北京工业大学-材料力学-弯曲变形典型习题解析

合集下载

材料力学典型例题及解析 4.弯曲内力典型习题解析

材料力学典型例题及解析 4.弯曲内力典型习题解析

弯曲内力典型习题解析1 作图示简支梁的剪力图和弯矩图,并求出maxSF 和maxM。

解题分析:作剪力、弯矩图的基本方法是写出每一段梁上的剪力、弯矩方程,根据方程描点作图。

在能熟练地作剪力、弯矩图后,可采用如下简便作图法:在表中列出特殊截面(如有位移约束的截面、集中力作用截面等的剪力、弯矩值,再根据载荷集度与剪力、弯矩之间的微分关系判断各区段的内力图形状,连线相邻特殊截面对应的点。

下面按两种方法分别作图。

解I :1、求支反力qa F Ay =,qa F Cy 2=2、将梁分成AB 、BC 和CD 三个区段 以A 为原点,向右取x 坐标。

AB 段,如图d :qa F F Ay ==S ,()a x <<02qa(c)(b)(a)M(d)(e)MSSSM(f)题1图qax x F M Ay ==,()a x ≤≤0BC 段,如图e:)2()(S x a q a x q F F Ay −=−×−=,(a x a 2<<))/2()/2)((22a x q a x a x q x F M Ay +=−−+=,(a x a 2≤≤)CD 段,如图f:)()(S x a q F a x q F F Ay −=−−×−=,(a x a 32<<))/2()/2)((22a x q a x a x q x F M Ay +=−−+=,(a x a 32≤≤)3、按照步骤2所得各段梁的剪力、弯矩方程画出剪力图和弯矩图,如图b 和图c。

4、计算剪力和弯矩的最大值qa F 2maxS=, 2max23qa M=解II :1、计算支反力qa F Ay =,qa F Cy2=2、将梁分为AB 、BC 、CD 三个区段,计算每个区段起点和终点的力值。

3、根据载荷情况及微分关系,判断各力区的内力图形状,并以相应的图线连接起来,得到剪力图和弯矩图。

力区 A 截面 AB B 截面 BC C 截面 CD D 截面 载荷 F Ay 向上 q =0无集中力q =负常数 F 向下 q =负常数 F Dy 向上F S突跳F Ay水平(+)连续 下斜线(+) 突减F 下斜线(-) 突跳F DyM 0 上斜线 相切上凸抛物线转折上凸抛物线4、计算剪力弯矩最大值qa F 2maxS=, 2max23qa M=讨论:利用剪力弯矩方程作图时,注意坐标轴x 的正向一般由左至右。

材料力学课后答案

材料力学课后答案

由平衡方程,解得:
FBy 5KN; M B 13KN m
微分法画弯矩图
( M B 13KN m; M C M C 3KN m; M D 0)
2.根据强度要求确定 b
max WZ 2 bh 2 3 WZ b 6 3 M
弯矩图
M
(+)
x
3.绘制挠曲轴略图并计算wmax, A , B 令 dw 0 得 x l (0 x l ) 2 dx 所以 wmax w x l
2
挠曲轴略图
w
5ql 4 384 EI
x0
(-)
B
ql 3 24 EI
x
由式(3)知 A
max
M max ymax 176MPa IZ
max
M WZ
K
M max yK 132MPa IZ
3
5-5.图示简支梁,由 NO18 工字钢制成,在集度为q的均匀载荷作用下测得横截 4 面C底边的纵向正应变 =3.0 10 ,试计算梁内的最大弯曲正应力,已知刚的弹 FAy FBy 性模量E=200GPa,a=1m。
M yA Wy 6 M yA M zA 6M zA Wz 2b b 2 b (2b) 2
由 max 解得 b 35.6mm 故
h 2b 71.2mm
14
2.截面为圆形,确定d 由分析图及叠加原理可知: 在1,3区边缘某点分别有最大拉应力,最大压应力 其值均为:
I Z I Z 1 2 I Z 2 1.02 104 m4
2.画弯矩图 由平衡方程得 微分法画弯矩图
FCy 10KN; M C 10KN m

《材料力学》弯曲计算-习题

《材料力学》弯曲计算-习题

②无均布载荷段弯矩图均为直线。有均布载荷段,弯矩图为
抛物线,其开口与均布载荷方向相同。
(3)弯矩、剪力、载荷集度的关系

M '(x) F S (x) F S'(x) q(x)
② FS=0的点是M图的取极值的点,FS=0的段M图是平行
于轴线的直线。
注意: 内力图上要注明控制面值、特殊点纵坐标值。
利用微分关系绘内力图
y
B截面 30.3 +
z
C截面 15.1 z
-
+
69
34.5
(d) 单位:MPa
Engineering Mechanics
四、弯曲 弯曲强度计算
例3 之二
解:(1)求截面形心轴,即中性轴z轴。
yC
( yi Ai ) Ai
170 30 170 30 200 (170 30)
2
2
17030 30 200
解:(1)外力分析,判变形。
10kN
50kN
(a) A
CD
B
z
4m
2m
4m
求得支坐反力
FA 26kN ,FB 34kN
荷载与梁轴垂直,梁将发
26kN 26 16
34kN
生平面弯曲。中性轴z过形心
+ (b)
与载荷垂直,沿水平方向。
FQ(kN)
104 136
34
(2)内力分析,判危险面。剪力
+
(c)
⑤解题步骤:
1)外力分析,判变形、中性轴,求截面的几何性质、支反力。 2)内力分析,判危险面,画剪力图、弯矩图(可只画弯矩图)
3)应力分析,判危险点。 4)强度计算。

第七章 弯曲变形(习题解答)

第七章   弯曲变形(习题解答)

7-2c 梁受力、尺寸、刚度如图所示,求A 处的转角,以及C 、D 截面的挠度。

解:(1)求反力写弯矩方程:)3()(2)(2211x a P x M BCx P x M AB--=-=(2)分段积分''1112)(E I y x P x M AB-=-=''222)3()(EIy x a P x M BC=--=121'14C x P EIy +=222'2)3(2C x a P EIy +--=11131112D x C x P EIy ++=222322)3(6D x C x a P EIy ++-+=(3)边界、连续条件定积分常量00,0111=→==D y x⎪⎪⎪⎩⎪⎪⎪⎨⎧-==-=→⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=+⨯=+⨯+-⨯=⨯+⨯→⎩⎨⎧=====25673)23(2)2(402)23(602)2(1202322221221222313212121Pa D Pa C Pa C C a a P C a P D a C a a P a C a P y y a x x θθ时,(4)该梁的转角方程为⎪⎪⎩⎪⎪⎨⎧∈+--∈-=]3,2[(67)3(2]2,0[(3422221221'a a x Pax a P a x Pa x P EIy该梁的挠曲线方程为⎪⎪⎩⎪⎪⎨⎧∈-+-+∈-=]3,2[(2567)3(6]2,0[(31223223211231a a x Pa x Pax a P a x x Pa x P EIy(5)将横坐标值代入相应的式子可求出EIPay EIPa y EIPaD C A 4,,3332-==-=θ习题7-2c 图 习题7-5图7-5 用叠加法求图示外伸梁C 截面的挠度和转角。

解:(1)将原结构的荷载分解,如图所示。

(2)查表可得各简单载荷作用下的θC 、y C 之值。

并将其叠加,得所求θC 、y C 之值。

材料力学弯曲变形答案

材料力学弯曲变形答案

第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。

( ) 1.2 内力只作用在杆件截面的形心处。

( ) 1.3 杆件某截面上的内力是该截面上应力的代数和。

( ) 1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。

( ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。

( ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。

( ) 1.7 同一截面上正应力ζ与切应力η必相互垂直。

( ) 1.8 同一截面上各点的正应力ζ必定大小相等,方向相同。

( ) 1.9 同一截面上各点的切应力η必相互平行。

( ) 1.10 应变分为正应变ε和切应变γ。

( ) 1.11 应变为无量纲量。

( ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。

( ) 1.13 若物体内各点的应变均为零,则物体无位移。

( ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。

( )1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。

( )1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。

( )二、填空题1.1 材料力学主要研究 受力后发生的 ,以及由此产生的 。

1.2 拉伸或压缩的受力特征是 ,变形特征是 。

1.3 剪切的受力特征是 ,变形特征是 。

1.4 扭转的受力特征是 ,变形特征是 。

B题1.15图题1.16图1.5 弯曲的受力特征是 ,变形特征是 。

1.6 组合受力与变形是指 。

1.7 构件的承载能力包括 , 和 三个方面。

1.8 所谓 ,是指材料或构件抵抗破坏的能力。

所谓 ,是指构件抵抗变形的能力。

所谓 ,是指材料或构件保持其原有平衡形式的能力。

1.9 根据固体材料的性能作如下三个基本假设 , , 。

材料力学答案第七章

材料力学答案第七章

第七章 弯曲变形第七章答案7-1 用积分法求位移时,下列各等直梁应分几段?写出各梁中AB 段的挠曲线近似微分方程。

写出确定积分常数的位移边界条件和变形连续条件。

解:应该分为3段 取CD 为研究对象得:ql F F D C 41==取整体为研究对象得:ql F A 83=,ql F A 87= )223( )2(21)2(41)23(l )23(41)(0 21833233322212111l x l x l q x l ql w EI l x x l ql w EI l x qx qlx w EI ≤≤---=''≤≤--=''≤≤-=''0|||||0|0||23233232233232210133232211='='============l x lx lx lx lx l x l x x w w w w w w w w解:应该分为2段F F F C A ==,0)2( )2()(0 22211l x l x l F w EI l x Fl w EI ≤≤-=''≤≤=''1x x AF DF BF DF(b)AF 1xkFw w w w w w l x l x l x l x l x x -='='========22212101232321|||||0| 7.2 用积分法求图示梁跨度中点的挠度c w 和端截面转角A θ及B θ。

(EI ql w C 76854=,EI ql A 38473=θ,EI ql B 12833-=θ)解:ql F A 81=;ql F B 83=1113111211111 481 161)2(0 81D x C qlx EIw C qlx w EI l x qlx w EI ++=+='≤≤='' 2224232223222222222 )2(241 481 )2(61 161)2( )2(21 81D x C l x q qlx EIw C l x q qlx w EI l x l l x q qlx w EI ++--=+--='≤≤--='' 边界条件:0|011==x w ⇒ 01=D 0|22==l x w ⇒0 162414812244=++⋅-D l C ql ql 222132||l x l x w w ===⇒2211)2( )2(D l C D l C +=+ 222132||l x l x w w =='='⇒021==C C则:021==D D ,4213847ql C C -== 32111133113847 161)2(0 3847 481qlqlx w EI l x x ql qlx EIw -='≤≤-=3847)2(61 161)2( 3847)2(241 48133222222342322ql l x q qlx w EI l x l x ql l x q qlx EIw ---='≤≤---= AF BF1xEI ql w x A 3847|3011-='==θ EI ql w l x B 1283|322='==θ EIql l ql l ql EI w w C 3845)]2(3847 )2(481[13331-=-==7.3 用叠加法求下列各梁的指定位移。

材料力学习题弯曲变形

材料力学习题弯曲变形

弯曲变形基本概念题一、选择题1.梁的受力情况如图所示,该梁变形后的挠曲线如图()所示(图中挠曲线的虚线部分表示直线,实线部分表示曲线)。

2. 如图所示悬臂梁,若分别采用两种坐标系,则由积分法求得的挠度和转角的正负号为()。

题2图题1图A.两组结果的正负号完全一致B.两组结果的正负号完全相反C.挠度的正负号相反,转角正负号一致D.挠度正负号一致,转角的正负号相反3.已知挠曲线方程y = q0x(l3 - 3lx2 +2 x3)∕(48EI),如图所示,则两端点的约束可能为下列约束中的()。

题3图4. 等截面梁如图所示,若用积分法求解梁的转角、挠度,则以下结论中()是错误的。

A.该梁应分为AB、BC两段进行积分B.挠度积分表达式中,会出现4个积分常数-26-题4图 题5图C .积分常数由边界条件和连续条件来确定D .边界条件和连续条件表达式为x = 0,y = 0;x = l ,0==右左y y ,0='y5. 用积分法计算图所示梁的位移,边界条件和连续条件为( ) A .x = 0,y = 0;x = a + l ,y = 0;x = a ,右左y y =,右左y y '=' B .x = 0,y = 0;x = a + l ,0='y ;x = a ,右左y y =,右左y y '=' C .x = 0,y = 0;x = a + l ,y = 0,0='y ;x = a ,右左y y =D .x = 0,y = 0;x = a + l ,y = 0,0='y ;x = a ,右左y y '=' 6. 材料相同的悬臂梁I 、Ⅱ,所受荷载及截面尺寸如图所示。

关于它们的最大挠度有如下结论,正确的是( )。

A . I 梁最大挠度是Ⅱ梁的41倍B .I 梁最大挠度是Ⅱ梁的21倍 C . I 梁最大挠度与Ⅱ梁的相等 D .I 梁最大挠度是Ⅱ梁的2倍题6图 题7图7. 如图所示等截面梁,用叠加法求得外伸端C 截面的挠度为( )。

材料力学典型例题及解析 5.弯曲应力典型习题解析

材料力学典型例题及解析 5.弯曲应力典型习题解析

9m q
4 ≤ [σ ]
A
1 πd 2
4
解得 q ≤ 1 π d 2 [σ ] = 1 × 20 ×10 −6 m 2 ×160 ×10 6 Pa = 22300 N/m = 22.3 kN/m
9m
9m
4、确定结构的许用载荷 取 AC 梁、BD 杆的许用 q 值中的小值,即为结构的许用载荷。
所以 [ q ] = 15.68 kN / m 。
切口,如图 a 所示。已知材料的许用应力 [σ ] = 100 MPa , (1) 计算切口许可的最大深度,并
画出切口处截面的应力分布图。(2) 如在杆的另一侧切出同样的切口,正应力有何变化?
F
y
(a)
38MPa
h=40mm
F
C'
M
F
CF F
F
100MPa
b=5mm (b)
(c)
(d)
题6图
解题分析:此题为偏心拉伸问题,可利用弯曲与拉伸组合变形的强度条件求出切口的允许深 度。若另一侧开同样深度切口,偏心拉伸问题变为轴向拉伸问题。 解:1、计算切口许可的最大深度
得 F B y = 12.75 kN
2、作弯矩图,确定危险截面
1
弯矩图如图 b 所示,峰值为 M C = 3.75kN ⋅ m 和 M B = − 4.5kN ⋅ m 。
B 截面的上边缘各点受拉,下边缘各点受压;C 截面的上边缘各点受压,下边缘各 点受拉。由于不能直观确定最大拉、压应力的位置,需要进一步计算。 3、计算 B、C 截面上的应力
设 A 处支反力为 F A y ,B 处支反力为 F B y ,均竖直向上。考虑梁 AD 的平衡,有
∑ M B = 0 , − F A y × 2 m − 4.5×103 N ×1m + 12×103 N ×1m = 0

材料力学答案题解——第7章 弯曲变形

材料力学答案题解——第7章 弯曲变形

此文只供参考,写作请独立思考,不要人云亦云,本文并不针对某个人(单位),祝您工作愉快!一是主要精力要放在自身专业能力的提升上,二是业余时间坚持写作总结,这是一个长期的积累过程,剩下的,不用过于浮躁,交给时间就好了。

每个人都有自己的爱,不能强迫自己去做。

每个人都有自己的意志,不能被强迫。

每个人都有自己的命运,而不是自己的结。

放松你的思想,满足于现状。

不要控制你的情绪。

去吧,依靠你的梦想。

成功取决于奋斗。

成长取决于经验。

幸福取决于开放。

幸福取决于满足。

很容易被人看不起。

如果你看起来有点肤浅,你可以放心。

往下看,你会很高兴的。

敞开心扉,敞开心扉。

只有看透了,我们才能成熟。

这很容易理解。

为了成功,你需要给生活足够的速度。

这是胜利者的态度,也是胜利者的态度。

为了实现这个伟大的目标,我们必须能够忍受别人的嘲笑和独自工作的孤独。

有了信念和追求,人就能忍受一切艰难困苦,适应一切环境。

美属于自信,平静属于准备,奇迹属于坚持。

真正的努力,是“不积跬步,无以至千里;不积小流,无以成江海”的积累;是“贵有恒,何必三更眠五更起;最无益,只怕一日曝十日寒”的自律;是“千淘万漉虽辛苦,吹尽黄沙始到金”的执着。

材料力学 课后题答案 弯曲变形

材料力学 课后题答案 弯曲变形

第七章 弯曲变形7-2 图示外伸梁AC ,承受均布载荷q 作用。

已知弯曲刚度EI 为常数,试计算横截面C 的挠度与转角,。

题7-2图 解:1. 建立挠曲轴近似微分方程并积分 支座A 与B 的支反力分别为23 ,2qaF qa F By Ay ==AB 段(0≤x 1≤a ):121122d d x EI qa x w -=121114d d C x EIqa x w +-= (a)11131112D x C x EIqa w ++-= (b)BC 段(0≤x 2≤a ):2222222d d x EI q x w -=232226d d C x EIq x w +-= (c)22242224D x C x EIq w ++-= (d)2. 确定积分常数梁的位移边界条件为 0 0 11==w x 处,在 (1)0 11==w a x 处,在(2)连续条件为2121 w w a x x ===处,在(3)221121d d d d x wx w a x x -===处,在(4)由式(b )、条件(1)与(2),得01=D , EIqa C 1231=由条件(4)、式(a )与(c ),得EI qa C 332=由条件(3)、式(b )与(d ),得EIqa D 24742-=3. 计算截面C 的挠度与转角将所得积分常数值代入式(c )与(d ),得CB 段的转角与挠度方程分别为EI qa x EI q 36332+-=2θEIqa x EI qa x EI q w 247324423422-+-=将x 2=0代入上述二式,即得截面C 的转角与挠度分别为() 33EI qa C =θ()↓-= 2474EIqa w C7-3 图示各梁,弯曲刚度EI 均为常数。

试根据梁的弯矩图与约束条件画出挠曲轴的大致形状。

题7-3图解:各梁的弯矩图及挠曲轴的大致形状示如图7-3。

图7-37-6 图示简支梁,左、右端各作用一个力偶矩分别为M 1与M 2的力偶。

材料力学习题册答案-第6章_弯曲变形

材料力学习题册答案-第6章_弯曲变形

第六章弯曲变形一、是非判断题1.梁的挠曲线近似微分方程为Eiy=M(x)。

(V)2.梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角为零。

(X)3.两根几何尺寸、支撑条件完全相同的静定梁,只要所受载荷相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是否相同无关。

(X)4.等截面直梁在弯曲变形时,挠曲线的曲率最大值发生在转角等于零的截面处。

(X)5.若梁上中间铰链处无集中力偶作用,则中间铰链左右两侧截面的挠度相等,转角不等。

(V)6.简支梁的抗弯刚度EI相同,在梁中间受载荷F相同,当梁的跨度增大一倍后,其最大挠度增加四倍。

(X)7.当一个梁同时受几个力作用时,某截面的挠度和转角就等于每一个单独作用下该截面的挠度和转角的代数和。

(V)8.弯矩突变的截面转角也有突变。

(X)二、选择题1.梁的挠度是(D)A横截面上任一点沿梁轴线方向的位移B横截面形心沿梁轴方向的位移C横截面形心沿梁轴方向的线位移D横截面形心的位移2.在下列关于挠度、转角正负号的概念中,(B)是正确的。

A转角的正负号与坐标系有关,挠度的正负号与坐标系无关B转角的正负号与坐标系无关,挠度的正负号与坐标系有关C转角和挠度的正负号均与坐标系有关D转角和挠度的正负号均与坐标系无关3.挠曲线近似微分方程在(D)条件下成立。

A梁的变形属于小变形B材料服从胡克定律C挠曲线在xoy平面内D同时满足A、B、C4.等截面直梁在弯曲变形时,挠曲线的最大曲率发生在(D)处。

A挠度最大B转角最大C剪力最大D弯矩最大5.两简支梁,一根为刚,一根为铜,已知它们的抗弯刚度相同。

跨中作用有相同的力F二者的(B)不同。

A支反力B最大正应力C最大挠度D最大转角6.某悬臂梁其刚度为EI,跨度为1,自由端作用有力F。

为减小最大挠度,则下列方案中最佳方案是(B)A梁长改为l/2,惯性矩改为I/8B梁长改为31/4,惯性矩改为1/2C梁长改为51/4,惯性矩改为31/2D梁长改为31/2,惯性矩改为1/47.已知等截面直梁在某一段上的挠曲线方程为:y(x)=Ax2(41x-612-x),则该段梁上(B)现4个积分常数,这些积分常数需要用梁的边界条件和光滑连 续条件来确定。

材料力学典型例题及解析 6.弯曲变形典型习题解析

材料力学典型例题及解析 6.弯曲变形典型习题解析

弯曲变形典型习题解析1 试用积分法写出图示梁的挠曲轴方程,说明用什么条件决定方程中积分常数,画出挠曲轴大致形状。

图中C 为中间铰。

为已知。

I E解题分析:梁上中间铰处,左、右挠度相等,转角不相等。

解:设支反力为,如图示。

yB A yA FM F、、1、建立各段挠曲轴近似微分方程并积分 将梁分为AC 、CB 、BD 段。

AC 段 a x ≤≤10挠曲轴近似微分方程 11x FM w I E yA A ⋅−=′′转角方程1211'12C x Fx Mw IE yA A+−= (a) 挠度方程1113121162D x C x F x M w I E y A A ++−=(b)CB 段 )(2b a x a +≤≤挠曲轴近似微分方程2"2x FMw I E yA A ⋅−=转角方程 222222C x F xM w I E yA A+−=′(c)挠度方程2223222262D x C xFx M w I E yA A++−= (d)BD 段 l x b a ≤≤+3)(挠曲轴近似微分方程[])(333b a x Fx FM w I E yB yA A+−+−=′′转角方程[]32323332)(2C b a x F x F x M w I E yB yA A++−+−=′ (e) 挠度方程[]33333332336)(62D x C b a x FxFxM w I E yB yA A+++−+−= (f)2、确定积分常数共有6个积分常数。

需要6个位移边界条件和光滑连续条件。

332211D C D C D C 、、、、、题1图M A边界条件:,代入(b)得 01=x 01=w 01=D (g)0'1=w 代入(a)得 01=C(h)b a x +=2,02=w (i)连续条件: , a x x ==2121w w =(j) b a x x +==32, 32w w ′=′ (k) 32w w =(l)联立(i)、(j)、(k)、(l),可求出。

材料力学习题解答(弯曲变形)

材料力学习题解答(弯曲变形)

+
ql 12
x13
+ C1x1
+
D1

⎪ ⎪⎩
EIv2
=

q(l
− x2 )4
24
+ C2 x2
+
D2
光滑连续条件: 求解得积分常数
x1 = 0 : v1 = 0, v1' = 0
x1
=
x2
=
l 2
:
v1 = v2 , v1' = v2'
C1 = D1 = 0
C2
=

7ql 3 48
D2
=
15ql 4 384
P
2EI
EI
A
l/2
C l/2
B
解:(1) 求约束反力
MA
2EI
P
EI
A
RA
x1
C
B
x2
RA = P M A = Pl
(2) 弯矩方程
M1(x1) = Px1 − Pl x ∈ (0, l / 2] M2 (x2 ) = Px2 − Pl x ∈[l / 2, l]
(3) 挠曲线近似微分方程
(4) 直接积分两次
x2 ∈[a, 2a)
(2) 挠曲线近似微分方程
(3) 直接积分两次
⎧⎪ ⎨ ⎪⎩
EIv1" EIv2"
= =
M1( x1) = −Px1 M2 ( x2 ) = −Px2

P ( x2

a)
⎧ ⎪⎪
EIv1'

⎪ ⎪⎩
EIv2'
= =
− −

材料力学-第七章弯曲变形 上课例题

材料力学-第七章弯曲变形 上课例题

x
l
EIw M( x) Fl Fx (2)
对挠曲线近似微分方程进行积分
EIw

Flx

Fx 2 2

C1
(3)
EIw


Flx 2 2

Fx 3 6

C 1x

C2
(4)
F
Bx
2
EIw

Flx

Fx 2 2

C1
(3)
EIwFlx 22Fx 3 6

C 1x

C
2q
将AB 段看成B端固定的悬臂
梁,BC段看成简支梁.
A
B截面两侧的相互作用为:
2qa
a
MB qa2
2q
2qa
MB qa2
MB qa2
A
B
B
2qa
q
B
D
a
2a
q D
C
C
23
2qa
简支梁BC的受力情况与
q
外伸梁AC 的BC段的受力情
况相同
MB qa2
B
D
由简支梁BC求得的B,wD
q

qa 3 3EI
(B )MB


MBl 3EI
2qa3 3EI
C
(wD )q

5ql 4 384EI

5qa4 24EI
(wD )MB

MBl2 16EI

qa4 4EI
由叠加原理得:
C
B
( B)q
(B )MB

qa3 3EI
wD

材料力学B试题6弯曲变形

材料力学B试题6弯曲变形

弯曲变形1. 已知梁的弯曲刚度EI 为常数,今欲使梁的挠曲线在x =l /3处出现一拐点,则比值M e1/M e2为:(A) M e1/M e2=2; (B) M e1/M e2=3; (C) M e1/M e2=1/2; (D) M e1/M e2=1/3。

答:(C)2.致形状有下列(A)(B)、(C),(D)四种: 答:(B)3. 简支梁受载荷并取坐标系如图示,则弯矩M 、剪力F S 与分布载荷q 之间的关系以及挠曲线近似微分方程为: (A)EI x M xw q x F F x M )(d d ,d d ,d d 22SS ===;(B)EI x M x w q x F F x M )(d d ,d d ,d d 22SS =-=-=; (C)EI x M xw q x F F x M )(d d ,d d ,d d 22SS -==-=;(D)EI x M xw q xF F x M )(d d ,d d ,d d 22SS -=-==。

答:(B)4. 弯曲刚度为EI 的悬臂梁受载荷如图示,自由端的挠度EIl M EI Fl w B 232e 3+=(↓)则截面C 处挠度为:(A)2e 3322323⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛l EI M l EI F (↓);(B)233223/323⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛l EI Fl l EI F (↓); (C)2e 3322)3/(323⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛l EI Fl M l EI F (↓);(D)2e 3322)3/(323⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛l EI Fl M l EI F (↓)。

答:(C)5. 画出(a)、(b)、(c)三种梁的挠曲线大致形状。

答:6. 试画出图示梁的挠曲线大致形状。

(a)(a)(b)(c)7. 正方形截面梁分别按(a)、(b)两种形式放置,则两者间的弯曲刚度关系为下列中的哪一种: (A) (a)>(b); (B) (a)<(b);(C) (a)=(b); (D) 不一定。

弯曲变形题解word版

弯曲变形题解word版

第6章 弯曲变形习题解答6-1 用直接积分法求下列各梁的挠曲线方程和最大挠度。

梁的抗弯刚度EI 为已知。

(a )解:(1)弯矩方程 0≤ x ≤l+aM (x )=qlx -qx 2/2+q<x-l>2/2-ql 2/2(2)积分 EI (x )= qlx 2/2-qx 3/6+q<x-l>3/6-ql 2x /2+CEI ν(x )= qlx 3/6-qx 4/24+q<x-l>4/24-ql 2x 2/4+ (3)定常数x = 0 = 0 → C = 0 x = 0 ν= 0 → D = 0νmax =ν B =)341(84laEI ql +-(↓)(b )解:(1)支反力 F A = M o / l (↑), F C =-M o / l (↓)(2)弯矩方程 0≤ x ≤ 4l/3M (x )= M o x / l -M o <x-l> / l(3)积分EI (x )= M o x 2 / 2l - M o <x-l>2 /2 l +CEI ν(x )= M o x 3 / 6l - M o <x-l>3/6 l +C x+D (4)定常数x = 0 ν= 0 → D = 0x = l ν= 0 → C =-M o l /6νmax =ν B =EIl M o 62(↑)6-2 写出下列各梁的边界条件,并根据弯矩图和支座情况画出挠度曲线的大致形状。

解:x = 0 ν= 0 x = a ν= 0x = l ν= ∆k = M o / lk x = 3a ν= ∆l = Fa /x AB C ν l q a l/3ν ABC xl(b) M oνa Axa EA aa CBF(b) x B ν A k(a)C2l2lM oxBC ν A•xBCA2EAx = 0 = 0 x = 0 ν= 0 x = 0 ν=0 x = 3a ν= 0x = 0 ν= 0 x = 0 ν= 0 , = 0 x =2a ν=0 x = 2a ν= 06-3 用叠加法求下列各梁C 截面的挠度和B 截面的转角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档