信号处理与数据分析第六章作业答案(A).邱天爽.
信号处理与数据分析 邱天爽作业答案(Part2)
对于 n 0 ,则有
y ( n)
pn
( 3)
1
p 1
1 1 1 1 3n ( ) n 1 ( ) p ( ) n 1 1 2 3 3 p 0 3 1 3
因此:
3n ,n 0 y (n) 2 ( 1 ), n 0 2
(a)画出 x(t ) 和 h(t ) 的图形如下图所示: 0 1
利用该图形,得到 y(t ) x(t ) h(t ) 如图所示:
因此,
t ,0 t , t 1 y (t ) 1 t ,1 t (1 ) 0, otherwise
k
( 3)
1
1
1
k
u ( n k 1)
k 1
( 3 ) u (n k 1)
k
用 p 代替 k -1 则,
1 y ( n ) ( ) p 1 u ( n p ) p0 3
对于 n 0 ,则有
1 1 1 1 y ( n ) ( ) p 1 1 3 3 2 p 0 1 3
2.(P24,课后习题 1.7)计算卷积并画出结果曲线
1 x ( n) u ( n 1), h( n) u ( n 1) 3
-n
解:利用定义可知,
y ( n) x ( n) h( n)
k
x ( k ) h( n k )
1 ( ) k u ( k 1)u ( n k 1) k 3
1.4
1.2
1
0.8
0.6
0.4
0.2
0 -20
数字信号处理课后习题答案 第六章习题与答案
1.用冲激响应不变法将以下 )(s H a 变换为 )(z H ,抽样周期为T。
为任意正整数 ,)()( )2()()( )1(022n s s As H b a s a s s H na a -=+++=分析:①冲激响应不变法满足)()()(nT h t h n h a nT t a ===,T 为抽样间隔。
这种变换法必须)(s H a 先用部分分式展开。
②第(2)小题要复习拉普拉斯变换公式1!][+=n n S n t L ,n a n t s a S S As H t u n t Ae t h )()()()!1()(010-=⇔-=-,可求出)()()(kT Th t Th k h a kT t a ===,又dz z dX zk kx )()(-⇔,则可递推求解。
解: (1)22111()()2a s a H s s a b s a jb s a jb ⎡⎤+==+⎢⎥+++++-⎣⎦[])( 21)()()(t u e e t h tjb a t jb a a --+-+=由冲激响应不变法可得:[]()()()() ()2a jb nTa jb nT a T h n Th nT ee u n -+--==+ 11011() () 211n aT jbT aT jbT n T H z h n z e e z e e z ∞------=⎡⎤==+⎢⎥--⎣⎦∑2211cos 21cos 1 ------+--⋅=ze bT z e bTz e T aT aT aT(2) 先引用拉氏变换的结论[]1!+=n n sn t L可得: na s s As H )()(0-=)()!1()(10t u n t Ae t h n t s a -=-则)()!1()()()(10k u n kT Ae T Tk Th k h n kT s a -⋅==-dzz dX zk kx azk u a ZZk )()( , 11)( 1-−→←-−→←-且按)11()()!1( )()!1( )()(111111000--∞=---∞=----=-==∑∑ze dz d z n AT e z k n T TA z k h z H T s n n k kT s n n k k可得⎪⎪⎩⎪⎪⎨⎧=-=-=•••---,3,2)1(1,1)(111000n z e z e AT n z e AT z H n T s T S n T s ,可以递推求得:2. 已知模拟二阶巴特沃思低通滤波器的归一化系统函数为:2'4142136.111)(ss s H a ++=而3dB 截止频率为50Hz 的模拟滤波器,需将归一化的)('s H a 中的s 变量用502⨯πs来代替424'108696044.928830.444108696044.9)100()(⨯++⨯==s s s H s H a a π 设系统抽样频率为Hz f s 500=,要求从这一低通模拟滤波器设计一个低通数字滤波器,采用阶跃响应不变法。
第6、8、9章作业参考答案
第6、8、9章作业参考答案(此参考答案摘录了张露、林力、邬智翔、杨纯等同学的作业答案,特此声明)第六章1、主要的固有噪声源有哪些?产生的原因、表达式和式中各项的意义是什么? 答:主要的固有噪声源有热噪声、散弹噪声、产生-复合噪声、1/f 噪声和温度噪声等。
下面分类叙述:(1)、热噪声。
当某电阻处于环境温度高于绝对零度的条件下,内部杂乱无章的自由电子的热运动将形成起伏变化的噪声电流,其大小与极性均在随机变化着,且长时间的平均值等于零。
热噪声常用噪声电流的均方值2nT I 表示,如下式:24()nT kT f I R∆= 式中R 为所讨论元件的电阻值,k 为玻尔兹曼常数,T 为电阻所处环境的绝对温度,f ∆为所用测量系统的频带宽度。
(2)、散弹噪声元器件中有直流电流通过时微观的随机起伏(如光电倍增管光阴极的电子发射,光伏器件中穿过PN 结的载流子涨落等)形成散弹噪声并叠加在直流电平上。
散弹噪声的电流均方值为:22nsh I qI f =∆式中q 为电子电荷,I 为流过电流的直流分量。
散弹噪声与电路频率无关,是一种白噪声。
(3)、产生-复合噪声(g-r 噪声)光电到探测器因光(或热)激发产生载流子和载流子复合这两个随机性过程引起电流的随机起伏,形成产生-符合噪声。
该噪声的电流均方值为:22224(/)14e n qI f I f ττπτ∆=+式中I 为流过光电导器件的平均电流,τ为载流子的平均寿命,e τ为载流子在光电导器件内电极间的平均漂移时间,f ∆为测量电路的带宽。
产生符合噪声与频率f 有关,不是白噪声。
但当22241f πτ<<,即在低频条件下时,公式可简化为24(/)n e I qI f ττ=∆此时可认为它是近似的白噪声。
(4)1/f 噪声1/f 噪声又成为闪烁噪声,通常是由于元器件中存在局部缺陷或杂质而引起的。
经验公式为:21/n I k I f f αβ=∆式中1k 为元件固有参数,α为与元器件电流有关的常数,通常取为2;β为与元器件材料性质有关的系数,常取为1。
数字信号处理第六章 习题答案
394784.18 Ha ( s) = 2 s + 888.58s + 394784.18
经双线性变换得数字滤波器的系统函数:
H ( z ) = Ha ( s) s= 2⋅1−z
=
−1
−1
T 1+z−1
T = 1/ fs = 1/103 (s)
394784.18
−1 3 1− z 3 1− z 2 ×10 ⋅ 1+ z−1 + 888.58× 2 ×10 ⋅ 1+ z−1 + 394784.18
解:由图可得
2 5 ω+ 3 π 5 2 jω H ( e ) = − ω + 3 π 0
2π π − ≤ω ≤ − 3 3 2π π ≤ω ≤ 3 3
[ −π ,π ]的其他ω
(1)冲激响应不变法 因为ω 大于折叠频率 π 时 H e jω 为零, 故用此法无失真。
各极点满足下式
1 1+ ( s Ωc )
4
sk = Ωce
π 2k −1 j + π 2 4
k = 12,4 ,3 ,
则 k = 1,2时,所得的 sk 即为 Ha ( s) 的极点
s1 = Ωce s2 = Ωce
3 j π 4
3 3 2 =− −j 2 2
2
( ) 激 应 变 求 2 冲 响 不 法 H(z) 40 136 1 −32(s − ) 3 + 3 2 Ha (s)= = (s + 2)(s + 8) s+2 s +8 40 136 T T 3 3 H ( z) = + 1− e−2T z−1 1− e−8T z−1 ( ) 线 变 法 H(z) 3 双 性 换 求 2 1− z−1 s= , −1 T 1+ z 2 1− z−1 1 −32( − ) −1 T 1+ z 2 Ha (s)= 2 1− z−1 2 1− z−1 ( + 2)( + 8) −1 −1 T 1+ z T 1+ z
信号处理与数据分析 邱天爽作业答案第四章
号恢复 y(t ) 的采样周期 T 的范围。 解: y(t ) 利用傅里叶变换的性质,我们可以得到:
Y ( j)=X 1 ( j)X 2 ( j)
因此 Y ( j )=0, 1000 。这说明 y(t ) 的奈奎斯特采样频率为 2 1000 2000 ,采样周期最多维
2 2000 10 3 sec,因此采样周期 T 必须满足 T 103 sec,才能从采样信号中恢复 y(t ) 。
1 X ( j)=75X ( j) ,因此 0 的最大值为 50 。 T
3.( 书 稿 4.15) 设 x1 ( t ) 和 x2 ( t ) 均 为 带 限 信 号 , 它 们 的 频 谱 满 足 X 1 ( j) 0, | | 1000 ,
X 2 ( j) 0, | | 2000 。若 y (t ) x1 (t ) x2 (t ) ,对 y(t ) 进行单位冲激序列采样,试给出保证能从采样后信
sin(4000 t ) x (t ) t (3)
2
,因此采样频率至少为 2(4000 ) 8000 。
4000
,因此采样频率至少为 2(4000 ) 8000 。
4000
(3) x(t ) 对应的 X ( j) 可以看作两个举行脉冲的卷积,且两脉冲均在 至少为 2(8000 ) 16000 。
100
100
通过冲击序列采样的结果为:
G ( j)= 1 X ( j( ks )) T
其中 T 2 / s 1 / 75 ,因此 G(j) 如下图所示
250
100
100
250
ቤተ መጻሕፍቲ ባይዱ
很显然,当不存在频谱交叠时,即 50 , G ( j)=
08级数字信号处理第6章作业解答
《数字信号处理》第6章课后作业答案6.1(1)已知IIR 数字滤波器的系统函数为 (1) 232164016()81061z H z z z z -+=-+- 试写出滤波器的差分方程,并分别画出直接I 型、直接Ⅱ型、转置直接Ⅱ型、级联型和并联型结构图。
解:经化解原式可得:123123252()5311448z z z H z z z z -------+=-+-直接I 型:直接Ⅱ型:级联型:注意,对于级联型,一定要化成负幂次,再写系数!经对原式进行分解得:11211221 2.5()110.2512z z z H z z z z-------+=⨯--+并联型: 注意:系数b,a 是()H z z的系数! b=[0,0,16,-40,16]; a=[8,-10,6,-1,0]; [K,z,d]=residue(b,a) KK1=[K(1),K(2)]; zz1=[z(1),z(2)];[b2,a2]=residue(KK1,zz1,0) 经原式分解得:111211.2 4.8 5.6()1610.2510.5z H z z z z -----=-++--+6.1(2)略 6.4Matlab 程序: clear; fp=5000; wp=2*pi*fp; fs=10000; ws=2*pi*fs; ap=3; as=30;[N,wc]=cheb1ord(wp,ws,ap,as,'s'); [B,A]=cheby1(N,ap,wc,'s') freqs(B,A);系统函数:17439213171.220510()18271 1.153910 1.25510 1.72410H s s s s s ⨯=++⨯+⨯+⨯ 图:6.6试设计一个巴特沃斯型模拟带通滤波器,并用Matlab 验证结果,要求带宽为200Hz ,中心频率为1000Hz ,通带内衰减不大于3dB,在频率小于830Hz 或大于1200Hz 处的衰减不小于25dB. 解:(1) 模拟带通滤波器的技术指标要求为:BW Ω=400πrad/s; 0Ω=2210πrad/s; p α=3dB; s α=25dB; 因为:ph pl Ω-Ω=400π;ph pl Ω•Ω=4000000π2; 所以可得:ph Ω=2210πrad/s; pl Ω=1810πrad/s; sh Ω=2400πrad/s; pl Ω=ll1810πrad/s; (2) 归一化频率为: 2210 5.525;400ph ph BWηΩ===Ω 18104.525;400pl pl BW ηΩ===Ω 24006;400sh sh BW ηΩ===Ω 1660 4.15;400sl sl BW ηΩ===Ω 2025;sh sl ηηη==(3)归一化原型模拟低通滤波器()a G p 的技术指标要求为:1;p λ= 222200min sh sl s sh sl ηηηηληη⎡⎤--=⎢⎥⎣⎦, ;s λ=1.83;(4)设计归一化原型低通滤波器:()a G p0.10.110.12101lg 101 4.762;2lg (101) 1.029;p s ss Ns N αααλλλ-⎛⎫- ⎪-⎝⎭≥-==-=c 所以 N=5;(5)查表得: 23451()1 3.3261 5.236 5.2361 3.2361an G u u u u u u=+++++ (6)()()ca an pu G p G u λ==(7)2()()()ph pl ph pla s p s Ha s G p Ω-Ω=+ΩΩ=Matlab 程序:fp=[905,1105]; fs=[830,1200]; wp=2*pi*fp; ws=2*pi*fs; ap=3; as=25;[N,wc]=buttord(wp,ws,ap,as,'s'); %巴特沃斯型模拟带通滤波器 [B,A]=butter(N,wc,'s'); f=500:1500; w=2*pi*f;H=freqs(B,A,w); subplot(2,1,1);plot(f,20*log10(abs(H))); grid on;axis([500,1500,-80,5]); xlabel('f/Hz'); ylabel('幅度/dB'); subplot(2,1,2); plot(f,angle(H)); grid on;axis([500,1500,-5,5]); xlabel('f/Hz'); ylabel('相位/dB');6.7 解:0.1T s =;112()(2)(3)23a s H s s s s s +-==+++++;122;3;s s ∴=-=-23122131(),,2()11T T T T H z z e z e T TH z e Z e Z ------==-∴=+--所以相应的的极点为Matlab 程序: clear; b=[1,1]; a=[1,5,6]; Fs=10;[B,A]=impinvar(b,a,Fs); [H,w]=freqz(B,A,'whole'); plot(w/pi,20*log10(abs(H)));6.8试用双线性变换法设计一个巴特沃斯型低通数字滤波器,并用matlab ,验证结果,给定技术指标为100,300,3,20,p s p s f Hz f Hz dB dB αα====采样频率为1000Hz 。
信号处理与数据分析 邱天爽作业答案第二章(Part2)
3.
出 A 的值。 解:我们知道 H ( j)
1 j 1 j 1 2 1 2 1 ,因此 A 1 。
X (e j )
n 0
x ne
j n
n
1 2
n 1
e j n 1 2
n 1
n 1
eቤተ መጻሕፍቲ ባይዱ j n
1 1 1 e j j 2 1 1 2 e 1 1 2 e j 0.75e j 1.25 cos 3e j 5 4cos
1.
(书稿 2.22)计算下列各式的离散时间傅里叶变换:
1 (1) x ( n) 2
n 1
u ( n 1) ;
1 (2) x ( n) 2
| n 1|
;
(3) x(n) (n 1) (n 1)
解:
(1) x(n) 的离散时间变换为:
X (e j )
n
x(n)e
j n
因此,
FT x(n) X (e j )
由本题(1)可知:
FT x (n) X (e j )
所以,
FT x (n) X (e j )
如若为实信号则有: X (e j )=X (e j ) (书稿 2.31) 一因果稳定 LTI 系统的频率响应为: H j 1 j 。试证明 H j A ,并求
* (2) x ( n)
解: (1)因为
X (e j )
n
x(n)e
j n
我们可以写成:
X (e j )
北师大版八年级数学上册《第六章数据的分析》章节检测卷-带答案
北师大版八年级数学上册《第六章数据的分析》章节检测卷-带答案学校:___________班级:___________姓名:___________考号:___________1 平均数算术平均数、加权平均数A.基础夯实1. 有一组数据:2 4 5 6 8 这组数据的平均数为()A. 3B. 4C. 5D. 62. 2012年5月某日我国部分城市的最高气温统计如下表所示.城市武汉成都北京上海海南南京拉萨深圳气温(℃)27 27 24 25 28 28 23 26则这组数据的平均数是()A. 24B. 25C. 26D. 273. 若a,b,c的平均数为7,则a+1、b+2、c+3的平均数为()A. 7B. 8C. 9D. 104. 如果一组数据−3−20 1 x 6 9 12的平均数为3 则x为()A. 2B. 3C. −1D. 15. 某学校在开展“生活垃圾分类星级家庭”评选活动中,从八年级任选出10名同学汇报了各自家庭1天生活垃圾收集情况,将有关数据整理如下表.生活垃圾收集量(单位:kg)0.5 1 1.5 2同学数 2 3 4 1请你计算每名同学家庭平均1天生活垃圾收集量是()A. 0.9kgB. 1kgC. 1.2kgD. 1.8kg6. [2023·梅州期末]某校体育期末考核“仰卧起坐”和“800米”两项,并按3:7的比例算出期末成绩.已知小林这两项的考试成绩分别为80分,90分,则小林的体育期末成绩为分.7. 七年级一班某次英语测验后,现以80分为基准,超出的记为正数,不足的记为负数,抽查了4名同学,记录结果如下:+8−2+6−4.那么这4名同学的平均成绩是多少分?B.能力提升8. 若1 4 m7 8的平均数是5 则1 4 m+107 8的平均数是()A. 5B. 6C. 7D. 89. 某校招聘教师,规定综合成绩由笔试成绩和面试成绩构成,其中笔试占60%,面试占40%,有一名应聘者的综合成绩为78分,笔试成绩是80分,则面试成绩为分. 10. 评定学生的学科期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,已知小明的数学考试分数为80分,作业分数为95分,课堂参与分数为82分求小明的数学期末成绩为多少.C.拓展思维11. 某农户在承包的荒山上共种植了44棵樱桃树2020年采摘时先随意采摘5棵树上的樱桃称得每棵树上的樱桃质量(单位:kg)如下:35 35 34 39 37.(1)根据以上数据估计该农户2020年樱桃的产量是多少千克;(2)已知该农户的这44棵树在2019年共收获樱桃1440kg若近几年的产量的年增长率相同依照(1)中估计的2020年的产量预计2021年该农户可收获樱桃多少千克?12. 小青在本学期的数学成绩如下表所示(成绩均取整数).测验类别平时期中考试期末考试测验1 测验2 测验3 课题学习成绩88 70 96 86 85 x(1)计算小青本学期平时的平均成绩;(2)如果学期的总评成绩是根据如图所示的权重计算那么本学期小青的期末考试成绩x至少为多少分才能保证达到总评成绩90分的最低目标?2 中位数与众数A.基础夯实1. 某学习小组7位同学为玉树地震灾区捐款捐款金额分别为5元6元6元6元7元8元9元则这组数据的中位数与众数分别为()A. 6元6元B. 7元6元C. 7元8元D. 6元8元2. 为切实落实“双减”丰富课后服务活动形式某校开展学生的绘画书法散文诗等艺术作品征集活动从八年级7个班收集到的作品数量(单位:件)分别为50 45 4246 50 44 52 则这组数据的中位数和平均数分别是()A. 46 47B. 45 47C. 50 46D. 42 463. 为了了解某种小麦的长势随机抽取了50株麦苗进行测量测量结果如表.苗高(cm)10 11 12 13 14株数(株)7 12 10 14 7则麦苗高的中位数是()A. 10B. 11C. 12D. 134. [2023·深圳校考]某校男子篮球队10名队员进行定点投篮练习每人投篮10次他们投中的次数统计如表.投中次数 3 5 6 7 9人数 1 3 2 2 2则这些队员投中次数的众数中位数分别为()A. 6 6B. 5 5C. 5 6D. 3 65. 为调动学生参与体育锻炼的积极性某校组织了一分钟跳绳比赛活动体育老师随机抽取了10名参赛学生的成绩将这组数据整理后制成统计表.一分钟跳绳个数181 184 185 186学生人数 2 5 1 2则这组数据的中位数是;众数是.B.能力提升6. 已知一组数据分别为3 8 4 5 x这组数据的众数是8 则这组数据的中位数是()A. 3B. 4C. 5D. 87. 一组数据1 x 5 7有唯一众数且中位数是6 则平均数是.8. 2022年11月5日第二十三届深圳读书月盛大开幕本届读书月以“读时代新篇创文明典范”为年度主题2300余场文化活动“阅”动全城.春海学校积极响应深圳读书月的号召在校内推广课外阅读活动.为了解七八年级学生每周课外阅读的情况分别从两个年级随机抽取了10名学生进行调查并对调查数据进行整理分析.现将参与调查的每个学生每周课外阅读的时间用x(小时)表示并将两个年级的调查数据分成四组:A.0≤x<4 B.4≤x<8 C.8≤x<12 D.12≤x≤16.以下是相关的数据信息:七年级学生调查数据:3 14 8 9 9 11 8 11 16 11.八年级学生调查数据位于C组中的是9 10 10 10.七八年级抽取的学生每周课外阅读时间统计表平均数众数中位数七年级10 a b八年级9 10 c根据以上信息解答下列问题:(1)分别求出上述图表中a b c的值:a=b=c=;(2)若七八年级共有1 000名学生请你估计该校七八年级学生每周课外阅读时间不少于12小时的共有多少人.C.拓展思维9. 某校积极响应“弘扬传统文化”的号召开展经典诗词背诵活动并在活动之后举办经典诗词大赛.为了解本次系列活动的持续效果学校在活动初期随机抽取部分学生调查“一周诗词背诵数量”并根据调查结果绘制成不完整的条形扇形统计图如图所示.诗词大赛结束后一个月再次调查这部分学生“一周诗词背诵数量”绘制成统计表.大赛后学生“一周诗词诵背数量”统计表一周诗词诵背数量3首4首5首6首7首8首人数9 11 15 42 23 20请根据上述调查的信息分析:(1)活动启动之初学生“一周诗词背诵数量”的中位数为首;(2)估计大赛结束后一个月该校学生(总数1 200人)“一周诗词背诵数量”不少于6首的人数;(3)选择适当的统计量从两个不同的角度分析两次调查的相关数据评价该校经典诗词背诵系列活动的效果.4 数据的离散程度极差方差标准差A.基础夯实1. 某中学在备考2023中考体育的过程中抽取该校九年级20名男生进行立定跳远测试成绩如下表所示则下列叙述正确的是()成绩(单位:m) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50人数 2 3 2 4 5 2 1 1A. 这些男生成绩的众数是5B. 这些男生成绩的中位数是2.30C. 这些男生的平均成绩是2.25D. 这些男生成绩的极差是0.352. [2023·深圳期末]南山区博物馆五位小讲解员的年龄分别为10 12 12 13 15(单位:岁)则三年后这五位小讲解员的年龄数据中一定不会改变的是()A. 方差B. 众数C. 中位数D. 平均数3. 方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,⋯,x15可用如下算式计算方差:s2=1[(x1−5)2+(x2−5)2+(x3−5)2+⋯+(x15−5)2]则这组数据的平均数是15()A. 5B. 10C. 15D. 1154. 小林爸爸想了解他在学校的数学学习情况于是询问得知了他本学期的近5次数学单元测验成绩(单位:分)分别为88 91 89 92 90 试求小林这5次测验成绩的方差以便帮助小林分析他的数学成绩是否相对稳定.B.能力提升5. 某校九年级参加了“维护小区周边环境”“维护繁华街道卫生”“义务指路”等志愿者活动如图是根据该校九年级六个班的同学某天“义务指路”总人次所绘制的折线统计图则关于这六个数据下列说法正确的是()A. 极差是40B. 众数是58C. 中位数是51.5D. 平均数是606. 某班有40人一次体能测试后老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分方差s2=41.后来小亮进行了补测成绩为90分关于该班40人的测试成绩下列说法正确的是()A. 平均分不变方差变大B. 平均分不变方差变小C. 平均分和方差都不变D. 平均分和方差都改变7. 在对一组样本数据进行分析时小华列出了方差的计算公式:s2=(2−x)2+(3−x)2+(3−x)2+(4−x)2请根据此公式提供的信息试求数据2+x0,3+x0,3+x0,4+x0的n标准差.C.拓展思维8. 已知一组数据1 2 3 4 x的方差与另一组数据2020202120222023 2024的方差相等请尝试求x的值.9. 为了解某校八年级暑期参加义工活动的时间某研究小组随机采访了该校八年级的20位同学得到这20位同学暑假参加义工活动的天数的统计如下:天数(天)0 2 3 5 6 8 10人数 1 2 4 8 2 2 1(1)这20位同学暑期参加义工活动的天数的中位数是天众数是天极差是天;(2)若小明同学把天数中的数据“8”看成了“7”那么中位数众数方差极差四个指标中受影响的是;(3)若该校有500位八年级学生试用这20位同学的样本数据去估计该校八年级学生暑期参加义工活动的总天数.章末复习A.基础夯实1. 某校规定英语竞赛成绩85分以上为优秀老师将85分记为0 并将一组5名同学的成绩简记为−3+140 +5−6这5名同学的平均成绩是()A. 83分B. 87分C. 82分D. 84分2. [2023·翠园初级中学校考]某校开展安全知识竞赛进入决赛的有6名同学他们的成绩(单位:分)分别是100 99 90 99 88 97.这6名同学的决赛成绩的中位数和众数分别是()A. 99 99B. 90 98C. 98 99D. 94.5993. [2023·清远期中]班长统计去年1~8月“书香校园”活动中全班的课外书阅读数量(单位:本)绘制了折线统计图(如图).下列说法中正确的是()A. 这组数据的极差是47B. 这组数据的众数是42C. 这组数据的中位数是58D. 月阅读数量超过40本的有5个月4. 某校5个小组在一次植树活动中植树株数的统计图如图所示则平均每组植树株.5. 如果一组数据2 4 x 3 5的众数是4 那么该组数据的平均数是.6. 一组数据是6 8 10 8 这组数据的方差是 .B.能力提升7. 小明同学随机调查七(2)班6名同学每天食堂午饭消费金额 制作如下统计表:类别 同学1 同学2 同学3 同学4 同学5 同学6 金额(元)565668则这组消费金额的( ) A. 平均数为5B. 中位数为5C. 众数为6D. 方差为68. 每年的6月6日是全国爱眼日 就在手机充斥着人们生活 占用大部分时间的同时 其蓝光危害以及用眼过度带来的影响也在悄然威胁着人们的视力健康 某班为了解全班学生的视力情况 随机抽取了10名学生进行调查 将抽取学生的视力统计结果如下表.下列说法错误的是( )视力 4.5 4.6 4.7 4.8 4.9 5.0 人数112 312A. 平均数为4.7B. 中位数为4.8C. 众数为4.8D. 方差为0.02369. 某射击运动员练习射击 5次成绩分别是8 9 7 8 x (单位:环) 下列说法中正确的是 (填序号). ①若这5次成绩的平均数是8 则x =8; ②若这5次成绩的中位数为8 则x =8; ③若这5次成绩的众数为8 则x =8; ④若这5次成绩的方差为8 则x =8.C.拓展思维10. 设x −是x 1,x 2,⋯ ,x n 的平均数 即x −=x 1+x 2+⋯+x nn则方差s 2=1n×[(x 1−x −)2+(x 2−x −)2+⋯+(x n −x −)2] 它反映了这组数据的波动性.(1) 求证:对任意实数a x 1−a x 2−a ⋯ x n −a 与x 1 x 2 ⋯ x n 方差相同;[x12+x22+⋯+x n2]−x2;(2)求证:s2=1n(3)以下是我校初三(1)班10位同学的身高(单位:cm):169 172 163 173 175 168 170 167 170 171 计算这组数据的方差.参考答案1 平均数算术平均数加权平均数A.基础夯实1.【答案】C2.【答案】C3.【答案】C4.【答案】D5.【答案】C6.【答案】877.【答案】解:这4名同学的平均成绩是80+14×(8−2+6−4)=80+14×8=82(分)。
信号处理与数据分析第十章作业答案(A).邱天爽.
习题10.5试说明周期图谱估计方法。
解:周期图(periodogram )是一种经典的功率谱密度估计方法,其主要优点是能应用快速傅里叶变换算法来进行谱估计。
当序列的长度足够长时,使用改进的周期图法,可以得到较好的功率谱估值,因而应用很广。
周期图的直接计算公式为:j j *j j 2per 11(e )(e )(e )|(e )|P X X X N Nωωωω==。
此外,功率谱密度还可以根据自相关函数估计的傅里叶变换来进行计算,称为经典谱估计的间接法,又称为BT 法,其计算公式为:j (2)j j 2per 1ˆ(e )()e |(e )|m N m P R m X Nωωω+∞−=−∞==∑,其中(2)ˆ()N R m 为自相关函数的有偏估计。
习题10.18设()x n 为一平稳随机信号,且是各态历经的,现用式()()()1||01ˆ||N m N N n r m x n x n m N m −−==+−∑ 解:估计其自相关函数,求此估计的均值和方差。
偏差的定义:ˆˆbia[()][()}()]rm E r m r m =− 式中1010101ˆ[()][()()]1 [()()]1 () ()N m N N n N m N N n N M n E r m E x n x n m N mE x n x n m N mr m N mr m −−=−−=−−==+−=+−=−=∑∑∑ 所以ˆbia[()]0rm =,即本题的自相关函数的估计是无偏估计。
由定义222ˆˆˆˆˆvar[()][()[()]][()][()]rm E r m E r m E r m E r m =−=−,其中 22ˆ[()]()E r m r m = 所以:1||22(1||)ˆˆvar[()][()()()](||)N m k N m N r m rk r k m r k m N m −−=−−−≈++−−∑。
数字信号处理第六章 习题及参考答案
第六章 习题及参考答案一、习题1、已知一个由下列差分方程表示的系统,x(n)、y(n)分别表示该系统的输入、输出信号:)1(21)()2(61)1(65)(-+=-+--n x n x n y n y n y (1)画出该系统的直接型结构; (2)画出该系统的级联型结构; (3)画出该系统的并联型结构。
2、已知某系统的系统函数为:)6.09.01)(5.01()9.21)(1()(211211------++-+-+=z z z z z z z H 请画出该系统的级联型结构。
3、已知FIR 滤波器的单位脉冲响应为)(8.0)(5n R n h n =, (1)求该滤波器的系统函数; (2)画出该滤波器的直接型结构。
4、已知滤波器的系统函数为:3213218.09.09.018.04.16.01)(-------+-+--=zz z z z z z H 请画出该滤波器的直接型结构。
5、已知滤波器的系统函数为:)8.027.11)(5.01()44.11)(1(3)(211211------+--+--=z z z z z z z H 请画出该滤波器的级联型结构和并联型结构。
6、已知某因果系统的信号流图如下图所示:x(n)y(n)-25-3求该系统的系统函数和单位脉冲响应。
7、已知某系统的信号流图如下图所示:x(n)y(n)求该系统的系统函数和极点。
8、已知IIR 滤波器的系统函数为:4.035.04.046.16.14)(2323++++--=z z z z z z z H (1)画出级联型网络结构,要求利用MATLAB 分解H(z); (2)用MATLAB 验证所求的级联型结构是否正确。
9、已知IIR 滤波器的系统函数为:3213214.035.04.016.141.158.12.5)(-------++-++=zz z z z z z H (1)画出该系统的并联型网络结构,要求用MATLAB 分解; (2)用MATLAB 验证(1)中所求的并联型结构是否正确。
信号处理与数据分析 邱天爽作业答案第二章(Part1)
1 1 j j 级数系数为 a0 2, a2 , a2 , a5 , a5 , ak 0 k Z 0, 2, 5 。 2 2 2 2
2.
(书稿 2.11) 计算信号 x(t ) e2(t 1)u (t 1) 的傅里叶变换,并画出其幅频特性曲线。
由题目可知 y (t ) e3t u (t ) e4t u (t ) ,可以计算 Y (j) 为
Y ( j ) 1 1 1 3 j 4 j (3 j)(4 j)
因为 H ( j) 1 (3 j) ,可以得到,
X ( j) Y ( j ) 1 (4 j) H( j)
做 4t u (t )
解:
傅里叶反变换为,
x(t ) (1 2 ) [2 () ( 4 ) ( 4 )]e jt d
(1 2 )[2 e j t e j4 t e j4 t ] 1 (1 2)e j4 t (1 2)e j4 t 1 cos(4 t )
2 t 3
2 2 6 3 , T2 ,可知两者的最小公倍数 T 6 是信号的 2 3 5 3 5
2 。然后计算信号的傅里叶级数系数:将原周期信号适当变形,可得 T 3
5 5
1 j e 2
2 t 3
1 j 3 t 1 j 3 t 1 1 1 1 因此可知其傅里叶 e e 2 e j00 t e j20 t e j20 t e j50 t e j50 t , 2j 2j 2 2 2j 2j
1.
2 5 ,试求其基波频率 (书稿 2.5) 给定连续时间周期信号 x t 2 cos 0 和傅里 t sin t 3 3
数字信号处理第6章_习题解答
第六章 习题解答(部分)[1]解:对采样数字系统,数字频率ω与模拟角频率Ω之间满足线性关系T Ω=ω。
因此,当时,ms T 01.0=TT cc 8πω==Ω,Hz T f c c 6251612==Ω=π 当s T µ5=时, TT c c 8πω==Ω,Hz T f c c 125001612==Ω=π[2]解:的极点为:,)(s H a jb a s +−=1jb a s −−=1将部分分式展开: )(s H a )(21)(21)(jb a s j jb a s js H a +−−−+−−−=所以有1)(1)(121121)(−+−−−−−−+−=z e j z e j z H T jb a T jb a通分并化简整理得:TT T e z bT e z bTe z z H ααα2211cos 21sin )(−−−−−−+−=[3]解:归一化原型低通滤波器与带通滤波器之间的频率变换关系为:B⋅ΩΩ−Ω=Ω22s rad p p /1002210×=ΩΩ=Ωπ,s rad B /2002×=π,dB p 2=δs rad s /80021×=Ωπ,s rad s /124022×=Ωπ,dB s 15=δ因此,归一化原型低通滤波器的通带频率p Ω取1,通带处最小衰减为2dB 。
同理可得归一化原型低通滤波器的阻带频率分别为:9375.31221=ΩΩ−Ω=ΩΩ=Ωs Bs , 1597.62222=ΩΩ−Ω=ΩΩ=Ωs Bs因此,归一化原型低通滤波器的阻带频率9375.3),min(21=ΩΩ=Ωs s s ,这是因为取较小的频率值,则较大的频率处一定满足衰减要求,阻带处最大衰减为15dB 。
利用巴特沃斯低通滤波器设计归一化原型低通滤波器)(s H 利用归一化原型低通滤波器的指标,得巴特沃斯低通滤波器阶数N444.19372.31lg 2110110lg 5.12.0=⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−≥N 取,查表的归一化巴特沃斯原型低通滤波器的系统函数 2=N 14142.11)(2++=s s s H LP由归一化原型低通滤波器变换到实际模拟带通滤波器22202220222)(4142.1)()()(202B s sB s s B s s H s H Bs s s LP BP +Ω++Ω+==⋅Ω+= [4]解:(1)用冲激响应不变法① 确定数字滤波器指标rad p 3/πω=,dB p 3=δ rad s 5/4πω=,dB s 15=δ② 将数字滤波器指标转换为相应的模拟滤波器指标。
统计信号处理与应用导论第六章习题解答
6.1Find the linear mean square estimate of )(λ+t y in terms ofy(t) and )()()()(ˆt yc t y b t ay t y ++=+λ Solution: )(ˆ)()(~λλλ+-+=+t y t y t y0)}()](ˆ)({[0)}()](ˆ)({[0)}()](ˆ)({[=+-+=+-+=+-+t yt y t y E t y t y t y E t y t yt y E λλλλλλ由正交原理 ⎪⎩⎪⎨⎧=⋅---+=⋅---+=⋅---+0)}()]()()()({[0)}()]()()()({[0)}()]()()()({[t y t y c t y b t ay t y E t y t y c t yb t ay t y E t y t yc t yb t ay t y E λλλ ⎪⎩⎪⎨⎧=---=---=---=⇒-====-==⇒=-=0)0()0()0()(0)0()0()0()(0)0()0()0()(0)0()()()()()()()()()()(0)0()()()()(y y y y y y y y y yy y y y y y y y y y y y y y y y y y y yy y y y y y y y y y y y y y y c b a c b a c b aφφφλφφφφλφφφφλφφτφτφτφτφτφτφτφτφτφτφφτφτφτφτφ)0()0()0()0()()0()()0()()0()()0()0()0()()0()(2)4(2)4()4(yy y yy y y y y y y y y y y c b a φφφφλφφλφφλφφλφφφφλφφλφ --==--= 6.3 222222)(2)(as a s a s s s v y +-=+--=φφ Solution: )(&)(⋅⋅v y are uncorrelated.))(2)()(2()2)(2)(2)(2(2)()()(2)()(84848484222222222a s a s a s a s aes ae s aes ae s a s a a s s s s s a s s s s jjjjv y z y yz --++--++==+-++--=+=+--==--ππππφφφφφNSjj jjjjz YI z e aes ae s a s a s aes ae s a s a s a s s e ae s ae s a s a s e s s s s H ss)2)(2())(2(])2)(2())(2(2[)2)(2())(2(])()([)(1)(848484842228484ππααφφφ-+--+-+++++=----⋅+--⋅++++==6.9 本章在推导Kalman 滤波器方程时,曾经假定输入w(t)和观测燥声N(t)不相关。