基于ZigBee技术的智能安防系统

合集下载

物联网智能家居系统设计方案

物联网智能家居系统设计方案

物联网智能家居系统设计方案目录摘要 .................................................................................................................... - 2 -引言 . (4)第1章绪论 (5)1.1 物联网的起源 (5)1.1.1 物联网快速发展下的智能家居 (5)1.2 物联网智能家居的概述 (6)1.2.1 物联网智能家居设计背景 (7)1.2.2 物联网智能家居设计意义 (8)1.3 物联网智能家居现状及未来发展 (9)第2章 ZigBee 技术研究 (10)2.1 ZigBee 技术 (10)2.2 ZibBee 特点 (10)2.3 ZigBee 技术的优势 (11)第3章需求分析 (12)3.1 设计目的 (12)3.2 设计特点 (13)3.3 设计原则 (13)3.4 功能需求 (14)第4章系统设计 (15)4.1 视频监视系统 (15)4.1.1 视频监视系统的组成及工作原理 (15)4.1.2 视频监视系统的主要功能 (16)4.2 入侵报警系统 (17)4.2.1 入侵报警系统的组成 (17)4.2.2 入侵报警系统的设备构成 (17)4.2.3 入侵报警系统的作用 (18)4.3 家居防盗报警系统 (18)4.3.1 家居防盗报警组成 (18)4.3.2 家居防盗报警的功能 (18)第5章材料清单 (19)第6章结论 (20)参考文献 (21)摘要进入21世纪以来,随着感知识别技术的快速发展,信息从传统的模式变成了智能模式。

从而诞生了“物联网”。

物联网是新一代信息技术的重要组成部分。

顾名思义,“物联网就是物物相连的互联网”。

这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。

基于ZigBee技术的智能家居系统设计

基于ZigBee技术的智能家居系统设计

基于ZigBee技术的智能家居系统设计智能家居是以住宅为平台,利用综合布线技术、网络通信技术、安全防范技术、自动控制技术、音视频技术将家居生活有关的设施集成,构建高效的住宅设施与家庭日程事务的管理系统,提升家居安全性、便利性、舒适性、艺术性,并实现环保节能的居住环境。

基于智能家居的最新定义,参考ZigBee技术的特点,设计出的本系统,在包含了智能家居必备系统(智能家居(中央)控制管理系统、家居照明控制系统、家庭安防系统)的基础上,加入了家居布线系统、家庭网络系统、背景音乐系统和家庭环境控制系统。

在智能家居的认定上,只有完整地安装了所有的必备系统,并且至少选装了一种及以上的可选系统的家居系统才能称为智能家居。

因此,本系统可以称为是智能家居。

1 系统设计方案该系统设计由家庭内被控制设备和远程控制设备组成。

其中家庭内被控制设备主要有能访问Internet的计算机、控制中心、监控节点和选择添加的家用电器控制器。

远程控制设备主要由远程计算机和手机组成。

系统组成如图1所示。

系统的主要功能有:1)网页前台页面的浏览,后台信息管理;2)通过Internet 和手机两种远程控制方式实现室内家用电器、安防和灯光的开关控制;3)通过RFID模块实现用户识别,从而完成室内安防状态的开关,在盗贼入侵时通过短信息(SMS)向用户报警;4)通过中央控制管理系统软件完成室内灯光及家电的本地控制和状态显示;5)利用数据库完成个人信息存储和室内设备状态存储,通过中央控制管理系统方便用户查询室内设备状态。

2 系统硬件设计系统硬件设计包括控制中心、监控节点和选择添加的家用电器控制器(这里以电风扇控制器为例)的设计。

2.1 控制中心控制中心主要功能有:1)组建无线ZigBee网络,把所有监控节点加入网络中,并实现新设备的接收;2)用户身份识别,用户在离家或归来时通过用户卡实现室内安防的开关;3)当有盗贼入侵室内时,通过向用户发送短信息报警。

远程智能安防与控制系统设计与实现

远程智能安防与控制系统设计与实现
2012 年 第 33 期
SCIENCE & TECHNOLOGY INFORMATION
○科教前沿○
科技信息
远程智能安防与控制系统设计与实现
章 魁 卫新华 (常州信息职业技术学院 江苏 常州 213164)
【摘 要】以 STM32 系列 ARM 芯片 STM32F103VCT6 为微控制器,利用 Zigbee 技术和 GSM 网络设计与实现一种远程的安防与电器控制系 统。 安防系统包括远程监控室内防盗、火灾报警和煤气泄露等;控制系统能实现对空调、电灯、电饭煲等电器的远程控制。
A Framework forPublishing Relational Data in XML.” ACM Trans. Database Syst., 27(4),2002,438-493. [2]Carey M, Kiernan J,Shanmugas undaram J, et al.XPERANTO: Middlew are for Publishing Object -Relat ional Dat a as XML Documents [C].Proceedings of the 26th International Conference on Very Large Dat abas es, Cairo E gy pt, 2000. [3]Turau V. Making Legacy Data Accessible for XML Applications [ EB/OL ]. [2006-10-12]. rmatik.fhwiesbaden.de/turau/DB2XML/2001/. [4]D. Lee, M. Mani, F. Chiu, and W. W. Chu, “Nesting -Based Relational -to XMLSchema Translation.” In Proceedings of the WebDB, 2001:61-66. [5]D. Lee, M. Mani, F. Chiu, and W. W. Chu. “NeT & CoT: Translating relational schemas to XMLschemas using semantic constraints.” In ACM International Conference on Information and Knowledge Management, 2002:282-291. [6]C. Baru, “XViews: XML Views of Relational Schemas.” In Proceedings of DEXA Workshop, 1999:700-705. [7]G. Kappel, E. Kapsammer, and W. Retschitzegger, “Integrating XML and Relational Database Systems.”World Wide Web, 7(4), 2004:343-384. [8]Kappel G, Kapsammer E, Rausch-Schott S, et al. X-Ray-Towards In tegratin g XML and Relational Database Systems [C]. Int l Conf on Conceptual Modeling ( E R),Salt Lake City, 2000. [9]郝艳广,周定康,等.保留语义约束的关系模式到 XML Schema 转换[J].河南师 范 大 学 学 报 :自 然 科 学 版 ,2008.1:32-35.

基于物联网技术的智能家居控制系统研究

基于物联网技术的智能家居控制系统研究

基于物联网技术的智能家居控制系统研究一、引言智能家居控制系统是一种利用物联网技术实现家居自动化、智能化的控制系统。

它通过连接家里的各种设备,如灯光、电视、空调、窗帘、门锁等,实现远程控制、定时控制、场景控制等功能,提高生活的便利性和舒适度。

本文旨在探究基于物联网技术的智能家居控制系统的实现原理、应用场景、优势和发展趋势。

二、智能家居控制系统的实现原理智能家居控制系统的实现原理主要包括以下几个方面:1、传感器技术传感器是智能家居控制系统的重要组成部分,它可以感知家庭环境的温度、湿度、光照、门窗状态、人体活动等信息,并将这些信息传输给控制中心。

目前常见的传感器有温湿度传感器、光照传感器、红外传感器、门窗磁感应传感器等。

2、通信技术智能家居控制系统需要通过通信技术实现各个设备之间的联动和远程控制。

常见的通信技术有Wi-Fi、蓝牙、ZigBee、Z-Wave等。

其中,Wi-Fi技术传输速度快、覆盖面广,适合家庭中需要高速传输的设备,如电视、音响等;蓝牙技术适合小范围内的设备联动,如手机和手环之间的联动;ZigBee和Z-Wave技术适合低功耗、低速率、低成本的设备,如传感器、开关等。

3、云计算技术智能家居控制系统需要借助云计算技术实现数据的存储、分析、处理和共享。

云计算技术可以将家庭中各种设备产生的数据上传到云端进行分析,根据用户的需求提供相应的场景控制方案。

同时,云计算技术还可以实现用户数据的共享和备份,方便用户在不同设备上使用。

4、人工智能技术智能家居控制系统需要借助人工智能技术实现智能化的控制。

人工智能技术可以根据用户的习惯和需求,自动调节家庭设备的工作状态,提高用户的生活便利性和舒适度。

同时,人工智能技术还可以通过语音识别、图像识别等技术,实现人机交互,提高用户的使用体验。

三、智能家居控制系统的应用场景智能家居控制系统的应用场景主要涵盖以下几个方面:1、智能照明智能照明是智能家居控制系统的最基本应用之一。

基于物联网的智能安防系统设计与实现

基于物联网的智能安防系统设计与实现

基于物联网的智能安防系统设计与实现智能安防系统是利用物联网技术与信息通信技术相结合,通过对周边环境的感知、数据的收集与处理,实现对安全隐患的及时预警、追踪以及处理的一种系统。

它通过无线通信、云计算、大数据等技术手段,可以实现对物理空间的实时监控、安全事件的自动识别与处理,为人们的生活与工作提供更高的安全保障。

一、系统的设计与实现1.1 系统架构设计智能安防系统设计的第一步是确定系统的架构。

一个完整的智能安防系统主要包括传感器节点、数据传输网络、数据处理与分析平台以及管理控制终端。

传感器节点负责感知周围环境的信息,例如温度、湿度、光线、声音、图像等。

传感器节点可以通过无线通信技术(如Wi-Fi、Zigbee、LoRa等)将感知到的数据传输到数据传输网络。

数据传输网络负责将传感器节点传输的数据快速、稳定地传输到数据处理与分析平台。

数据传输网络可以采用有线网络(如以太网)或者无线网络(如4G、5G等)。

数据处理与分析平台接收数据传输网络传输的数据,进行数据的处理与分析。

通过算法的运算与评估,识别出异常行为与安全隐患,并对其进行预警与处理。

管理控制终端是系统的操作界面。

用户可以通过管理控制终端对智能安防系统进行设置与控制,查看实时监控画面、接收预警信息等。

1.2 传感器选择与布局传感器的选择和布局是智能安防系统设计的核心部分。

不同的安防需求需要选择不同类型的传感器,并且根据实际情况合理布局传感器,确保系统可以全面感知到周围环境的变化。

温度传感器、湿度传感器、光线传感器等可以用于环境监测,用于监测室内温度、湿度等情况是否正常,以及室内光线是否达到要求。

声音传感器可以用于声音的监测,当系统检测到异常的噪音或声音时,可以自动发出预警信号。

图像传感器可以用于视频监控,对室内外进行实时监控。

根据需要,可以选择固定摄像头或者可移动摄像头。

1.3 数据处理与分析数据处理与分析是智能安防系统的核心功能之一。

通过对感知数据的处理与分析,系统能够识别出异常行为并进行预警与处理。

《2024年一种基于STM32单片机的多功能智能家居控制系统》范文

《2024年一种基于STM32单片机的多功能智能家居控制系统》范文

《一种基于STM32单片机的多功能智能家居控制系统》篇一一、引言随着科技的飞速发展,智能家居系统已经逐渐进入人们的日常生活。

作为智能家居的核心控制单元,STM32单片机以其高性能、低功耗等优点被广泛应用于各种智能家居控制系统中。

本文将介绍一种基于STM32单片机的多功能智能家居控制系统,旨在实现家居设备的智能化管理和控制。

二、系统概述本系统以STM32单片机为核心,通过与各种传感器、执行器以及网络通信模块的连接,实现对家居设备的远程监控和智能控制。

系统具有多种功能,包括环境监测、安防报警、家电控制、能源管理等,可满足用户多样化的需求。

三、硬件设计1. 主控制器:采用STM32单片机,具有高性能、低功耗、易于扩展等优点。

2. 传感器模块:包括温度传感器、湿度传感器、烟雾传感器等,用于监测家居环境。

3. 执行器模块:包括灯光控制、窗帘控制、空调控制等,实现家电的智能控制。

4. 通信模块:采用Wi-Fi或ZigBee等无线通信技术,实现与手机APP或智能家居中心的控制。

5. 电源模块:采用稳定可靠的电源供应,保证系统的正常运行。

四、软件设计1. 操作系统:采用RTOS(实时操作系统),保证系统的实时性和稳定性。

2. 编程语言:采用C语言进行编程,便于开发和维护。

3. 通信协议:采用通用的通信协议,如MQTT、HTTP等,实现与手机APP或智能家居中心的通信。

4. 控制算法:根据传感器的数据,采用智能算法实现家居设备的自动控制。

五、功能实现1. 环境监测:通过传感器实时监测家居环境,如温度、湿度、烟雾等,并将数据传输至手机APP或智能家居中心。

2. 安防报警:通过安装安防设备,实现家庭安全监控和报警功能。

当发生异常情况时,系统将自动触发报警并通知用户。

3. 家电控制:通过执行器实现家电的智能控制,如灯光控制、窗帘控制、空调控制等。

用户可以通过手机APP或智能家居中心远程控制家电设备。

4. 能源管理:系统可实现对家庭能源的统计和分析,帮助用户合理使用能源,降低能源浪费。

zigbee技术简介

zigbee技术简介

zigbee技术简介第一篇:ZigBee技术简介ZigBee技术是一种基于IEEE 802.15.4标准的低功耗、短距离、无线网络技术,它可以支持广泛的应用场景,例如智能家居、智能城市、工业自动化、医疗保健等。

相比于传统的无线网络技术,如WiFi和蓝牙,ZigBee技术具有以下优势:1. 低功耗:ZigBee设备的电池寿命通常可以达到数月甚至数年,这使其非常适合那些无法方便更换电池的应用场景。

2. 短距离:ZigBee技术适用于局部网络,其通信距离通常在10-100米之间,这减少了通信延迟和能量损耗,同时也提高了通信安全性。

3. 开放标准:ZigBee技术是一个开放的标准,许多公司都可以使用相同的标准来开发和生产设备,这降低了开发成本和市场风险,同时也促进了设备互操作性。

ZigBee技术可以支持多种网络拓扑结构,包括星型、树型和网状结构,其中网状结构最为常见。

在网状结构中,所有设备都可以互相通信,这提高了网络的可扩展性和可靠性。

另外,ZigBee设备也可以进行自组网,这意味着设备可以自动加入网络,让用户部署和管理网络变得更加容易。

除了标准的ZigBee技术,还有一些衍生的协议和标准,例如ZigBee Pro、ZigBee IP、ZigBee Light Link等。

这些协议和标准可以满足不同的应用场景需求,例如ZigBee Pro主要用于工业自动化和安防系统,ZigBee IP用于IPv6网络,ZigBee Light Link用于智能家居照明控制。

总的来说,ZigBee技术是一种非常适合物联网应用的无线网络技术,它具有低功耗、短距离、开放标准等优势,可以帮助用户快速连接物联网设备,实现智能化控制和管理。

第二篇:ZigBee和蓝牙的区别ZigBee和蓝牙都是无线技术,它们之间有什么区别呢?以下是一些常见的区别:1. 适用场景不同蓝牙技术适用于需要高速传输和连接范围较小的场景,例如音频传输、手机、平板电脑和笔记本电脑等,它的通信距离通常在10米左右。

《基于ZigBee技术的停车场车位检测系统设计》范文

《基于ZigBee技术的停车场车位检测系统设计》范文

《基于ZigBee技术的停车场车位检测系统设计》篇一一、引言随着社会经济的发展和汽车普及程度的提高,停车场已经成为人们生活中不可或缺的设施之一。

而为了有效管理停车场的秩序、提升用户停车体验,以及解决停车难、寻车难等问题,停车场车位检测系统的设计与实施显得尤为重要。

近年来,随着无线通信技术的发展,ZigBee技术以其低功耗、低成本、低复杂度等优势在智能交通和物联网领域得到了广泛应用。

本文将介绍一种基于ZigBee技术的停车场车位检测系统设计。

二、系统设计概述本系统采用ZigBee无线通信技术,通过在每个停车位上安装传感器节点,实时监测停车位的状态。

当车辆进入或离开停车位时,传感器节点将检测到的信息通过ZigBee网络传输至中央控制器。

中央控制器对接收到的信息进行汇总、处理后,通过有线或无线网络将车位信息发送至用户终端,实现车位实时检测与信息反馈。

三、硬件设计1. 传感器节点设计:传感器节点主要由超声波测距模块、微控制器和ZigBee无线通信模块组成。

超声波测距模块用于实时检测停车位上是否有车辆停放;微控制器负责控制超声波测距模块的工作,并对接收到的数据进行处理;ZigBee无线通信模块负责将处理后的数据传输至中央控制器。

2. 中央控制器设计:中央控制器是整个系统的核心,负责接收各传感器节点传输的数据,进行汇总、处理后,通过有线或无线网络将车位信息发送至用户终端。

中央控制器可采用具有较强数据处理能力的嵌入式系统实现。

四、软件设计1. 传感器节点软件设计:传感器节点的软件设计主要包括超声波测距模块的驱动程序设计、微控制器的数据处理程序设计和ZigBee无线通信模块的通信程序设计。

其中,超声波测距模块的驱动程序负责控制超声波测距模块的工作,并实时获取距离数据;微控制器的数据处理程序负责对接收到的数据进行处理,判断停车位上是否有车辆停放;ZigBee无线通信模块的通信程序负责将处理后的数据通过ZigBee网络传输至中央控制器。

基于物联网的智能家居控制系统的设计与实现

基于物联网的智能家居控制系统的设计与实现

基于物联网的智能家居控制系统的设计与实现近年来,物联网发展迅速,家居智能化也成为了一个热门话题。

因此,基于物联网的智能家居控制系统的设计和实现变得越来越受关注。

本文将探讨该系统的设计和实现方案。

一、背景分析随着人们生活水平的提高,智能家居越来越受到大众关注。

智能家居是指通过物联网技术,将家中的电器、家具、安防、通讯等设备与互联网紧密连接起来,实现家庭自动化控制和智能化管理。

通过智能家居系统,业主可以远程控制家中各种设备的开关、温度、湿度、照明等,以满足个性化、智能化、安全化、节能化、舒适化的生活需求。

二、系统架构设计基于物联网的智能家居控制系统主要由物理层、数据链路层、网络层和应用层四个部分组成,其中物理层是指控制系统云端的服务器和控制面板,数据链路层是指各智能设备之间的连接,网络层是指路由器和数据交换中心等网络设备的配置和维护,应用层是指接口和应用程序模块。

物理层:智能家居的云端服务器主要负责数据存储、账户管理、运行管理和权益保护等功能。

为了保证家居控制系统的数据安全,云端服务器必须做好数据加密、备份与恢复等安全策略。

数据存储一定要考虑到数据完整性、可靠性和安全性等因素,保障用户数据不被非法获取。

数据链路层:数据链路层是智能设备之间的连接方式,即设备之间的通讯协议。

目前市面上主要的通讯协议有Zigbee、Wi-Fi、蓝牙等。

这些协议各有优劣,根据家居应用的需要进行选择。

网络层:智能家居系统需要内外网连接,因此路由器和数据交换中心等网络设备的配置和维护是不可或缺的。

在此基础上,还需要考虑信号覆盖范围和稳定性等因素,确保智能家居网络的稳定、快速、可靠。

应用层:应用层是指用户在控制系统中使用的接口和应用程序模块。

该层主要包括设备控制、场景控制、联动控制、智能模式切换等功能。

用户可以通过手机APP、控制面板或智能语音助手等多种方式控制智能家居的各种设备。

三、核心技术1.控制面板设计技术:控制面板是用户控制智能家居的主要接口之一。

基于ZigBee技术的智能家庭安防系统设计

基于ZigBee技术的智能家庭安防系统设计

基于ZigBee技术的智能家庭安防系统设计邱骏【摘要】为了消除人们出门在外而对家中安全状况的忧虑,设计了一种将多种技术融合的智能家庭安防监控系统,其中包含了ZigBee技术、智能传感器技术、4G技术和计算机技术等,监控系统可以将感应、采集到的数据显示在上位机、手机终端上.当发生异常情况时,用户会接收到短信提醒并可使用智能手机APP对家中设备进行控制,同时通过摄像头的辅助功能,抓拍人员入侵情况,并将侵图像显示在APP上.【期刊名称】《电气自动化》【年(卷),期】2019(041)001【总页数】4页(P71-74)【关键词】家庭安防;数据感应和采集;ZigBee技术;智能传感器技术;4G技术;计算机技术【作者】邱骏【作者单位】南京信息工程大学电子与信息工程学院,江苏南京 210044【正文语种】中文【中图分类】TP290 引言随着时代的发展,传统家庭安防系统设计的众多弊端开始显露,其中最主要的缺点在于传统安防系统的稳定性不高、布线方式繁琐,有些时候会发生误报情况,甚至还影响家庭室内的美观程度等[1] 。

于是,采用物联网技术设计了一款智能家庭安防系统。

此系统基于ZigBee技术[2-3],利用传感器感应、采集家庭环境参数,通过ZigBee模块和4G模块传输发送数据。

当用户接收短信警报时,可以通过上位机、智能手机APP客户端查看状况,还可通过手机APP下达命令进行远程控制,这样便可以成功地实现对家庭安全防护的监测与控制。

1 系统总体设计监控系统主要是监测和掌握家庭区域内各项指标以及完成相应的控制目标,具体包括数据感应和采集节点、报警节点、反向控制节点、汇聚网关节点和服务器等。

这当中的数据感应和数据采集节点、报警节点和反向控制节点由传感器模块和ZigBee模块所构成。

汇聚网关节点由ZigBee通信模块、主控模块、4G模块和摄像头模块所构成。

系统总体设计框图如图1所示。

整个系统的工作原理:首先,数据感应、采集节点通过不同的传感器模块对家庭环境的各类参数进行现场收集;当出现异常状况时,终端设备会形成家庭数据报文,数据报文从ZigBee网络传输到汇聚网关节点上的ZigBee通信模块,通信模块再利用ZigBee网络控制报警节点的工作;同时,汇聚网关节点将接收到的家庭数据报文传递给主控模块中进行整理,主控设备再将信息通过以太网传送到互联网的指定IP服务器;用户还会收到家中异常情况下通过4G模块经GSM网络发来的短信消息,同时可以通过上位机网页或手机APP对家中情况进行查看。

基于ZigBee技术的无线智能家用燃气报警系统

基于ZigBee技术的无线智能家用燃气报警系统

基于ZigBee技术的无线智能家用燃气报警系统杨晓明;施云波;修德斌;赵文杰;米继耀;刘丛宁【摘要】在研究传统家用燃气报警器的基础上,以ZigBee协议为平台,构建mesh 网状网络实现网络化的智能语音报警系统.由于传感器本身的温度和实际环境温度的影响,传感器标定后采用软件补偿方法.为了减少系统费用,前端节点采用半功能节点设备,路由器和协调器采用全功能节点设备,构建mesh网络所形成的家庭内部报警系统,通过通用的电话接口连接到外部的公用电话网络,启动语音模块进行报警.实验结果表明,在2.4GHz频率下传输,有墙等障碍物的情况下,节点的传输距离大约为35 m,能够满足家庭需要,且系统工作稳定,但在功耗方面仍需进一步改善.【期刊名称】《电子设计工程》【年(卷),期】2010(018)011【总页数】4页(P146-149)【关键词】CC2430;TGS6812;电话机模块;ISD1110【作者】杨晓明;施云波;修德斌;赵文杰;米继耀;刘丛宁【作者单位】哈尔滨理工大学,测控技术与通信工程学院,测控技术与仪器黑龙江省高校重点实验室,黑龙江,哈尔滨,150080;哈尔滨理工大学,测控技术与通信工程学院,测控技术与仪器黑龙江省高校重点实验室,黑龙江,哈尔滨,150080;哈尔滨理工大学,测控技术与通信工程学院,测控技术与仪器黑龙江省高校重点实验室,黑龙江,哈尔滨,150080;哈尔滨理工大学,测控技术与通信工程学院,测控技术与仪器黑龙江省高校重点实验室,黑龙江,哈尔滨,150080;哈尔滨理工大学,测控技术与通信工程学院,测控技术与仪器黑龙江省高校重点实验室,黑龙江,哈尔滨,150080;哈尔滨理工大学,测控技术与通信工程学院,测控技术与仪器黑龙江省高校重点实验室,黑龙江,哈尔滨,150080【正文语种】中文【中图分类】TP206+.1安全防范的报警系统是确保住宅、住户安全的极为重要的途径之一,同时也是数字化家庭的重要组成部分。

基于ZigBee无线传感器网络的智能家居系统

基于ZigBee无线传感器网络的智能家居系统

基于ZigBee无线传感器网络的智能家居系统苏李果;朱燕【摘要】随着电子、计算机和通信技术的发展以及人们生活水平的提高,人们对每日息息相关的家居功能有了更高的期望。

为了改进现有大多数现场总线式系统布线和维护难的局面,提出了一种基于 ZigBee 无线传感器网络的智能家居系统实现方案。

该系统包括ZigBee无线传感器网络、智能家居网关和移动手机终端三个部分,可以通过智能家居网关直观地掌握所有节点上各种传感器的工作状态,集中对各种电器进行控制,并可通过移动手机终端实现远程控制。

经测试该系统运行良好,达到了预期的设计目标。

%With the rapid development of electronic, computer and communication technology and the improvement ofpeople's living standard, people have higher expectations for the home furnishing function. To improve the difficult situation of wiring and maintenance in the most fieldbus system, this paper provides a smart home system solution based on ZigBee Wireless Sensor network. This System includes ZigBee Wireless Sensor network, smart home system gateway and mobile phone end device. Users can master the working state of all the sensors in the nodes intuitively, and they can centralize control the Electrical appliances. And the remote control mode can be realized through a mobile terminal, too. After the test, this system works well and reaches the desired design goal.【期刊名称】《计算机系统应用》【年(卷),期】2015(000)006【总页数】5页(P66-70)【关键词】ZigBee;无线传感器网络;智能家居;协调器节点;终端节点【作者】苏李果;朱燕【作者单位】闽西职业技术学院电气工程系,龙岩 364021;娄底职业技术学院电子信息工程系,娄底 417000【正文语种】中文21世纪是信息化的时代, 随着电子、计算机和通信技术的发展以及人们生活水平的提高, 人们对每日息息相关的家居功能有了更高的期望. 不仅要求住宅能满足一般的居住需求, 还越来越多地注重家庭生活中每个成员的安全、舒适与便利程度. 这样的需求促进了智能家居产品诞生, 它的基础平台是住宅, 集合了建筑布线、互联通信、家居安防、系统自控及音视频技术, 创建了一个高效的日常生活事务的管理系统, 有效地提升了家庭生活的安全、方便和舒适性, 并满足人们对于环保的需求. 自20世纪末智能家居的理念引入到国内, 经过了十多年的发展, 我国的智能家居的发展进入了融合演变期, 呈现快速增长的势头. 但目前大多数系统还是采用现场总线式的连接方式, 给布线安装和维护方面带来了不便[1]. 基于上述原因, 本文提出了一种基于ZigBee无线传感器网络的智能家居系统实现方案.1 系统架构与工作原理本系统主要由三部分构成: ZigBee无线传感器网络、智能家居网关和移动手机终端.ZigBee无线传感器网络由多个终端节点和一个协调器组成, 每个终端节点根据实际的监测需求连接多种传感器或受控设备——如温度、湿度、有毒气体、光敏、窗帘电机、红外遥控转发器等. 它将采集到的传感器数据汇聚至协调器, 并接收协调器发来的命令. 协调器通过UART串口连接智能家居网关, 负责与上位机控制软件进行交互.智能家居网关是整个系统的控制核心, 它是内部ZigBee无线传感器网络与外部互联网连接的中转站. 它具备可视化的界面, 在其上可对各终端节点的实时状态进行监控. 对内可通过ZigBee协调器转发各种查询和控制命令, 对外可提供TCP/IP Socket连接Server服务, 供移动手机终端连接, 实现无线远程监控[2].图1 系统构成2 系统硬件设计本系统中智能家居网关采用PC机作为运行环境, 因此主要对ZigBee无线传感器网络的硬件进行了设计. 系统选用了美国TI公司的CC2530作为无线通信的主控芯片, CC2530内部包含一个8051内核MCU, 拥有ADC、UART等丰富的外设资源, 同时还集成了高性能的射频收发器, 是一个典型的SOC片上系统. 它功耗极低, 数据传输响应时间短, 可满足本系统的设计需求.2.1 终端节点硬件设计终端节点需要完成传感器数据的采集, 定时发送至协调器, 并接受协调器发来的控制命令. 因此终端节点的硬件设计主要包括数据采集与控制模块、数据处理与无线通信模块和电源模块的设计.(1) 数据采集与控制模块该模块根据终端节点的需求选择各种不同的传感器或控制装置, 由于CC2530内部带A/D转换的外设功能, 因此对于输出为模拟量的传感器可以直连该芯片. 对于窗帘控制节点, 其上需连接光照强度检测传感器和控制电机的继电器. 前者选择光敏电阻, 采用分压电路的接法, 利用光照强度不同时其阻值改变导致两端电压值改变的特性, 可实现光照等级的采集, 用于窗帘自动开闭的控制. 继电器的选择应考虑其驱动电压, 由于CC2530的供电电源典型值为3.3V, 因此选择输入兼容3.3V的继电器.温湿度采集节点选择奥松电子的AM2301数字温湿度传感器, 它内部包含一个电容式感湿元件和一个NTC测温元件, 并与一个高性能8位单片机相连, 采用单总线接口, 硬件电路上直连CC2530的P0.7端口, 可直接读出温湿度数据.有毒气体检测节点选择MQ-2气体传感器, 它的电导率随着空气中可燃气体浓度的增加而增大, 其输出的模拟电压值也随之变化. 本系统中将它的输出连接LM393电压比较器, 通过电位器改变比较参考电压值可进行气体报警灵敏度的调节.(2) 数据处理与无线通信模块本系统数据处理和无线通信功能分别使用CC2530内部的8051内核和射频收发器, CC2530为SOC片上系统, 具有很高的集成度, 所以其周边只需连接晶振和少量负载电容即可. 该模块连接了XTAL1和XTAL2两个晶振, 分别为32MHz和32.768KHz. 无线通信方面主要设计了天线电路, CC2530的射频输出为差分信号, 为了与天线的单端输出相连, 两者之间利用电感和电容设计了巴伦电路[3]. 在天线的选择上, 经过综合对比各种天线的性能, 选用SMA连接端子的鞭状天线. 数据处理和无线通信模块的电路原理图如图2所示.图2 数据处理与无线通信模块电路原理图(3) 电源模块本系统主要应用于家庭内部, 各个终端节点均能得到较为稳定的供电, 因此在供电方面选择电源供电. 使用5V直流电压输入, 选用AMS1117-3.3 DC/DC稳压芯片完成5V转3.3V, 为系统各个模块供电.2.2 协调器节点硬件设计协调器节点与智能家居网关连接, 它把从各终端节点汇聚的传感器数据转发到网关, 同时向各终端节点分发网关下达的控制命令. 协调器节点上无需连接传感器, 它在数据处理与无线通信模块和电源模块的硬件电路设计上与终端节点相同. 由于协调器与智能家居网关之间的连接端口为UART串口, 而且两者串口数据的电平标准不同——协调器上为RS232 TTL电平标准, PC端为USB接口标准, 因此系统选用PL2303芯片设计了USB与RS232 TTL电平互相转换的电路. PL2303芯片内置USB功能控制器、USB收发器、振荡器和带有全部调制解调器控制信号的UART, 具有较高的集成度, 在其周边只需连接12MHz晶振与两只电容即可构建最小系统. 协调器节点的USB转RS232接口的电路原理图如图3所示.图3 协调器节点的USB转RS232电路原理图3 系统软件设计系统软件设计包括ZigBee无线传感器网络中各个节点的程序设计、智能家居网关的监控软件的设计和移动手机终端软件的设计.3.1 数据通信协议由于ZigBee网络通信涉及查询和控制命令, 需要传输多种不同的传感器数据, 因此需要先对数据通信的协议进行设计. 数据以字节为单位, 系统规定了协调器节点的查询和控制命令的数据帧格式, 并对终端节点的响应帧格式进行了定义, 如表1所示. 其中“地址”为2个字节的短地址, “功能码”在Modbus协议的基础上针对实际应用进行扩展, “数据段”根据命令功能的不同和传感器数据位数的需求进行调整, “校验码”为前述内容的异或值.表1 ZigBee通信数据帧格式格式组成开始符地址功能码数据段校验码结束符字节数1 Byte2 Byte1 Byte0-N Byte1 Byte1 Byte 缩写STADDRFCDAXORED“功能码”的详细定义如表2所示, 查询命令所对应的“数据段”长度为0, 控制命令所对应的“数据段”长度为1.表2 功能码描述功能码FC描述数据长度 01查询所有终端节点的传感器数据002查询单个终端节点的传感器数据0 0A控制终端节点灯的亮灭1 Byte 0B控制终端节点窗帘开合1 Byte 0C外出模式, 关闭所有设备1 Byte3.2 终端节点程序设计终端节点的程序设计开发环境为IAR, 基于TI公司的Z-Stack 2007pro协议栈进行开发.终端节点在启动后先搜索协调器建立的网络并加入, 在传感器数据采集与上报的机制方面, 设计了两种模式, 一是定时采集自动上报; 二是只有接收到协调器发来的查询命令, 才唤醒节点采集并上报. 为了降低功耗, 系统设计以上两种形式当终端节点没有采集传感器数据时, 进入休眠状态[4]. 具体的程序工作流程如图4所示.图4 终端节点程序流程图3.3 协调器节点程序设计协调器在上电初始化后建立ZigBee网络, 收到终端节点的加入请求后, 允许其加入, 然后监听OSAL中串口接收事件或无线接收数据事件是否发生. 若收到智能家居网关通过串口发来的查询或控制命令, 则将其广播出去或单播给目标终端, 等待终端发回响应数据并通过串口发给网关, 然后再次进入监听状态. 若收到终端节点定时发来的传感器数据, 则直接通过串口发给网关, 最终也是再次进入监听状态. 具体的程序工作流程如图5所示.图5 协调器节点程序流程图3.4 智能家居网关软件设计本系统中智能家居网关以PC机Windows操作系统作为运行环境, 使用C++语言, 在Visual Studio 2005和数据库开发环境下, 设计了监控管理软件. 智能家居网关和ZigBee协调器节点之间采用UART串口连接, 使用MSComm控件实现了两者之间的串口通信[5]. 软件使用可视化控件直观地展示了终端节点上各种传感器的工作状态, 记录了温湿度的变化曲线. 同时为了扩展系统的远程控制的功能, 使用VC++中的Socket编程实现了TCP服务器端, 提供给远程移动手机终端连接. 通过该监控管理软件, 用户可直观地掌握所有传感器节点的工作情况, 并可集中对各种电器进行控制. 该监控管理软件的界面如图6所示.图6 智能家居网关监控管理软件界面3.5 移动手机终端软件设计移动手机终端选择Android系统作为运行平台. 终端软件的设计主要包括3个方面的内容: 一是与智能家居网关之间基于TCP/IP协议的socket通信; 二是各种传感器实时信息的更新与控制命令的传送; 三是人机界面的设计.Socket通信模块的程序设计使用了Android系统的进程间通信的机制 , 并加入了Service、Broadcast Receiver和Activity组件实现相关功能, 该模块的程序架构如图7所示.图7 移动手机终端socket通信模块程序架构从上图中可以看到, 用户在UI界面中启动连接socket服务的请求, 然后连入智能家居网关的socket服务器. 连接建立以后, 启动一个新线程, 用于发送控制命令以及接收返回的传感器实时信息. 同时该进程将传感器实时信息以广播的形式发给UI 界面的Receiver进行刷新显示.人机界面的设计主要包括socket服务器连接界面和主功能界面的设计. 主功能界面实现ZigBee各终端节点的传感器信息的实时显示, 如: 温度、湿度、可燃气体泄漏和光照度等, 同时设计了针对家中电器控制的功能模块, 如: 照明灯、风扇等, 情景模式页面设计了离家模式和在家模式, 可根据需要统一对各种传感器和电器进行控制. 设计好的人机界面如图8所示.图8 移动手机终端人机界面4 系统的连接实现与测评系统设计完成后, 为了验证方案的可行性, 对其进行了连接实现与测评. 取五个节点,其中一个为协调器, 通过UART串口连接智能家居网关, 其余四个为终端, 分别连接温度、湿度、可燃气体检测等传感器和照明灯等家用电器.系统测试主要包括组网的速度与稳定性、传感器数据采集的准确性、数据传输的响应速度以及各个情境模式的工作情况. 经过测试, 所有节点上电后, 协调器组建ZigBee网络, 所有终端可正常入网, 整个过程在3秒完成并稳定长时间工作. 各终端节点的传感器数据采集准确, 温湿度传感器的误差控制在±0.5℃, 可燃气体检测传感器不存在误报现象. 当终端节点采集到的传感器数据发生变化时, 智能家居网关与移动手机终端上可以接近实时地刷新显示, 响应速度较高, 可以达到设计的要求. 在“离家模式”下, 断开所有电器的电源和关闭窗帘, 并保持光照、温湿度和可燃气体检测传感器的运行, 以提供报警功能; “在家模式”下, 关闭光照检测传感器, 由人工控制窗帘的开闭, 同时打开电器的电源便于控制.综上所述, 该系统中智能家居网关监控管理软件工作正常, 可以实时显示ZigBee网络中各节点的状态, 可集中对照明灯等设备进行控制, 并可提供移动手机终端连接实现远程控制, 达到了设计目标. 该系统发挥了ZigBee无线传感器网络组网简单、自组织性强、适合小数据远程传输的特点, 可适应智能家居系统的工作环境, 具有很强的实用性.参考文献1 黄文凤.智慧家庭中的智能家居产业发展现状及趋势.集成电路应用,2013(10):16–18.2 方志忠.基于ZigBee的智能家居系统的设计与实现.电子制作,2014(10):33–34.3 南忠良,孙国新.基于ZigBee技术的智能家居系统设计.电子设计工程,2010(7):117–119.4 王小强,欧阳骏,黄宁淋.ZigBee无线传感器网络设计与实现.北京:化学工业出版社,2012.5 李景峰,杨丽娜,潘恒.Visual C++串口通信技术详解.北京: 机械工业出版社,2010. Smart Home System Based on ZigBee Wireless Sensor NetworkSU Li-Guo1, ZHU Yan21(Electrical Engineering Department of Minxi Vocational and Technical College, Longyan 364021, China)2(Telecom Department, Loudi Vocational and Technical College, Loudi 417000, China)Abstract:With the rapid development of electronic, computer and communication technology and the improvement of people's living standard, people have higher expectations for the home furnishing function. To improve the difficult situation of wiring and maintenance in the most fieldbus system, this paper provides a smart home system solution based on ZigBee Wireless Sensor network. This System includes ZigBee Wireless Sensor network, smart home system gateway and mobile phone end device. Users can master the working state of all the sensors in the nodes intuitively, and they can centralize control the Electrical appliances. And the remote control mode can be realized through a mobile terminal, too. After the test, this system works well and reaches the desired design goal.Key words:ZigBee; wireless sensor network; smart home; coordinator node; end device node①基金项目:湖南省教育厅科学研究青年项目(12B106)收稿时间:2014-11-19;收到修改稿时间:2014-12-29本系统主要由三部分构成: ZigBee无线传感器网络、智能家居网关和移动手机终端.ZigBee无线传感器网络由多个终端节点和一个协调器组成, 每个终端节点根据实际的监测需求连接多种传感器或受控设备——如温度、湿度、有毒气体、光敏、窗帘电机、红外遥控转发器等. 它将采集到的传感器数据汇聚至协调器, 并接收协调器发来的命令. 协调器通过UART串口连接智能家居网关, 负责与上位机控制软件进行交互.智能家居网关是整个系统的控制核心, 它是内部ZigBee无线传感器网络与外部互联网连接的中转站. 它具备可视化的界面, 在其上可对各终端节点的实时状态进行监控. 对内可通过ZigBee协调器转发各种查询和控制命令, 对外可提供TCP/IP Socket连接Server服务, 供移动手机终端连接, 实现无线远程监控[2].本系统中智能家居网关采用PC机作为运行环境, 因此主要对ZigBee无线传感器网络的硬件进行了设计. 系统选用了美国TI公司的CC2530作为无线通信的主控芯片, CC2530内部包含一个8051内核MCU, 拥有ADC、UART等丰富的外设资源, 同时还集成了高性能的射频收发器, 是一个典型的SOC片上系统. 它功耗极低, 数据传输响应时间短, 可满足本系统的设计需求.2.1 终端节点硬件设计终端节点需要完成传感器数据的采集, 定时发送至协调器, 并接受协调器发来的控制命令. 因此终端节点的硬件设计主要包括数据采集与控制模块、数据处理与无线通信模块和电源模块的设计.(1) 数据采集与控制模块该模块根据终端节点的需求选择各种不同的传感器或控制装置, 由于CC2530内部带A/D转换的外设功能, 因此对于输出为模拟量的传感器可以直连该芯片. 对于窗帘控制节点, 其上需连接光照强度检测传感器和控制电机的继电器. 前者选择光敏电阻, 采用分压电路的接法, 利用光照强度不同时其阻值改变导致两端电压值改变的特性, 可实现光照等级的采集, 用于窗帘自动开闭的控制. 继电器的选择应考虑其驱动电压, 由于CC2530的供电电源典型值为3.3V, 因此选择输入兼容3.3V的继电器.温湿度采集节点选择奥松电子的AM2301数字温湿度传感器, 它内部包含一个电容式感湿元件和一个NTC测温元件, 并与一个高性能8位单片机相连, 采用单总线接口, 硬件电路上直连CC2530的P0.7端口, 可直接读出温湿度数据.有毒气体检测节点选择MQ-2气体传感器, 它的电导率随着空气中可燃气体浓度的增加而增大, 其输出的模拟电压值也随之变化. 本系统中将它的输出连接LM393电压比较器, 通过电位器改变比较参考电压值可进行气体报警灵敏度的调节.(2) 数据处理与无线通信模块本系统数据处理和无线通信功能分别使用CC2530内部的8051内核和射频收发器, CC2530为SOC片上系统, 具有很高的集成度, 所以其周边只需连接晶振和少量负载电容即可. 该模块连接了XTAL1和XTAL2两个晶振, 分别为32MHz和32.768KHz. 无线通信方面主要设计了天线电路, CC2530的射频输出为差分信号, 为了与天线的单端输出相连, 两者之间利用电感和电容设计了巴伦电路[3]. 在天线的选择上, 经过综合对比各种天线的性能, 选用SMA连接端子的鞭状天线. 数据处理和无线通信模块的电路原理图如图2所示.(3) 电源模块本系统主要应用于家庭内部, 各个终端节点均能得到较为稳定的供电, 因此在供电方面选择电源供电. 使用5V直流电压输入, 选用AMS1117-3.3 DC/DC稳压芯片完成5V转3.3V, 为系统各个模块供电.2.2 协调器节点硬件设计协调器节点与智能家居网关连接, 它把从各终端节点汇聚的传感器数据转发到网关, 同时向各终端节点分发网关下达的控制命令. 协调器节点上无需连接传感器, 它在数据处理与无线通信模块和电源模块的硬件电路设计上与终端节点相同. 由于协调器与智能家居网关之间的连接端口为UART串口, 而且两者串口数据的电平标准不同——协调器上为RS232 TTL电平标准, PC端为USB接口标准, 因此系统选用PL2303芯片设计了USB与RS232 TTL电平互相转换的电路. PL2303芯片内置USB功能控制器、USB收发器、振荡器和带有全部调制解调器控制信号的UART, 具有较高的集成度, 在其周边只需连接12MHz晶振与两只电容即可构建最小系统. 协调器节点的USB转RS232接口的电路原理图如图3所示.系统软件设计包括ZigBee无线传感器网络中各个节点的程序设计、智能家居网关的监控软件的设计和移动手机终端软件的设计.3.1 数据通信协议由于ZigBee网络通信涉及查询和控制命令, 需要传输多种不同的传感器数据, 因此需要先对数据通信的协议进行设计. 数据以字节为单位, 系统规定了协调器节点的查询和控制命令的数据帧格式, 并对终端节点的响应帧格式进行了定义, 如表1所示. 其中“地址”为2个字节的短地址, “功能码”在Modbus协议的基础上针对实际应用进行扩展, “数据段”根据命令功能的不同和传感器数据位数的需求进行调整, “校验码”为前述内容的异或值.“功能码”的详细定义如表2所示, 查询命令所对应的“数据段”长度为0, 控制命令所对应的“数据段”长度为1.3.2 终端节点程序设计终端节点的程序设计开发环境为IAR, 基于TI公司的Z-Stack 2007pro协议栈进行开发.终端节点在启动后先搜索协调器建立的网络并加入, 在传感器数据采集与上报的机制方面, 设计了两种模式, 一是定时采集自动上报; 二是只有接收到协调器发来的查询命令, 才唤醒节点采集并上报. 为了降低功耗, 系统设计以上两种形式当终端节点没有采集传感器数据时, 进入休眠状态[4]. 具体的程序工作流程如图4所示.3.3 协调器节点程序设计协调器在上电初始化后建立ZigBee网络, 收到终端节点的加入请求后, 允许其加入, 然后监听OSAL中串口接收事件或无线接收数据事件是否发生. 若收到智能家居网关通过串口发来的查询或控制命令, 则将其广播出去或单播给目标终端, 等待终端发回响应数据并通过串口发给网关, 然后再次进入监听状态. 若收到终端节点定时发来的传感器数据, 则直接通过串口发给网关, 最终也是再次进入监听状态. 具体的程序工作流程如图5所示.3.4 智能家居网关软件设计本系统中智能家居网关以PC机Windows操作系统作为运行环境, 使用C++语言, 在Visual Studio 2005和数据库开发环境下, 设计了监控管理软件. 智能家居网关和ZigBee协调器节点之间采用UART串口连接, 使用MSComm控件实现了两者之间的串口通信[5]. 软件使用可视化控件直观地展示了终端节点上各种传感器的工作状态, 记录了温湿度的变化曲线. 同时为了扩展系统的远程控制的功能, 使用VC++中的Socket编程实现了TCP服务器端, 提供给远程移动手机终端连接. 通过该监控管理软件, 用户可直观地掌握所有传感器节点的工作情况, 并可集中对各种电器进行控制. 该监控管理软件的界面如图6所示.3.5 移动手机终端软件设计移动手机终端选择Android系统作为运行平台. 终端软件的设计主要包括3个方面的内容: 一是与智能家居网关之间基于TCP/IP协议的socket通信; 二是各种传感器实时信息的更新与控制命令的传送; 三是人机界面的设计.Socket通信模块的程序设计使用了Android系统的进程间通信的机制 , 并加入了Service、Broadcast Receiver和Activity组件实现相关功能, 该模块的程序架构如图7所示.从上图中可以看到, 用户在UI界面中启动连接socket服务的请求, 然后连入智能家居网关的socket服务器. 连接建立以后, 启动一个新线程, 用于发送控制命令以及接收返回的传感器实时信息. 同时该进程将传感器实时信息以广播的形式发给UI 界面的Receiver进行刷新显示.人机界面的设计主要包括socket服务器连接界面和主功能界面的设计. 主功能界面实现ZigBee各终端节点的传感器信息的实时显示, 如: 温度、湿度、可燃气体泄漏和光照度等, 同时设计了针对家中电器控制的功能模块, 如: 照明灯、风扇等, 情景模式页面设计了离家模式和在家模式, 可根据需要统一对各种传感器和电器进行控制. 设计好的人机界面如图8所示.系统设计完成后, 为了验证方案的可行性, 对其进行了连接实现与测评. 取五个节点, 其中一个为协调器, 通过UART串口连接智能家居网关, 其余四个为终端, 分别连接温度、湿度、可燃气体检测等传感器和照明灯等家用电器.系统测试主要包括组网的速度与稳定性、传感器数据采集的准确性、数据传输的响应速度以及各个情境模式的工作情况. 经过测试, 所有节点上电后, 协调器组建ZigBee网络, 所有终端可正常入网, 整个过程在3秒完成并稳定长时间工作. 各终端节点的传感器数据采集准确, 温湿度传感器的误差控制在±0.5℃, 可燃气体检测传感器不存在误报现象. 当终端节点采集到的传感器数据发生变化时, 智能家居网关与移动手机终端上可以接近实时地刷新显示, 响应速度较高, 可以达到设计的要求. 在“离家模式”下, 断开所有电器的电源和关闭窗帘, 并保持光照、温湿度和可燃气体检测传感器的运行, 以提供报警功能; “在家模式”下, 关闭光照检测传感器, 由人工控制窗帘的开闭, 同时打开电器的电源便于控制.综上所述, 该系统中智能家居网关监控管理软件工作正常, 可以实时显示ZigBee网络中各节点的状态, 可集中对照明灯等设备进行控制, 并可提供移动手机终端连接实现远程控制, 达到了设计目标. 该系统发挥了ZigBee无线传感器网络组网简单、。

基于STM32和ZigBee的无线校园火灾报警系统设计

基于STM32和ZigBee的无线校园火灾报警系统设计

基于STM32和ZigBee的无线校园火灾报警系统设计丁凡;周永明【摘要】In this paper,a fire alarm system for campus based on ZigBee wireless network was designed,which can meet the campus' fire alarm management. This system takes ST's STM32 microprocessor and TI's CC2420 RF chip as the core. The fire alarm system adopts the modular design to design the hardware and software of the terminal node ,routing node and sensor node according to the function setting in wireless communication network.The sensor sub-nodes can detecttemperature ,smoke or carbon monoxide signals real-time captured by the sensors and determine whether to have fire hazard. Thus it realizes the wireless network of fire system for campus.%结合校园防火报警需要,设计了基于ZigBee技术的无线校园防火报警系统。

该系统以意法半导体公司推出的STM32系列ARM控制器、TI公司的CC2420无线射频芯片为核心,对无线传感器网络中的终端节点、路由器节点、协调器节点的硬件和软件进行了模块化设计。

传感器节点以温度、烟雾和CO浓度为实现监测对象,判断是否有火灾隐患,从而实现校园防火报警系统的无线网络化。

基于物联网的机器人智能监控系统

基于物联网的机器人智能监控系统

基于物联网的机器人智能监控系统在当今科技飞速发展的时代,物联网技术的应用范围不断扩大,为各个领域带来了前所未有的变革。

其中,基于物联网的机器人智能监控系统正逐渐成为保障生产安全、提高生产效率、优化服务质量的重要手段。

一、物联网与机器人智能监控系统的融合物联网,简单来说,就是通过各种传感器、网络技术将物体与互联网连接起来,实现智能化识别、定位、跟踪、监控和管理。

当物联网与机器人监控系统相结合时,就产生了强大的协同效应。

在这个融合的系统中,机器人不再是孤立的个体,而是通过物联网技术与其他设备、系统进行无缝连接和数据交互。

传感器收集环境中的各种信息,如温度、湿度、光照、声音等,通过网络传输给机器人,使其能够对周围环境有全面、实时的了解。

同时,机器人自身配备的摄像头、激光雷达等设备,能够获取更详细、精准的图像和空间数据。

这些数据经过处理和分析后,不仅为机器人的自主决策提供依据,还能通过物联网上传至云端,供远程监控人员随时查看和处理。

二、机器人智能监控系统的组成部分(一)感知层感知层是整个系统的基础,由各种传感器组成,包括但不限于温度传感器、湿度传感器、烟雾传感器、摄像头、激光雷达等。

这些传感器负责收集环境中的物理信息和图像数据,并将其转换为电信号或数字信号,以便后续的处理和传输。

(二)网络层网络层承担着数据传输的重任,它将感知层收集到的数据快速、准确地传输到处理层和应用层。

常见的网络技术包括 WiFi、蓝牙、Zigbee、4G/5G 等。

这些网络技术各有特点,适用于不同的场景和需求。

(三)处理层处理层是系统的“大脑”,负责对收集到的数据进行分析、处理和决策。

这通常需要借助强大的计算能力和先进的算法,如机器学习、深度学习等。

通过对数据的挖掘和分析,处理层能够识别出异常情况、预测潜在的风险,并制定相应的控制策略。

(四)应用层应用层是直接面向用户的界面,它将处理层的结果以直观、易懂的方式展示给用户。

用户可以通过手机、电脑等终端设备远程监控机器人的工作状态、查看监控画面、接收报警信息等,并根据需要对机器人进行远程控制和调度。

基于Zigbee的老年人智能家居安防系统

基于Zigbee的老年人智能家居安防系统

2017年第8期信息与电脑China Computer&Communication软件开发与应用基于Zigbee的老年人智能家居安防系统纪忠秋 富 倩 袁佳先 徐庆博 秦肇奎(吉林建筑大学 电气与计算机学院,吉林 长春 130118)摘 要:面向老年人的智能家居系统不仅需要为老年人提供一个舒适、便利的生活环境,更重要的是提供了安全保障。

笔者基于Zigbee技术对老年人智能家居安全防护系统进行研究及设计,从系统的体系结构、硬件设计和功能设计三个方面进行了阐述。

该系统具有家庭环境监测及异常事件报警等安防功能,能够在家中出现各种紧急情况时立即发现并及时处理。

关键词:老年人智能家居;安防系统;Zigbee技术中图分类号:TP273.5 文献标识码:A 文章编号:1003-9767(2017)08-099-02Intelligent Home Security System for Elderly People based on ZigbeeJi Zhongqiu, Fu Qian, Yuan Jiaxian, Xu Qingbo, Qin Zhaokui(College of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun Jilin 130118, China) Abstract: The smart home system for elders is not only supposed to provide a convenient and comfortable living environment, but more important is the security problem of the system. The design of smart home security system for old people is discussed based on the Zigbee technology, it involves the system architecture, hardware and software functional designing. The security system provides the monitoring of home surroundings and abnormality detecting, which can give an alarm and handle in time when the urgent events happen.Key words: smart home for elders; security system; Zigbee technology随着人们生活质量的不断提高和安全意识的加强,安防系统已成为智能家居系统中不可或缺的一个部分,它对于防范燃气泄漏、火灾、入室偷盗等居室安全问题具有重要的意义[1]。

ZIGBEE实际应用方案

ZIGBEE实际应用方案

ZIGBEE协议栈的架构和原理
ZIGBEE协议 栈分为物理 层、数据链 路层、网络 层和应用层
物理层负责 无线信号的 传输和接收
数据链路层 负责数据的 封装和解封 装以及差错 控制和流量 控制
网络层负责 路由选择、 网络管理和 安全机制
应用层负责 具体的应用 功能如智能 家居、智能 照明等
ZIGBEE技术的应用场景和优势
解决方案:制定统一的ZIGBEE标准确保不同 厂商的设备可以互相兼容
问题:设备故障可能导致兼容性问题
问题:设备升级可能导致兼容性问题
解决方案:加强设备维护和故障排查确保设 备正常运行
ZIGBEE技术的发展趋势 和未来展望
ZIGBEE技术与物联网的融合发展
物联网技术:ZIGBEE技术是物联网技术的重要组成部分 发展趋势:ZIGBEE技术在物联网领域的应用越来越广泛 未来展望:ZIGBEE技术与物联网的融合发展将更加紧密
数据安全问题: 数据泄露、数 据篡改、数据
丢失等
解决方案:加 密技术、数据 备份、数据隔
离等
加密技术:对 称加密、非对 称加密、哈希
算法等
数据备份:定 期备份、异地 备份、云备份

数据隔离:物 理隔离、逻辑 隔离、网络隔
离等
设备兼容性问题及解决方案
问题:不同厂商的设备可能存在兼容性问题
解决方案:定期更新ZIGBEE标准确保设备升 级后仍能保持兼容性
● 特点: . 低功耗:ZIGBEE设备可以工作在低功耗模式下延长电池寿命。 b. 短距离:ZIGBEE的传输距离一 般在10-100米之间适合于家庭、办公室等小范围无线网络应用。 c. 低成本:ZIGBEE设备的制造成本相对 较低适合于大规模部署。 d. 自组网:ZIGBEE设备可以自动组成无线网络无需人工干预。 e. 安全性: ZIGBEE设备支持多种安全机制如ES加密、密钥管理等保证数据传输的安全性。

基于物联网技术的智能安防领域的运用

基于物联网技术的智能安防领域的运用

基于物联网技术的智能安防领域的运用摘要:近年来,物联网技术发展十分迅猛,使得智能安防系统功能愈加完善健全,将物联网技术应用在智能安防系统中,可进一步增强人们的生活质量,使安防工作效率得到稳步提升。

鉴于此,本文首先阐述了物联网的概念,其次明确了物联网安防的主要体系,再次探讨了智能安防控制系统中的关键技术,最后提出了在智能安防领域中物联网技术的具体应用,仅供参考。

关键词:物联网;智能安防;智能建筑引言:21世纪计算机技术的飞快进步也带动了物联网技术的发展,涉及到的内容也愈来愈广泛。

将物联网技术应用在智能安防领域,可以满足人们日益增长的现代化需求,切实增强建筑的可行性与安全性。

特别是近年来,经济日新月异,人们对居住环境提出了更高的要求,构建符合当代的数据信息通信系统与管理体系已成为建筑业实现可持续发展的必经之路。

故而,针对智能安防领域中物联网技术的应用展开分析及研究具有重要的现实意义。

1物联网安防主要体系1.1感知层感知层的主要功能是对各类传感器的属性和状态信息进行有效识别,并通过多种方式对信息进行处理与控制,从而实现资源共享。

1.2通信层在物联网体系中,通信层是非常重要的内容。

运营商提供多种通信网络组成,确保网络内部的信息得到有效整合,通过构建规模较大的智能化网络系统,确保企业能够拥有安全可靠的信息化操作平台。

1.3管理层在管理层中,需充分发挥出物联网和相关专业技术的优势,从而制定较为完善的智能化解决方案。

管理层主要利用计算机技术对信息进行有效的管理和控制,既能协助企业制定解决方案,又能与使用者进行互动。

企业利用管理层不仅能够打造更加完善的网络体系,而且能够对设备进行有效的管理。

1.4应用层在整个物联网体系中,应用层所起到的主要作用是向社会展示系统的优势,保证系统能够在多个领域中发挥作用,例如对环境进行监测、对道路交通情况进行监测等。

2物联网的运用优势2.1布线优势在传统的安防系统中,其布线方式主要分为总线布线方式、电话线布线方式以及专线布线方式。

基于PLC智能家居远程安防系统设计

基于PLC智能家居远程安防系统设计

基于PLC智能家居远程安防系统设计
王兆驰
【期刊名称】《时代农机》
【年(卷),期】2016(000)012
【摘要】随着经济的发展和科学技术的提高,人们生活水平也有所提升,对生活质量提出了更高的要求,希望生活水平与安全得到充足的保障.家居安防逐步由古老的铁门铁锁向现在的科学化智能化发展.PLC智能家居远程安防系统可以做到第一时间将险情控制在萌芽状态,消灭安全隐患,并通知小区物业和住户,减小经济损失,使家居生活充满温馨安全感.
【总页数】2页(P26-27)
【作者】王兆驰
【作者单位】湖南工业大学,湖南株洲412007
【正文语种】中文
【中图分类】TP277
【相关文献】
1.智能家居安防GPRS无线远程监测报警系统设计
2.基于GPRS的智能家居远程安防监测系统设计
3.基于ZigBee的智能家居远程安防系统的设计
4.基于PLC智能家居远程安防系统设计
5.基于物联网的智能家居安防监控系统设计
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档