5第五章 一元线性回归的假设检验

合集下载

【计量经济学】第五章精选题与答案解析

【计量经济学】第五章精选题与答案解析

第五章 异方差二、简答题1.异方差的存在对下面各项有何影响? (1)OLS 估计量及其方差; (2)置信区间;(3)显著性t 检验和F 检验的使用。

2.产生异方差的经济背景是什么?检验异方差的方法思路是什么?3.从直观上解释,当存在异方差时,加权最小二乘法(WLS )优于OLS 法。

4.下列异方差检查方法的逻辑关系是什么? (1)图示法 (2)Park 检验 (3)White 检验5.在一元线性回归函数中,假设误差方差有如下结构:()i i i x E 22σε=如何变换模型以达到同方差的目的?我们将如何估计变换后的模型?请列出估计步骤。

三、计算题1.考虑如下两个回归方程(根据1946—1975年美国数据)(括号中给出的是标准差):t t t D GNP C 4398.0624.019.26-+=e s :(2.73)(0.0060) (0.0736)R ²=0.999t t t GNP D GNP GNP C ⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡4315.06246.0192.25 e s : (2.22) (0.0068)(0.0597)R ²=0.875式中,C 为总私人消费支出;GNP 为国民生产总值;D 为国防支出;t 为时间。

研究的目的是确定国防支出对经济中其他支出的影响。

(1)将第一个方程变换为第二个方程的原因是什么?(2)如果变换的目的是为了消除或者减弱异方差,那么我们对误差项要做哪些假设? (3)如果存在异方差,是否已成功地消除异方差?请说明原因。

(4)变换后的回归方程是否一定要通过原点?为什么? (5)能否将两个回归方程中的R ²加以比较?为什么?2.1964年,对9966名经济学家的调查数据如下:资料来源:“The Structure of Economists’ Employment and Salaries”, Committee on the National Science Foundation Report on the Economics Profession, American Economics Review, vol.55, No.4, December 1965.(1)建立适当的模型解释平均工资与年龄间的关系。

第五章线性回归模型的假设与检验

第五章线性回归模型的假设与检验

⎟⎟⎠⎞
于是
βˆ1 = ( X1′X1)−1 X1′y1 , βˆ2 = ( X 2′ X 2 )−1 X 2′ y2
应用公式(8.1.9),得到残差平方和
和外在因素.那么我们所要做的检验就是考察公司效益指标对诸因素的依赖关系在两个时间 段上是否有了变化,也就是所谓经济结构的变化.又譬如,在生物学研究中,有很多试验花费 时间比较长,而为了保证结论的可靠性,又必须做一定数量的试验.为此,很多试验要分配在 几个试验室同时进行.这时,前面讨论的两批数据就可以看作是来自两个不同试验室的观测 数据,而我们检验的目的是考察两个试验室所得结论有没有差异.类似的例字还可以举出很 多.
而刻画拟合程度的残差平方和之差 RSSH − RSS 应该比较小.反过来,若真正的参数不满足
(5.1.2),则 RSSH − RSS 倾向于比较大.因此,当 RSSH − RSS 比较大时,我们就拒绝假设(5.1.2),
不然就接受它.在统计学上当我们谈到一个量大小时,往往有一个比较标准.对现在的情况,我
们把比较的标准取为 RSS .于是用统计量 (RSSH − RSS) RSS 的大小来决定是接受假设
(5.1.2),还是拒绝(5.1.2). 定理 5.1.1 对于正态线性回归模型(5.1.1)
(a )
RSS
σ2
~
χ2 n− p
(b )
若假设(8.1.2)成立,则 (RSSH
− RSS)
σ2
~
χ2 n− p
得愈好.现在在模型(5.1.1)上附加线性假设(5.1.2),再应用最小二乘法,获得约束最小二乘估计
βˆH = βˆ − ( X ′X )−1 A′( A( X ′X )−1 A′)−1 ( Aβˆ − b)

统计学习题集第五章相关与回归分析

统计学习题集第五章相关与回归分析

统计学习题集第五章相关与回归分析(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--所属章节:第五章相关分析与回归分析1■在线性相关中,若两个变量的变动方向相反,一个变量的数值增加,另一个变量数值随之减少,或一个变量的数值减少,另一个变量的数值随之增加,则称为()。

答案:负相关。

干扰项:正相关。

干扰项:完全相关。

干扰项:非线性相关。

提示与解答:本题的正确答案为:负相关。

2■在线性相关中,若两个变量的变动方向相同,一个变量的数值增加,另一个变量数值随之增加,或一个变量的数值减少,另一个变量的数值随之减少,则称为()。

答案:正相关。

干扰项:负相关。

干扰项:完全相关。

干扰项:非线性相关。

提示与解答:本题的正确答案为:正相关。

3■下面的陈述中哪一个是错误的()。

答案:相关系数不会取负值。

干扰项:相关系数是度量两个变量之间线性关系强度的统计量。

干扰项:相关系数是一个随机变量。

干扰项:相关系数的绝对值不会大于1。

提示与解答:本题的正确答案为:相关系数不会取负值。

4■下面的陈述中哪一个是错误的()。

答案:回归分析中回归系数的显着性检验的原假设是:所检验的回归系数的真值不为0。

干扰项:相关系数显着性检验的原假设是:总体中两个变量不存在相关关系。

干扰项:回归分析中回归系数的显着性检验的原假设是:所检验的回归系数的真值为0。

干扰项:回归分析中多元线性回归方程的整体显着性检验的原假设是:自变量前的偏回归系数的真值同时为0。

提示与解答:本题的正确答案为:回归分析中回归系数的显着性检验的原假设是:所检验的回归系数的真值不为0。

5■根据你的判断,下面的相关系数值哪一个是错误的()。

答案:。

干扰项:。

干扰项:。

干扰项:0。

提示与解答:本题的正确答案为:。

6■下面关于相关系数的陈述中哪一个是错误的()。

答案:数值越大说明两个变量之间的关系越强,数值越小说明两个变量之间的关系越弱。

概率论与数理统计第五章习题解答

概率论与数理统计第五章习题解答

第五章 假设检验与一元线性回归分析 习题详解解:这是检验正态总体数学期望μ是否为提出假设:0.32:,0.32:10≠=μμH H由题设,样本容量6n =, 21.12=σ,1.121.10==σ,所以用U 检验当零假设H 0成立时,变量:)1,0(~61.10.320N X n X U -=-=σμ 因检验水平05.0=α,由05.0}|{|=≥λU P ,查表得96.1=λ 得到拒绝域: 96.1||≥u计算得: 6.31)6.318.310.326.310.306.32(61=+++++⨯=x89.061.10.326.310-=-=-=n x u σμ因 0.89 1.96u =<它没有落入拒绝域,于是不能拒绝H 0,而接受H 0,即可以认为0.32=μ,所以可以认为这批机制砖的平均抗断强度μ显着为32.0kg/cm 2。

解:这是检验正态总体数学期望μ是否大于10提出假设:10:,10:10>≤μμH H 即:10:,10:10>=μμH H由题设,样本容量5n =,221.0=σ,1.01.020==σ,km x 万1.10=,所以用U 检验当零假设H 0成立时,变量:)1,0(~51.010N X n X U -=-=σμ 因检验水平05.0=α,由05.0}{='≥λU P ,查表得64.1'=λ 得到拒绝域: 64.1≥u 计算得: 24.251.0101.100=-=-=n x u σμ 因 2.24 1.64u =>它落入拒绝域,于是拒绝零假设 H 0,而接受备择假设H 1,即可认为10>μ所以可以认为这批新摩托车的平均寿命μ有显者提高。

解:这是检验正态总体数学期望μ是否小于240提出假设:240:,240:10<≥μμH H即:240:,240:10<=μμH H由题设,样本容量6n =,6252=σ,256250==σ,220=x ,所以用U 检验当零假设H 0成立时,变量:)1,0(~625240N X n X U -=-=σμ 因检验水平05.0=α,由05.0}{='-≤λU P ,查表得64.1'=λ 得到拒绝域: 64.1-≤u 计算得:959.16252402200-=-=-=n x u σμ 因 1.959 1.64u =-<-它落入拒绝域,于是拒绝H 0,而接受H 1,即可以认为240<μ 所以可以认为今年果园每株梨树的平均产量μ显着减少。

一元线性回归分析

一元线性回归分析


(n

2)
S2 ˆ0
2 ˆ0
:
2(n 2)
S 2 ˆ1

S2
n
(Xt X )2
t 1

(n

2)
S2 ˆ1
2 ˆ1
:
2(n 2)
所以根据t分布的定义,有
ˆ0 0 ~ t(n 2), ˆ1 1 ~ t(n 2)
Sˆ0
Sˆ1
进而得出了0的置信水平为1-区间估计为
et Yt Yˆt称为残差,与总体的误差项ut对应,n为样 本的容量。
样本回归函数与总体回归函数区别
1、总体回归线是未知的,只有一条。样本回归线是根据样本数 据拟合的,每抽取一组样本,便可以拟合一条样本回归线。
2、总体回归函数中的β0和β1是未知的参数,表现为常数。而样
本回归函数中的 ˆ0和是ˆ1 随机变量,其具体数值随所抽取
S 44.0632
Sef S
1 1 n
( X f X )2
n
45.543
( Xt X )2
t 1
所求置信区间为:(188.6565 97.6806)
回归分析的SPSS实现
“Analyze->Regression->Linear”

0
n

2 t1 Xt (Yt ˆ0 ˆ1 Xt ) 0


nˆ0

n
ˆ1
t 1
Xt
n
Yt
t 1
n
n
n


ˆ0
t 1
Xt
ˆ1
t 1
X
2 t

一元线性回归方程回归系数的假设检验方法

一元线性回归方程回归系数的假设检验方法

一元线性回归方程回归系数的假设检验方法
一元线性回归方程是一种统计学方法,用于研究两个变量之间的关系。

它可以
用来预测一个变量(被解释变量)的值,另一个变量(解释变量)的值已知。

回归系数是一元线性回归方程的重要参数,它可以用来衡量解释变量对被解释变量的影响程度。

回归系数的假设检验是一种统计学方法,用于检验回归系数是否具有统计学意义。

它的基本思想是,如果回归系数的值不是0,则表明解释变量对被解释变量有
显著的影响,反之则表明解释变量对被解释变量没有显著的影响。

回归系数的假设检验一般采用t检验或F检验。

t检验是检验单个回归系数是
否具有统计学意义的方法,而F检验是检验多个回归系数是否具有统计学意义的方法。

在进行回归系数的假设检验时,首先要确定检验的显著性水平,一般为0.05
或0.01。

然后,根据检验的类型,计算t值或F值,并与检验的显著性水平比较,如果t值或F值大于显著性水平,则拒绝原假设,即认为回归系数具有统计学意义;反之,则接受原假设,即认为回归系数没有统计学意义。

回归系数的假设检验是一种重要的统计学方法,它可以用来检验回归系数是否
具有统计学意义,从而更好地理解解释变量对被解释变量的影响程度。

统计 多元线性模型

统计 多元线性模型

第五章 多元线性模型它包括多元回归分析、多元方差分析及多元协方差分析,它是多元统计分析的基础,应用十分广泛,专著很多。

此处仅介绍实用上最重要的基本内容。

§5.1 一元线性回归模型基本模型:y X u β=+ (5-1-1)2()0, ()n u Var u I εσ==式中y, 是n 维观察值的随机向量,X 是n ×p 的已知矩阵,常被认为已知的(即不当作随机),而一般认为rank(X)=p<n ,β 是p 维未知参数,叫回归系数,u 是非观察值,它代表随机误差。

常用的特例:1、 回归模型如果X 的第一列全是1,而其它变量为定量的数字,这时上式可化为如下回归模型:0111,1, 1,,i i p i p i y x x u i n βββ--=++++= (5-1-2)1n y y y ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 01p βββ-⎛⎫ ⎪= ⎪ ⎪⎝⎭, 1n u u u ⎛⎫⎪= ⎪ ⎪⎝⎭, 111,11,111p n n p x x X x x --⎛⎫⎪= ⎪ ⎪⎝⎭(5-1-3) 上述式子更常用的表达法为:01111,p p y x x u βββ--=++++ (5-1-4)其中u 是随机项2()0, ()u Var u εσ==2、方差分析模型如(5-1-1) 中X 内元素取值非1即0,则该模型就是方差分析,称X 为设计矩阵。

例在有k 个处理组的单因素方差分析中,记i n 为第i 个处理中的试验数,令1, k ij n n n y =++为第j 个处理中的第i 个试验结果,这时方差分析模型常写成下式: , 1,,, 1,,ij j ij j y u i n j k μτ=++== (5-1-5)这里μ表示n 次试验的平均水平, j τ表示第j 种处理的效应, ij u 表示随机误差。

用下述记号,这个模型可化为线性模型:121112121110011001010, 101000010011001k n n k kn y y y y X y y y ⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭, 1211112121, k n n k k n k u u u u u u u μτβτ⎛⎫ ⎪ ⎪ ⎪ ⎪⎛⎫ ⎪⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭; 要检验k 个处理中有否显著性差异,就是检验01:k H ττ==,1:i j H ττ≠至少有一项这就是一个指标时上章中多母体的均值相等性检验。

一元线性回归模型检验

一元线性回归模型检验

§2.4 一元线性回归的模型检验一、经济意义检验。

二、在一元回归模型的统计检验主要包括如下几种检验1、拟合优度检验(R2检验;2、自变量显著性检验(t检验;3、残差标准差检验(SE检验。

•主要检验模型参数的符号、大小和变量之间的相关关系是否与经济理论和实际经验相符合。

一、经济意义检验i•二、统计检验•回归分析是要通过样本所估计的参数来代替总体的真实参数,或者说是用样本回归线代替总体回归线。

•尽管从统计性质上已知,如果有足够多的重复抽样,参数的估计值的期望(均值就等于其总体的参数真值,但在一次抽样中,估计值不一定就等于该真值。

那么,在一次抽样中,参数的估计值与真值的差异有多大,是否显著,这就需要进一步进行统计检验。

1、拟合优度检验拟合优度检验:对样本回归直线与样本观测值之间拟合程度的检验。

度量拟合优度的指标:判定系数(可决系数R2(1、总离差平方和的分解已知由一组样本观测值(X i ,Y i ,通过估计得到如下样本回归直线ii X Y 10ˆˆˆββ+=i i i i i i i y e Y Y Y Y Y Y y ˆˆ(ˆ(+=-+-=-=总离差平方和的分解ii X Y 10ˆˆˆββ+=ˆ(ˆY Y y i i -=i i i i i i i ye Y Y Y Y Y Y y ˆˆ(ˆ(+=-+-=-=Y 的i 个观测值与样本均值的离差由回归直线解释的部分回归直线不能解释的部分离差分解为两部分之和总离差平方和的分解公式:TSS=RSS+ESS,TSS 总离差平方和,ESS 为回归平方和,RSS 为残差平方和.((((((((0ˆˆˆ,0.0ˆˆ(ˆ(ˆˆ(2ˆˆ: 1022222222ˆˆˆˆˆˆ=+===-=-=--+=+=-+-=-+--+-=-+-=-=∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑ii i i i i ii i i i i i i i i i i i i i i i i i i i i i X e e Y e e e Y Y e Y Y e Y Y ESS RSS y e Y Y Y Y TSS Y Y Y YY Y Y YY Y Y Y Y Y Y Y ββ而因为证明TSS=ESS+RSSY的观测值围绕其均值的总离差(total variation可分解为两部分:一部分来自回归线(ESS,另一部分则来自随机部分(RSS。

2.2 一元线性回归模型的基本假设

2.2 一元线性回归模型的基本假设

n→∞
(2.2.3)
变异性假设是为了通过X的变化来解释被解释变量Y的变化;非零 有限常数假设旨在排除时间序列数据出现持续上升或下降的变量作为 解释变量,因为这类数据不仅使大样本统计推断变得无效,而且往往 产生伪回归问题(也称虚假回归:P261,274,295)
三、对随机干扰项的假设 假设4: 随机干扰项具有给定X条件下的零均值、同方差和序列不相关性: (违背该假设则出现随机解释变量问题、异方差性和序列相关性, 分别在第4.4、4.1和4.2节分析) E(i|Xi)=0 (2.2.4) Var(i|Xi)=2 (2.2.5) Cov(i,j)=0 i≠j (2.2.6) 式(2.2.4)意味着的期望不随X变化而变化,且总为0,即与不相关; 该假设成立时也称X为外生解释变量,否则称X为内生解释变量。只有该 假设成立时,总体回归函数的随机形式(2.1.7)式才能等价于非随机形式 (2.1.4)式。 式(2.2.5)表明的方差不依赖于X的变化而变化,且为常数2。图2.2.1 根据期望迭代法则,式(2.2.4) 、(2.2.5),有 E(i)=0 (2.2.7) Var(i)=2 (2.2.8) 式(2.2.6)表明在给定解释变量任意两个不同值时,对应的不相关, 即序列不相关性。
因此要对这些假设进行检验。
以上假设都是针对普通最小二乘法的。在违背这 些基本假设的情况下,普通最小二乘法估计量就不再 是最佳线性无偏估计量,因此使用普通最小二乘法进 行估计已无多大意义。但模型本身还是可以估计的,
尤其是可以通过最大似然法等其它原理进行估计。
(练习题3)
补充思考题
1、一元线性回归模型有哪些基本假设(经典假设)?
(2.2.1) i=1,2,…,n (2.2.2)
Y为被解释变量,X为解释变量,0与1为待估 参数, 为随机干扰项。

课件-数理统计与多元统计 第五章 回归分析 5.3-5误差方差的估计

课件-数理统计与多元统计 第五章 回归分析 5.3-5误差方差的估计

9
lxy ( xi x)( yi y) 2995 i 1
9
9
lxx ( xi x)2 6000, l yy ( yi y)2 1533.38
i 1
i 1
bˆ0
y bˆ1 x
11.6,bˆ1
l xy l xx
0.499167
即得经验回归方程: yˆ 11.6 0.499167x
被估计的回归方程所解释的变差数量,即当
自变量个数增加时,会使预测误差变小,从
而减少SSE,此时SSR变大,R2会变大,可 能因此而高估R2造成误读。因此实际中常用 修正的复决定系数(adjusted multiple cofficient of determinnation) :
Ra2
1
(1
R2 )( n
xi/0C
0
10
20
30
40
yi/mg 14.0 17.5 21.2 26.1 29.2
xi/0C
50
60
70
80
yi/mg 33.3 40.0 48.0 54.8
试估计回归参数b0,b1, σ2,给出经验回归方程:
yˆ bˆ0 bˆ1x
12
解:由数据计算:
1 9
19
x 9 i1 xi 40, y 9 i1 yi 31.56667
H0 : b1 b2 L bp 0 的假设检验步骤:
i) 提出假设: H0 : b1 b2 L bp 0
ii)给定显著性水平α=?,样本容量n=?,p=?
iii) 选择检验统计量,当H0真时:
F SSR / p ~ F ( p, n p 1) SSE / (n p 1)
iv) H0的拒绝域为:

一元线性回归假设检验

一元线性回归假设检验

Y1 0 1X11 2 X12 m X1m 1 Y2 0 1X 21 2 X 22 m X 2m 2 Yn 0 1X n1 2 X n2 mX nm n
Y X
Y1
Y
Y2 Yn
,
1
X
1 1
X11 X 21
X n1
X1m
X 2m
X nm
3
31
32
0
0
0
3
3
1
3
4 41 42 43 0 04 4 4
5
0
0
0
54
0
5
0
5
观测方程组
结构方程组
B
K (t)
t t j xt j xt j 1
xt t t xt
t 1, , k t 1, , k
L(i)
i i j yi j yi i 1, , m j 1
模型 最小二乘
Y 0 1X
n
(Yi 0 1X i )2 min
i1
~ N (0, 2 )
参考文献1
2020/6/24
2
一、回归常识
1、一元线性回归(参数估计)
2020/6/24
n
S(0 , 1) (Yi 0 1X i )2
i1
S
0
n
2 (Yi
i1
0 1X i ) 0
潜变量的效应分析与循环效应及应用论文写作
一、回归常识与结构方程模型
二、交互效应调节效应中介效应:原理、检验与复合
目录
三、一般效应分析的DASC计算 四、循环效应:原理、图示、DASC计算
五、效应分析的应用与论文写作
六、附录:联立方程模型与二阶段LSE

社会科学研究方法回归分析

社会科学研究方法回归分析

2014年4月29日12时48分
第6页
社会科学研究方法
二、一元线性回归模型的参数估计
• 回归模型中的参数a与b 在一般情况下都是未知数,必 须根据样本数据( x,y )来估计。 • 确定参数 与 值的原则是要使得样本的回归直线同观察 值的拟合状态最好,即要使得偏差最小。为此,可以 采普通最小二乘法(Ordinary Least Square,OLS) 来解决这个问题。 • 估计值和观察值之间的偏差
y 30391 .69 66.13x
2014年4月29日12时48分
第12页
社会科学研究方法
三、总离差的分解
残差可表示如下:
ˆi ei yi y
试验得到的数据 上式可改写成: 回归直线对应的数据
ˆi ( yi y) ( y ˆi y) ei yi y
移项得:
S XX xi x S XY SYY
Y
y n
i


2
1 x n
2 i
x
i
2


1 xi x yi y xi yi n 2 2 1 2 yi y yi yi n


x y
i i



2014年4月29日12时48分 第20页
社会科学研究方法
-1≤ r ≤1 r > 0,正相关;r = 1 为完全正相关 r < 0,负相关;r = -1 为完全负相关 |r| 越大,两变量相关越密切 正相关:0< r ≤1
2014年4月29日12时48分
第21页
社会科学研究方法
负相关:-1 ≤ r < 0

线性回归分析

线性回归分析
系数(或判定系数),用r2表示,显然,0≤r2≤1。
r 2 SSR / SST 1 SSE / SST L2xy Lxx Lyy

两个变量之间线性相关的强弱可以用相关系数r(Correlation
coefficient)度量。
❖ 相关系数(样本中 x与y的线性关系强度)计算公式如下:
❖ 统计学检验,它是利用统计学中的抽样理论来检验样本 回归方程的可靠性,具体又可分为拟合程度评价和显著 性检验。
1、拟合程度的评价
❖ 拟合程度,是指样本观察值聚集在估计回归线周围的紧密 程度。
❖ 评价拟合程度最常用的方法是测定系数或判定系数。 ❖ 对于任何观察值y总有:( y y) ( yˆ y) ( y yˆ)
当根据样本研究二个自变量x1,x2与y的关系时,则有
估计二元回归方程: yˆ b0 b1x1 b2 x2
求估计回归方程中的参数,可运用标准方程如下:
L11b1+L12b2=L1y
L12b1+L22b2=L2y b0 y b1 x1 b2 x2
例6:根据表中数据拟合因变量的二元线性回归方程。
21040
x2
4 36 64 64 144 256 400 400 484 676
2528
练习3:以下是采集到的有关女子游泳运动员的身高(英寸)和体
重(磅)的数据: a、用身高作自变量,画出散点图 b、根据散点图表明两变量之间存在什么关系? c、试着画一条穿过这些数据的直线,来近似身高和体重之间的关 系
测定系数与相关系数之间的区别
第一,二者的应用场合不同。当我们只对测量两个变量之间线性关系的 强度感兴趣时,采用相关系数;当我们想要确定最小二乘直线模型同数据符 合的程度时,应用测定系数。

一元线性回归模型及其假设条件

一元线性回归模型及其假设条件

§4.2 一元线性回归模型及其假设条件1.理论模型y=a+bx+εX 是解释变量,又称为自变量,它是确定性变量,是可以控制的。

是已知的。

Y 是被解释变量,又称因变量,它是一个随机性变量。

是已知的。

A,b 是待定的参数。

是未知的。

2.实际中应用的模型x b a yˆˆˆ+= ,bˆ,x 是已知的,y ˆ是未知的。

回归预测方程:x b a y += a ,b 称为回归系数。

若已知自变量x 的值,则通过预测方程可以预测出因变量y 的值,并给出预测值的置信区间。

3.假设条件满足条件:(1)E (ε)=0;(2)D (εi )=σ2;(3)Cov (εi ,εj )=0,i ≠j ; (4) Cov (εi ,εj )=0 。

条件(1)表示平均干扰为0;条件(2)表示随机干扰项等方差;条件(3)表示随机干扰项不存在序列相关;条件(4)表示干扰项与解释变量无关。

在假定条件(4)成立的情况下,随机变量y ~N (a+bx ,σ2)。

一般情况下,ε~N (0,σ2)。

4.需要得到的结果a ˆ,b ˆ,σ2§4.3 模型参数的估计1.估计原理回归系数的精确求估方法有最小二乘法、最大似然法等多种,我们这里介绍最小二乘法。

估计误差或残差:y y e i i i -=,x b a y i +=,e e y y ii i i x b a ++=+= (5.3—1)误差e i 的大小,是衡量a 、b 好坏的重要标志,换句话讲,模型拟合是否成功,就看残差是否达到要求。

可以看出,同一组数据,对于不同的a 、b 有不同的e i ,所以,我们的问题是如何选取a 、b 使所有的e i 都尽可能地小,通常用总误差来衡量。

衡量总误差的准则有:最大绝对误差最小、绝对误差的总和最小、误差的平方和最小等。

我们的准则取:误差的平方和最小。

最小二乘法:令 ()()∑∑---∑======n i ni n i i x b a y y y e i i i i Q 112212 (5.3—2)使Q 达到最小以估计出a 、b的方法称为最小二乘法。

7一元回归分析-精品文档

7一元回归分析-精品文档

例如,人的身高与体重之间有一定的关系, 知道一个人的身高可以大致估计出他的体重, 但并不能算出体重的精确值.
其原因在于人有较大的个体差异, 因而身高 和体重的关系, 是既密切但又不能完全确定 的函数关系.
类似的变量间的关系在大自然和社会中 屡见不鲜.
例如 , 小麦的穗长与穗重的关系 ; 某班学生最 后一次考试分数与第一次考试分数的关系;温 度、降雨量与农作物产量间的关系;人的年龄 与血压的关系; 家庭收入与支出的关系等等.
,x 如果 x 1, x 2, k 与随机变量y之间存在相关关系,
y fx (, x , , x ) 1 2 k
x ,x 1, x 2, k ——解释变量
y ——被解释变量 ε ——其它随机因素的影响,通常假设ε 是不可观 测的随机误差,它是一个随机变量. 多元线性回归模型 :
yx 1
高尔顿对此进行了深入研究 . 他们将观察值在平面直角 坐标系上绘成散点图,发现趋势近乎一条直线,计算出的回归 直线方程为
ˆ y 33 . 73 0 . 516 x
在回归分析中, 当变量只有两个时, 称为 一元回归分析; 当变量在两个以上时, 称为多 元回归分析. 变量间成线性关系, 称线性回归, 变量间不具有线性关系, 称非线性回归.
60
合 金 钢 强 度
50
40 0.10 0.15
碳含量
0.20
图 8.4.1 合 金 钢 强 度 及 碳 含 量 的 散 点 图
这种大量存在的变量间既互相联系但 又不是完全确定的关系,称为相关关系. 从数量的角度去研究这种关系,是数 理统计的一个任务. 这包括通过观察和试 验数据去判断变量之间有无关系,对其关 系大小作出数量上的估计 , 对互有关系的 变量通过其去推断和预测其它,等等. 回归分析就是研究相关关系的一种重 要的数理统计方法.

SPSS第五章-回归分析

SPSS第五章-回归分析

SPSS第五章-回归分析一元回归分析在数学关系式中只描述了一个变量与另一个变量之间的数量变化关系,则称其为一元回归分析。

其回归模型为y 称为因变量,x称为自变量,称为随机误差,a,b 称为待估计的回归参数,下标i表示第i个观测值。

如果给出a和b的估计量分别为,,则经验回归方程:一般把称为残差,残差可视为扰动的“估计量”。

例子:湖北省汉阳县历年越冬代二化螟发蛾盛期与当年三月上旬平均气温的数据如表1-1,分析三月上旬平均温度与越冬代二化螟发蛾盛期的关系。

表1-1 三月上旬平均温度与越冬代二化螟发蛾盛期的情况表年份1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 三月上旬平均温度8.6 8.3 9.7 8.5 7.5 8.4 7.3 9.7 5.4 5.5 越冬代二化螟发蛾 3 5 3 1 4 4 5 2 7 5盛期(6月30日为0)数据保存在“DATA6-1.SAV”文件中。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量历期“历期”在SPSS数据编辑窗口中,创建“年份”、“温度”和“发蛾盛期”变量,并把数据输入相应的变量中。

或者打开已存在的数据文件“DATA6-1.SAV”。

2)启动线性回归过程单击SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将打开如图1-1所示的线性回归过程窗口。

设置控制变量“Selection Variable”为控制变量输入栏。

控制变量相当于过滤变量,即必须当该变量的值满足设置的条件时,观测量才能参加回归分析。

当你输入控制变量后,单击“Rule”按钮,将打开如图1-2所示的对话。

图1-2“Rule”对话框在“Rule”对话框中,右边的“Value”框用于输入数值,左边的下拉列表中列出了观测量的选择关系,其中各项的意义分别为:•“equal to”等于。

•“not equal to”不等于。

线性回归分析

线性回归分析
这里着重讨论简单而又最一般的线性 回归问题,这是因为许多非线性的情形可 以化为线性回归来做。多元线性回归分析 的原理与一元线性回归分析完全相同,但 在计算上却要复杂得多。
第五节 多元线性回归分析
一、多元线性回归分析概述
多元线性回归模型
y 0 1x1 2x2 L mxm
式中β0 β1 β2 … βm 为〔偏〕回归系数 多元线性回归方程
由x预测y时,y有一定的误差,其标准误差为:
sy se
1 1 x x 2
n SSx
因此由x预测y时,y 的95%置信区间为:
yˆ t0.05 sy
实例: 由x预测y的预测区间
第一步:计算当x=2500时, y 的点估计值:
yˆ 190.955 0.094868 2500 428.125
实例:t 检验
dfe n 2 10 2 8, t0.05 2.306,t0.01 3.355 | t | 18.14 t0.01 3.355
结论:回归关系极显著,可得线性回归方程
yˆ 190.955 0.094868x
用光照强度来预测净光合强度是合理的。
第四节 预测值的置信区间
C(i+1)(i+1)为矩阵(X’X)-1的(i+1)(i+1)元素 Q 为误差平方和,自由度:df=n-m-1
第五节 多元线性回归分析
2、回归系数的假设检验
2〕F检验 原假设 H0 :βi=0
统计量为: F
Ui
bi2 / c(i1)(i1)
Q / n m 1 Q / n m 1
其中:Ui 为xi对y的回归平方和,Q 为误差平方和 C(i+1)(i+1)为矩阵(X’X)-1的(i+1)(i+1)元素 自由度:df1 = 1 df2 = n-m-1

一元线性回归方程检验

一元线性回归方程检验
一元线性回归方程检验
回归方程的概念是在统计学中被广泛使用的概念,它用于预测和解释变量之 间的关系。
一元线性回归方程的定义
回归方程
一元线性回归方程是描述两个变量之间线性关系的数学模型。
变量关系
它表示一个变量如何随着另一个变量的变化而变化。
斜率和截距
通过回归方程的斜率和截距可以计算两个变量之间的线性关系。
归方程是否显著。
3
计算F统计量
通过计算F统计量,可以评估整个回归方 程的显著性。
拒绝或接受
根据F统计量的大小和显著性水平,可以 拒绝或接受回归方程的显著性。
使用t检验进行回归方程的参数估计
t检验
t检验可用于估计回归方程的参数,并检验这些参数 的显著性。
参数估计
通过t检验可以得到一元线性回归方程的截距和斜率 的估计值。
回归方程的假设检验
1 零假设
回归方程的假设检验需要 建立一个零假设,来测试 回归方程参数的显著性。
2 显著性水平
根据显著性水平确定的临 界值,可以判断回归方程 的参数估计是否符合显著 性要求。
3 统计检验
使用统计检验方法,如t检 验,对回归方程进行显著 性检验。
检验回归方程的显著性

1
F分布
2
将F统计量与F分布进行比较,以确定回
数据分析
通过数据分析,计算回归方程的 参数估计和回归方程的显著性。
假设检验
使用假设检验方法,对回归方程 的参数进行显著性检验。
对一元线性回归方程做显著性检验
假设检验
使用t检验对回归方程的截距 和斜率进行显著性检验,以 确定其是否显著。
计算标准误差
通过计算标准误差,可以评 估回归方程的参数估计的可 靠性。

Eviews数据统计与分析教程5章 基本回归模型OLS估计-普通最小二乘法

Eviews数据统计与分析教程5章 基本回归模型OLS估计-普通最小二乘法
2.方程对象
选择工作文件窗口工具栏中的“Object”| “New Object”| “Equation”选项,在下图所示的对话框中输入方程变量。
EViews统计分析基础教程
一、普通最小二乘法(OLS)
2.方程对象
EViews5.1提供了8种估计方法: “LS”为最小二乘法; “TSLS”为两阶段最小二乘法; “GMM”为广义矩法; “ARCH”为自回归条件异方差; “BINARY”为二元选择模型,其中包括Logit模型、Probit 模型和极端值模型; “ORDERED”为有序选择模型; “CENSORED”截取回归模型; “COUNT”为计数模型。
五、 线性回归模型的检验
3.异方差性检验
异方差性的后果 :
当模型出现异方差性时,用OLS(最小二乘估计法)得到的 估计参数将不再有效;变量的显著性检验(t检验)失去意 义;模型不再具有良好的统计性质,并且模型失去了预测 功能。
EViews统计分析基础教程
五、 线性回归模型的检验
4.序列相关检验
方法:
EViews统计分析基础教程
四、 线性回归模型的基本假定
线性回归模型必须满足以下几个基本假定:
假定1:随机误差项u具有0均值和同方差,即 E ( ui ) = 0 i=1,2,…,n Var ( ui ) = σ2 i=1,2,…,n 其中,E表示均值,也称为期望,在这里随机误差项u的 均值为0。Var表示随机误差项u的方差,对于每一个样本 点i,即在i=1,2,…,n的每一个数值上,解释变量y对 被解释变量x的条件分布具有相同的方差。当这一假定条 件不成立是,称该回归模型存在异方差问题。
EViews统计分析基础教程
四、 线性回归模型的基本假定

7一元回归分析

7一元回归分析

整理得正规方程组
ˆ ˆ n 0 n x 1 ny , n n ˆ 2 ˆ n x 0 ( xi ) 1 xi y i . i 1 i 1
ˆ 1
( x x )( y y )
i 1 i i
n
( xi x ) 2
i 1
ˆ ˆ ˆ 我们注意到 y 0 1 x 只反映了x对y的 ˆ 影响,所以回归值 yi 就是yi中只受xi影响的 ˆ 那一部分, 而 yi yi 则是除去 xi的影响后, ˆ 受其它种种因素影响的部分, 故将 yi yi 称 为残差.
y
ˆ yi yi
ˆ y
yi
ˆ a
ˆ y 0 1 x
S
2 回反映了由于自变量x的变化引起的因
变量 y 的差异,体现了x对y的影响; 而 S 反映了种种其它因素对y的影响, 这些 因素没有反映在自变量中, 它们可作为随机 因素看待.
2 残
可见, S S 的影响部分与随机因素 影响部分的相对比值.
y
ˆ yi yi
ˆ y
2 2 / 残 为x 回
yi
ˆ a
y1 , y2 ,, yn 相互独立 1 , 2 ,, n 相互独立
假设 x1 , x2 ,, xn 是确定性的变量,其值是可以精确 测量和控制的.
1.最小二乘估计
设 ( x1 , y1 ), ( x2 , y 2 ), , ( xn , y n )是( x, y )的一组
下面我们来讨论这两个问题.
4.线性回归方程的显著性检验
对任意两个变量的一组观察值 (xi, yi), i=1, 2, …, n 都可以用最小二乘法形式上求得 y 对 x的 回归方程, 如果y 与x 没有线性相关关系, 这种形式的回归方程就没有意义 . 因此需要考察 y 与 x 间是否确有线性相 关关系, 这就是回归效果的检验问题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

返回
三、拟合优度检验P134
对样本回归直线与样本观测值之间拟合程 度的检验。度量拟合优度的指标:判定系 数(可决系数)R2 1、 总离差平方和的分解 2、几个概念 3、判定系数R2统计量 4、例题 返回
第五章:一元线性回归模型的假 设检验
目录
第一节 经典线性回归模型的基本假定 第二节 OLS估计量的性质:高斯-马尔可夫 定理 第三节 一元线性回归模型的假设检验 第四节 预测 考核要求和作业
第一节 经典线性回归模型的基本假定
经典线性回归模型:classical liner regression model ,CLRM 一、9个假定 二、假定的意义 返回
当X是非随机的时,该假定自动满足 X是抽样时候人为设定的:比如前例中把家庭收入分

假定5:正态性假定:随机误差项服从正态分布
i ~ N (0, )
2
假定6:样本容量N>待估参数个数 假定7:解释变量 X值有变异性
即X有一个相对较大的取值范围 如果X只在一个狭窄的范围内变动,则无法充分估计X
这样的零假设也称为“稻草人假设”,如果稻草人假设 成立,说明解释变量X不是被解释变量Y的一个显著性的 影响因素 返回
2、ols估计量服从t分布
ˆ bi bi 由于t ~ t (n 2), 稻草人假设为 i 0 b Sbi ˆ bi 则t ~ t (n 2) Sbi ˆ bi、Sbi 都由OLS法估计得来
x i 2 E (b0 b1 X i ui ) xi
ˆ E (Y ) XE (b1 )
b0 b1 X ) Xb1 ( b0
返回
注:令
xi K i , K i 是常数),且K i 0; K i X i 1 ( 2 xi
3、最小方差性
ˆ ˆ 先求b0、b1的方差:
2
xi2 xi2 2 2 2 2 2 2 2 2 (xi ) (xi ) xi
X i2 ˆ Var (b0 ) 2 nxi2
附:证明
ˆ ) Var[( 1 X xi )Y ] Var(b0 i n xi2 xi 2 1 1 2 ( X 2 ) (Yi) ( XK i) 2 Var n xi n 1 2 XK i 1 X 2 K i2) 2 ( X 2 K i2) 2 n2 n n xi xi 1 1 X2 ( X 2 2 2 ) 2 ( 2 ) 2 n xi xi n xi (
(OLS)估计量有最小方差。这使得OLS估计 量有着优良的性质可以进行统计推断
完全满足这些假定的方程在现实中是不存 在的,但这些假定为我们提供了一个比较 的基准,本课其他部分主要是围绕假定不 被满足时,分析后果,提出解决办法。返 回
第二节 OLS估计量的性质:高斯-马 尔可夫定理 p127
一、高斯-马尔可夫定理
一、9个假定
1、零均值假定 2、同方差假定 3、无自相关假定 4、随机误差项和解释变量不相关假定 5、正态性假定 6、样本容量N>待估参数个数 7、解释变量 X值有变异性 8、无多重共线性假定 9、参数线性假定
零均值假定
假定1:随机误差项均值为零 随机误差项囊括了大量未包括进模型的各 种变量影响之和,他们相互抵消,对被解 释变量没有系统性影响 E(µ|Xi)=0,简写为E(µi)=0
对被解释变量Y的系统影响。 例:如果收入差异不大,我们无法观察支出Y的变动
假定8 :如果有多个解释变量,要求解释变量间 没有很强的线性关系
无多重共线性
假定9:线性:回归模型对参数而言是线性的
二、假定的意义
如果满足这些假定,则高斯-马尔可夫定理 成立:
在所有线性无偏估计量中,普通最小二乘
ˆ E (b1 ) b1
ˆ 证:E(b1)
ˆ E (b0 ) b0
ˆ 证:E(b0) ˆ E (Y b X )
1
xi E (Yi ) 2 xi
xi b1 2 E (ui ) xi b1 K i E (ui ) b1
xi E( Yi) 2 xi
二、ols估计量的概率分布 返回
一、高斯-马尔可夫定理
在所有线性无偏估计量中,普通最小二乘 (OLS)估计量有最小方差。
即OLS估计量是最佳线性无偏估计量
1、线性
2、无偏性 3、最小方差性 4、小结 返回
高斯-马尔科夫理论所考虑的 各种估计值分类图
最 小 二 乘 估 计 值 | 方 差 最 小
随机扰动项代表了未引入模型的随机影响之和,依据中
心极限定理,大量独立同分布的随机变量之和趋向于正 态分布
2、服从正态分布的变量的线性组合依然服从正态 分布,则
X i2 2 ˆ b0 ~ N (b0 , ) 2 nxi
ˆ b1 ~ N (b1 ,
2
x
2 i
)
3、由于随机误差项的方差 2未知,则OLS 估计量的 ˆ bi bi 2 的总体方差 bi 也未知。但 ~ N (0,1);
且在所有线性无偏估计量中方差最小
4)前面的等式中包含了随机误差项的方差 2,多数时候 2是未知的, ˆ (Yi Yi ) 2 ei2 2 2 ˆ 需要做出估计,随机误差项的方差 的估计量为: (n 2) (n 2) ˆ ˆ 则OLS 估计量b 、b 的方差和标准差的估计量为:
线性无 偏估计 值
线 性 估 计 值
所 有 的 估 计 值
返回
1、线性性:参数估计量是被解释变量Yi的线性组合:
ˆ ˆ b1、b0都是Yi的线性函数
ˆ xi yi xi (Yi Y ) xiYi (xi ) Y xi Y b1 i 2 2 xi2 xi2 xi2 xi xi
返回
4、小结:估计量的统计性质
ˆ 1 )线性性:参数的估计量b j ( j 1, 2,, k )是Yi的线性组合
ˆ 2)无偏性:E (b j ) b j ( j 1, 2,, n)
3)最小方差性:
b0、b1的方差分别为:
ˆ Var (b1 )
2
x
2 i
X i2 2 ˆ Var (b0 ) 2 nxi
随机误差项均值为零 p123 图7-1
Y X=1000
X=1100
X=900
具体的 支出水 平是围 绕其条 件均值 波动的, 这种波 动的 “均值 为0”
X
散点图
同方差假定
假定2:随机误差项方差相同
VAR(i ) ,随机误差项的方差俱为
2
2
即与给定X相对应的Y值以相同方差分布在其条件 均值周围。 如果不满足这个假定,即为“异方差” 异方差的图示
一、检验
对模型和所估计的参数加以评定,判断在 经济理论上是否有意义,在统计上是否显 著等。 检验包括:
1)经济意义的检验 2)统计推断检验* 3)计量经济学检验* 4)预测检验* 返回
二、参数的显著性检验 p132
1、“稻草人假设” 2、ols估计量服从t分布 3、检验步骤 4、例题 返回
1、稻草人假设
回归分析是要判断解释变量X是否是被解释变量Y 的一个显著性的影响因素。 在一元线性模型中,就显著性检验。
计量经计学中,主要是针对变量的参数真值是 否为“零”来进行显著性检验的。即
H 0 : bi 0 H1 : bi 0
b
i
(n 2) Sb2i
b2
i
~ 2 (n 2)
ˆ bi bi 则t ~ t (n 2), 可以利用该信息进行统计检验 Sbi
返回
第三节 一元线性回归模型的假设检验 p130
一、检验 二、参数的显著性检验 三、回归的拟合优度检验 四、回归分析结果的报告 五、综合实例:美国商业部门工资和生产 率的关系 返回
xi ˆ 令 2 K i , K i 是常数),则b1 K iYi ( xi 且K i 0; K i X i 1
ˆ ˆ b0 Y b1 X
xi xi 1 Y X Yi ( X )Yi 2 2 xi n xi
返回
2、无偏性,估计量的均值=其对应参数的真值
如同需要指明样本均值服从何种分布,才可对
总体均值进行统计推断一样。
样本回归系数是Y的线性函数,因此其概率 分布取决于Y,而Y的概率分布取决于随机 误差项 返回
有了样本回归系数的OLS估计量的分布信息, 就可以利用它进行总体回归系数的统计推断
1、正态性假定:随机误差项服从正态分布,
i ~ N (0, 2 )
返回
3、检验步骤:
(1)对总体参数提出假设 H0: b1=0,
ˆ b1 t S bˆ
H1:b10
(2)以原假设H0构造t统计量,并由样本计算其值
1
(3)给定显著性水平,查t分布表,得临界值t /2,df=(n2)
(4) 比较,判断 若 |t|> t /2(n-2),则拒绝H0 ,接受H1 ;
0 1
S
2 ˆ b1
ˆ
2 2 i
x

(n 2)x
e
2 i 2 i
, Sbˆ S
1
2 ˆ b1
X ˆ S 2 , Sb0 2 nx n(n 2)xi
2 b0 2 i 2 i
ei2 X i2
2 Sb0
返回
二、ols估计量的概率分布 p129
假设检验需要指明总体参数(即总体回归 系数)的估计量(即样本回归系数)服从 何种分布
异方差的图示
X=1000时,Y的 分布更靠拢均值。 即方差相对较小。
相关文档
最新文档