大棚温度自动控制系统的设计
蔬菜大棚智能自动控制系统的信息管理系统的系统设计样本
第1章绪论1.1 选题目和意义中华人民共和国农业发展必要走当代化农业这条道路,随着国民经济迅速增长,农业研究和应用技术越来越受到注重,特别是温室大棚已经成为高效农业一种重要构成某些。
当代化农业生产中重要环节就是对农业生产环境某些重要参数进行检测和控制。
例如:空气温度、湿度、二氧化碳含量、土壤含水量等。
在农业种植问题中,温室环境与生物生长、发育、能量互换密切有关,进行对监测数据分析,结合伙物生长发育规律,控制环境条件,使作物达到优质、高产、高效栽培目。
以蔬菜大棚为代体当代农业设施在当代化农业生产中发挥着巨大作用。
大棚内温度、湿度与二氧化碳含量等参量,直接关系到蔬菜和水果生长。
国外温室设施已经发展到比较完备限度,并形成了一定原则,但是价格非常昂贵,缺少与国内气候特点相适应测试软件。
而当今大多数对大棚温度、湿度、二氧化碳含量检测与控制都采用人工管理,这样不可避免有测控精度低、劳动强度大及由于测控不及时等弊端,容易导致不可弥补损失,成果不但大大增长了成本,挥霍了人力资源,并且很难达到预期效果。
因而,为了实现高效农业生产科学化并提高农业研究精确性,推动国内农业发展,必要大力发展农业设施与相应农业工程,科学合理地调节大棚内温度、湿度以及二氧化碳含量,使大棚内形成有助于蔬菜、水果生长环境,是大棚蔬菜和水果早熟、优质、高效能重要环节。
当前,随着蔬菜大棚迅速增多,人们对其性能规定也越来越高,特别是为了提高生产效率,对大棚自动化限度规定也越来越高。
因此急需一种高效实时监控设备,能实现大棚实时监控,迅速理解大棚内环境状态。
1.2 国内外有关研究综述1.2.1 国外状况世界发达国家如荷兰、美国、以色列等大力发展集约化温室产业,温室内温度、光照、水、气、肥实现了计算机调控,从品种选取、栽培管理到采集收包装形成了一整套规范化技术体系。
美国是最早创造计算机国家,也将计算机应用于温室控制和管理最早、最多国家之一。
美国有发达设施栽培技术,综合环境控制技术水平非常高。
温室大棚温度湿度自动控制系统设计
温室大棚温度湿度自动控制系统设计摘要:该文介绍了了一个温室大棚温度以及湿度的自动控制系统设计:大棚温度湿度自动控制系统由主控制器AT89S51单片机、H104陶瓷湿度传感器、AD590温度传感器等构成,实现对温室大棚温湿度的检测与控制,从而有效提高温室的产量。
这个设计的系统具有成本低,同时运行稳定等特点。
这个系统首先对室内的温度以及湿度进行采集, 接着根据测量的参数对于温度和湿度进行自动调节,最后达到温室大棚的温度、湿度自动控制的目的。
关键词:温室大棚温度湿度自动检测自动控制想要实现对于一个地方湿度以及温度的控制,过去传统的做法是:使用湿度计以及温度计来对其湿度以及温度值进行测量,接着人工的方法来其进行加湿以及加热操作或者是采用适当通风以及降温设备来控制其的湿度以及温度。
但是使用湿度计以及温度计直接进行人工测量的缺点是其精度相对其他方式来说比较低,此外采用人工读数这种方式有可能产生很大的读数以及偶然误差,因此人工对于进行温湿度检测的方式不仅速度慢,精度低,实时性差,而且操作人员的劳动强度大。
如今科技的发展,带来了各个方面的进步,在温湿度的控制方面也不例外。
现代的控制主要是温湿度监测系统的出现,这是由各种模数转换器以及传感器等组成的,同时采用这种方式可以将其对湿度以及温度的检测速度提高很多,同时测量的精度方面有了一定的提高,并且能够在一定程度上降低了劳动强度,但有时候所采用的传感器定平稳性比较差,灵敏度比较低,就会导致其系统可靠性以及检测的精度还不够理想。
最近几年来,单片机和计算机的发展以及广泛应用,人们对相关检测的稳定性、准确性等方面的要求也越来越高。
本设计就是针对此问题,设计相对性能稳定、精度高的温度湿度控制装置。
该仪器可广泛应用于大棚、仓库、体育场等领域。
1 温室大棚温度湿度自动控制设计思路将单片机作为数据处理与控制单元,为了能够进行数据处理,单片机控制温度传感器经过处理的信号,把信号通过单总线传递到单片机上。
智慧大棚恒温系统设计方案
智慧大棚恒温系统设计方案智慧大棚恒温系统设计方案1. 智慧大棚概述智慧大棚是利用现代科技手段对农业生产进行智能化管理的一种先进农业生产方式。
其中,恒温系统是智慧大棚的重要组成部分,能够提供稳定的温度环境,以满足植物的生长需求。
2. 设计目标恒温系统的设计目标是为了使智慧大棚内的温度始终保持在适宜的范围内,以提供良好的生长环境。
具体设计目标如下:- 温度控制范围:根据不同植物的生长需求,设计合适的温度控制范围。
- 温度稳定性:保持温度的变化幅度尽可能小,提高恒温效果。
- 能效优化:设计节能措施,降低系统运行能耗。
3. 设计原理及方案恒温系统的设计原理主要基于温控设备的运作和控制算法的设计。
下面是一个基本的智慧大棚恒温系统设计方案:(1) 温度传感器:安装在智慧大棚内的不同位置,用于实时监测温度变化,并将数据反馈给控制器。
(2) 控制器:根据传感器反馈的温度数据,决定是否启动或关闭恒温设备,并根据预设的温度范围进行控制。
(3) 恒温设备:根据控制器的指令,调节恒温设备的工作状态,如加热系统、冷却系统等,以实现温度的调控。
(4) 控制算法:设计合理的控制算法,根据温度变化和设定要求,自动调节恒温设备的工作状态,保持温度的稳定。
4. 功能模块设计为了实现上述的设计方案,我们需要设计以下功能模块:- 温度传感模块:选择准确可靠的温度传感器,安装在不同位置,进行实时温度监测,并将数据传输给控制器。
- 控制器模块:根据温度传感模块的数据,进行温度控制算法的运算,并向恒温设备发送控制指令。
- 恒温设备模块:根据控制器模块的指令,控制加热系统、冷却系统等恒温设备的工作状态,以达到温度调控的目的。
5. 设计考虑因素在设计智慧大棚恒温系统时,需要考虑以下几个因素:- 温度范围:根据不同植物的生长需求,设定合适的温度范围。
- 温度变化率:尽量控制温度变化的速度,避免温度过快地波动,影响植物生长。
- 能源消耗:设计节能的控制算法和设备,并根据实际情况进行能效评估和优化。
大棚温湿度自动控制系统设计毕业设计
蜂鸣器报警温湿度传感器温室单片机大液晶显示加热器棚制冷器键盘输入继电器加湿器除湿器图2.2用单片机作为主控制器的控制系统2.4方案论证从功能上看,两种控制器都能满足要求。
PLC在工业控制领域用得比拟多,编程简单,而且抗干扰能力强。
但是本系统是用于温室大棚,并没有其他大型工业设备的干扰。
单片机用C语言编程,相对PLC的梯形图要复杂得多,但是编程更为灵活,可以实现复杂的功能。
从价格方面上看,单片机就比PLC具有很大的优势。
一个单片机只要几块钱,而一个很一般的PLC一般也要几百上千元。
另外,中国是农业大国,随着温室大棚越来越普及,农村对温湿度控制系统的需求也会越来越旺盛,因此虽然用单片机开发的周期较长,但是一旦完成开发,后期生产环节的边际本钱很小;而基于PLC的控制系统受制于PLC的高昂价格,价格难以降低。
2.5方案选择PLC和单片机都能作为主控制器进展设计,但是在价格方面单片机具有巨大优势。
综上所述,本次设计采用单片机作为主控制器。
第5页3单元模块设计3.1各单元模块功能介绍及电路设计3.1.1单片机最小系统图3.1单片机最小系统单片机最小系统包括单片机、电源电路、时钟电路和复位电路。
时钟电路用于产生单片机工作时候所必须的时钟信号,单片机在时钟信号的节拍下逐条地执行指令。
单片机有两种时钟信号产生方式,一种是内部时钟方式,另一种是外部时钟方式。
外部时钟方式是把已有的时钟信号从XTAL1或XTAL2送入单片,一般用于有多个单片机的情况,所以本设计中时钟电路采用内部时钟方式,选用12M的晶振和两个30pF的电容与片内的高增益反相放大器构成一个自激振荡器。
第6页电源电路后面的模块中会单独提到,用5V的直流电源。
下面着重论述一下复位电路。
图3.2上电+手动复位电路单片机的复位主要有上电复位和手动复位,之所以要进展复位,目的就是为了让单片机进入初始状态,比方让PC指向0000H,这样单片机才能从头运行程序。
因此上电的时候就要让单片机复位一次;在运行过程中,如果程序出错,也需要进展手动复位。
大棚仓库温湿度自动控制系统的毕业设计
系统的应用场景和意义
应用场景:大棚仓库温湿度自动控制系统适用于农业大棚、食品仓库、 药品存储等需要精确控制温湿度的场所。
意义:该系统能够提高存储物品的品质和延长保质期,降低因温湿度失 控而产生的损失,提高生产效益和安全性。
系统的基本组成和原理
温湿度传感器: 实时监测大棚 仓库内的温湿
度数据
控制器:根据 传感器数据自 动调节温湿度
大棚仓库温湿度自动控 制系统的毕业设计
汇报人:
目录
添加目录标题
01
大棚仓库温湿度自动控制 系统的概述
02
大棚仓库温湿度自动控制 系统的硬件设计
03
大棚仓库温湿度自动控制 系统的软件设计
04
大棚仓库温湿度自动控制 系统的测试与验证
05
大棚仓库温湿度自动控制 系统的应用前景与展望
06
添加章节标题
大棚仓库温湿度 自动控制系面布局:简洁明了,操作方便 温湿度显示:实时更新,准确显示 控制功能:一键操作,快速响应 报警功能:及时提醒,保障安全
大棚仓库温湿度 自动控制系统的 测试与验证
测试环境的搭建
测试场地:选择一个适合大棚仓库 温湿度自动控制系统的场地进行测 试
测试网络:确保测试场地内的网络 连接稳定,以便实时传输数据
系统的定义和功能
系统的定义:大棚仓库 温湿度自动控制系统是 一种通过自动化技术对 大棚仓库内的温湿度进 行监测、调节和控制的 系统。
系统的功能:大棚仓库温 湿度自动控制系统具有实 时监测、数据记录、异常 报警、自动调节等功能, 能够有效地保证大棚仓库 内的温湿度环境,提高农 作物的生长质量和产量。
性能优化建议: 根据测试结果, 提出针对性的优 化建议,提高系 统的性能表现
温室大棚温湿度控制系统
蔬菜大棚控制系统设计在农业生产中,蔬菜大棚的应用越来越广泛,也能为人们创造更高的经济效益。
在蔬菜大棚中,最关键的是温度、湿度、二氧化碳浓度、光照、营养液等的控制方法。
传统的控制方法完全是人工的,不仅费时费力,而且效率很低。
我的作业设计是蔬菜大棚温湿度控制系统的设计。
该系统主要由单片机、温度传感器DSl8B20、湿度传感器是HR202、二氧化碳浓度传感器、光敏传感器、液晶显示LCD1602、键盘等组成。
此设计克服了传统农业难以解决的限制因素。
因此就必须利用环境监测和控制技术。
对温度、湿度、光照、二氧化碳浓度等因素进行测控。
一、系统总体结构设计及控制系统设计环境自动化检测系统的硬件设计方案框图如图l 所示。
控制系统主要有单片机、数据采集模块、数据转换电路、报警装置、执行机构、主控计算机等组成。
其核心是单片机芯片组,作为系统各种参数的处理和控制器。
完成各种数据的处理和控制任务。
同时将处理后的数据传送给主机。
实际应用时可根据被测控参数点的个数和控制的要求来决定单片机的数目。
环境因素数据采集模块由温度传感器、湿度传感器、C02浓度传感器、光照度传感器等组成,分别实时采集各测控点的温度、湿度、C02浓度、光照度等环境因素模拟量并转换为电信号。
经前置放大后送给A/D 转换芯片。
数据转换电路包括A /D 转换和D /A 转换电路。
完成模拟量和数字量之间的相互转换。
执行机构包括各种被控制的执行设备。
在系统的控制下启动调节设备如喷雾机,吹风机,加热器,CO2发生器等进行升温降温、加湿换风、C02浓度调控、光环境调控、土壤环境调控等操作来调节大棚内的环境状态。
另外还有光电驱动隔离,其作用是有效地隔离控制部分和执行部分。
抑制大电流、大功率负载开启产生的各种电磁辐射和电压冲击等干扰,保证系统可靠稳定地工作。
整个系统的工作原理是首先在单片机内设定温度、湿度、C02浓度、光照度等环境因素的上下限值和报警值并予以保存,各种传感器实时检测到的参数值送到单片机后与其设定值进行比较,判断是否在设定的上下限值范围内。
大棚温度控制系统设计报告
课程设计主要任务基于AT89S52单片机的温度测量控制系统,数字温度传感器DS18B20通过单总线与单片机连接,实现温度测量控制,主要性能为:(1)通过该系统实现对大棚温度的采集和显示;(2)对大棚所需适宜温度进行设定;(3)当大棚内温度参数超过设定值时控制通风机进行降温,当温度低于设定值时利用热风机进行升温控制;(4)通过显示装置实时监测大棚内温度变化,便于记录和研究;系统的设计指标(1)温度控制范围:0℃~+50℃;(2)温度测量精度:±2℃;(3)显示分辨率:0.1℃;(4)工作电压:220V/50Hz ±10%目录第一章序言 1 第二章总体设计及个人分工 2 第三章传感器设计及应用 4 第四章总结8第一章序言随着人口的增长,农业生产不得不采取新的方法和途径满足人们生活的需要,大棚技术的出现改善了农业生产的窘迫现状。
塑料大棚技术就是模拟生物生长的条件,创造人工的气象环境,消除温度对农作物生长的限制,使农作物在不适宜的季节也能满足市场的需求。
随着大棚技术的普及,对大棚温度的控制成为了一个重要课题。
早期的温度控制是简单的通过温度计测量,然后进行升温或降温的处理,进行的是人工测量,耗费大量的人力物力,温度控制成为一项复杂的程序。
大多数的蔬菜大棚以单个家庭作业为主,种植户为蔬菜大棚配备多参数的智能设备,经济成本很高,因此将温度控制由复杂的人为控制转化为自动化的机械控制成为必然。
目前现代化的温度控制已经发展的很完备了,通过传感器检测基本上可以实现对各个执行机构的自动控制,应用自动控制和电子计算机实现农业生产和管理的自动化,是农业现代化的重要标志之一。
近年来电子技术和信息技术的飞速发展,温度计算机控制与管理系统正在不断吸收自动控制和信息管理领域的理论和方法,结合温室作物种植的特点,不断创新,逐步完善,从而使温室种植业实现真正意义上的现代化,产业化。
温度计算机控制及管理技术便函先在发达国家得到广泛应用,后来各发展中国家也都纷纷引进,开发出适合自己的系统。
基于PLC的大棚温度自动控制系统设计
清华大学毕业设计(论文)题目基于PLC的大棚温度自动控制系统设计系(院)自动化系专业电气工程与自动化班级2009级3班学生姓名雷大锋学号**********指导教师王晓峰职称副教授二〇一三年六月二十日独创声明本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。
据我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。
对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。
本声明的法律后果由本人承担。
作者签名:年月日毕业设计(论文)使用授权声明本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。
本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。
(保密论文在解密后遵守此规定)作者签名:年月日基于PLC的大棚温度自动控制系统设计摘要大棚温度自动控制系统是一种为作物提供最好环境、避免各种棚内外环境变化对其影响的控制系统。
该系统采用FX2N系列PLC作为下位机,PC机作为上位机,采用三菱D-720通用变频器,采用温度、湿度、光照传感器采集现场信号,这些模拟量经PLC转化为数字信号,把转化来的数据与设定值比较,PLC经处理后给出相应的控制信号使环流风机、遮阴帘、微雾加湿机等设备动作,大棚温度就能实现自动控制。
这种技术不但实现了生产自动化,而且非常适合规模化生产,劳动生产率也得到了相应的提高,通过种植者对设定值的改变,可以实现对大棚内温度的自动调节。
关键词:大棚,温度控制,PLCThe Automatic Greenhouse Temperature ControlSystem Based on PLCAbstractThe system is a way to providing the best conditions to plants and promoting them growth very well ,avoiding the bad weather and effect of seasons outside the shed .This system uses FX2N series PLC as the next machine and PC as upper machine, using the Mitsubishi D-720 general frequency Manager. The sensor of temperature, humidity and light collecting scene signal, these simulation volumes are turned into digital signal by PLC, then compared with the setting value. At last, the PLC disposes of them, then contorts with wind machine, covering Yin curtain. According to the actual measured value of each sensor and the value determined in advance about greenhouse environmental factors. This system can suitable for the automation and mass production, the laboring productivity has been increasing by a wide margin through changing the target value of greenhouse environment, and we can control the greenhouse temperature automatically.Key words: greenhouse, temperature control, PLC目录第一章绪论 (1)1.1 大棚温度控制系统发展背景及现状 (1)1.2 大棚温度控制系统研究目的及意义 (2)第二章系统概述 (3)2.1 系统设计任务 (3)2.2 系统技术介绍 (3)2.2.1 传感技术 (3)2.2.2 PLC (4)2.2.3 上位机 (5)2.3 系统工作原理 (5)2.4小结 (7)第三章硬件部分设计 (8)3.1 环境调控系统 (8)3.2 传感器的选择 (10)3.3 系统硬件接线图 (12)3.3.1 系统主电路设计 (12)3.3.2 系统其他部分电路设计 (14)3.3.3 PLC部分电路设计 (15)3.4小结 (16)第四章软件设计 (17)4.1 PLC的I/O分布图 (17)4.2 系统程序 (18)4.2.1 系统温度PID调节程序 (18)4.2.2 系统主程序 (18)4.3 小结 (19)第五章结论 (20)参考文献 (21)谢辞 (22)第一章绪论1.1 大棚温度控制系统发展背景及现状如今塑料大棚、日光温室逐渐成为我国设施结构的主要结构类型。
蔬菜大棚温度控制系统设计毕业设计论文
毕业设计(论文)题目:蔬菜大棚温度控制系统设计摘要蔬菜大棚温度自动控制系统由主控制器AT89C51单片机、并行口扩展芯片8255、74LS373、A/D转换器0809、、温度传感器DS1820、固态继电器、RAM6264、掉电保护和LED显示器和报警电路等构成,实现对蔬菜大棚温度的检测与控制,从而有效提高蔬菜的产量。
文中提出了具体设计方案,讨论了蔬菜大棚温湿度巡回检测与控制的基本原理,进行了可行性论证。
给出了电路图和程序流程图并附有源程序。
由于利用了单片机及数字控制系统的优点,系统的各方面性能得到了显著的提高。
关键词:温度传感器快速检测 A/D转换器 LED显示器报警电路固态继电器;目录摘要 ....................................................................................................................................................................... I I 目录 (III)1 概述 (1)2 蔬菜大棚的系统设计 (2)2.1 控制系统整体结构 (2)2.2 系统的工作原理 (2)3.蔬菜大棚系统的硬件设计 (3)3.1 系统主控制器部分设计 (3)3.1.1 AT89C51的工作原理 (3)3.1.2 AT89C51的复位电路 (4)3.1.3 AT89C51的引脚功能 (4)3.2 数据存储器的扩展 (7)3.3 LED显示器 (10)3.4 A/D转换接口 (11)3.4.1 A/D转换器的基本工作原理及器件简介 (11)3.4.2 ADC0809与AT89C51单片机的接口设计 (13)3.5 单总线数字温度传感器DS1820 (15)3.5.1DS1820 的主要特性 (15)3.5.2DS1820的工作原理 (15)4 系统的软件设计 (16)4.1 设计方法 (16)4.2 主程序的分析与说明 (16)5 系统实验应用 (17)5.1实验蔬菜大棚简介 (17)5.1.1实验大棚结构特点 (17)5.1.2实验大棚内温度特点 (17)5.2温度传感器测试实验 (18)5.3显示及报警实验 (19)结论 (20)参考文献 (22)1 概述想要长出好的蔬菜,蔬菜大棚的温度控制是非常重要的,温室环境测控,即根据植物生长发育的需要,自动调节温室内环境条件的总称。
温室大棚温度控制系统的设计
温室大棚温度控制系统的设计I.引言A. 背景介绍B. 研究目的C. 研究方法D. 研究意义II.温室大棚温度控制系统的开发A. 温度控制系统的原理和架构B. 硬件的选型和配备C. 软件的设计和实现D. 集成测试和调试III.温室大棚温度控制系统的功能和特性A. 环境参数的监测和记录B. 温度控制的稳定性和精确性C. 报警与自动控制的响应速度D. 系统的可靠性和易用性IV.温室大棚温度控制系统的性能评估和应用实践A. 性能评估的设计和实施B. 实际应用场景的分析和比较C. 用户反馈和优化建议D. 推广和应用前景展望V.结论和展望A. 研究成果总结B. 创新和不足之处C. 可行性和发展前景D. 下一步的研究和实践方向VI. 参考文献温室大棚温度控制系统是现代农业生产中不可或缺的一项技术,能够帮助农民更加精准地控制温度,提高作物生长的质量和产量。
温室大棚温度控制系统的设计是基于现代控制理论和通信技术,通过整合传感器、执行器、控制器、计算机等设备,实现温度精确监测和远程控制,提高大棚内环境的稳定性和生产效率。
本章主要介绍温室大棚温度控制系统的开发过程和基本原理。
首先,系统的软硬件环境以及组成部分的选型和配备将在该章节中进行介绍。
其次,针对温室大棚环境的特殊性,温度控制系统的硬件和软件架构将与设计思路进行详细阐述,并阐明其算法原理与控制策略。
最后,系统的集成测试和调试将作为本章的最后一部分。
一、软硬件环境的选型和配备设计温室大棚温度控制系统时,硬件的选型和配置将对整个系统的性能和稳定性至关重要。
传感器是该系统的核心组成部分之一,应根据要测量的物理量进行选择,例如:温度、湿度、光照强度等。
本系统涉及到的传感器主要包括温度传感器、湿度传感器以及光照度传感器。
执行器负责实现控制策略,例如加热、降温等命令,其选择可以根据控制的方式进行,如PID 控制、ON/OFF控制。
本系统的执行器为加热器、风扇等。
控制器是负责数据采集、处理和输出控制信号的中心器件,其选型应根据采样率、处理速度、数据精度等要求进行选择。
蔬菜大棚温度控制系统设计
蔬菜大棚温度控制系统设计太原科技大学毕业设计(论文)目录摘要.................................................................................................................................................... ABSTRACT ...................................................................................................................................... 第1章绪论 01.1 选题背景 01.2 国内发展现状及水平 01.3 设计目的及意义 01.4 本章小结 (1)第2章系统功能需求分析及方案选择 (2)2.1 设计要求 (2)2.2 系统的功能需求分析 (2) (2) (4)2.3 工作原理 (3)2.4 控制方案 (3) (3) (5) (4) (5)2.5 系统控制方案的确定 (6)2.6 本章小结 (7)第3章硬件电路设计 (9)3.1主控制器AT89C51单片机电路 (9) (9) (9)3.2 温度采集电路 (10) (10) (11) (12)3.4键盘输入模块电路 (13) (13)3.5 机械控制电路模块 (14) (15) (15)3.6 蜂鸣器报警电路 (16)3.7 电源输入部分 (17)3.8 本章小结 (17)第4章系统软件设计 (19)4.1 系统主程序流程 (19)4.2 DS18B20测温读取子程序 (20)4.3 LCD1602显示子程序 (21)4.4 机械控制子程序 (21)4.5 定时器子程序 (22)4.6 本章小结 (23)第5章系统调试与仿真 (26)5.1 系统调试 (26)5.2 系统仿真 (26)5.3仿真结果 (27)第6章结论 (27)致谢 (29)参考文献 (31)附录 (33)附录1 硬件电路原理图 (33)附录2 元件清单表 (34)附录3 源程序清单 (35)摘要本设计完成了蔬菜大棚温度控制系统的系统设计。
温室大棚自动控制系统的设计
┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊目录第1章绪论 (1)1.1选题背景 (1)1.2 国内外发展现状 (2)1.3 课题内容、目的及思路 (3)1.4 设计过程及工艺要求 (5)第2章方案的比较和选择 (6)2.1 湿度传感器的选择 (6)2.2温度传感器的选择 (8)2.3 光照度传感器的选择 (9)第3章系统的总体设计 (10)3.1 确定系统任务 (11)3.2 系统的组成和工作原理 (12)3.3 元件的特性 (15)3.3.1 STC89C52特点 (15)3.3.2 AD0804特点 (16)第4章电路设计 (18)4.1 湿度测量电路 (18)4.2 温度测量电路 (19)4.3 光照度测量电路 (19)4.4 数据显示电路 (20)4.5 复位电路 (21)4.6 键盘电路 (22)4.7继电器控制电路 (22)4.8 电源设计 (23)第5章软件设计 (25)5.1系统概述 (25)5.2 Keil C51单片机软件开发系统的整体结构 (25)5.3 使用独立的Keil仿真器时,注意事项 (26)5.4 Keil C51单片机软件基本操作步骤 (26)5.5 主程序流程图 (26)5.6 参数测量子程序流程图 (28)5.7 键盘扫描子程序流程 (28)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊第6章结论 (31)致谢 (32)参考文献 (33)附录 (35)附录1.系统总体电路图 (36)附录2.系统源代码 (36)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊第1章绪论1.1选题背景随着改革开放,特别是90年代以来,我国的温室大棚产业得到迅猛的发展,以蔬菜大棚、花卉为主植物栽培设施栽培在大江南北遍地开花,随着政府对城市蔬菜产业的不断投入,在乡镇内蔬菜大棚产业被看作是21世纪最具活力的新产业之一。
基于单片机与PLC的农业大棚温湿度控制系统设计
基于单片机与PLC的农业大棚温湿度控制系统设计一、本文概述随着科技的不断进步,农业生产的自动化和智能化已成为推动农业现代化的重要手段。
在这一背景下,单片机与PLC(可编程逻辑控制器)技术的应用逐渐凸显出其在农业大棚环境控制中的优势。
本文旨在探讨基于单片机与PLC的农业大棚温湿度控制系统的设计,通过对系统的硬件和软件部分的详细分析,旨在为读者提供一种高效、稳定且易于实现的农业大棚环境控制方案。
本文首先介绍了农业大棚温湿度控制的重要性,以及传统控制方法存在的问题。
接着,详细阐述了单片机与PLC在农业大棚温湿度控制中的工作原理和应用优势。
随后,文章将重点介绍系统的设计过程,包括硬件选择、电路设计、软件编程以及系统调试等方面。
在硬件选择方面,我们将介绍适合农业大棚环境控制的单片机和PLC型号,以及相关的传感器和执行器选择原则。
在软件编程方面,我们将提供基于C语言和梯形图的编程示例,并解释如何通过编程实现对大棚温湿度的精确控制。
文章将对系统的调试过程进行说明,包括硬件连接、软件调试以及系统性能测试等内容。
通过本文的研究,读者可以深入了解基于单片机与PLC的农业大棚温湿度控制系统的设计过程,掌握相关硬件和软件技术,为实际应用提供有力支持。
本文的研究成果对于推动农业生产的自动化和智能化,提高农业生产效率和质量具有重要意义。
二、系统总体设计在农业大棚温湿度控制系统中,单片机与PLC各自发挥着不可或缺的作用。
单片机以其低成本、低功耗、易编程的特性,负责现场数据的采集与处理,而PLC则以其强大的控制逻辑、稳定的运行性能,负责整体系统的管理与控制。
单片机部分主要负责采集大棚内的温湿度数据,并将这些数据实时传输给PLC进行处理。
我们选用具有AD转换功能的单片机,可以直接将温湿度传感器的模拟信号转换为数字信号,便于数据的处理与传输。
同时,单片机还需具备与PLC通信的功能,如使用RS485或RS232等通信协议,确保数据的准确传输。
蔬菜大棚恒温恒湿控制系统设计
蔬菜大棚恒温恒湿控制系统设计蔬菜大棚是一种人工控制环境的农业生产设施,可以为蔬菜提供合适的温度和湿度条件,以促进它们的生长和发育。
为了实现蔬菜大棚的恒温恒湿控制,需要设计一个控制系统,该系统能够监测温度和湿度,并根据设定的参数自动调节温度和湿度。
1.温度监测与控制:-温度传感器:安装在大棚内部的合适位置,可以实时监测大棚内的温度变化。
-控温设备:例如水冷却系统、加热系统等,可以根据传感器数据自动控制温度,保持大棚内部的恒温状态。
-温控器:接收传感器数据,根据设定的温度范围进行控制。
2.湿度监测与控制:-湿度传感器:安装在大棚内部的合适位置,可以实时监测大棚内的湿度变化。
-控湿设备:例如加湿器、除湿设备等,可以根据传感器数据自动控制湿度,保持大棚内部的恒湿状态。
-湿度控制器:接收传感器数据,根据设定的湿度范围进行控制。
3.控制系统集成:-控制器:负责接收传感器数据,并根据设定的参数进行调节,控制温度和湿度。
-人机界面:可以通过电脑、手机等设备进行监测和设置,方便农民了解大棚内的状态并进行调节。
以上是蔬菜大棚恒温恒湿控制系统的基本设计要点,可以根据具体情况进行调整和扩展。
在实际应用中,还可以添加其他功能,如自动通风、光照控制等,以提高蔬菜大棚的生产效率和质量。
设计蔬菜大棚恒温恒湿控制系统时1.传感器的选择:选择合适的温度传感器和湿度传感器,具有高精度、快速响应和较小的误差。
2.控制设备的选择:根据大棚的实际情况选择合适的控温和控湿设备,确保能够满足大棚内的需求。
3.控制策略的制定:根据不同蔬菜的生长需求和不同阶段的要求,制定合适的温度和湿度控制策略。
4.系统稳定性的考虑:系统应具有较高的稳定性和可靠性,能够在长期运行中保持良好的控制效果。
5.节能与经济性的平衡:在设计系统时考虑节能和经济性,选择节能设备和控制策略,降低运行成本。
综上所述,蔬菜大棚恒温恒湿控制系统的设计需要考虑温度和湿度的监测与控制,以及控制系统的集成与优化。
智能温室大棚整体控制设计报告
智能温室大棚整体控制设计报告一、需求分析近年来,由于气候变化等多种原因,传统的农业生产方式已经无法满足现代社会的需要。
人们对于高品质、高效率、节能环保的农业生产方式有着更高的追求。
而智能温室大棚的兴起就是一个非常好的案例。
智能温室大棚能够通过自动化控制技术,完成温度、湿度、光照、灌溉等诸多参数的实时控制,提高作物产量、品质和经济效益。
为了满足人们对于智能化农业生产方式的需求,本报告提出了智能温室大棚整体控制设计方案。
二、系统框架设计本系统采用分布式设计,将整个智能温室大棚控制系统分为下列几个部分:传感器部分、控制器部分、执行器部分和监控部分。
1. 传感器部分温室大棚内设置多种传感器,包括温度传感器、湿度传感器、二氧化碳传感器、氧气传感器、光照传感器和土壤湿度传感器等,用于实时感知温室大棚内环境参数。
2. 控制器部分控制器部分包括温度控制器、湿度控制器、二氧化碳控制器、氧气控制器、光照控制器和浇水控制器等,用于根据传感器部分采集的温室大棚内环境参数,自动控制环境参数,保证温室大棚内环境参数稳定和作物生长需要。
3. 执行器部分执行器部分包括温度调节器、湿度调节器、二氧化碳发生器、氧气区分器、光照灯和浇水器等,用于执行控制器部分的指令,对温室大棚内环境参数进行调节和维护。
4. 监控部分监控部分包括计算机端和手机端,用户可以通过计算机端和手机端实时查看温室大棚内的环境参数、获取生长轨迹、掌握生长状况,可远程控制设置温度、湿度、光照、浇水等。
三、系统实现技术本系统采用了传感器、控制器、执行器之间的等级控制和信息传递技术,采用现代化的智能控制技术,能够更好地完成对温室大棚内环境参数的实时控制和维护。
其中,传感器部分采用数字化接口,能够实现数字化数据的传输和处理,使传感器的计算精度更加准确。
同时,控制器部分采用分布式节点设计,各节点之间存在信息共享和通信,实现了全局信息的同步控制,同时也具有很好的扩展性和可靠性。
智能温室大棚整体控制设计报告
智能温室大棚整体控制设计报告一、引言二、系统设计1.传感器部分2.控制器部分控制器是智能温室大棚的核心部分,它负责接收传感器发送的数据,并根据设定的参数进行决策和控制操作。
在温室大棚中,控制器可以根据环境参数自动调整温度和湿度。
另外,它还可以自动调整灯光的亮度和频率,以满足不同植物的需求。
控制器应具备良好的通信能力,可以远程监控系统的工作状态,并接收和传输数据。
3.执行器部分执行器是控制器的输出部分,负责根据控制器发送的信号执行相应的操作。
在温室大棚中,执行器可以控制空调和加湿器的启停,调节温度和湿度;同时,它还可以控制灯光的开关和亮度调节,以满足不同植物的光照需求。
此外,执行器还可以控制灌溉系统的水泵,根据土壤湿度的变化自动喷水。
三、功能设计1.温度和湿度控制智能温室大棚的控制系统应能够实现温度和湿度的自动控制。
当温度超过设定值时,执行器会启动空调系统进行降温;当湿度超过设定值时,执行器会启动加湿器进行降湿。
在温度和湿度达到设定范围后,执行器会自动停止相应的操作。
2.光照控制3.水分控制智能温室大棚的控制系统还应具备水分控制功能。
通过土壤湿度传感器监测土壤湿度,并根据设定值自动控制灌溉系统的开关。
当土壤湿度低于设定值时,执行器会启动水泵进行灌溉;当土壤湿度达到设定值时,执行器会自动停止灌溉。
四、结论智能温室大棚整体控制系统的设计可以提供良好的生长环境,提高农作物的产量。
通过传感器监测环境参数,并由控制器和执行器对其进行自动调节,可以实现温度、湿度、光照和水分等参数的自动控制。
未来的工作可以进一步完善系统的功能和性能,提升智能温室大棚的效益和可靠性。
大棚温湿度自动控制系统设计-毕业设计
大棚温湿度自动控制系统设计-毕业设计大棚温湿度自动控制系统设计是一个复杂而实用的毕业设计课题。
该系统旨在帮助农民控制和维持大棚内的温湿度,从而提高农作物的生产效益。
以下是设计该系统的几个主要步骤:1. 确定系统需求:首先需要与农民沟通,了解他们对大棚温湿度控制的具体要求。
例如,他们希望保持大棚内的温度在一定的范围内,以及监测并控制湿度水平等。
2. 选择传感器:根据系统需求确定所需的传感器。
可能需要温度传感器、湿度传感器和光照传感器等。
这些传感器将用于检测大棚内的环境参数。
3. 确定控制方法:根据系统需求和传感器的输出,设计控制算法来实现温湿度的自动控制。
例如,可以使用PID控制算法或模糊控制算法。
4. 选择执行器:根据控制算法的输出,选择合适的执行器来实现温湿度的调节。
例如,可以使用风机来调节温度,使用喷雾系统来调节湿度。
5. 界面设计:设计一个简单直观的用户界面,使农民可以轻松地监测和调节大棚内的温湿度。
界面可以使用单片机或者计算机上的软件来实现。
6. 系统集成:将所有的硬件和软件组件集成在一起,确保它们能够正常协同工作。
进行功能测试和性能测试,进行必要的调整和优化。
7. 调试和优化:在实际使用中,进行系统的调试和优化,确保系统稳定可靠,并满足农民的需求。
8. 编写论文:根据设计过程和结果,撰写一份完整的毕业设计论文,包括设计目的、设计方法、实验结果和结论等。
大棚温湿度自动控制系统设计是一个综合性的工程项目,需要综合运用电子技术、控制技术、软件开发等知识。
通过该设计项目,可以帮助农民提高大棚农作物的产量和质量,同时也为毕业生提供了一个实践和综合应用知识的机会。
大棚温湿度自动控制系统设计
大棚温湿度自动控制系统设计摘要:本设计是基于STC89C52RC单片机的大棚温湿度自动控制系统,采用SHT10作为温湿度传感器,LCD1602液晶屏进行显示。
SHT10使用类似于I2C总线的时序及单片机进行通信,由于它高度集成,已经包括A/D转换电路,所以使用方便,而且准确、耐用。
LCD1602能够分两行显示数据,第一行显示温度,第二行显示湿度。
这个控制系统能够测量温室大棚中的温度和湿度,将其显示在液晶屏LCD1602上,同时将其及设定值进行对比,如果超出上下限,将进行报警并启动温湿度调节设备。
此外,还可以通过独立式键盘对设定的温湿度进行修改。
通过设计系统原理图、用Proteus软件进行仿真,证明了该系统的可行性。
关键词:STC89C52RC,SHT10,I2C总线,独立式键盘,温湿度自动控制Abstract: This design is an automatic temperature and humidity controller for greenhouses, with the STC89C52RC MCU being its main controller. It uses the SHT10 as the temperature and humidity sensor, and the LCD1602 to display the messages. The SHT10 uses a timing sequence much like the I2C to communicate with the micro-controller. Because it’s a highly integrated chip, it already includes an analog to digital converter. Therefore, it’s quite convenient to use, and also accurate and durable. The LCD1602 can display two lines of messages, with the first line for temperature and the second line for humidity. The design can measure the temperature and humidity in a greenhouse, and then display it on a LCD1602. Meanwhile, it compares the data with the set limit. If the limit is exceeded, then the system will send out a warning using a buzzer and activate the temperature and humidity controlling equipment. Besides, the set limit can be modified with the independent keyboard. Through schematic design and Proteus simulation, the feasibility of this design hasbeen proved.Keywords: STC89C52RC, SHT10, I2C bus, independent keyboard, temperature and humidity control目录1 前言02 总体方案设计22.1 温湿度控制系统的设计指标要求22.2 系统设计的原则32.2.1 可靠性32.2.2 性价比32.3 方案比较42.3.1 方案一42.3.2 方案二42.4 方案论证52.5 方案选择63 单元模块设计63.1 各单元模块功能介绍及电路设计63.1.1 单片机最小系统63.1.2 液晶显示模块83.1.3 温湿度传感器模块93.1.4 报警电路的设计113.1.5 输出电路设计123.1.6 电源的设计153.1.7 按键电路设计173.1.8 串口通信电路183.2 元件清单203.3 关键器件的介绍223.3.1 STC89C52RC223.3.2 SHT10温湿度传感器254 系统软件设计 (29)4.1 软件设计的总体结构294.2 主要模块的设计流程框图304.2.1 主程序流程图304.2.2 SHT10子程序流程图314.2.3 LCD1602子程序流程图324.2.4 输出控制子程序流程图334.2.5 键盘扫描子程序流程图344.3 软件设计所用工具364.3.1 Keil uVision4364.3.2 Proteus375 系统调试375.1 用Proteus搭建仿真总图375.2 用Keil对程序进行调试、编译396 结论416.1 系统的功能416.2 系统的指标参数426.3 系统功能分析427 总结及体会438 致谢449 参考文献45附录1 系统的电路原理图46附录2 系统仿真总图47附录3 系统实物照片48附录4 系统源程序49附录5 英文参考资料521 中文翻译522 英文原文571前言温室大棚作为一种高效的农业生产方式,及传统农业生产方式相比具有很大的优点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随着大棚技术的普及,温室大棚数量不断增多,对于蔬菜大棚来说,最重要的是一个管理因素是温湿度控制。
温湿度太低,蔬菜就会被冻或者停止生长,所以要将温湿度始终控制在适合蔬菜生长的方位内。
传统的温度控制是在温室大棚内部悬挂温度计,工人依据读取的温度值来调节大棚内的温度。
如果仅人工控制既耗人力,有容易发生差错。
现在,随着农业产生规模的提高,对于数量较多的大棚,传统的温度控制措施就显现出很大的局性。
为此,在现代化的蔬菜大棚管理中通常有温湿度自动控制系统,以控制蔬菜大棚温度,适应生产需要。
本论文主要阐述了基于AT89C51单片机的温室大棚温湿度控制系统设计原理,主要电路设计及软件设计等。
该系统采用AT89C51单片机作为控制器,SHT11作为温湿数据采集系统,可对执行机构发出指令实现大棚温湿度数据调节,根据实际需求设计了单片机硬件系统,该系统能够实现数据采集,数据处理,数值显示,键盘扫描等功能。
同时介绍了温湿度传感器,单片机接口,记起应用软件的设计,该基于单片机和SHT11温湿度传感器的大棚温湿度控制系统,该系统性能可靠,结构简单,能够实现对温室内温湿度的自动调节。
关键词:AT89C51 湿度控制系统传感器单片机With the popularization of trellis technology, greenhouse trellis an ever-growing number, for vegetable shed speaking, one of the most important management factor is the temperature and humidity control. Temperature is too low, the vegetables will freeze to death or stop growing, so will always control temperature and humidity in a suitable vegetable growth range. Traditional temperature control is in greenhouse trellis internal hanging a thermometer, workers according to regulate the temperature reading the temperature inside the shelter. If only by artificial control both consumption manpower , and easy to place regular orders. Now, with the improvement of agricultural industry scale, for larger quantity of trellis,tradition temperature control measures will show great bureau sex. Therefore, in modern vegetable shed management zhongtong often temperature and humidity automatic control system, in order to control the temperature the temperature, adapt to the trellis vegetable production needs.This thesis mainly elaborated based on AT89C51 tomatoes canopy temperature and humidity control system design principle, main circuit design and software design, etc. This system USES AT89C51 single chip microcomputer as controller, SHT10 as controller, SHT10 as temperature and humidity data acquisition system, may to the actuator directives realize trellis temperature and humidity parameters adjustment, has the upper and lower level computer directly set temperature range ,temperature and humidity real-time display, and other functions. According to the actual demand design the microcontroller hardware system, this system can realize data acquisition, data processing, the numerical display, keyboard scan function. At the same time, temperature and humidity sensor is introduced, and its application software interface chip design, this based on SCM and SHT10 temperature and humidity sensor shelter, temperature and humidity control system reliable performance, the system structure is simple, can realize the automatic adjustment of the temperature is simple, can realize the automatic adjustment of the temperature and hum dimity in a greenhouse.KEY WORD:AT89C51 Temperature Control System Single-chip microcomputer目录第一章绪言 (1)第一节系统设计背景 (1)第二节系统功能、优势及特点 (1)第二章大棚温度自动控制系统的相理论及设计 (3)第一节总体方案的设计 (3)第二节系统主要电路设计 (4)第三章硬件设计 (9)第一节温湿度测量电路 (9)第二节 LCD显示电路 (10)第三节键盘扫描电路 (11)第四节输出接口控制电路 (11)第五节单片机与X25045接口电路 (12)第四章系统软件的设计 (13)第一节系统主程序 (13)第二节键盘扫描子程序,消抖程序流程图 (14)第三节 1602LCD液晶显示程序流程图 (15)第四节温湿度读取子程序 (15)第五节键盘扫描源程序 (16)第六节显示程序 (19)第七节温湿度采集程序 (26)结论 (28)致谢 (29)参考文献 (30)第一章绪言第一节系统设计背景植物的生长都是在一定的环境中进行的,其在生产过程中受到环境中各种因素的影响,其中对植物的生长影响最大的是环境中的温度和湿度。
环境中昼夜的温度和湿度变化大,使其对植物生长极为不利。
因此必须对环境的温度和湿度进行监控和控制,使其适合植物的生长,提高其产量个质量。
本系统就是利用价格便宜的一般电子器件来设计一个参数精度高,控制操作方便,性价比高的应用于农业种植生产的温室大棚温湿度控制系统。
本系统温湿度的监控包括以下步骤:感应环境温湿度;判断感应到的温湿度是否异常;若感到的温湿度异常,判断异常是否3超过预设时间;若异常超过预设时间,若异常报警;判断异常是否处理完毕;若异常处理完毕,解除报警。
并可以利用控制器和单片机来达到机房温湿度的远程控制,从而实现温室大棚温湿度管理的实时性和有效性。
为此,在现代化的温室大棚管理中国通常有温湿度自动控制系统,一控制大棚温度,适应生产需要。
它以先进的技术和现代化实施,认为控制作物生长的黄静条件,是作物生长不受自然气候的影响,做到常年工厂化,进行高效率,高产值和高效益的生产。
第二节系统功能、优势及特点该检测系统充分利用AT89C51单片机的软、硬件资源,辅助相应的测量电路和SHT10数字式集成温湿度传感器等智能仪器,能实现多任务、多通道的监测和输出。
它具有测量范围广、测量精度高等特点,前端测量用的传感器类型可在该基础上修改为其他非电量参数测量系统。
温湿度监测系统采用SHT11为温湿度测量元件。
系统在软件设计上充分考虑了可扩展性,经过一定的添加或改造,很容易增加功能。
根据温室大棚内的温湿度传感器采集到的信息,利用数据总线将传感器信息送给单片机,以及进行LCD显示,报警,查询等功能。
监控中心可向现场控制器发出控制卡指令,监测仪根据指令控制风机、水泵、等设备进行降温除湿,以保证大棚内作物的生长环境。
监控中心也可以通过报警指令来启动现场检测仪上的声光报警装置,通知大棚管理人员采取相应措施来确保大棚内的环境正常。
第二章大棚温度自动控制系统的相理论及设计第一节总体方案的设计一、设计思想大棚温湿度控制系统电工作后,用户首先通过键盘输入温度及湿度的初值,单片机系统将用户设置的初值暴粗暴在X25045芯片中,单片机进入主程序后,开始以查询的方式检测温湿度传感器SHT11的温湿度状态,并将相应的数值通过显示器显示输出。
当温室内的温度(或湿度)小于设置的初值时,单片机将通过控制输出接口使加温设备(加湿设备)开始工作;当温室内的温度(或湿度)大于(或等于)设置的初值时,单片机将通过控制输出接口使加温设备(或加湿设备)停止工作。
二、系统组成及框图系统由电源电路、温湿度传感器SHT11.X25045芯片、键盘、显示和控制模块(AT89C51)组成。
1、温湿度传感器:负责检测并采集各控制点温湿度数据。
2、数据通讯转换器:负责温湿度数据采集数据的信号转换,复位等。
3、软件部分:负责对所有数据进行读取分析,并执行各项管理功能。
4、控制部分(即温湿度调节系统):执行远程控制指令。
控制不封连接增湿装置、干燥装置、温度的控制装置等。
其系统控制原理图如图2.1所示:图2.1 大棚温湿度控制原理框图第二节系统主要电路设计一、主要芯片89C51的功能及引脚图芯片89C51共有40个引脚,其中电源引脚有4个,控制引脚有4个,并行的I/O 接口有32个,其引脚如图2.2所示:图2.2 AT89C51引脚电源及时钟引脚(4个)Vcc:电源接入引脚;Vss:接地引脚;XTAL1:晶体振荡器接入的一个引脚(采用外部振荡器时,此引脚接地);XTAL2:晶体振荡器接入的另一个引脚(采用外部振荡器时,此引脚为外部振荡信号的输入端,控制线引脚(4个)RST/VPD:复位信号输入引脚/备用电源输入引脚;ALE/PROG:地址锁存允许信号输出引脚/编程脉冲输入引脚(低电平有效);EA/Vpp:内外存储器选择引脚(低电平有效)/片内EPROM(或FlashROM)编程电压输入引脚;并行I/O引脚(32个,分成4个8位口)P0.0~P0.7:一般I/O引脚或数据/低位地址总线服用引脚;P1.0~P1.7:一般I/O引脚;P2.0~P2.7:一般I/O引脚或高位地址总线引脚;P3.0~P3.7:一般I/O引脚或第二功能引脚。