SPWM变频调速系统的MATLAB仿真
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPWM变频调速系统的MATLAB仿真
1.1系统仿真综述
在采用电力半导体器件对电动机进行交流调速的分析研究中,计算机仿真技术已经显示出了它的巨大优越性。MATLAB/SIMULINK环境是一种优秀的系统仿真软件,使用它可以大大提高系统仿真和CAD的效率和可靠性。本设计的特点是用MATLAB对基于SPWM控制的交流异步电动机变频调速系统进行仿真分析。系统仿真模型主要由整流器、滤波器、逆变器、电动机模型以及SPWM控制器几部分组成,对实际系统的分析与研究十分有帮助。本文根据电力电子器件的开关原理、PWM调制方式的动作过程和自动控制理论,结合具体的电路拓扑结构并基于多信息融合思想,构建计算机仿真方案,在通过分析比较仿真波形、仪表的显示结果和存储示波器的记录,检验数学模型、电路拓扑结构、调节器方式和主要元器件参数是否正确,修改设计方案,逐步达到预期的目的。
本文用仿真调速系统控制一台三相异步电动机。系统工作过程是:首先通过电网中获得三相对称交流电,然后经过三相不可控整流和SPWM控制方式下的逆变器为电动机提供电源。电动机在三相逆变电源的控制下产生电磁转矩带动负载工作。在本系统中,三相桥式逆变电路的基本工作方式采用的是导电方式,同一相(即同一半桥)上下两个臂交替导电,这样,在任意瞬间,将有3个桥臂同时导通。在控制电路中,采用的是正弦波脉宽调制法(SPWM),即三角形载波信号和三相对称的正弦波参考信号相比较,在交点处发出三相脉冲调制信号,去驱动逆变器主回路的各IGBT的基极,当改变参考信号的幅值时,相电位脉冲的脉宽随之改变,从而改变了主回路基波相电压的大小。当改变参考信号的频率时,输出电压的频率随之改变。如果同时改变参考电压的幅值和频率,就可以实现变频调速系统u/f=常数的要求。这种调制方式的特点是在半个周期,脉冲间中心线等距,脉冲等幅、调宽,各脉冲面积之和与正弦波下的面积成正比。
在SPWM方式中,经常要用到调制系数M(M=调制波幅值/载波幅值)。调制系数M是有条件限制的。因为M>1时,在调制波形的中间部分因为参考正弦波和载波三角波形无交点,使其槽宽消失,实际上处于非线性控制,所以,为了实现精确的线性控制要求,正弦波参考信号的最大幅值不能大于三角波幅值,即M≤1。经过分析研究证明,当M≤1时,逆变器输出线电压中的基波分量的最大幅值只有逆变器输入电网线电压幅值0.866倍[19]。
1.2SIMULINK中电力系统工具箱和仿真元件简介
Matlab对电路进行仿真是基于图形仿真软件Simulink环境下,操作只需鼠标的拖放和设
定元件的参数,然后连线进行仿真。下面对本系统的五个模块,即PWM模块、三相异步电动机模块、测量模块和输出模块、多功能桥式模块逐个介绍其组成与仿真。
1.PWM模块的组成与仿真
变频器的调制方式可分为PAM(脉幅调制)和PWM(脉宽调制)两种,中小型电机大都采用PWM方式,脉宽调制时,变频器输出电压的大小通过改变输出脉冲的占空比进行调制,目前普遍应用的是占空比按正弦规律安排的正弦波脉宽调制方式。PWM模块是由一个PWM 信号发生模块和一个三臂逆变桥组成的。打开电力系统工具箱(Power System Blockset),打开特殊元件库(extra library),双击discrete control blocks,将出现一些离散控制模块,通过对话框来选择相关的模式和电子器件,为PWM系统提供了基于载波的脉冲。这个模块可以用来触发单相、两相、三相或者是三相桥相连接的电子器件,如( FET,GTO,或者是IGBT)。通过在“发生器模式”参数中选择桥臂个数,这个模块可以用于控制单相和三相的PWM电路。
2.电机的仿真
通常对电机的仿真是非常困难的,因为电机本身是一个多变量、强耦合、非线性系统,仿真需建立多维方程组,对其编程来实现。而Matlab对电机仿真则非常容易,只需设定一些电机参数即可实现。双击Machines模块,弹出一个包含几种电机模型的子窗口,其中有同步电机、异步电机、永磁同步电机等,还有电机的测量环节。现以三相异步电机为例说明其仿真过程。用鼠标拖放异步电机模型(Asynchronous Machine SI Units)至工作窗口,注意有两种异步电机模型,此时拖放的是标准形式的电机;另一种是以标幺值形式(pu Units)表示的。然后在工作窗口中双击电机模型,将弹出电机参数设定窗口,需设定的参数有:[电机额定功率、线电压、频率],[定子电阻、漏感],[转子电阻、漏感],[定转子互感],[转动惯量、摩擦系数、电机极对数],[电机初始条件:转差率、电位角、定子相电流和相角]。通常最后一项除转差率设为1,其他各项则根据仿真所用的电机实际参数设定。图7.1是一个三相异步电机模型。
图7.1 三相异步电机模型
图中异步电机模型的A、B、C端口是三相定子电源输入端口,Tm端口是电机轴上的机械转矩,电机作电动运行时Tm应为正值,作发电运行时Tm应为负值。电机转子侧的a、b、c三个端口一般通过总线短接在一起。电机模型的m_SI端口是各种测量值的输出端口,电机的可测量值有20个,如定、转子三相电流,d-q坐标上的定、转子电压和磁链,电机转速及电磁转矩。但这些量不能直接从m_SI端口输出,必须由电机测量环节(ASM Measurement Demux )输出,即把m_SI端口和测量环节的m端口相连,测量环节的输出端口就可输出各测量值。这样可以用仿真示波器直接观测电机各个量的波形,也便于把电机一些输出量,如电流、电压、转速,接回输入端,形成各种闭环控制。需注意的是:Matlab 的电机模型是基于转子旋转坐标系(d-q坐标系),因此凡是输出量下标为_qd的都是d-q坐标上的量,如与静止坐标系或同步旋转坐标系上的量进行反馈比较时,需对输出量进行坐标变换。其它电气元件用法与此类同,只需设定元件参数和实际值相符,然后在工作窗口中进行输入和输出的连线,形成完整的电路就可开始仿真。
3.测量模块的仿真
交流电机测量单元用于观测交流电机的工作情况。在交流电机的模型图标上都有一个测量端M,通过该端可以输出交流电机模型的各变量,如电压、电流、转速、磁链等的数据,这些数据以多维矢量的形式表示,在使用中,需要将需观测的变量数据从多维矢量中分列出来,交流电机测量单元的作用就是用于分列需观测的变量数据。交流电机测量单元是一个通用单元,它可以用于测量交流同步电机也可以用于测量异步电机。在使用时,只要将电机模块的测量输出端M与测量单元的输入端M连接起来即可。双击测量单元模块,则弹出对话框,在对话框的电机类型栏中选择需要观测的电机后,在该栏下方即会出现这种电机可观测的各