设计性物理实验
核心素养导向下初中物理设计性实验教学研究
![核心素养导向下初中物理设计性实验教学研究](https://img.taocdn.com/s3/m/0f6cb17666ec102de2bd960590c69ec3d5bbdb25.png)
核心素养导向下初中物理设计性实验教学研究引言随着教育理念的不断更新和改革,核心素养教育已经成为当前教育改革的一个重要方向。
核心素养教育是指培养学生的创新能力、批判性思维、沟通能力、协作能力和跨学科运用知识的能力,以帮助学生适应未来社会发展的需求。
在这一教育理念的指导下,设计性实验教学成为物理教学中的重要方法之一,可以培养学生的综合素质和实践能力,提高学生对知识的理解和运用能力。
本文将从核心素养的意义出发,结合初中物理课程的设计性实验教学,探讨核心素养导向下初中物理设计性实验教学的关键因素和策略。
一、核心素养的意义核心素养教育是为了培养学生的多方面能力和综合素质,使其具备更强的适应社会需求和未来社会发展的能力。
核心素养教育强调学生的综合能力培养,包括创新能力、批判性思维、沟通能力、协作能力和跨学科运用知识的能力。
设计性实验教学能够培养学生的创新能力。
在实验中,学生需要运用已学的知识,提出问题、设计实验方案、进行实验操作、分析实验结果,并得出结论。
这个过程中需要学生充分发挥自己的想象力和创造力,培养他们对问题的发现和解决能力。
设计性实验教学有助于培养学生的批判性思维。
通过实验,学生需要深入思考实验现象的原因和影响因素,进行逻辑推理和分析,从中掌握科学方法和思维模式,提高他们的思辨能力和批判性思维能力。
设计性实验教学能够促进学生的沟通和协作能力。
在实验中,学生需要合作完成实验操作、互相交流和讨论实验结果,这些都需要学生具备良好的沟通和协作能力,提高了学生的团队合作精神和交流能力。
设计性实验教学有助于促进学生的跨学科运用知识的能力。
在实验中,学生需要综合运用物理、化学、生物等多学科知识,通过实验解决问题,培养学生的综合运用知识的能力。
二、初中物理设计性实验教学的特点初中物理设计性实验教学是指以科学探究为基础,以学生为主体,以问题为导向,以实验为手段,通过实验过程中的发现、讨论和总结,引导学生自主、探究、合作、创新,不断提高学生的动手能力、思维能力和实践能力的教学方式。
设计性物理实验教学的探讨
![设计性物理实验教学的探讨](https://img.taocdn.com/s3/m/608ff1c40508763231121247.png)
2选择 实验方 法与测 量方 法 ; . 3确 定 测 量 条件 , 择 配 套 仪 器 以 及对 测 量 数 . 选 据进 行合 理处理 的方 法等 。 大 学物 理 实 验 根 本 的 目的是 培 养 和 锻 炼 学 生
在 进行 实验 设 计 , 察 现 象 , 量 数据 , 算 结 观 测 计
的科学 实验 能力和 素养 。
1 设计性 物理 实验 的定义
得 到实验 结果 。
3 设 计性物 理 实验 的教 学要 求
设计 性 实 验 顾 名 思 义就 是 让 学 生 按 自 己设 计 的实 验方 案去 做 实验 。【 学物 理实 验 中设计 性 实 1 】 大
验 应 有不同 的形式 和不 同的要求 。从形式 上区 分应
第 5期
刘 鹏设计 性 物理 实验教 学的探讨
.3 . 1 1
差 出现 的可 能性 . 并分 析其 产 生的原 因 。
4 设 计 性 实 验 的 方 案 选 择
ห้องสมุดไป่ตู้
4测量误 差估 算 是否 符合 实验 要求 。 .
若 方 案 通 过 , 生 即 可 准 备 实 验 , 则 要 提 出 学 否
摘
要: 学物理设 计性 实验是在 学 生掌握基 础性 实验后进 行 的一种教 学 实践 活动 。 大 文章 分析 了大学物
理 设计性 实验 的特 点、 学要 求 , 细 阐述 了设 计性物 理 实验 的教 学方 法 。 教 详
关 键 词 : 计 性 实验 ; 验 方 案 ; 讨 设 实 探
中图分类号 : 6 2 2 G 4. 3 4
文 献标识 码 : A
文章 编号 :6 2 4 7 (0 00 — 10 0 17 - 4 X 2 1 ) 0 3 — 3 4
设计性物理实验
![设计性物理实验](https://img.taocdn.com/s3/m/309014ac767f5acfa0c7cd6d.png)
设计性物理实验(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--设计性物理实验一. 物理实验的现状物理实验是理工科大学学生必修的一门重要基础实验课。
着名的物理学家麦克斯韦对物理实验的教育功能早有阐述,他说:“这门课程,除了在实践上保持在大学里长期培养的注意力和分析力外,也促进学生锤炼自己观察的敏锐和动手操作的能力。
”正是如此,各学校对物理实验都非常重视。
从八十年代开始,国内重点大学对物理实验独立设课(我校是1982年对物理实验独立设课的,学时数为54学时,3个学分)。
全国每年都有几次物理实验研讨会、学术交流会,西北地区有物理实验协作组、陕西各高校物理实验协作组都定期进行教学研讨。
尽管从事物理实验教学的教师作了巨大的努力,但由于历史的原因,物理实验和时代有所脱节,不能反映当前物理学的发展及科学技术发展的现状,具有明显的陈旧性、滞后性、非实用性。
传统的教学方式是:学生实验前先予习实验讲义,每个实验的目的、仪器、原理、实验内容、数据表格、数据处理都写得清清楚楚。
学生在做实验过程中,基本上是“按部就班”,“照葫芦画瓢”。
在实验中,学生没有充分锻炼自己动手能力和思维能力,而是把实验当做一种任务来完成,测量记录出所需数据就大功告成。
从某种意义上讲,实验只是学生对所学知识的验证,重复和再现。
而在知识的灵活运用上、与现代科学技术结合上、以及培养学生综合分析、解决问题的能力等方面,需要得到进一步的加强。
二. 开设设计性物理实验课的目的随着现代化科学技术的飞速发展,当今世界学科门类已愈数千,不仅物理学本身内容不断更新,而且出现了不少边缘学科。
就其测量技术而言,测量方法,测量手段,所用仪器仪表等也是日新月异。
教育要面向现代化,面向世界,面向未来,这是高校改革的根本目标。
进入21世纪的教育,必须适应现代社会需要,着重培养学生的综合分析问题和解决问题的能力、创造力和创造精神。
大学物理设计性实验光的色散研究1
![大学物理设计性实验光的色散研究1](https://img.taocdn.com/s3/m/1c59639edd88d0d233d46ab9.png)
大学物理设计性实验方案题目:光的色散研究学院:物理与电子工程学院专业:物理学班级:10级物本(1)学号:2010405266学生姓名:雷利梅一、实验目的1.进一步加深对分光计的认识,掌握调整和使用分光计的方法。
2.掌握测定棱镜顶角的方法。
3.掌握用最小偏向角法各色光线折射率的方法。
二、实验仪器分光计、三棱镜、高压汞灯三、实验原理1.玻璃三棱镜折射率的测量原理图一表示单色光在三棱镜主截面(垂直于两折射面的截面)内的折射。
PD 为入射光线,两次折射后沿EP ′方向出射。
入射光线与出射光线之间的夹角δ叫做偏向角,从图中可见 δ =∠FDE +∠FED=(i 1- γ1)+(φ - γ2)因为顶角 A =γ1+γ2所以 δ =(i 1 + φ)-A (0-3-1)对于给定的棱镜,其顶角A 和相对于空气的折射率n 都有一定值,因而偏向角δ只随入射角i 1而改变。
可以证明,当i 1=φ时,偏向角有极小值δmin ,称为棱镜对某单色光的最小偏向角,将i 1=φ代入(0-3-1)式,得δmin =2 i 1-A或 i 1=(δmin +A )/ 2而A =γ1+γ2=2γ1,即γ1=A/2,由折射定律可得:(0-3-2))2/sin(]2/)sin[(sin sin min 11A A i n +==δγ图一用分光计测出三棱镜顶角A 和棱镜对某单色光的最小偏向角δmin ,就可以用(0-3-2)式求出棱镜玻璃材料对空气的相对折射率n 。
此法称为最小偏向角法。
由于透明介质材料的折射率是光波波长的函数,故同一棱镜对不同波长的光具有不同的折射率。
当复色光经过棱镜折射后,不同波长的光将产生不同的偏向而被分散开来。
2.棱镜顶角的测量方法用自准法测量三棱镜顶角当望远镜已调焦无穷远,则望远镜自身产生平行光。
用小灯照亮目镜中的双十字叉丝,固定平台,旋转望远镜正对AB 面,如右图,使从AB 面反射回来的十字像位于上叉丝中央,记录两游标的读数φ 1和φ 1′。
高中物理实验的创新:十个有趣的自主设计
![高中物理实验的创新:十个有趣的自主设计](https://img.taocdn.com/s3/m/81a87629dcccda38376baf1ffc4ffe473368fd84.png)
1. 高中物理实验是学生学习物理知识和培养实践能力的重要途径。
然而,传统的物理实验往往缺乏趣味性和创新性,难以激发学生的学习兴趣。
因此,在高中物理教育中,探索创新的实验设计变得尤为重要。
2. 在这篇文章中,我们将介绍十个有趣的自主设计的高中物理实验,旨在让学生在享受实验过程中提高他们的学习成果。
3. 第一个实验是 "水上漂浮"。
通过改变不同物体的形状、密度和表面积,学生可以观察到物体在水中的漂浮情况。
这个实验既有趣又直观,使学生能够理解浮力和密度的概念。
4. 第二个实验是 "万有引力"。
学生可以利用简易的装置模拟地球引力对物体的吸引作用。
他们可以自主调整物体的质量和距离,观察到引力的变化,从而更好地理解万有引力定律。
5. 第三个实验是 "磁场与电流"。
学生可以使用自制的线圈和电池,观察到电流通过线圈时产生的磁场。
他们可以自主改变电流的方向和强度,探索磁场的性质和变化规律。
6. 第四个实验是 "声音的传播"。
学生可以设计一个简易的声音传播装置,观察声音在不同介质中的传播速度差异。
他们可以尝试使用不同材料和形状的容器,进一步理解声音传播的原理。
7. 第五个实验是 "光的折射"。
学生可以利用透明介质和光线模拟器,观察光线从一种介质到另一种介质时的折射现象。
他们可以自主改变入射角度和介质的折射率,了解光的折射规律。
8. 第六个实验是 "简单机械"。
学生可以设计自制的简单机械装置,如杠杆、轮轴和斜面,观察力的平衡和机械优势。
通过这个实验,他们可以更好地理解力的作用和机械原理。
9. 第七个实验是 "电路与电阻"。
学生可以使用电源、电线和电阻器等元件,搭建简单的电路,观察电流的变化和电阻对电路的影响。
他们可以自主调整电阻的大小和连接方式,进一步探索电路的特性。
10. 第八个实验是 "热传导"。
普通物理实验设计性实验方案
![普通物理实验设计性实验方案](https://img.taocdn.com/s3/m/55d833f2f705cc1755270913.png)
普通物理实验设计性实验方案实验题目:用气垫导轨研究动量守恒定律班级:学号:姓名:指导教师:用气垫导轨研究动量守恒定律序言动量守恒定律和能量守恒定律一样,是自然界的一条普遍适用的规律。
它不仅适用于宏观世界,同样也适用于微观世界。
它虽然是一条力学定律,但却比牛顿运动定律适用范围更广,反映的问题更深刻。
由动量守恒定律知,如果一个系统所受的合外力为零,那么系统内部的物体在作相互碰撞,传递动量的时候,虽然各个物体的动量是变化的,但系统的总动量守恒。
如果系统在某个方向上所受的合外力为零,则系统在该方向上的动量守恒。
动量守恒定律在生产技术和科学实验上毒都有着极其重要的作用。
一、实验原理在一个力学系统中,如果系统所受合外力为零或在某方向上的合外力为零,则该力学系统的总动量守恒或在某方向上守恒。
这就是动量守恒定律。
本实验利用气垫导轨上两个滑块的碰撞来验证一维碰撞三种情况的动量守恒定律。
图1 气垫导轨上两个滑块的碰撞如图1所示,在水平放置的气垫导轨上放两个滑块并让它们相互碰撞,两滑块之间除了碰撞时受到相互作用的内力之外,水平方向不受力的作用,因而碰撞前后的总动量保持不变。
即11221122m v m v m v m v ''+=+ 式中:v 1,v 2和v 1',v 2'分别表示质量为m 1和m 2的两个滑块碰撞前后的速度。
因为完全弹性碰撞是一个理想模型,即使在气垫导轨上也难以实现,碰撞过程中总有一定的能量损失。
所以,只在非完全弹性碰撞和完全非弹性碰撞的条件下进行实验。
1.非完全弹性碰撞在两滑块的相碰端各装上一个弹性环,它们的碰撞过程可看作非完全弹性碰撞。
如果让m 2的初速度为零,即v 2=0,则有111122m v m v m v ''=+ 2.完全非弹性碰撞在两滑块的相碰端上贴上尼龙搭扣或橡皮泥,这样两滑块碰撞后将粘在一起以同一速度运动,从而实现了完全非弹性碰撞。
物理设计性实验报告(单摆测重力加速度试验)
![物理设计性实验报告(单摆测重力加速度试验)](https://img.taocdn.com/s3/m/6de87bee5ef7ba0d4a733b79.png)
单摆实验测重力加速度实验目的1. 用单摆测量当地的重力加速度。
2. 研究单摆振动的周期。
实验仪器单摆,米尺,停表(或数字毫秒计,),游标卡尺,重锤。
实验原理单摆是用重量可忽视的细线吊起一质量为m 的小重锤,使其左右摆动,当摆角为θ时,重锤所受合外力大小f=- mgsin θ(图1),其中g 为当地的重力加速度,这时锤的线加速度为-gsin θ。
设单摆长为 L ,则摆的角加速度 a=-gsin θ/L 。
当摆角甚小时(小于 5°),可认为 ,这时 gsin θ= θ,即振动的角加速度和角位移成比例,式中的负号表示角加速度和角位移的方向总是相反。
此时单摆的振动是简谐振动。
从理论分析得知,其振动周期 T 和上述比例系数的关系是 T=a π2,所以 T=gL π2 式中 L 为单摆摆长,是摆锤重心到悬点的距离, g 为当地的重力加速度。
将测出的摆长L 和对应和周期 T 代入上式可求出当地的重力加速度之值。
又可将此式改写成 T 2=g Lπ24 。
这表示 T 2和 L 之间,具有线性关系,如就各种摆长测出各对应周期,则可从图线的斜率求出g值。
内容与要求1.取摆长约为1m的单摆,用米尺测量摆线长,用游标卡尺测量摆锤的直径,各5次。
用米尺测长度时,应注意使米尺和被测摆线平行,并尽量靠近,读数时视线要和尺的方向垂直以防止由于视差产生的误差。
2.用停表测量单摆连续摆动50个周期的时间,测5次。
注意摆角要小于5°。
用停表测周期时,应在摆锤通过平衡位置时按停表并数“0”,在完成一个周期时为“1”,以后继续在每完成一个周期时数2、3、…,最后,在数第50的同时停住停表。
3.将摆长每次缩短约10cm,测其摆长及其周期,填入表中. 注意事项1.使用停表前先上紧发条,但不要过紧,以免损坏发条。
2.按表时不要用力过猛,以防损坏机件。
3.回表后,如秒表不指零,应记下其数值(零点读数),实验后从测量值中将其减去4.要特别注意防止摔碰停表,不使用时一定将表放在实验台中央的盒中。
(整理)大学物理自主设计性实验
![(整理)大学物理自主设计性实验](https://img.taocdn.com/s3/m/5651be61312b3169a451a4c3.png)
大学物理自主设计性实验(FB716-Ⅱ型物理设计性(传感器)实验装置)实验指导书杭州精科仪器有限公司目录第一、产品简介 (02)第二、实验项目内容 (04)实验一、应变片性能—单臂电桥 (04)实验二、应变片:单臂、半桥、全桥比较 (06)实验三、移相器实验 (08)实验四、相敏检波器实验 (10)实验五、应变片—交流全桥实验 (12)实验六、交流全桥的应用—振幅测量 (14)实验七、交流全桥的应用—电子秤 (14)实验八、霍尔式传感的直流激励静态位移特性 (16)实验九、霍尔式传感的应用——电子秤 (17)实验十、霍尔片传感的交流激励静态位移特性 (17)实验十一、霍尔式传感的应用研究—振幅测量 (18)实验十二、差动变压器(互感式)的性能 (19)实验十三、差动变压器(互感式)零点残余电压的补偿 (20)实验十四、差动变压器(互感式)的标定 (21)实验十五、差动变压器(互感式)的应用研究—振幅测量 (22)实验十六、差动变压器(互感式)的应用—电子秤 (23)实验十七、差动螺管式(自感式)传感器的静态位移性能 (24)实验十八、差动螺管式(自感式)传感器的动态位移性能 (25)实验十九、磁电式传感器的性能 (26)实验二十、压电传感器的动态响应实验 (27)实验二十一、压电传感器引线电容对电压放大器、电荷放大器的影响 (28)实验二十二、差动面积式电容传感器的静态及动态特性 (29)实验二十三、扩散硅压阻式压力传感实验 (30)实验二十四、气敏传感器(MQ3)实验 (32)实验二十五、湿敏电阻(RH)实验 (34)实验二十六、热释电人体接近实验 (34)实验二十七、光电传感器测转速实验 (36)第三、结构安装图片和说明 (37)第一、产品简介一、FB716-II型物理设计性(传感器)实验装置本实验装置主要由以下所述5个部分组成:1.传感器实验台部分:装有双平行振动梁(包括应变片上下各2片、梁自由端的磁钢)、双平行梁测微头及支架、振动盘(装有磁钢、用于固定霍尔传感器的二个半圆磁钢、差动变压器的可动芯子、电容传感器的动片组、磁电传感器的可动芯子、压电传感器),安装时可参考第三部分结构图片及安装说明。
大学物理自主设计性实验
![大学物理自主设计性实验](https://img.taocdn.com/s3/m/b08314b7856a561253d36f06.png)
大学物理自主设计性实验(FB716-Ⅱ型物理设计性(传感器)实验装置)实验指导书杭州精科仪器有限公司目录第一、产品简介 (02)第二、实验项目内容 (04)实验一、应变片性能—单臂电桥 (04)实验二、应变片:单臂、半桥、全桥比较 (06)实验三、移相器实验 (08)实验四、相敏检波器实验 (10)实验五、应变片—交流全桥实验 (12)实验六、交流全桥的应用—振幅测量 (14)实验七、交流全桥的应用—电子秤 (14)实验八、霍尔式传感的直流激励静态位移特性 (16)实验九、霍尔式传感的应用——电子秤 (17)实验十、霍尔片传感的交流激励静态位移特性 (17)实验十一、霍尔式传感的应用研究—振幅测量 (18)实验十二、差动变压器(互感式)的性能 (19)实验十三、差动变压器(互感式)零点残余电压的补偿 (20)实验十四、差动变压器(互感式)的标定 (21)实验十五、差动变压器(互感式)的应用研究—振幅测量 (22)实验十六、差动变压器(互感式)的应用—电子秤 (23)实验十七、差动螺管式(自感式)传感器的静态位移性能 (24)实验十八、差动螺管式(自感式)传感器的动态位移性能 (25)实验十九、磁电式传感器的性能 (26)实验二十、压电传感器的动态响应实验 (27)实验二十一、压电传感器引线电容对电压放大器、电荷放大器的影响 (28)实验二十二、差动面积式电容传感器的静态及动态特性 (29)实验二十三、扩散硅压阻式压力传感实验 (30)实验二十四、气敏传感器(MQ3)实验 (32)实验二十五、湿敏电阻(RH)实验 (34)实验二十六、热释电人体接近实验 (34)实验二十七、光电传感器测转速实验 (36)第三、结构安装图片和说明 (37)第一、产品简介一、FB716-II型物理设计性(传感器)实验装置本实验装置主要由以下所述5个部分组成:1.传感器实验台部分:装有双平行振动梁(包括应变片上下各2片、梁自由端的磁钢)、双平行梁测微头及支架、振动盘(装有磁钢、用于固定霍尔传感器的二个半圆磁钢、差动变压器的可动芯子、电容传感器的动片组、磁电传感器的可动芯子、压电传感器),安装时可参考第三部分结构图片及安装说明。
设计性物理实验-黑盒子实验
![设计性物理实验-黑盒子实验](https://img.taocdn.com/s3/m/cf6bc00e9b89680202d825de.png)
西北工业大学设计性基础物理实验报告班级:11051401 姓名:日期:2016.05.06黑盒子实验一、实验目的1、学习使用示波器对黑盒子中电学元件进行判别及估算;2、培养设计检测步骤和综合分析推理的能力。
二、实验仪器(名称、型号及参数)TDS1001B波形输出器示波器电阻箱电容箱导线黑盒子三、实验原理黑盒子里的元件可能是干电池、定值电阻、电容器、半导体二极管、电感器等,各元件链接在接线端,元件之间可能是并联、串联。
使用如下电路图:信号发生器输出正弦波信号电压输入;R0取适当值;CH1测量取样电阻箱两端电压;CH2检测信号发生器输出电压;虚线框内的i\j表示黑盒子面板上的接线柱,实验观测中i端对应信号发生器输出正端。
假设信号发生器输出正弦波信号幅度为A0、频率为f,各元件检测判断过程如下:1.电阻元件示波器CH1通道显示U R为正弦波,幅度A< A0,若f变化A不变。
2.电容示波器CH1通道显示U R为正弦波,幅度A< A0,若f变化A也变化,且f和A同变化。
3.电感示波器CH1通道显示U R为正弦波,幅度A< A0,若f变化A也变化,且f和A变化不同步。
4.二极管示波器CH1通道显示U R为半波,并可由脉冲向上还是向下判断二极管的正负极。
5.电池先用示波器判断有无电池,此时示波器为直流。
四、实验内容与方法黑盒子1黑盒子1有四个接线柱,每两个接线柱之间最多连接一个元件,盒内三个元件可能是电池、电阻、电容、电感或半导体二极管。
按一定顺序连接各个接线柱,用示波器测量信号发生器和取样电阻箱两端电压,记录示波器波形;调节信号发生器频率,观察记录A的变化。
黑盒子2黑盒子2内含有三个电磁学元件,组成三角形连接方式。
接线柱1、2之间为X,接线柱2、3之间为Y,接线柱1、3直接为Z。
按照与黑盒子1相同的方法确定各个接线柱之间的电磁学元件,之后测量三个电磁学元件的数值。
将黑盒子内电阻与取样电阻串联可以测得黑盒子内电阻的数值;将黑盒子内电容与取样电容并联可以测得电感、电容的数值。
物理设计性实验(扭摆测转动惯量)
![物理设计性实验(扭摆测转动惯量)](https://img.taocdn.com/s3/m/6fde99ddad51f01dc281f1b8.png)
实验报告课程名称大学物理实验专业班级姓名学号电气与信息学院和谐勤奋求是创新实验题目转动惯量的测定实验室实验时间2011 年12 月6日成绩指导教师签字:【实验目的】(1)扭摆测定几种不同形状物体的转动惯量和弹簧的扭转常数,并与理论值进行比较;(2)学会转动惯量测试仪的使用方法;(3)了解转动惯量的平行轴定理,理解“对称法”验证平行轴定理的实验思想,学会验证平行轴定理的实验方法。
【实验重点】理解转动惯量与若干因素的关系。
转动惯量是刚体转动时惯性大小的量度,是表明刚体特性的一个物理量。
刚体转动惯量除了与物体质量有关外,还与转轴的位置和质量分布(即形状、大小和密度分布)有关。
如果刚体形状简单,且质量分布均匀,可以直接计算出它绕定轴的转动惯量。
对于形状复杂,质量分布不均匀的刚体,计算将极为复杂,通常采用实验方法来测定,例如机械部件,电动机转子和枪炮的弹丸等。
转动惯量的测量,一般都是使刚体以一定形式运动,通过表征这种运动特征的物理量和转动惯量的关系,进行转换测量。
本实验使物体作扭摆摆动,由摆动周期计算出物体的转动惯量。
【实验难点】平行轴定理的理解。
平行轴定理:刚体对任一轴的转动惯量,等于刚体对于过质心并与该轴平行的轴的转动惯量,加上刚体的质量与两轴间距离的平方的乘积。
【实验仪器】(1)扭摆,附件为空心金属圆筒,实心高矮塑料圆柱体,验证转动惯量平行轴定理用的金属细长杆,金属滑块;数字式电子台秤;(2)转动惯量测试仪。
图2 TH -I 型转动惯量测量仪面板示意图【实验仪器及说明】1.扭摆及几种待测转动惯量的物体:空心金属圆柱体、实心塑料圆柱体、实心塑料球、验证转动惯量平行轴定理用的细金属杆(杆上有两块可自由移动的金属滑块)。
实验中扭摆机座应保持水平,扭摆机架上装有检测水平度的水准泡,机座可以用底座螺栓进行水平调整。
2.TH -I 型转动惯量测量仪:由主机和光电传感器两部分组成。
主机采用新型的单片机作控制系统,用于测量物体转动和摆动的周期,以及旋转体的转速,能自动记录、存储多组实验数据并能够准确地计算多组实验数据的平均值。
大学物理单摆测重力加速度实验设计性实验
![大学物理单摆测重力加速度实验设计性实验](https://img.taocdn.com/s3/m/fc5acc61dc36a32d7375a417866fb84ae55cc374.png)
大学物理实验设计性实验实验报告单摆法测重力加速度院系:姓名:班级:学号:指导教师:一.实验要求重力加速度是重要的地球物理常数,准确测定它的量值,无论是在科学研究还是在生产实践方面都十分重要。
测定重力加速度的方法很多,如单摆法,自由落体仪法等,本实验是用单摆法测定本地的重力加速度的值。
根据小球从不同角度摆下后所用的时间及其所摆的次数可得出其周期,在分别测出摆线的长度及小球的直径可得摆长长度,在由周期公式便可求的其重力加速度。
1.所用的实验方法:《单摆法测重力加速度》。
2.实验地点:二教五楼实验室。
3.实验时间:2012年 12月23日。
4.环境与类别:室内-设计性试验。
二.实验目的1、用单摆测量重力加速度;2、学习一种验证理论公式的方法;3、了解测量中的主要误差来源及减小误差的方法;仪器用具及实验装置游标卡尺,钢卷尺,单摆小钢球,秒表。
三.实验原理:在偏角小于5°情况下如图1所示,单摆近似做简谐运动,其周期g LT π2=,由此可得重力加速度224T L g π=,测出摆长L 、周期T ,代入上式,可算出g 值。
1.用游标卡尺测小铁球直径d ,测3次,记入表格。
2.把铁夹固定在铁架上端;将细线一端穿过小铁球的孔后打结,另一端固定在铁夹上,并使摆线长比1m 略小; 将做成的单摆伸出桌面外,用米尺测出悬吊时的摆线长L ′(从悬点到小铁球顶端),也测3次,记入表格。
3.将摆球拉离平衡位置一段小距离(摆线与竖直方向夹角小于5°)后放开,让单摆在一个竖直面内来回摆动,用秒表测出单摆30次全振动时间t (当摆球过最低点时开始计时),也测3次,记入表格。
4.求出所测几次d 、L ′和t 的平均值,用平均值算出摆长L d L '+=2,周期30t T =,并由此算出g 值及其相对误差。
5.确认所测g 值在实验允许的误差范围之内后,结束实验,整理器材。
五、实验数据:由实验测得本地重力加速度值为9.806m/s2.七.实验感想物理实验是一个训练学生动手能力的过程,这次物理设计性实验就是一个很好的例子,我们自己收集材料,自己亲自测量各种数据,自己设计属于自己的实验,我通过在网上查找和书籍查找各种材料设计了一个自己的实验,这增强我的动手能力和思维能力,培养了自己独立思考问题的能力。
浅谈大学物理设计性实验与创新项目之间的关系
![浅谈大学物理设计性实验与创新项目之间的关系](https://img.taocdn.com/s3/m/8ae9844403020740be1e650e52ea551811a6c940.png)
浅谈大学物理设计性实验与创新项目之间的关系大学物理实验是物理学教学中不可或缺的一部分,通过实验可以帮助学生巩固理论知识,培养实验技能和科学思维,提升创新能力。
而设计性实验和创新项目在大学物理教学中也逐渐得到重视,它与传统的实验教学有着不同的特点和目标。
本文将就大学物理设计性实验与创新项目之间的关系进行一番探讨。
一、设计性实验与创新项目的概念设计性实验是指在教师指导下,学生独立或协作设计实验方案,自行组织实验装置和进行实验操作,通过实验数据的处理和分析,总结规律,解决问题和得出结论。
与传统实验课程相比,设计性实验注重学生在实验过程中的主动性、创造性和探究性,有利于培养学生的实验设计和问题解决能力。
而创新项目则是指学生在某一领域,在教师或导师指导下,选择一个科学问题或技术难题,进行研究并提出解决方案,最终形成一项具有独创性和创新性的科研成果。
创新项目能够培养学生的科学研究能力、团队协作能力和创新精神,有助于学生将所学知识应用于实践并产生具体的成果。
设计性实验和创新项目有着密切的联系,二者有着共同的培养目标和作用。
二者都能够培养学生的实验设计和技能。
在设计性实验中,学生需要自行组织实验装置,设计实验方案,进行实验操作,这需要学生具备一定的实验技能和实验设计能力。
而在创新项目中,学生需要独立或协作开展研究工作,进行实验或数据分析,这同样需要学生具备扎实的实验技能和科学研究能力。
设计性实验和创新项目都能够培养学生的科学思维和问题解决能力。
在设计性实验中,学生需要独立思考实验方案和问题解决的办法,通过实验数据的处理和分析,总结规律和解决问题。
而在创新项目中,学生需要针对具体的科学难题或技术问题,进行深入的研究和探索,最终提出解决方案。
这同样需要学生具备严谨的科学思维和较强的问题解决能力。
尽管设计性实验和创新项目有着密切的联系,但二者在一定的程度上也存在一些差异。
二者的目标不同。
设计性实验更注重对物理规律的实际验证,强调学生对物理现象的观察和实验操作技能的培养,而创新项目更注重学生的科学研究能力和创新性。
设计性实验在高中物理应用[论文]
![设计性实验在高中物理应用[论文]](https://img.taocdn.com/s3/m/596d18680b1c59eef8c7b449.png)
设计性实验在高中物理的应用探讨摘要:实验是物理学的基础,是检验物理理论的标准。
实验教学是高中物理教学中的重要方式之一。
但是随着新课标的改进和教学要求的提高,传统的物理实验教学已经无法适应现有的教学需求。
将设计性实验从大学引入高中物理实验中能促进学生主动地学习和思考,有利于培养和提高学生的科学实验能力及综合素养。
关键词:实验;设计性实验;高中物理中图分类号:g642 文献标识码:b 文章编号:1002-7661(2013)12-011-01随着科学技术的高速发展,社会对人才素质的要求越来越高。
在物理教学中,实验是物理学的基础,是检验物理理论的标准,是增强学生创新精神,创造能力的重要方式之一。
然而,新课改后,传统的中学物理实验教学方式没有进行实质性的变革,已经难以适应整个当代物理教学,制约了学生实验能力的发展。
现行中学物理教材的实验内容绝大多数都是验证性实验,实验结果往往是唯一的或是理想化的结果,与结果的多种可能性脱节,因而学生的思维缺乏应有的多向性和灵活性,发散性思维受到压抑,扼杀了学生探索的欲望和创新实践能力。
传统的实验教学普遍是在教师具体的引导下进行的,学生并不能发挥主观能动性,培养不了自主探究的意识,只是了解了器材的使用,没有完整的体会到物理探究的过程。
为进一步提高对学生能力的培养,建议将高等院校中的设计性物理实验教学方式引入到中学物理实验教学中。
所谓设计性物理实验,就是让学生应用所学物理知识,根据指导教师提供的实验题目或自身另选的实验题目,自行查阅参考资料,自行设计实验方案,自选与组装实验设备,自拟实验操作步骤,在规定时间内完成实验。
学生做完实验后,以小论文的形式写出完整的实验报告,对实验结果进行系统的分析和综合总结。
一、设计性物理实验应用于中学物理实验的重要意义1、学生主体性的发挥设计性物理实验以学生为主体,发挥学生的主观能动性,学生通过自主设计、自主实施、自主发挥、自主观察、分析和总结实验现象,解决实验中出现的问题,完成实验任务。
大学物理设计性实验用迈克尔逊干涉仪测量金属丝的杨氏模量22
![大学物理设计性实验用迈克尔逊干涉仪测量金属丝的杨氏模量22](https://img.taocdn.com/s3/m/d05493ed294ac850ad02de80d4d8d15abe23008e.png)
评分:大学物理实验设计性实验实验报告实验题目:用迈克尔逊干涉仪测量金属丝的杨氏模量班级:姓名:学号:指导教师:实验提要实验课题及任务《用迈克尔逊干涉仪测量金属丝的杨氏模量》实验课题任务是:利用迈克尔逊干涉仪能精密测量微小变量的特点,测量出钢丝在拉力作用下的微小伸长量,用特制的测力计测量拉力大小。
设计实验方案,测定钢丝的杨氏模量。
学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《用迈克尔逊干涉仪测量金属丝的杨氏模量》的整体方案,内容包括:写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤,然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,写出完整的实验报告,也可按书写科学论文的格式书写实验报告。
设计要求⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。
⑵根据实验用的测量仪器,设计出实验方法和实验步骤,要具有可操作性。
⑶用最小二乘法求出杨氏模量。
⑷实验结果用标准形式表达,即用不确定度来表征测量结果的可信赖程度。
实验仪器迈克尔逊干涉仪、测力计、激光器。
教师指导(开放实验室)和开题报告1学时;实验验收,在4学时内完成实验;提交整体设计方案时间学生自选题后2~3周内完成实验整体设计方案并提交。
提交整体设计方案,要求用纸质版(电子版用电子邮件发送到指导教师的电子邮箱里)供教师修改。
参考文献⑴ 金正宇 一个经典力学实验测量方法的改进——霍尔传感器测杨氏模量 [J] 实验室研究与探索,2000⑵ 张 帮 利用迈克耳孙干涉原理测杨氏模量 [J] 大学物理实验 2007原始数据记录: 实验日期:金属丝长度:(=L 25.20 cm )01.0± 波长:=λ632.8nm(=d 0.627±0.004mm )表M -2 记录条纹数k 及作用力F指导教师:用迈克尔逊干涉仪测量金属丝的杨氏模量杨氏弹性模量是材料弹性性质的一个主要特征量,是设计各种工程结构时选用材料的主要依据之一。
大学物理气垫导轨测重力加速度实验设计性实验
![大学物理气垫导轨测重力加速度实验设计性实验](https://img.taocdn.com/s3/m/28d92a3c7dd184254b35eefdc8d376eeafaa1751.png)
大学物理气垫导轨测重力加速度实验设计性实验本实验旨在通过气垫导轨测量地球表面的重力加速度,并研究测量误差来源及其对结果的影响。
实验原理在地球表面,一个质量为 m 的物体所受到的重力加速度可以表示为:g = G*M/r^2其中,G 为引力常数,M 为地球质量,r 为该物体与地心的距离。
根据上式,可以直接测量出地球表面的重力加速度 g。
在本实验中,将采用气垫导轨的方法进行测量。
在气垫导轨上,可以使得质量为 m的物体受到一个近似为零的水平支持力 F,因此在垂直方向上只受到重力 Fg 的作用。
则有:Fg = m*g为了消除气垫导轨与地球表面之间的接触,则需要在导轨上加装一个固定的磁铁系统,使得导轨与地面之间的间隙不超过导轨高度的 1/10。
在磁铁的作用下,导轨可以在空气垫的支持下在地面上滑动,实现对物体的测量。
实验步骤1. 在实验台的支架上固定气垫导轨,并调整导轨支架的高度,使得导轨与地面之间的距离为导轨高度的 1/10。
2. 在气垫导轨上放置一个质量为 m 的物体,并用卡尺等工具准确测量物体的直径d。
3. 打开气垫系统,使得气垫导轨充满气体,并使用气垫导轨上配备的手动推进器将物体移动到高度为 0 的位置。
4. 记录气垫导轨的长度 L 和物体的初始位置,并用一个秒表来记录物体向下移动一定距离所需的时间 t。
5. 根据垂直方向上的运动规律,求出物体下降的平均加速度 a,即:a = 2L/(t^2)7. 重复实验多次,取平均值,得到地球表面的重力加速度 g 的最终测量值。
注意事项1. 在实验前需要对气垫导轨及磁铁系统进行充分的清洁和调整,以保证气垫导轨能够在地面上畅通无阻地运动。
2. 需要准确测量物体的直径,以消除测量误差。
3. 实验中尽量保持实验环境的稳定性,避免因环境变化而引起的误差。
4. 重复实验多次,取平均值,以提高测量结果的准确性。
结论通过气垫导轨测量地球表面的重力加速度,可以得到较为准确的测量结果,并通过分析误差来源,可以采取相应的措施来提高实验精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[例2] : (2006年武汉二月调考)
用以下器材测量待测电阻RX的阻值 A.待测电阻Rx,阻值约为100Ω B.电源E,电动势约为6.0V,内阻可忽略不计 C.电流表A1,量程为0~50mA,内电阻r1=20Ω D.电流表A2,量程为0~300mA,内电阻r2约为4Ω E.定值电阻R0,阻值R0=20Ω F.滑动变阻器R,最大阻值为10Ω G.单刀单掷开关S,导线若干 (1)测量中要求电流表的读数均不小于其量程的1/3,
A.电源E,具有一定内阻,电动势约为9.0V;
B.电压表V1,量程为1.5V,内阻r1=750Ω; C.电压表V2,量程为5V,内阻r2=2500Ω; D.滑线变阻器R,最大阻值约为100Ω;
E.单刀单掷开关K,导线若干。
(1)测量中要求电压表的读数不小于其量程的1/3,
试画出测量电阻Rx的一种实验电路原理图。 (2)若用U1、 U2分别表示电压表V1、 V2的读数,由 已知量和测得量表示Rx
(2)若选测量数据中的一组来计算r1,写出所用的表 达式为r1。
A1
V1
错误
R A2
R A1 1 R1 E 错误
r1
I 2 r2 I1
情景变式1 :无电压表
已知内阻的电流表可当成电压表使用,需扩程
变式练习1 : 07届湖北八校联考)
某待测电阻Rx的阻值约为20Ω,现要测量其
阻值,实验室提供器材如下:
正确
RX
U1r1r2 U 2r1 U1r2
正确
RX
(U 2 U1 ) U1
r1
情景变式2:无电流表
已知内阻的电压表可当电流表使用
[例2] : 2006届湖南省示范高中联考)
请利用下列器材测出电压表V1的内阻,要求有尽可能高 的测量精度,并能测得多组数据.
A.电压表V1(量程为3V,内阻约为几kΩ) B.电压表V2(量程为15V,内阻约为几十kΩ)
器材(代号)
规
格
电流表(A1) 电流表(A2)
电压表(V)
电阻(R1) 滑动变阻器(R2) 电池(E)
量程10mA,内阻r1待测(约40Ω) 量程500μA,内阻r2=750Ω 量程10V,内阻r3=10kΩ
阻值约100Ω,作保护电阻用 总阻值约50Ω 电动势1.5V,内阻很小
电键(K) 导线若干
(1)试画出实验电路原理图。
高三实验复习
设计性物理实验
——伏安法思想拓展
测量电路的电路图 外 接 电流
内接
RX<<RV时
控制电路
R测<R真 限流接法
RX>>RA R测>R真 分压接法
在以下几种情况下只能使用分压法: 1. Rp<<RX 2.限流连接时,电路中的最小电流仍超过用电器的额定电流时 3.要求用电器、仪表的电压或电流从零值开始连续可调,或要求大范围可调
C.定值电阻R0(10kΩ) D.滑动变阻器R(0~100Ω) E.直流电源E(电动势约为12V) F.开关S、导线若干;
(1)画出测量电路图. (2)用已知量和一组直接测得量,写出电压表V1内阻
RV的表达式.
RV
U1R0 U2 U1
A.电流表A1(量程150mA,内阻r1约为10Ω) B.电流表A2(量程20mA,内阻r2=30Ω) C.定值电阻R0=100Ω D.滑动变阻器R,最大阻值为10Ω E.电源E(电动势E=4V,内阻不计) F.开关S及导线若干
测量时要求电表读数不得小于其量程的1/3,
请画出测量Rx的一种实验原理图,以某次实
验中电流表A1的示数I1 、A2的示数I2和题中
已知量写出Rx的表达式。
分析:
(1)因“r1约为10Ω”,
故A1只能测电流。 (2)因A1的量程比A2的 大,故A1宜在干路上。 (3)论证“将A2作为电 压表并接在Rx两端后,再
与A1串联”方案,存在的 问题是什么?如何改进?
情景变式1 :无电压表
1.你选择的电流表A1和电压表V1 ,依据是什么? 2.变阻器连接方式
安全 精确
简便
A1
R
R1
V1
E
A
情景变式1 : 无电压表
V
已知内阻电流表可当成电压表使用
[例1] :(00年高考)从下表中选出适当的实验器材,
设 有尽计可一能电高路的来测测量量精电度流,表A并1的能内测阻得r多1,组要数求据方。法简捷,
试画出测量电阻RX的实验电路原理图。 (2数)为若I某2,次试测写量出中R电X的流表表达A1式的。示数为I1,电流表A2的示
分析思路
Rx
I2 I1 I1
R0
r1
情景变式2:无电流表
已知内阻电压表流表可当成电流表使用
[例1] (2004年全国卷Ⅲ第22题)
用以下器材测量一电阻Rx的阻值(900~1000Ω)
设计实验的一般原则:
安全
.精确
简便
Hale Waihona Puke 【原型】欲用伏安法测定某一阻值约为12Ω的电阻R,要 求保证器材安全,操作方便,测量结果尽量准 确。现有器材如下:
电池组E(6V,内阻很小) 电流表A1(0~0.6A,内阻约为0.125Ω) 电流表A2(0~3A,内阻约为0.0125Ω) 电压表V1(0~6V,内阻约为6kΩ) 电压表V2(0~15V,内阻约为15kΩ) 滑动变阻器R1(0~2Ω,5A) 滑动变阻器R2(0~200Ω,0.3A)