150分1.下列图形中∠1与∠2互为对顶角的是()2.下列图形中,∠1和∠2不是同位角的是()3.下列图形中,不能通过平移其中一个四边形得到的是()4.如图,下列能判定AB∥CD的条件有()①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.A.1个B.2个C.3个D.4个第4题图第5题图5.如图,观察图形,下列说法正确的个数是()①线段AB的长必大于点A到直线BD的距离;②线段BC的长小于线段AB的长,根据是两点之间线段最短;③图中对顶角共有9对;④线段CD的长是点C到直线AD的距离.A.1个B.2个C.3个D.4个6.如图,已知AB∥CD,EF平分∠CEG,∠1=80°,则∠2的度数为() A.20° B.40° C.50° D.60°第6题图第7题图7.如图,点E,F分别是AB,CD上的点,点G是BC的延长线上一点,且∠B=∠DCG=∠D,则下列判断中,错误的是()A.∠AEF=∠EFC B.∠A=∠BCFC.∠AEF=∠EBC D.∠BEF+∠EFC=180°8.如图,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么∠BAO与∠ABO之间的大小关系一定为()A.互余B.相等C.互补D.不等第8题图第9题图9.如图,若AB∥CD,CD∥EF,则∠BCE等于()A.∠2-∠1 B.∠1+∠2C.180°+∠1-∠2 D.180°-∠1+∠210.如图,将面积为5的三角形ABC沿BC方向平移至三角形DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()A.5 B.10C.15 D.20第10题图第11题图二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,请填写一个你认为恰当的条件______________,使AB∥CD.第12题图第13题图12.如图,已知∠1=82°,∠2=98°,∠3=80°,则∠4的度数为________.13.如图,折叠一张长方形纸片,已知∠1=70°,则∠2的度数是________°.14.如图,C为∠AOB的边OA上一点,过C作CD∥OB交∠AOB的平分线OE于点F,作CH⊥OB 交BO的延长线于点H.若∠EFD=α,现有以下结论:①CH>CO;②∠COF=α;③CH⊥CD;④∠OCH =2α-90°.其中正确的结论是________(填序号).第14题图三、(本大题共2小题,每小题8分,满分16分)15.如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O,求∠2,∠3的度数.16.如图,∠1=∠2,∠D=50°,求∠B的度数.四、(本大题共2小题,每小题8分,满分16分)17.如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,求∠PQC的度数.18.如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.下面给出了求∠AGD的度数的过程,将此补充完整并在括号里填写依据.解:因为EF∥AD(已知),所以∠2=______(________________________).又因为∠1=∠2(已知).所以∠1=∠3(等式性质或等量代换),所以AB∥______(____________________________),所以∠BAC+________=180°(__________________________).又因为∠BAC=70°(已知),所以∠AGD=________(____________).五、(本大题共2小题,每小题10分,满分20分)19.画图并填空:(1)画出三角形ABC先向右平移6格,再向下平移2格得到的三角形A1B1C1;(2)线段AA1与BB1的关系是______________;(3)三角形ABC的面积是________平方单位.20.如图,∠BAP+∠APD=180°,∠1=∠2.试说明:∠E=∠F.六、(本题满分12分)21.如图,一个楼梯的总长度为5米,总高度为4米,楼梯宽为2米.若在楼梯上铺地毯,且每平方米地毯售价30元,则至少需要多少钱?七、(本题满分12分)22.如图,∠CDH+∠EBG=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?八、(本题满分14分)23.问题情境:如图①,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:如图②,过点P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°.问题迁移:(1)如图③,AD∥BC,点P在射线OM上运动,当点P在A,B两点之间运动时,∠ADP=α,∠BCP =β,∠CPD,α,β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P分别在射线AM和射线OB上运动时(点P与点A,B,O三点不重合),请你分别直接写出∠CPD,α,β间的数量关系.参考答案与解析1.C 2.C 3.D 4.C 5.A 6.C7.C8.A9.C10.C11.∠F AB=∠FCD(答案不唯一)12.80°13.5514.②③④15.解:因为∠1=∠2,∠1=30°,所以∠2=30°.(3分)因为AB⊥CD,所以∠AOD=90°,所以∠2+∠3=90°,所以∠3=90°-∠2=90°-30°=60°.(8分)16.解:因为∠1=∠2,∠2=∠EHD,所以∠1=∠EHD,所以AB∥CD.(4分)所以∠B+∠D=180°,所以∠B=180°-∠D=180°-50°=130°.(8分)17.解:(1)如图所示.(2分)(2)如图所示.(4分)(3)因为CD∥PQ,所以根据两直线平行,同旁内角互补得∠PQC+∠DCQ=180°.又因为∠DCQ=120°,所以∠PQC=60°.(8分)18.∠3两直线平行,同位角相等DG内错角相等,两直线平行∠AGD两直线平行,同旁内角互补110°等式性质(8分)19.解:(1)三角形A1B1C1如图所示.(4分)(2)平行且相等(7分)(3)3.5(10分)20.解:因为∠BAP+∠APD=180°,所以AB∥CD,所以∠BAP=∠APC.(5分)又因为∠1=∠2,所以∠FP A=∠EAP,所以AE∥PF,所以∠E=∠F.(10分)21.解:由平移知识可知,地毯的总长度为5+4=9(米),(5分)所以其面积为9×2=18(平方米),所需费用为18×30=540(元).(11分)答:至少需要540元.(12分)22.解:(1)AE与FC平行.(1分)理由如下:因为∠CDH+∠EBG=180°,∠CDH+∠CDB=180°,所以∠CDB=∠EBG,所以AE∥FC.(4分)(2)AD与BC平行.(5分)理由如下:由(1)知AE∥FC,所以∠CDA+∠A=180°.因为∠A=∠C,所以∠CDA+∠C=180°,所以AD∥BC.(8分)(3)BC平分∠DBE.(9分)理由如下:由(1)知AE∥FC,所以∠EBC=∠C.由(2)知AD∥BC,所以∠C=∠FDA,∠DBC=∠BDA.又因为DA平分∠BDF,所以∠FDA=∠BDA,所以∠EBC=∠DBC,所以BC 平分∠DBE.(12分)23.解:(1)∠CPD=α+β.(2分)理由如下:如图③,过点P作PE∥AD交CD于点E.(3分)因为AD∥BC,所以AD∥PE∥BC,所以∠DPE=α,∠CPE=β,所以∠CPD=∠DPE+∠CPE=α+β.(6分)(2)如图④,当点P在射线AM上时,∠CPD=β-α.(10分)如图⑤,当点P在线段OB上时,∠CPD =α-β.(14分)。

七年级数学下册 实数单元测试题 沪科版

七年级数学下册 实数单元测试题 沪科版

实数单元测试题一、填空题(本题共10小题,每小题2分,共20分)1、()26-得算术平方根就是__________、 2、ππ-+-43= _____________、3、2得平方根就是__________、4、实数a ,b ,c 在数轴上得对应点如图所示,化简c b c b a a ---++2=________________、5、若m 、n 互为相反数,则n m +-5=_________、6、若2)2(1-+-n m =0,则m =________,n =_________、7、若 a a -=2,则a______0、8、12-得相反数就是_________、9、 38-=________,38-=_________、10、绝对值小于π得整数有__________________________、二、选择题(本题共10小题,每小题3分,共30分)11、代数式12+x ,x ,y ,2)1(-m ,33x 中一定就是正数得有( )、A 、1个B 、2个C 、3个D 、4个12、若73-x 有意义,则x 得取值范围就是( )、A 、x >37-B 、x ≥ 37-C 、x >37D 、x ≥37 13、若x ,y 都就是实数,且42112=+-+-y x x ,则xy 得值( )、A 、0B 、 21 C 、2 D 、不能确定 14、下列说法中,错误得就是( )、A 、4得算术平方根就是2B 、81得平方根就是±3C 、8得立方根就是±2 D、立方根等于-1得实数就是-115、64得立方根就是( )、A 、±4B 、4C 、-4D 、1616、已知04)3(2=-+-b a ,则ba 3得值就是( )、 A 、 41 B 、- 41 C 、433 D 、43 17、计算33841627-+-+得值就是( )、A 、1B 、±1C 、2D 、718、有一个数得相反数、平方根、立方根都等于它本身,这个数就是( )、A 、-1B 、1C 、0D 、±119、下列命题中,正确得就是( )、A 、无理数包括正无理数、0与负无理数B 、无理数不就是实数C 、无理数就是带根号得数D 、无理数就是无限不循环小数20、下列命题中,正确得就是( )、A 、两个无理数得与就是无理数B 、两个无理数得积就是实数C 、无理数就是开方开不尽得数D 、两个有理数得商有可能就是无理数三、解答题(本题共6小题,每小题5分,共30分)21、求972得平方根与算术平方根、 22、计算252826-+得值、23、解方程x 3-8=0、24、若0)13(12=-++-y x x ,求25y x +得值、25、计算)515(5-、26、若13223+-+-=x x y ,求3x +y 得值、四、综合应用(本题共10小题,每小题2分,共20分)27、若a 、b 、c 满足01)5(32=-+++-c b a ,求代数式ac b -得值、28、已知052522=-++-x x x y ,求7(x +y )-20得立方根、。

沪科版七年级下册数学第一单元测试

沪科版七年级下册数学第一单元测试

沪科版七年级下册数学第一单元测试班级: 姓名: 得分: 一、选一选(每小题4分,共40分) 每一个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在后面的表格中。

每一小题:选对得 4 分,不选、选错或选出的代号超过一个的一律得0分。

A .±3B .3C .±3D .32、下列说法中,正确的是……………………………………………………【 】A .1的平方根是1B .1的立方根是±1C .-1的平方根是-1D .-1的立方根是-13、在下列各数中,是无理数的是………………………………………………【 】A .πB .722C .9D .44、平方根等于它本身的数 ………………………………………………………【 】 A 、只有0 B 、只有1 C 、有0和1 D 、有0、1和-1 5.16的平方根是 …………………………………………………………【 】 (A ) 4± (B ) 4 (C ) 2± (D ) 2± 6、与数轴上所有的点一一对应的数是…………………………………………【 】 A 、有理数 B 、无理数 C 、整数 D 、实数7、如图所示,以数轴的单位长线段为边作一个正方形,以数轴的原点为圆心、正方形对角线长为半径画弧,交数轴正半轴于点AA .211 B .1.4 C .3 D .2 8、下列各式中,正确的是………………………………………………………【 】 A .5.05.2-=- B .5)5(2-=-C .636±=D .39=9、-8的立方根与4的算术平方根之和是……………………………………【 】A .0B .4C .-4D .0或-4 10、下列判断中,错误的有【 】 (1)有立方根的数必有平方根 (2)零的平方根、立方根、算术平方根都是零(3)有平方根的数必有立方根 (4)不论a 是什么实数,3a 必有意义 A 、1个 B 、2个 C 、3个 D 、4个 二、细心填一填(本题有4小题,每小题5分,共20分) 11、写出一个3到4之间的无理数 . 12、3的相反数是 ,绝对值是 .13、大于17-而小于11的所有整数为 14、若032=-++y x ,则xy 的值为_____________。

沪科版七年级下实数单元测试卷60

沪科版七年级下实数单元测试卷60

沪科版七年级下实数单元测试卷60一、选择题(共12小题;共60分)1. 计算的结果是A. B. C. D.2. 一个正数的平方根是和,则这个数为D. 或3.A. B. C. D.4. “的算术平方根”这句话用数学符号表示为A. B. C. D.5. 若将,,表示在数轴上,则其中能被如图所示的墨迹覆盖的数是A. C. D. 都不可能6. 数轴上表示的点的位置应在A. 1与2之间B. 2与3之间C. 3与4之间D. 4与5之间7. 下列整数中,与最接近的是A. B. C. D.8. 下列说法错误的是A. 任何一个有理数都有立方根,而且只有一个立方根B. 开立方与立方互为逆运算不一定是负数一定是负数9. 下列说法中正确的是A. 无理数都是无限不循环小数B. 无限小数都是无理数C. 有理数都是有限小数D. 带根号的数都是无理数10. 在有理数,中,最小的数是A. D.11. 在算式的中填入运算符号,使结果最大的运算符号是A. 加号B. 减号C. 乘号D. 除号12. 下列说法中,正确的是A.C. D.二、填空题(共6小题;共30分)13. 计算:.14. 用计算器计算(结果精确到).15. 计算:.16. 设边长为的正方形的对角线长为,下列关于的四种说法:①是无理数;②可以用数轴上的一个点来表示;③;④是的算术平方根.其中,所有正确说法的序号是.17. 将实数,,按从小到大的顺序排列,并用“”连接:.18. 若,且为整数,则.三、解答题(共8小题;共104分)19. 实数、在数轴上的位置如图所示,请化简:.20. 写出在和之间的一个无理数.21. 如图所示,长方形内相邻两个正方形的面积分别为和,求长方形内阴影部分的面积.22. 利用计算器求和的按键顺序是怎样的?23. 一种形状为正方体的玩具名为“魔方”,它是由三层完全相同的小正方体组成的,体积为立方厘米,求组成它的每个小正方体的棱长.24. 有理数,满足,求,的值.25. 观察:,即;,即.猜想:等于什么,并通过计算验证你的猜想.26. 把下列各数分别填入相应的数集里.,,,,,,(1;(2;(3;(4.答案第一部分1. B2. C 【解析】,,,.3. A4. A5. A6. B 【解析】【分析】直接估算出,进而得出答案.【解析】解:,,故选:.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.7. C 【解析】,,最接近的是.8. D9. A10. C【解析】根据有理数比较大小的方法,可得,在,这四个数中,最小的数是.11. D12. D第二部分13.14.16. ①②④18.【解析】,,,又,.第三部分19. 同解析【解析】【分析】根据点的位置,可得,,根据绝对值的性质,二次根式的性质,可得答案.【解析】解:由数轴,得.原式.【点评】本题考查了实数与数轴,利用绝对值的性质,二次根式的性质化简是解题关键.20. 如.21. 如图所示,由题意,得,,所以阴影部分的面积.22. 求的按键顺序是.求得按键顺序是.23. 设小正方体的棱长为厘米,则“魔方”的棱长为厘米,由题意得.所以,,.即组成它的每个小正方体的棱长为厘米.24. ..,.25. 猜想:.验证:.26. (1),,,(2),,,,(3),,(4)。

沪科版七年级数学第一单元试题

沪科版七年级数学第一单元试题

沪科版七年级数学第一单元试题(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--王店中学七年级第一单元测试题班级:姓名:分数:一、选择题(4×10=40分)1、-5的相反数是()A B - C 5 D -52、下列各数中,为负数的是()A 0BCD 20183、如图,数轴上点A表示的数可能是()A B C -2 D -34、如图,检测4个足球,超过标准质量的克数记为正数,不足标准质量的克数记为负数。

从轻重的角度看,下列最接近标准的是()+A B C D5、2017年10月18日,中国共产党第十九次全国代表大会在京召开,“十九大”最受新闻网站关注.据统计,关键词“十九大”在万个网站中产生数据约174000条,数据174000可用科学计数法表示为()A ×105B ×105C ×104D ×1066、-|π|的值为()A 0BC πD π7、陀螺是中国民间最早的娱乐工具之一,其中的指尖陀螺曾风靡一时.某种指尖陀螺说明书上标明它的净重是(40±3)g,则两个质量合格的指尖陀螺质量最大相差()A 0gB 3gC 6gD 86g8、下列说法错误的是()A 若n个有理数的积是0,则其中至少有一个数为0;B 倒数等于它本身的有理数是±1;C 任何有理数的平方都大于0;D 由四舍五入法得到的近似数×103精确到百位.9、下列各组数中,结果相等的是()A -14与(-1)4B 与()3C -|-2|与-(-2)D (-3)3与-3310、如图,下列结论正确的是()A c>a>bB >C |a|<|b|D abc>0二、填空题(4×5=20分)11、-(+)的倒数是 .12、已知有理数x满足x<0且|x|<3,任意写出一个满足条件的有理数x的值。

13、小莉做了这样一道计算题:|()+■|,其中“■”表示被墨水污染看不到的一个数,经过分析后,他知道这个数为正数,且算式的计算结果为8,那么“■”表示的数应该是。

沪科版数学七年级第1章_有理数单元卷二(含答案)

沪科版数学七年级第1章_有理数单元卷二(含答案)

6.下列说法中,正确的是() A.-a一定是负数 B.倒数等于它本身的数是±1 C.|-a|一定是正数 D.绝对值等于它本身的数是都是正数±1,0
【参考答案】
答案:B. 解:利用倒数、相反数、绝对值的概念及性质可知: A.-a一定是负数,当a=0,错误; B.倒数等它本身的数是±1,正确; C.|-a|一定是正数,当a=0,错误; D.绝对值等于它本身的数是±1,0,正数的绝对值等于它本身,所以错误. 故选B.
9.从2018年全区普通高校招生工作电视电话会议得知,今年我区高考考生规模将首次突破40万人.40万人用科学 记数法可表示为()人.
A.4ห้องสมุดไป่ตู้102
B.4×105
【参考答案】
答案:B. 解: 万 4 0 = 4 0 0 0 0 0 = 4 × 1 0 5 . 故选B.
C.40×104
D.0.4×106
7.下列计算正确的是().
A.-2018-(-2018)=-4036
1
1
1
1
B.6÷(
-
)=6÷
-6÷
=6
3
2
3
2
C.3×(-32)=3×(-9)=-27
2
9
D.1÷(-

=1÷(-1)=-1
9
2
【参考答案】
答案:C.
解:A:原式=-2008+2008=0,故选项A错误;
:原式 ,故选项 错误; 1
二、填空题
11.某零件的长度比标准长度短1.5,记作-1.5,那么比标准长度长2,记作 .
【参考答案】
答案:+2. 解:比标准长度长2记作+2.
12.数轴上到原点的距离为5个单位长度的点所表示的数是 .

沪科版七年级下实数单元测试卷98

沪科版七年级下实数单元测试卷98

沪科版七年级下实数单元测试卷98一、选择题(共12小题;共60分)1. 下列计算正确的是A.C. D.2. 的平方根是B. C. D.3. 如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序为,则输出结果应为A. B. C. D.4. 若的算术平方根有意义,则的取值范围是A. 一切数B. 正数C. 非负数D. 非零数5. 通过估算,估计的大小应在A. 之间B. 之间C. 之间D. 之间6. 数轴上表示的点的位置应在A. 1与2之间B. 2与3之间C. 3与4之间D. 4与5之间7. 下列无理数中,与最接近的是A. B. C. D.8. 的绝对值是A.9. 下列说法中正确的是A. 无理数都是无限不循环小数B. 无限小数都是无理数C. 有理数都是有限小数D. 带根号的数都是无理数10. 若,则,,的大小关系是A. B. C. D.11. 如图所示,数轴上,两点表示的数分别是和,则,两点之间的距离是A. C. D.12. 若和互为相反数,求的值为A. B. C. D.二、填空题(共6小题;共30分)13. 求值:.14. 利用计算器,比较下列数的大小.(1);(2);(3.15. (书写每项化简过程).16. 在实数,,,(每两个之间依次多一个)中,无理数的个数是个.17. 比较大小:(填“”“”“”).18. 已知是的整数部分,是的小数部分,则的平方根为.三、解答题(共8小题;共104分)19. 实数、在数轴上的位置如图所示,请化简:.20. 因为且,所以的整数部分是;因为且,所以的整数部分是;因为且,所以的整数部分是;以此类推,(为正整数)的整数部分是,试说明理由.21. 用米长的篱笆,在空地上围一个绿化场地,现有两种设计方案:一种是围成正方形的场地;另一种是围成圆形的场地.选用哪一种方案,围成的场地面积较大?大多少?22. 已知,.求代数式的值(精确到).(1)答案:23. 若,求的值.24. 在物理学中,电流做功的功率,试用含,的式子表示,并求当、时,的值.25. 请用下表中的数据填空:(1)的平方根是.(2).(3).26. 把下列各数分别填入相应的集合里.,,,,,.(1;(2;(3;(4.答案第一部分1. D 【解析】A.与不能合并,所以A选项错误;B.,所以B选项错误;C.,所以C选项错误;D.,所以D选项正确.2. D 【解析】,的平方根是,的平方根是.3. D 【解析】.故选:D.4. C 【解析】的算术平方根有意义,的取值范围是:.故选:C.5. C6. B 【解析】【分析】直接估算出,进而得出答案.【解析】解:,,故选:.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.7. C8. A9. A10. A【解析】因为,所以,,因为,所以,所以,所以.11. D 【解析】,两点之间的距离.12. B 【解析】由题意可知:,即 ..第二部分13.14. ,,15.16.17.【解析】,,.故答案为:.18.第三部分19. 同解析【解析】【分析】根据点的位置,可得,,根据绝对值的性质,二次根式的性质,可得答案.【解析】解:由数轴,得.原式.【点评】本题考查了实数与数轴,利用绝对值的性质,二次根式的性质化简是解题关键.20. .理由:,..即.的整数部分是.21. 若围成正方形,则正方形边长(米)(平方米)若围成圆形,则根据圆的周长公式,,得,又,(米)(平方米)因为(平方米)答:圆的面积比较大,大平方米22. 原式.23. ,.由立方根的性质可知:一个数的立方根等于其本身的数有:, .或 .解得或或 .24. 由得,所以.当、时,.25. (1)(2)(3);26. (1)正数集合:,,,, };(2)分数集合:,,, };(3)整数集合:,,,, };(4)无理数集合:{ ,, }.。

最新沪科版七年级数学下册全册单元测试题及答案全册

最新沪科版七年级数学下册全册单元测试题及答案全册

沪科版七年级数学下册(全册)单元测试题及答案第6章 实数时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题4分,满分40分)1.下列各数中最大的数是( ) A .5 B. 3 C .π D .-82.4的算术平方根是( ) A .2 B .±2 C. 2 D .±23.下列各数:0,32,(-5)2,-4,-|-16|,π,其中有平方根的个数是( ) A .3个 B .4个 C .5个 D .6个4.如图,数轴上的A ,B ,C ,D 四点中,与数-3表示的点最接近的是( )A .点AB .点BC .点CD .点D5.下列式子中,正确的是( ) A.3-7=-37 B.36=±6C .- 3.6=-0.6 D.(-8)2=-86.在-3.5,227,0,π2,-2,-30.001,0.161161116…(相邻两个6之间依次多一个1)中,无理数有( )A .1个B .2个C .3个D .4个7.下列说法中,正确的是( ) A .不带根号的数不是无理数 B.64的立方根是±2C .绝对值等于3的实数是3D .每个实数都对应数轴上一个点8.-27的立方根与81的平方根之和是( ) A .0 B .-6 C .0或-6 D .6 9.比较7-1与72的大小,结果是( ) A .后者大 B .前者大 C .一样大 D .无法确定10.如果0<x <1,那么在x ,1x ,x ,x 2中,最大的是( )A .x B.1xC.x D .x 2二、填空题(本大题共4小题,每小题5分,满分20分)11.-5的绝对值是________,116的算术平方根是________.12.已知x -1是64的算术平方根,则x 的算术平方根是________.13.若x ,y 为实数,且|x +2|+y -1=0,则(x +y )2018=________.14.对于“5”,有下列说法:①它是一个无理数;②它是数轴上离原点5个单位长度的点所表示的数;③若a <5<a +1,则整数a 为2;④它表示面积为5的正方形的边长.其中正确的说法是________(填序号).三、(本大题共2小题,每小题8分,满分16分)15.将下列各数的序号填在相应的集合里: ①0,②3-827,③3.1415,④π5, ⑤-0.3507··,⑥-2.3131131113…, ⑦-6133,⑧-8,⑨(-4)2,⑩0.9.16.计算:(1)|-5|+(-2)2+3-27-(-2)2-1;(2)30.125-3116×3×⎝⎛⎭⎫-182.四、(本大题共2小题,每小题8分,满分16分) 17.求下列各式中x 的值: (1)25x 2=9; (2)(x +3)3=8.18.计算:(1)3π-132+78(精确到0.01);(2)210×5÷6(精确到0.01).五、(本大题共2小题,每小题10分,满分20分)19.已知2a-1的平方根为±3,3a+b-1的算术平方根为4,求a+2b的平方根.20.如图,数轴的正半轴上有A,B,C三点,表示1和2的对应点分别为点A,B,点B到点A的距离与点C 到点O的距离相等.设点C所表示的数为x.(1)请你写出数x的值;(2)求(x-2)2的立方根.六、(本题满分12分)21.某地气象资料表明:当地雷雨持续的时间t(h)可以用下面的公式来估计:t2=d3900,其中d(km)是雷雨区域的直径.(1)如果雷雨区域的直径为9km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是多少(已知3900≈9.65,结果精确到0.1km)?七、(本题满分12分)22.如图是一个数值转换器.(1)当输入x=25时,求输出的y的值;(2)是否存在输入x的值后,始终输不出y的值?如果存在,请直接写出所有满足要求的x值;如果不存在,请说明理由;(3)输入一个两位数x,恰好经过三次取算术平方根才能输出无理数y,则x=________(只填一个即可).八、(本题满分14分)23.如图①,把2个边长为1的正方形沿对角线剪开,将所得到的4个三角形拼成第1个大的正方形(如图②). (1)拼成的第1个大正方形的边长是________;(2)再把2个图②这样的大正方形沿对角线剪开,将所得的4个三角形拼成第2个大的正方形,则这个正方形的边长是________;(3)如此下去,写出拼成的第n 个正方形的边长.参考答案与解析1.A 2.C 3.B 4.B 5.A 6.C 7.D 8.C 9.B 10.B 11.51412.3 13.1 14.①③④ 15.解:①②③⑤⑦⑨(2分) ⑥⑧(4分) ③④⑨⑩(6分) ①②⑤⑥⑦⑧(8分)16.解:(1)原式=5+4-3-2-1=3.(4分) (2)原式=0.5-74×3×18=-532.(8分)17.解:(1)x 2=925,x =±925,x =±35.(4分) (2)x +3=38,x +3=2,x =-1.(8分)18.解:(1)原式≈3×3.142-3.6062+0.875≈8.50.(4分)(2)原式≈2×3.162×2.236÷2.449≈5.77.(8分)19.解:由题意得⎩⎪⎨⎪⎧2a -1=(±3)2=9,3a +b -1=42=16,解得⎩⎪⎨⎪⎧a =5,b =2.(6分)所以a +2b =5+2×2=9,所以a +2b 的平方根是±3.(10分)20.解:(1)x =2-1.(4分)(2)(x -2)2=(2-1-2)2=1,所以(x -2)2的立方根是1.(10分) 21.解:(1)当d =9时,则t 2=93900,(3分)因此t =93900=0.9.(5分) 答:如果雷雨区域的直径为9km ,那么这场雷雨大约能持续0.9h.(6分) (2)当t =1时,则d 3900=12,(8分)因此d =3900≈9.65≈9.7.(11分)答:如果一场雷雨持续了1h ,那么这场雷雨区域的直径大约是9.7km.(12分)22.解:(1)由输入x =25得25=5.因为5是有理数,不能输出,再取5的算术平方根得 5.因为5是无理数,所以输出y ,所以输入x =25时,输出的y 的值是 5.(4分)(2)x =0或1时,始终输不出y 的值.(8分) (3)81(答案不唯一)(12分)23.解:(1)2(4分) (2)2(8分)(3)两个边长为1的正方形拼成的第1个大正方形面积为2,所以它的边长为2;两个边长为2的正方形拼出的第2个大正方形面积为4,所以它的边长为2=(2)2……因此,拼成的第n 个正方形的边长为(2)n .(14分)第7章一元一次不等式与不等式组一、选择题(本大题共10小题,每小题4分,满分40分) 1.y 的13与z 的5倍的差的平方是一个非负数,列出不等式为( )A .5(13-y )2>0 B.13y -(5z )2≥0C .(13y -5z )2≥0 D.13y -5z 2≥02.已知a <b ,则下列不等式一定成立的是( ) A .a +5>b +5 B .-2a <-2b C.32a >32b D .7a -7b <0 3.一元一次不等式2(x +1)≥4的解集在数轴上表示为( ) A. B. C.D.4.不等式组⎩⎪⎨⎪⎧x +4>3,2x ≤4的解集是( )A .1<x ≤2B .-1<x ≤2C .x >-1D .-1<x ≤45.要使代数式3m -14-m2的值不小于1,那么m 的取值范围是( )A .m >5B .m >-5C .m ≥5D .m ≥-56.如果不等式2x -m <0只有三个正整数解,那么m 的取值范围是( )A .m <8B .m ≥6C .6<m ≤8D .6≤m <87.如果2m ,m ,1-m 这三个数在数轴上所对应的点从左到右依次排列,那么m 的取值范围是( ) A .m >0 B .m >12 C .m <0 D .0<m <128.若方程组⎩⎪⎨⎪⎧3x +y =k +1,x +3y =3的解x ,y 满足0<x +y <1,则k 的取值范围是( )A .-4<k <0B .-1<k <0C .0<k <8D .k >-49.若不等式组⎩⎪⎨⎪⎧1+x <a ,x +92+1≥x +13-1有解,则实数a 的取值范围是( )A .a <-36B .a ≤-36C .a >-36D .a ≥-3610.某学校七年级学生计划用义卖筹集的1160元钱购买古典名著《水浒传》和《西游记》共30套.小华查到网上某图书商城的报价如图所示.如果购买的《水浒传》尽可能的多,那么《水浒传》和《西游记》可以购买的套数分别是( ) A .20,10 B .10,20 C .21,9 D .9,21二、填空题(本大题共4小题,每小题5分,满分20分)11.已知y 1=x +3,y 2=-x +1,当y 1>2y 2时,x 满足的条件是________. 12.关于x 的方程kx -1=2x 的解为正实数,则k 的取值范围是________.13.若不等式组⎩⎪⎨⎪⎧2x -b ≥0,x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为____________.14.某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局反扣1分,在12局比赛中,积分超过15分就可以晋升下一轮比赛,而且在全部12轮比赛中,没有出现平局,小王最多输________局比赛.三、(本大题共2小题,每小题8分,满分16分) 15.解下列不等式:(1)3(x -1)>2x +2; (2)x -x -24>4x +35.16.解不等式组,并将解集分别表示在数轴上.(1)⎩⎪⎨⎪⎧4x -3>x ①,x +4<2x -1②; (2)⎩⎪⎨⎪⎧6x +15>2(4x +3)①,2x -13≥12x -23②.四、(本大题共2小题,每小题8分,满分16分)17.定义新运算:对于任意实数a ,b ,都有a ⊕b =a (a -b )+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5.(1)求(-2)⊕3的值;(2)若3⊕x 的值小于13,求x 的取值范围,并在如图所示的数轴上表示出来.18.已知不等式5(x -2)+8<6(x -1)+7的最小整数解为方程2x -ax =4的解,求a 的值.五、(本大题共2小题,每小题10分,满分20分)19.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =m ,2x -y =6的解满足x >0,y <0,求满足条件的整数m 的值.20.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题备受人们关注,某学校计划在教室内安装空气净化装置,需购进A ,B 两种设备.已知购买1台A 种设备和2台B 种设备需要3.5万元;购买2台A 种设备和1台B 种设备需要2.5万元.(1)求每台A 种、B 种设备的价格;(2)根据学校实际情况,需购进A 种和B 种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A 种设备多少台.六、(本题满分12分)21.用[a ]表示不大于a 的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a >表示大于a 的最小整数,例如:<2.5>=3,<4>=5,<-1.5>=-1(请注意两个不同的符号).解决下列问题:(1)[-4.5]=________,<3.5>=________;(2)若[x ]=2,则x 的取值范围是____________;若<y >=-1,则y 的取值范围是____________;(3)已知x ,y 满足方程组⎩⎪⎨⎪⎧3[x ]+2<y >=3,3[x ]-<y >=-6,求x ,y 的取值范围.七、(本题满分12分)22.为增强居民节约用电意识,某市对居民用电实行“阶梯收费”,具体收费标准见下表:某居民五月份用电190千瓦时,缴纳电费90元. (1)求x 的值和超出部分电费单价;(2)若该户居民六月份所缴电费不低于75元且不超过84元,求该户居民六月份的用电量范围.八、(本题满分14分) 23.某公司有A ,B 两种客车,它们的载客量和租金如下表.星星中学根据实际情况,计划用A ,B 型车共5辆,同时送七年级师生到校基地参加社会实践活动.(1)若要保证租金费用不超过980元,请问该学校有哪几种租车方案? (2)在(1)的条件下,若七年级师生共有150人,请问哪种租车方案最省钱?参考答案与解析1.C 2.D 3.A 4.B 5.C 6.C 7.C 8.A 9.C 10.A11.x >-13 12.k >2 13.x >3214.215.解:(1)去括号,得3x -3>2x +2,移项,得3x -2x >2+3,合并同类项,得x >5.(4分)(2)去分母,得20x -5(x -2)>4(4x +3),去括号,得20x -5x +10>16x +12,移项、合并同类项,得-x >2,x 系数化成1,得x <-2.(8分)16.解:(1)解不等式①,得x >1,解不等式②,得x >5.因此,不等式组解集为x >5.在数轴上表示不等式组的解集为(4分)(2)解不等式①,得x <92,解不等式②,得x ≥-2.因此,不等式组解集为-2≤x <92.在数轴上表示不等式组的解集为(8分)17.解:(1)因为a ⊕b =a (a -b )+1,所以(-2)⊕3=-2(-2-3)+1=10+1=11.(4分)(2)因为3⊕x <13,所以3(3-x )+1<13,9-3x +1<13,-3x <3,x >-1.在数轴上表示如图所示.(8分)18.解:解不等式得x >-3,所以最小整数解为x =-2.(4分)所以2×(-2)-a ×(-2)=4,解得a =4.(8分) 19.解:解方程组得⎩⎨⎧x =6+m 3,y =2m -63.(4分)又因为x >0,y <0,所以⎩⎨⎧6+m 3>0,2m -63<0,解得-6<m <3.(7分)因为m 为整数,所以m 的值为-5,-4,-3,-2,-1,0,1,2.(10分)20.解:(1)设每台A 种、B 种设备的价格分别为x 万元、y 万元,根据题意得⎩⎪⎨⎪⎧x +2y =3.5,2x +y =2.5,解得⎩⎪⎨⎪⎧x =0.5,y =1.5.(4分) 答:每台A 种、B 种设备各0.5万元、1.5万元.(5分)(2)设购买A 种设备z 台,根据题意得0.5z +1.5(30-z )≤30,解得z ≥15.(9分)答:至少购买A 种设备15台.(10分) 21.解:(1)-5 4(2分)(2)2≤x <3 -2≤y <-1(6分)(3)解方程组得⎩⎪⎨⎪⎧[x ]=-1,<y >=3,所以x ,y 的取值范围分别为-1≤x <0,2≤y <3.(12分)22.解:(1)根据题意,得160x +(190-160)(x +0.15)=90,解得x =0.45.则超出部分的电费单价是x +0.15=0.6(元/千瓦时).(5分)答:x 和超出部分电费单价分别是0.45元/千瓦时和0.6元/千瓦时.(6分)(2)设该户居民六月份的用电量是a 千瓦时,因为160×0.45=72(元),所以该户居民六月份用电量超过160千瓦时,则75≤160×0.45+0.6(a -160)≤84,解得165≤a ≤180.(11分)答:该户居民六月份的用电量在165千瓦时到180千瓦时之间.(12分)23.解:(1)设租A 型车x 辆,则租B 型车(5-x )辆,根据题意得200x +150(5-x )≤980,解得x ≤235.(4分)因为x 取非负整数,所以x =0,1,2,3,4,所以该学校的租车方案有如下5种:租A 型车0辆、B 型车5辆;租A 型车1辆、B 型车4辆;租A 型车2辆、B 型车3辆;租A 型车3辆、B 型车2辆;租A 型车4辆、B 型车1辆.(7分)(2)根据题意得40x +20(5-x )≥150,解得x ≥52.(10分)因为x 取整数,且x ≤235,所以x =3或4.当x =3时,租车费用为200×3+150×2=900(元);当x =4时,租车费用为200×4+150×1=950(元).因为900<950,所以当租A 型车3辆、B 型车2辆时,租车费用最低.(14分)第8章 整式乘法与因式分解一、选择题(本大题共10小题,每小题4分,满分40分) 1.下列运算中,结果是a 6的式子是( ) A .a 2·a 3 B .a 12-a 6C .(a 3)3D .(-a )62.计算(-xy 3)2的结果是( ) A .x 2y 6 B .-x 2y 6C .x 2y 9D .-x 2y 93.科学家使用铁纳米颗粒以及具有磁性的钴和碳纳米颗粒合成了直径约为0.000000012米的新型材料,这种材料能在高温下储存信息,具有广阔的应用前景.这里的“0.000000012米”用科学记数法表示为( )A .0.12×10-7米 B .1.2×10-7米C .1.2×10-8米D .1.2×10-9米4.对于多项式:①x 2-y 2;②-x 2-y 2;③4x 2-y ;④x 2-4,能够用平方差公式进行因式分解的是( ) A .①和② B .①和③ C .①和④ D .②和④5.下列各式的计算中正确的个数是( )①100÷10-1=10; ②10-4·(2×7)0=1000; ③(0.1)0÷⎝⎛⎭⎫-12-3=8; ④(-10)-4÷⎝⎛⎭⎫-110-4=-1. A .4个 B .3个C .2个D .1个6.若2x =3,8y =6,则2x -3y 的值为( ) A.12 B .-2 C.62 D.327.下列计算正确的是( ) A .-3x 2y ·5x 2y =2x 2yB .-2x 2y 3·2x 3y =-2x 5y 4C .35x 3y 2÷5x 2y =7xyD .(-2x -y )(2x +y )=4x 2-y 2 8.下列因式分解正确的是( ) A .a 4b -6a 3b +9a 2b =a 2b (a 2-6a +9) B .x 2-x +14=⎝⎛⎭⎫x -122 C .x 2-2x +4=(x -2)2D .4x 2-y 2=(4x +y )(4x -y )9.已知ab 2=-1,则-ab (a 2b 5-ab 3-b )的值等于( ) A .-1 B .0C .1D.无法确定10.越越是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a-b,x-y,x+y,a+b,x2-y2,a2-b2分别对应城、爱、我、蒙、游、美这六个汉字,现将(x2-y2)a2-(x2-y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.蒙城游C.爱我蒙城D.美我蒙城二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:(12a3-6a2)÷(-2a)=__________.12.若代数式x2-6x+b可化为(x-a)2-1,则b-a的值是________.13.若a-b=1,则代数式a2-b2-2b的值为________.14.a,b是实数,定义一种运算@如下:a@b=(a+b)2-(a-b)2.有下列结论:①a@b=4ab;②a@b=b@a;③若a@b=0,则a=0且b=0;④a@(b+c)=a@b+a@c.其中正确的结论是________(填序号).三、(本大题共2小题,每小题8分,满分16分)15.计算:(1)(a2)3·(a3)2÷(a2)5;(2)(a-b+c)(a+b-c).16.因式分解:(1)3x4-48; (2)(c2-a2-b2)2-4a2b2.四、(本大题共2小题,每小题8分,满分16分)17.先化简,再求值:(x2+3x)(x-3)-x(x-2)2+(x-y)(y-x),其中x=3,y=-2.18.已知a+b=2,ab=2,求12a3b+a2b2+12ab3的值.五、(本大题共2小题,每小题10分,满分20分)19.张老师给同学们出了一道题:当x=2018,y=2017时,求[(2x3y-2x2y2)+xy(2xy-x2)]÷x2y的值.题目出完后,小明说:“老师给的条件y=2017是多余的.”小兵说:“不多余,不给这个条件,就不能求出结果.”你认为他们谁说得有道理?并说明你的理由.20.已知多项式x2+nx+3与多项式x2-3x+m的乘积中不含x2和x3项,求m,n的值.六、(本题满分12分)21.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8……根据以上规律,解答下列问题:(1)(a+b)4的展开式共有________项,系数分别为____________;(2)写出(a+b)5的展开式:(a+b)5=________________________________________________________________________;(3)(a+b)n的展开式共有________项,系数和为________.七、(本题满分12分)22.将一张如图①所示的长方形铁皮四个角都剪去边长为30cm的正方形,再四周折起,做成一个有底无盖的铁盒,如图②.铁盒底面长方形的长是4a cm,宽是3a cm.(1)请用含有a的代数式表示图①中原长方形铁皮的面积;(2)若要在铁盒的外表面涂上某种油漆,每1元钱可涂油漆的面积为a50cm2,则在这个铁盒的外表面涂上油漆需要多少钱(用含有a的代数式表示)?八、(本题满分14分)23.阅读下列材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=__________;(2)因式分解:(a+b)(a+b-4)+4;(3)试说明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.参考答案与解析1.D 2.A 3.C 4.C 5.D 6.A7.C8.B9.C10.C11.-6a2+3a12.513.114.①②④解析:因为a@b=(a+b)2-(a-b)2=(a+b+a-b)(a+b-a+b)=2a·2b=4ab,①正确;因为a@b =4ab,b@a=(b+a)2-(b-a)2=(b+a+b-a)(b+a-b+a)=2b·2a=4ab,所以a@b=b@a,②正确;因为a@b=4ab=0,所以a=0或b=0或a=0且b=0,③错误;因为a@(b+c)=(a+b+c)2-(a-b-c)2=(a+b+c+a-b-c)(a +b+c-a+b+c)=2a·(2b+2c)=4ab+4ac,a@b=4ab,a@c=(a+c)2-(a-c)2=(a+c+a-c)(a+c-a+c)=2a·2c =4ac,所以a@(b+c)=a@b+a@c,④正确.故答案为①②④.15.解:(1)原式=a6·a6÷a10=a2.(4分)(2)原式=[a-(b-c)][a+(b-c)]=a2-(b-c)2=a2-b2+2bc-c2.(8分)16.解:(1)原式=3(x4-16)=3(x2+4)(x2-4)=3(x2+4)(x+2)(x-2).(4分)(2)原式=(c2-a2-b2+2ab)(c2-a2-b2-2ab)=[c2-(a-b)2][c2-(a+b)2]=(c+a-b)(c-a+b)(c+a+b)(c-a-b).(8分)17.解:原式=x3-3x2+3x2-9x-x(x2-4x+4)-(x-y)2=x3-9x-x3+4x2-4x-x2+2xy-y2=3x2-13x+2xy-y2.(4分)当x=3,y=-2时,原式=3×32-13×3+2×3×(-2)-(-2)2=-28.(8分)18.解:原式=12ab(a2+2ab+b2)=12ab(a+b)2.(4分)当a+b=2,ab=2时,原式=12×2×22=4.(8分) 19.解:小明说得有道理.(2分)理由如下:原式=[2x3y-2x2y2+2x2y2-x3y]÷x2y=x3y÷x2y=x.所以该式子的结果与y的值无关,即小明说得有道理.(10分)20.解:(x2+nx+3)(x2-3x+m)=x4-3x3+mx2+nx3-3nx2+mnx+3x2-9x+3m=x4+(n-3)x3+(m-3n+3)x2+(mn -9)x +3m .(5分)因为不含x 2和x 3项,所以⎩⎪⎨⎪⎧n -3=0,m -3n +3=0,所以⎩⎪⎨⎪⎧m =6,n =3.(10分)21.(1)5 1,4,6,4,1(4分)(2)a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5(8分)(3)(n +1) 2n (12分)22.解:(1)原长方形铁皮的面积是(4a +60)(3a +60)=(12a 2+420a +3600)(cm 2).(5分)(2)这个铁盒的表面积是12a 2+420a +3600-4×30×30=(12a 2+420a )(cm 2),(9分)则在这个铁盒的外表面涂上油漆需要的钱数是(12a 2+420a )÷a50=(600a +21000)(元).(12分)23.解:(1)(x -y +1)2(3分)(2)令B =a +b ,则原式=B (B -4)+4=B 2-4B +4=(B -2)2,故(a +b )(a +b -4)+4=(a +b -2)2.(8分)(3)(n +1)(n +2)(n 2+3n )+1=(n 2+3n )[(n +1)(n +2)]+1=(n 2+3n )(n 2+3n +2)+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n +1)2.(11分)因为n 为正整数,所以n 2+3n +1也为正整数,所以式子(n +1)(n +2)(n 2+3n )+1的值一定是某一个整数的平方.(14分)第9章 分式一、选择题(本大题共10小题,每小题4分,满分40分) 1.要使分式3x -2有意义,则x 的取值范围是( )A .x >2B .x <2C .x ≠-2D .x ≠2 2.若分式x -2x +1的值为0,则x 的值为( )A .2或-1B .0C .2D .-13.分式1a 2-2a +1,1a -1,1a 2+2a +1的最简公分母是( )A .(a 2-1)2B .(a 2-1)(a 2+1)C .a 2+1D .(a -1)44.不改变分式2x -52y23x +y 的值,把分子、分母中各项系数化为整数,结果是( )A.2x -15y 4x +yB.4x -5y 2x +3yC.6x -15y 4x +2yD.12x -15y 4x +6y5.已知分式⎝⎛⎭⎫-x4y 22与另一个分式的商是2x 6y ,那么另一个分式是( ) A .-x 22y 5 B.x 142y 3 C.x 22y 5 D .-x2y 36.若1+2a +a 2a 2-1=1+a x ,则x 等于( )A .a +2B .a -2C .a +1D .a -1 7.已知1a -1b =4,则a -2ab -b 2a -2b +7ab 的值等于( )A .6B .-6 C.215 D .-278.下列说法:①解分式方程一定会产生增根;②方程x -2x 2-4x +4=0的根为2;③方程12x =12x -4的最简公分母为2x (2x -4);④x +1x -1=1+1x +1是分式方程.其中正确的个数为( )A .1个B .2个C .3个D .4个9.关于x 的分式方程5x =ax -5有解,则字母a 的取值范围是( )A .a =5或a =0B .a ≠0C .a ≠5D .a ≠5且a ≠010.九年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h ,则所列方程正确的是( )A.10x =102x -13B.10x =102x -20 C.10x =102x +13 D.10x =102x+20 二、填空题(本大题共4小题,每小题5分,满分20分) 11.化简⎝⎛⎭⎫1m +1n ÷m +n n 的结果是________.12.已知x 2-4x +4与|y -1|互为相反数,则式子⎝⎛⎭⎫x y -y x ÷(x +y )的值等于________. 13.如果方程a x -2+3=1-x 2-x有增根,那么a =________.14.有一个分式,三位同学分别说出了它的一些特点:甲说:分式的值不可能为0;乙说分式有意义时,x 的取值范围是x ≠±1;丙说:当x =-2时,分式的值为1.请你写出满足上述三个特点的一个分式:________.三、(本大题共2小题,每小题8分,满分16分) 15.计算:(1)4a 2b 3cd 2·5c 2d 4ab 2÷2abc 3d ;(2)2m -n n -m +m m -n +n n -m .16.化简:(1)2x x +1-2x +6x 2-1÷x +3x 2-2x +1;(2)⎝⎛⎭⎫a a 2-b 2-1a +b ÷b b -a .四、(本大题共2小题,每小题8分,满分16分) 17.解方程: (1)1+3x x -2=6x -2;(2)1-x -32x +2=3x x +1.18.先化简,再求值:1-x -y x +2y ÷x 2-y 2x 2+4xy +4y 2,其中x ,y 满足|x -2|+(2x -y -3)2=0.五、(本大题共2小题,每小题10分,满分20分) 19.观察下列等式: ①1-56=12×16;②2-107=22×17;③3-158=32×18;……(1)请写出第4个等式:________________;(2)观察上述等式的规律,猜想第n 个等式(用含n 的式子表示),并验证其正确性.20.已知A =x 2+2x +1x 2-1-xx -1.(1)化简A ;(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.六、(本题满分12分)21.甲、乙两座城市的中心火车站A ,B 两站相距360km.一列动车与一列特快列车分别从A ,B 两站同时出发相向而行,动车的平均速度比特快列车快54km/h ,当动车到达B 站时,特快列车恰好到达距离A 站135km 处的C 站.求动车和特快列车的平均速度各是多少.七、(本题满分12分)22.抗洪抢险,需要在一定时间内筑起拦洪大坝,甲队单独做正好按期完成,而乙队由于人少,单独做则延期3小时才能完成.现甲、乙两队合作2小时后,甲队又有新任务,余下的由乙队单独做,刚好按期完成.求甲、乙两队单独完成全部工程各需要多少小时.八、(本题满分14分) 23.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数,如:83=6+23=2+23=223.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如x -1x +1,x 2x -1这样的分式就是假分式;再如3x +1,2xx 2+1这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式). 如:x -1x +1=(x +1)-2x +1=1-2x +1;解决下列问题:(1)分式2x 是________(填“真分式”或“假分式”);(2)将假分式x 2-1x +2化为带分式;(3)如果x 为整数,分式2x -1x +1的值为整数,求所有符合条件的x 的值.参考答案与解析1.D 2.C 3.A 4.D 5.C 6.D 7.A 8.A 9.D 10.C 11.1m 12.12 13.1 14.3x 2-1(答案不唯一)15.解:(1)原式=4a 2b 3cd 2·5c 2d 4ab 2·3d 2abc =52b2.(4分)(2)原式=2m -n n -m -m n -m +n n -m =2m -n -m +n n -m =mn -m.(8分)16.解:(1)原式=2x x +1-2(x +3)(x +1)(x -1)·(x -1)2x +3=2x x +1-2(x -1)x +1=2x +1.(4分)(2)原式=a -(a -b )(a +b )(a -b )·b -a b =-b (a +b )(a -b )·a -b b =-1a +b.(8分)17.解:(1)去分母,得x -2+3x =6,移项、合并同类项,得4x =8,x 系数化成1,得x =2.检验:当x =2时,x -2=0.所以x =2不是原方程的根,原方程无解.(4分)(2)去分母,得2x +2-(x -3)=6x ,去括号,得2x +2-x +3=6x ,移项、合并同类项,得5x =5,x 系数化成1,得x =1.检验:当x =1时,2x +2≠0,所以原方程的根是x =1.(8分)18.解:原式=1-x -y x +2y ·(x +2y )2(x +y )(x -y )=1-x +2y x +y =x +y -x -2y x +y =-yx +y.(4分)因为|x -2|+(2x -y -3)2=0,所以⎩⎪⎨⎪⎧x -2=0,2x -y =3,解得⎩⎪⎨⎪⎧x =2,y =1.当x =2,y =1时,原式=-12+1=-13.(8分)19.解:(1)4-209=42×19(3分)(2)猜想:n -5n 5+n =n 2×15+n (其中n 为正整数).(7分)验证:n -5n 5+n =n (5+n )-5n 5+n =n 25+n ,所以左式=右式,所以猜想成立.(10分)20.解:(1)A =x 2+2x +1x 2-1-x x -1=(x +1)2(x +1)(x -1)-x x -1=x +1x -1-x x -1=1x -1.(5分)(2)解不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,得1≤x <3.因为x 为整数,所以x =1或x =2.当x =1时,A =1x -1无意义;当x =2时,A =1x -1=12-1=1.(10分)21.解:设特快列车的平均速度为x km/h ,则动车的平均速度为(x +54)km/h ,由题意得360x +54=360-135x ,解得x =90.(8分)经检验,x =90是这个分式方程的解.x +54=144.(11分)答:特快列车的平均速度为90km/h ,动车的平均速度为144km/h.(12分)22.解:设甲队单独完成需要x 小时,则乙队需要(x +3)小时.由题意得2x +xx +3=1,解得x =6.(8分)经检验,x =6是方程的解.所以x +3=9.(11分)答:甲单独完成全部工程需6小时,乙单独完成全部工程需9小时.(12分) 23.解:(1)真分式(2分)(2)x 2-1x +2=x 2+2x -2x -1x +2=x -2x +1x +2=x -2(x +2)-3x +2=x -2+3x +2.(8分) (3)2x -1x +1=2(x +1)-3x +1=2-3x +1,由x 为整数,分式的值为整数,得到x +1=-1,-3,1,3,解得x =-2,-4,0,2,则所有符合条件的x 值为0,-2,2,-4.(14分)第10章相交线与平行线、平移时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题4分,满分40分) 1.下列图形中∠1与∠2互为对顶角的是( )2.下列图形中,∠1和∠2不是同位角的是( )3.下列图形中,不能通过平移其中一个四边形得到的是( )4.如图,下列能判定AB ∥CD 的条件有( )①∠B +∠BCD =180°;②∠1=∠2;③∠3=∠4;④∠B =∠5. A .1个 B .2个 C .3个 D .4个第4题图第5题图5.如图,观察图形,下列说法正确的个数是( ) ①线段AB 的长必大于点A 到直线BD 的距离;②线段BC 的长小于线段AB 的长,根据是两点之间线段最短; ③图中对顶角共有9对;④线段CD 的长是点C 到直线AD 的距离. A .1个 B .2个 C .3个 D .4个6.如图,已知AB ∥CD ,EF 平分∠CEG ,∠1=80°,则∠2的度数为( ) A .20°B .40°C .50°D .60°第6题图第7题图7.如图,点E ,F 分别是AB ,CD 上的点,点G 是BC 的延长线上一点,且∠B =∠DCG =∠D ,则下列判断中,错误的是( )A .∠AEF =∠EFCB .∠A =∠BCFC .∠AEF =∠EBCD .∠BEF +∠EFC =180°8.如图,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么∠BAO与∠ABO之间的大小关系一定为()A.互余B.相等C.互补D.不等第8题图第9题图9.如图,若AB∥CD,CD∥EF,则∠BCE等于()A.∠2-∠1 B.∠1+∠2C.180°+∠1-∠2 D.180°-∠1+∠210.如图,将面积为5的三角形ABC沿BC方向平移至三角形DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()A.5 B.10C.15 D.20第10题图第11题图二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,请填写一个你认为恰当的条件______________,使AB∥CD.第12题图第13题图12.如图,已知∠1=82°,∠2=98°,∠3=80°,则∠4的度数为________.13.如图,折叠一张长方形纸片,已知∠1=70°,则∠2的度数是________°.14.如图,C为∠AOB的边OA上一点,过C作CD∥OB交∠AOB的平分线OE于点F,作CH⊥OB交BO的延长线于点H.若∠EFD=α,现有以下结论:①CH>CO;②∠COF=α;③CH⊥CD;④∠OCH=2α-90°.其中正确的结论是________(填序号).第14题图三、(本大题共2小题,每小题8分,满分16分)15.如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O,求∠2,∠3的度数.16.如图,∠1=∠2,∠D=50°,求∠B的度数.四、(本大题共2小题,每小题8分,满分16分)17.如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,求∠PQC的度数.18.如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.下面给出了求∠AGD的度数的过程,将此补充完整并在括号里填写依据.解:因为EF∥AD(已知),所以∠2=______(________________________).又因为∠1=∠2(已知).所以∠1=∠3(等式性质或等量代换),所以AB∥______(____________________________),所以∠BAC+________=180°(__________________________).又因为∠BAC=70°(已知),所以∠AGD=________(____________).五、(本大题共2小题,每小题10分,满分20分)19.画图并填空:(1)画出三角形ABC先向右平移6格,再向下平移2格得到的三角形A1B1C1;(2)线段AA1与BB1的关系是______________;(3)三角形ABC的面积是________平方单位.20.如图,∠BAP+∠APD=180°,∠1=∠2.试说明:∠E=∠F.六、(本题满分12分)21.如图,一个楼梯的总长度为5米,总高度为4米,楼梯宽为2米.若在楼梯上铺地毯,且每平方米地毯售价30元,则至少需要多少钱?七、(本题满分12分)22.如图,∠CDH+∠EBG=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?八、(本题满分14分)23.问题情境:如图①,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:如图②,过点P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°.问题迁移:(1)如图③,AD∥BC,点P在射线OM上运动,当点P在A,B两点之间运动时,∠ADP=α,∠BCP=β,∠CPD,α,β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P分别在射线AM和射线OB上运动时(点P与点A,B,O三点不重合),请你分别直接写出∠CPD,α,β间的数量关系.参考答案与解析1.C 2.C 3.D 4.C 5.A 6.C7.C8.A9.C10.C11.∠F AB=∠FCD(答案不唯一)12.80°13.5514.②③④15.解:因为∠1=∠2,∠1=30°,所以∠2=30°.(3分)因为AB⊥CD,所以∠AOD=90°,所以∠2+∠3=90°,所以∠3=90°-∠2=90°-30°=60°.(8分)16.解:因为∠1=∠2,∠2=∠EHD,所以∠1=∠EHD,所以AB∥CD.(4分)所以∠B+∠D=180°,所以∠B =180°-∠D=180°-50°=130°.(8分)17.解:(1)如图所示.(2分)(2)如图所示.(4分)(3)因为CD∥PQ,所以根据两直线平行,同旁内角互补得∠PQC+∠DCQ=180°.又因为∠DCQ=120°,所以∠PQC=60°.(8分)18.∠3两直线平行,同位角相等DG内错角相等,两直线平行∠AGD两直线平行,同旁内角互补110°等式性质(8分)19.解:(1)三角形A1B1C1如图所示.(4分)(2)平行且相等(7分)(3)3.5(10分)20.解:因为∠BAP+∠APD=180°,所以AB∥CD,所以∠BAP=∠APC.(5分)又因为∠1=∠2,所以∠FP A =∠EAP,所以AE∥PF,所以∠E=∠F.(10分)21.解:由平移知识可知,地毯的总长度为5+4=9(米),(5分)所以其面积为9×2=18(平方米),所需费用为18×30=540(元).(11分)答:至少需要540元.(12分)22.解:(1)AE与FC平行.(1分)理由如下:因为∠CDH+∠EBG=180°,∠CDH+∠CDB=180°,所以∠CDB =∠EBG,所以AE∥FC.(4分)(2)AD与BC平行.(5分)理由如下:由(1)知AE∥FC,所以∠CDA+∠A=180°.因为∠A=∠C,所以∠CDA+∠C=180°,所以AD∥BC.(8分)(3)BC平分∠DBE.(9分)理由如下:由(1)知AE∥FC,所以∠EBC=∠C.由(2)知AD∥BC,所以∠C=∠FDA,∠DBC =∠BDA.又因为DA平分∠BDF,所以∠FDA=∠BDA,所以∠EBC=∠DBC,所以BC平分∠DBE.(12分) 23.解:(1)∠CPD=α+β.(2分)理由如下:如图③,过点P作PE∥AD交CD于点E.(3分)因为AD∥BC,所以AD∥PE∥BC,所以∠DPE=α,∠CPE=β,所以∠CPD=∠DPE+∠CPE=α+β.(6分)(2)如图④,当点P在射线AM上时,∠CPD=β-α.(10分)如图⑤,当点P在线段OB上时,∠CPD=α-β.(14分)。

沪科版七年级数学第一章《有理数》考试测试卷(无答案)

沪科版七年级数学第一章《有理数》考试测试卷(无答案)

沪科版七年级数学第一章《有理数》考试测试卷(无答案) 1 / 2七年级数学第一章测试卷(考试时间:100分钟 试卷满分:150分)一、选择题(本大题共10小题,每小题4分,满分40分) 1. 下列四个有理数中,最小的是A .-1B .0C .12D .12. 如果淮河的水位升高0.8m ,水位变化记作+0.8m ,那么水位下降0.5m ,水位变化记作A .0mB .0.5mC .-0.8mD .-0.5m 3. 计算:-5-8等于A .-3B .3C .-13D .13 4. 下列计算结果中错误的是A .-62=-36B .(-4)3=-64C .(±14)2=116D .(-1)100+(-1)1000=05. 有理数a 、b 在数轴上对应的位置如图所示,则A .a +b <0B .a +b >0C .a -b =OD .a -b >06. 用四舍五入法按要求对0.05019取近似值,其中错误的是A .0.1(精确到0.1)B .0.05(精确到百分位)C .0.05(精确到十分位)D .0.0502(精确到0.0001) 7. 下列说法中错误的个数有①一个有理数不是整数就是分数; ②一个有理数不是正数就是负数; ③一个整数不是正的,就是负的; ④一个分数不是正的,就是负的。

A .1个B .2个C .3个D .4个8. 在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储580亿本书籍,将数据580亿用科学记数法表示应为A .5.8×1010B .5.8×1011C .58×109D .0.58×10119. 若x <0,y >0,且x +y <0,则下列关系式中,正确的是A .x >y >-y >-xB .-x >y >-y >-xC .y >-x >-y >xD .-x >y >x >-y 10. 下列说法中正确的是A .-a 一定是负数B .|a |一定是正数C .|a |一定不是负数D .-a 2一定是负数二、填空题(本大题共4小题,每小题5分,满分20分) 11. -2019的相反数是_____________。

沪科版数学七年级下册全册单元测试卷含答案

沪科版数学七年级下册全册单元测试卷含答案

沪科版数学七年级下册全册单元测试卷含答案一、选择题(每小题3分,共30分)1. 下列各式中无意义的是()A. B. C. D. 2.在下列说法中: 10的平方根是±;-2是4的一个平方根;的平方根是;④0.01的算术平方根是0.1;⑤ ,其中正确的有()A.1个B.2个C.3个D.4个2. 下列说法中正确的是()A. 立方根是它本身的数只有1和0B.算数平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和0 4. 的立方根是()A. B. C. D. 5. 现有四个无理数,,,,其中在实数+1 与+1 之间的有()A.1个B.2个C.3个D.4个6. 实数,-2,-3的大小关系是()A. B. C. D. 7.已知=1.147,=2.472,=0.532 5,则的值是()A.24.72B.53.25C.11.47D.114.7 8.若,则的大小关系是()A. B. C. D. 9. 已知是169的平方根,且,则的值是()A.11B.±11C. ±15D.65或10. 大于且小于的整数有()A.9个B.8个C .7个D.5个二、填空题(每小题3分,共30分)11. 绝对值是,的相反数是 . 12. 的平方根是,的平方根是,-343的立方根是,的平方根是 . 13. 比较大小:(1);(2);(3);(4)2. . 14.当时,有意义。

15.已知=0,则= . 16.最大的负整数是,最小的正整数是,绝对值最小的实数是,不超过的最大整数是 . 17.已知且,则的值为。

18.已知一个正数的两个平方根是和,则= ,= . 19.设是大于1的实数,若在数轴上对应的点分别记作A、B、C,则A、B、C三点在数轴上从左至右的顺序是 . 20.若无理数满足1,请写出两个符合条件的无理数 . 三、解答题(共40分)21. (8分)计算:(1);(2);(3);(4);22.(12分)求下列各式中的的值:(1);(2);(3);(4);23. (6分)已知实数、、在数轴上的对应点如图所示,化简:24. (7分)若、、是有理数,且满足等式,试计算的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学沪科版七年级下册第一章单元测卷
一、选择题(3分×10=30分) 1.比-1大的数是( ) A .-3 B .-109
C .0
D .-1
2.在-(-5),-(-5)2,-|-5|,(-5)2中,负数有( ) A .1个 B .2个 C .3个
D .4个
3.下列各组数中,数值相等的是( ) A .32和23 B .-23和(-2)3 C .-32和(-3)2
D .-(3×2)2和-3×22 4.下列四组有理数的大小比较,正确的是( ) A .-12>-13
B .-|-1|>-|+1|
C .12<13
D .|-12|>|-13
|
5.平方等于16的数是( ) A .4 B .-4 C .±4
D .(±4)2
6.如图,数轴上点P 对应的数为p ,则数轴上及数-p
2
对应的点是( )
A .点A
B .点B
C .点C
D .点D
7.下列交换加数的位置的变形中,正确的是( )
A .1-4+5-4=1-4+4-5
B .-13+34-16-14=14+34-13-1
6
C .1-2+3-4=2-1+4-3
D .4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.7
8.下列计算正确的是( )
A .(-1)101=-1
B .-2-2=0
C .3÷1
3
=1
D .(-5)×(-3)=-15
9.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:
甲:b -a <0 乙:a -b <0 丙:|a |<|b | 丁:b
a
>0 其中正确的是( )
A .甲乙
B .丙丁
C .甲丙
D .乙丁
10.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2017次输出的结果为( )
A .6
B .3
C.3
2
2013 D .3
2
1003+3×1003 二、填空题(3分×8=24分)
11.在-1
2
,0,-1,1这四个数中,最小的数是 .
12.计算:-|-5|+(-3)3÷(-22)= .
13.已知m 是6的相反数,n 比m 的相反数小2.则m -n 等于 .
14.去年,某市完成生产总值为890.89亿元.这生产总值用科学计数法表示为 元,890.89亿精确到 、精确到百亿位是 .
15.若2<a <3,则a 、1
a
、a 2从小到大排列的正确顺序为 .
16.绝对值最小的数为a ,绝对值最小的负整数为b ,c 是最小的正整数.则a +b +c = .
17.某种零件,标明要求是20±0.02mm(
表示直径,单位:毫米).经检查,
一个零件的直径是19.9mm ,该零件 (填“合格”或“不合格”).
18.甲、乙两支同样的温度计如图所示放置,如果向左移动甲温度计,使其度数5正对着乙温度计的度数-18,那么此时甲温度计的度数-7正对着乙温度计的度数是 . 三、解答题(共66分)
19.(6分)把下列各数在数轴上表示出来,并按从大到小的顺序用“>”连接起来.
-3.5 0 2 23 -21
3 0.75 -1
20.(9分)数学课上,老师随手在黑板上写下了7个有理数. -|-4|,0,-(-12),3,-2
3
,-2016,-1.
(1)请你指出哪些是整数?哪些是负整数?哪些是负分数?
(2)若选择其中的四个整数,将这四个整数经过有理数的混合运算后,能否得出结果为-1?若能,写出算式,并写出计算过程;若不能,请说明理由.
21.(20分)计算:
(1)-556-923+1734-312; (2)25×(-0.125)×(-4)×(-4
5)×(-
8)×11
4;
(3)-9÷3+(12-23)×12+(-3)2; (4)(-1)2012
-(-512)×411+(-8)÷[(-3)
+5].
22.(7分)某校体育器材室共有60个篮球.一天课外活动,有3个班级分别计划借篮球总数的12、13和1
4.请你算一算,这60个篮球够借吗?如果够了,还多几
个篮球?如果不够,还缺几个?
23.(7分)某出租车沿公路左右方向行驶,向左为正,向右为负.某天从A地出发后到收工回家所走路线如下:(单位:千米)+8、-9、+4、+7、-2、-10、+18、-3、+7、+5.
(1)问收工时离出发点A多少千米?
(2)若该出租车每千米耗油0.3升,问从A地出发到收工共耗油多少升?24.(7分)在教师节晚会上,主持人小丽和小荣进行一场游戏,游戏规则如下:
(1)每人每次抽取4张卡片;如果抽取到形如“□”的卡片,那么加上卡片上的数字,如果抽取到形如“○”的卡片,那么减去卡片上的数字.
(2)比较两人所抽取的4张卡片计算结果,结果大的为胜,结果小的为大家唱歌.小丽和小荣所抽取的卡片如图所示.你知道本次游戏结束后谁会为大家唱歌?请说明理由.
25.(10分)如图,A、B分别为数轴上的两点,A点对应的数为-20,B点对应的数为100.
(1)请写出AB中点M对应的数;
(2)现有一只电子蚂蚁P从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动.设两只电子蚂蚁
在数轴上的C点相遇,你知道C点对应的数是多少吗?
(3)若当电子蚂蚁P从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动.设两只电子蚂蚁在数轴上的D点相遇,你知道D点对应的数是多少吗?。

相关文档
最新文档