复合材料力学考试要求和复习要点
复合材料力学考试要求和复习要点
考试要求1、考试要求:笔试,主要包括概念、主要公式及推导、原理图和计算题等形式问题;可带计算器,计算和推导要求有必要的过程;2、看清题的每个问题,概念要清晰、计算要准确;3、请给助教留好联系方式,以便通知考试时间和地点。
复习要点一、基本概念和理论1、非均匀性、各向异性以及正交各向异性的含义。
2、复合材料层合板的典型力学特点,能否举例说明,复合材料的高比强度、高比刚度的优势。
3、掌握几种典型纤维的力学性能。
4、用工程常数表示正交各向异性材料的柔度矩阵。
6、简单层板在任意方向上的应力-应变关系6、正交各向异性简单层板的最大应力、最大应变、蔡-希尔、霍夫曼准则等强度理论表达式及其特点。
7、等强度纤维模型(强度-纤维体积分数示意图、公式及相应的解释)。
8、经典层合理论的基本假设及其A、B、D刚度矩阵表达式。
9、层合板强度分析程序的主要步骤。
10、层间应力产生的原因及危害。
11、复合材料层合板的弯曲、屈曲和振动问题主要解决什么,哪些问题值得关注。
12、Halpin-Tsai计算公式及特点。
二、重点复习题1、利用最小余能原理,证明复合材料弹性模量的下限2、利用材料力学分析方法,推导简单层板弹性模量E1、E2的细观力学表达式3、对每一层性质和厚度都相同,按[0,45,-45,90]s 铺设的层合板来说,下面三个刚度矩阵哪些项为零?4、判断:●层合板层数的增加总会提高X方向或Y方向的轴向刚度●对于力学载荷,A矩阵与叠层顺序无关●对平衡铺层的层合板,刚度矩阵中D16和D26项总是零(平衡铺层:对每一个+α铺层,总存在一个具有相同厚度和材料性质的-α铺层)●[90]10 层合板的轴向刚度Ex比[90]4 层合板的大●对称层合板的D11 和D22具有相同的值5、对于下面铺层的层合板,选择每组正确的一项层合板对称中面层合板对称中面6、什么角度的铺层添加到下面层合板中可以消除拉伸载荷引起的剪切变形7、如果想得到最大的D66,如何改变层合板的铺层顺序8、[0°/±θ/90°]s铺层的层合板A16、A26是否为零;D16和D26的含义是什么?增添什么样的铺层可以减小D16和D269、请简要描述一种典型复合材料制备工艺及采用该工艺制备的典型产品和其力学特点;举例说明先进复合材料在国防、航空、航天领域的应用和作用(注意不涉密)。
复合材料力学
3019《复合材料力学》考试大纲《复合材料力学》全面、系统地阐述了复合材料力学基础、宏观力学和细观力学的基本理论、分析方法和结果,并介绍了混杂复合材料,复合材料疲劳、断裂和连接等专题,以及纳米复合材料、生物/仿生复合材料和智能复合材料等现代新型复合材料及其分析方法。
考试内容及要求如下:第1章单层复合材料的宏观力学分析平面应力下单层复合材料的应力—应变关系,单层材料任意方向的应力—应变关系单层复合材料的强度,正交各向异性单层材料的强度理论第2章复合材料力学性能的实验测定纤维和基体的力学性能测定,单层板基本力学性能的实验测定,其他力学性能实验第3章层合板刚度的宏观力学分析层合板的刚度和柔度,几种典型层合板的刚度计算,层合板刚度的理论和实验比较第4章层合板强度的宏观力学分析层合板强度概述,层合板的应力分析,层合板的强度分析,层合板的层间应力分析第5章湿热效应单层板的湿热变形,考虑湿热变形的单层板应力—应变关系,考虑湿热变形的层合板刚度关系,考虑湿热变形的层合板应力和强度分析第6章层合平板的弯曲、屈曲与振动层合平板的弯曲,层合平板的屈曲,层合平板的振动,层合板中耦合影响的简单讨论第7章若干专题混杂复合材料及其力学分析,金属基复合材料和陶瓷基复合材料,纳米复合材料简介,复合材料的疲劳,复合材料的损伤和断裂,复合材料的蠕变,复合材料的连接,横向剪切的影响第8章复合材料的有效性质和均质化方法尺度和代表单元的概念,细观过渡方法第9章单层复合材料的细观力学分析刚度的材料力学分析方法,强度的材料力学分析方法,短纤维复合材料的细观力学分析,热膨胀的力学分析,刚度的弹性力学分析方法第10章复合材料线性有效模量预测的近似方法宏观整体坐标系和局部坐标系,稀疏方法,Mori—Tanaka方法,自洽方法,微分法,广—1—义自洽方法,Voigt和IReuss界限,复合材料有效热膨胀系数第11章复合材料计算研究方法等效性能计算中的代表体积单元选取与生成,载荷与边界条件的施加,计算分析方法—2—。
复合材料-复习材料及答案
复合材料-复习材料及答案复合材料第⼀章1、材料科技⼯作者的⼯作主要体现在哪些⽅⾯?(简答题)①发现新的物质,测试新物质的结构和性能;②由已知的物质,通过新的制备⼯艺,改善其微观结构,改善材料的性能;③由已知的物质进⾏复合,制备出具有优良特性的复合材料。
2、复合材料的定义(名词解释)复合材料是由两种或两种以上物理和化学性质不同的物质组合⽽成的⼀种多相固体材料。
3、复合材料的分类(填空题)⑴按基体材料分类①聚合物基复合材料;②⾦属基复合材料;③⽆机⾮⾦属基复合材料。
⑵按不同增强材料形式分类①纤维增强复合材料:②颗粒增强复合材料;③⽚材增强复合材料;④叠层复合材料。
4、复合材料的结构设计层次(简答题)⑴⼀次结构:是指由基体和增强材料复合⽽成的单层复合材料,其⼒学性能取决于组分材料的⼒学性能,各相材料的形态、分布和含量及界⾯的性能;⑵⼆次结构:是指由单层材料层合⽽成的层合体,其⼒学性能取决于单层材料的⼒学性能和铺层⼏何(各单层的厚度、铺设⽅向、铺层序列);⑶三次结构:是指⼯程结构或产品结构,其⼒学性能取决于层合体的⼒学性能和结构⼏何。
5、复合材料设计分为三个层次:(填空题)①单层材料设计;②铺层设计;③结构设计。
第⼆章1、复合材料界⾯对其性能起很⼤影响,界⾯的机能可归纳为哪⼏种效应?(简答题)①传递效应:基体可通过界⾯将外⼒传递给增强物,起到基体与增强体之间的桥梁作⽤。
②阻断效应:适当的界⾯有阻⽌裂纹的扩展、中断材料破坏、减缓应⼒集中的作⽤。
③不连续效应:在界⾯上产⽣物理性能的不连续性和界⾯摩擦出现的现象。
④散热和吸收效应:光波、声波、热弹性波、冲击波等在界⾯产⽣散射和吸收。
⑤诱导效应:复合材料中的⼀种组元的表⾯结构使另⼀种与之接触的物质的结构由于诱导作⽤⽽发⽣变化。
2、对于聚合物基复合材料,其界⾯的形成是在材料的成型过程中,可分为两个阶段(填空题)①基体与增强体的接触与浸润;②聚合物的固化。
3、界⾯作⽤机理界⾯作⽤机理是指界⾯发挥作⽤的微观机理。
【复合材料概论】复习重点应试宝典
【复合材料概论】复习重点应试宝典第⼀章总论1、名词:复合材料基体增强体结构复合材料功能复合材料复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的⽅法,在宏观上组成具有新性能的材料。
包围增强相并且相对较软和韧的贯连材料,称为基体相。
细丝(连续的或短切的)、薄⽚或颗粒状,具有较⾼的强度、模量、硬度和脆性,在复合材料承受外加载荷时是主要承载相,称为增强相或增强体。
它们在复合材料中呈分散形式,被基体相隔离包围,因此也称作分散相。
结构复合材料:⽤于制造受⼒构件的复合材料。
功能复合材料:具有各种特殊性能(如阻尼,导电,导磁,换能,摩擦,屏蔽等)的复合材料。
2、在材料发展过程中,作为⼀名材料⼯作者的主要任务是什么?(1)发现新的物质,测试其结构和性能;(2)由已知的物质,通过新的制备⼯艺,改变其显微结构,改善材料的性能;(3)由已知的物质进⾏复合,制备出具有优良性能的复合材料。
3、简述现代复合材料发展的四个阶段。
第⼀代:1940-1960 玻璃纤维增强塑料第⼆代:1960-1980 先进复合材料的发展时期第三代:1980-2000 纤维增强⾦属基复合材料第四代:2000年⾄今多功能复合材料(功能梯度复合材料、智能复合材料)4、简述复合材料的命名和分类⽅法。
增强材料+(/)基体+复合材料按增强材料形态分:连续纤维复合材料,短纤维复合材料,粒状填料复合材料,编织复合材料;按增强纤维种类分类:玻璃纤维复合材料,碳纤维复合材料,有机纤维复合材料,⾦属纤维复合材料,陶瓷纤维复合材料,混杂复合材料(复合材料的“复合材料”);按基体材料分类:聚合物基复合材料,⾦属基复合材料,⽆机⾮⾦属基复合材料;按材料作⽤分类:结构复合材料,功能复合材料。
5、简述复合材料的共同性能特点。
(1)、综合发挥各组成材料的优点,⼀种材料具有多种性能;(2)、复合材料性能的可设计性;(3)、制成任意形状产品,避免多次加⼯⼯序。
复合材料(第二版)知识点复习
复合材料(第二版)知识点复习第一章概论1.1物质与材料材料:具有满足指定工作条件下使用要求的形态和物理性状的物质人类(材料)发展的四大阶段:石器时代→青铜时代→铁器时代→人工合成时代1.2复合材料的定义与特点复合材料:由两种或两种以上物理和化学性质不同的物质,用适当的工艺方法组合起来,而得到的具有复合效应的多相固体材料。
特点:①人为选择复合材料的组分和比例,具有极强的可设计性。
②组分保留各自固有的物化特性③复合材料的性能不仅取决于各组分性能,同时与复合效应有关④组分间存在这明显的界面,并可在界面处发生反应形成过渡层,是一种多相材料简述复合材料的特点。
①比强度、比模量大②耐疲劳性能好,聚合物基复合材料中,纤维与基体的界面能阻止裂纹的扩展,破坏是逐渐发展的,破坏前有明显的预兆。
③减震性好,复合材料中的基体界面具有吸震能力,因而振动阻尼高。
④耐烧蚀性能好,因其比热大、熔融热和气化热大,高温下能吸收大量热能,是良好的耐烧蚀材料。
⑤工艺性好,制造制品的工艺简单,并且过载时安全性好。
1.3组成与命名以增强体和基体共同命名时:玻璃纤维增强环氧树脂基复合材料p、w、f下标→颗粒、晶须、纤维M MCs金属基复合材料,聚合物基复合材料PMCs, 陶瓷基复合材料CMCs1.4分类按基体:聚合物基,金属基,无机非金属基(陶瓷、玻璃、水泥、石墨)复合材料按纤维增强体种类:玻璃纤维、碳纤维、有机纤维、陶瓷纤维按增强体形态:连续纤维,短纤维,颗粒,晶须增强近代的复合材料以1942年制出的玻璃纤维增强塑料为起点第二章增强体2.1增强体(起到增韧、耐磨、耐热、耐蚀等提高和改善性能的作用)纤维是具有较大长径比的材料,具有较高的强度,良好的柔曲性,高比强度,高比模量,与基体相容性好,成本低工艺学好2.1.1玻璃纤维:非晶型无机纤维,二氧化硅(形成骨架,高熔点)和其他元素的碱金属氧化物(二氧化硅提高GF化学稳定性,碱金属降低熔点和稳定性,改善制备工艺)①性能→力学:无屈服无塑性,脆性特征,拉伸强度高,模量较低,直径越小,长度越短,含碱量越低,拉伸强度越高,与水作用强度降低→热性能:耐热性较高,玻璃纤维热处理使微裂纹增加,强度降低→电性能:电绝缘性能优,在纤维表面涂石墨或金属成为导电纤维→玻璃耐酸碱、有机溶剂性能好,玻璃纤维耐蚀性能变差E无碱玻璃纤维:绝缘,机械性能强,耐水性好C中碱玻璃纤维:耐酸性好(酸与硅酸盐生成氧化硅保护膜),耐水性差,A有碱玻璃纤维②结构:微晶结构假说和网络结构假说,GF为无定形结构,三维网状结构,各向同性。
复合材料专业复习要点整理-经典汇总
⑶牌号表示法 (4)折算断裂强度 b
Pb A
100 f 0 N
Pb
纱强度低于单丝强度的原因 ⑴测量标距不同 单丝:10mm, 纱:200mm ⑵各单丝准直不一,不可能同时断裂即分批断裂 ⑶加捻-扭转力 捻度 300 时,影响才明显
.布的品种与规格 ⑴品种 按织法(侧面图):平纹布、斜纹布、缎纹布 单向布、无捻布、方格布、无纺布(无纬布) ⑵主要规格 表 2-7 经纱、纬纱规格 布的织法:平纹、斜纹、缎纹 布的厚度:反映纤维弯曲程度 布经、纬向纱的排列密度 bL、bT ——指 1cm 宽长度上排了多少根合股纱,反映纱的稀密程度 面密度(织物重量)Gf:单位面积的纤维中重量,g/m2; 拉断力 PB:标距 100mm×25mm 宽度,kg。
冷却速度↑—Tg↑—V↑—密度ρ↓ 4 玻纤性质
力学性能:应力应变关系—直线,脆性特征;强度高,模量低;强度受湿 度影响大 Griffith 微裂缝理论 强度的尺寸效应或体积效应 ① 单丝直径 df 越小,强度越大 ②测试标距 l 愈大,强度愈小 ③纤维强度分散性大
热性能:⑴耐热性(好,但高温下强度下降) ⑵导热系数——低,绝热材 料 电性能:⑴电绝缘性好 ρv= 1011 – 1018 欧.厘米含碱量↑——ρv↓(载流子)
型(IM)、高模型(HM)、超高模型(UHM)
(3) 按碳纤维的制造方法不同分
碳纤维(800-1600℃)、石墨纤维(2000-3000℃)、氧化纤维(预氧化丝
200-300℃)、活性碳纤维和气相沉积碳纤维
. 布的断裂强度
牌号表示法
碳纤维
一、分类:
(1)按先驱体纤维原料的不同
聚丙烯腈基碳纤维 PAN-based
沥青基碳纤维 Pitch-based
复合材料复习提纲
聚合物基复合材料复习总结UD : unidirectional 单向性的Quas-isotropic准各向同性的Cure固化precure 预固化stiffness 刚度stre ngth 强度toughness韧性ILSS层间剪切强度CTE 热膨胀系数(coefficient of thermal expansion)carbon fiber 碳纤维VGCF 气相生长碳纤维(vapor-phase growth)SNCB气相生长纳米碳纤维CNT碳纳米管(carbon nanotub© sizi ng上浆Torayca日本东丽台塑Tairyfil 三菱树脂DialeadPCF:沥青基碳纤维(pitched-based carbon fibe)Glass fiber玻璃纤维C-GF:耐化学腐蚀玻璃纤维A-GF:普通玻纤D-GF:低介玻纤,雷达罩材料E-GF:电工用玻纤(碱金属含量<1%S-GF高强M-GF高模AF:芳纶纤维(Aramid fiberPPTA:聚对苯二甲酰对苯二胺poly-p-phenylene terephthamide对位芳酰胺纤维Kevlar) PMIA :间位芳酰胺纤维(代表Nomex)DuPo nt杜邦Boron Fiber 硼纤维Alumina Fiber氧化铝纤维Basalt Fiber玄武岩纤维UHMWPE Fiber(ultrahigh molecular weight polyethyle ne)超高分子量聚乙烯纤维BMI :双马来酰亚胺树脂curing age nt固化剂PEEK:聚醚醚酮树脂PEK :聚醚酮树脂PES:聚醚砜树脂PEI :聚醚酰亚胺树脂PPS:聚苯硫醚树脂Epoxy resi n 环氧树脂Un saturated polyester res inTETA:三乙烯四胺(triethylene tetramineDDS:二氨基二苯基砜(diaminodiphenyl sulfone) ;DDM 二氨基二苯基甲烷Vi nyl ester resi n:乙烯基环氧树脂Phe nolic res in 酚醛树脂Prepreg 预浸料uni directi onal prepreg 单向预浸料Pot life 适用期(树脂)workinglife(纤维)Shelf life储存期Res in flowability 树脂流动度Lay Up铺贴Gel time凝胶时间Tack粘性drape铺覆性resi n con te nt树脂含量Fiber areal density 纤维面密度volatile content 挥发分含量Separati on film 分离膜Hon eycomb san dwich con structi on 蜂窝夹心结构In frared spectroscopy 红外光谱ATL: Automated tape-laying自动铺带法(CATL曲面铺带;FATL平面铺带)AFP:纤维自动铺放技术Automated fiber placement Pultrusio n拉挤成型OoA:非热压罐成型工艺out of autoclaveAllowables 许用值design Allowables 设计许用值Robust ness 鲁棒性BVID目视勉强可检ISO国际标准ASTM美国标准HB中国航空标准JC中国建筑材料工业部标准FTIR-ATR傅里叶变换衰减全反射红外光谱法1. 碳纤维PAN 一般采用湿法纺丝?因为干纺生产的纤维中溶剂不易洗净,在预氧化及碳化的过程将会由于残留溶剂的挥发或者分解而造成纤维粘结,产生缺陷。
复合材料考点总结
复合材料考试重点1、复合材料的概念:由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
a.性能—取长补短,协同作用;b.基体—连续相2、聚合物基复合材料:1)、热固性聚合物基复合材料性能特点:(1)比强度、比模量高。
(2)加工性能好(流动性好),可采用手糊成型、模压成型、缠绕成型、注射成型和挤拉成型等。
(3)过载安全性好:过载而有少数纤维断裂时,载荷迅速重,新分配到未破坏的纤维上。
(4)可具有多种功能性:耐烧蚀性、摩擦学性能、电绝缘性、耐腐蚀性、特殊的光、电、磁学性能。
2)、热塑性聚合物基复合材料性能特点:断裂韧性好;可重复再加工。
3、金属基复合材料特点:导电、导热、耐高温、抗老化好。
4、无机非金属基复合材料特点:耐高温(>1000℃),耐磨,强度高,硬度大,抗氧化,耐化学腐蚀,热膨胀系数小,但是脆性大。
5、复合材料的增强材料分类:纤维及其织物、晶须、颗粒。
特点:提高抗张强度和刚度、减少收缩,提高热变形温度和低温冲击强度等。
6、芳纶纤维(PPT A:聚芳酰胺纤维)-----聚对苯二甲酰对苯二胺,通过液晶纺丝方法制成,分子链伸直平行排列结且晶度很高。
性能特点:1)、芳纶纤维的力学性能:拉伸强度高,冲击性能好,弹性模量高,断裂伸长高,密度小,有高的比强度与比模量;2)、热稳定性: 180℃下可长期使用;低温下(-60℃)不发生脆化亦不降解, T>487℃时,不熔化,但开始碳化→高温下直至分解也不变形;3)、化学性能:耐介质性良好,但易受酸碱侵蚀,耐水性不好。
7、聚乙烯纤维(Polyethylene, PE)优点:高比强度、高比模量以及耐冲击、耐耐腐蚀、耐紫外线、耐低温、电绝缘等。
缺点:熔点低、易蠕变。
8、高强高模PE纤维:又叫超高分子量聚乙烯(UHMWPE)纤维。
与碳纤维、芳纶并称为当今世界三大高科技纤维。
性能特点:强度更高;质量更轻,密度只有0.97g/cm ;化学稳定性更好;具有很好的耐候性;耐低温性好,使用温度可以低至-150℃。
复合材料复习大纲.doc
一.名词解释1.复合材料:由两种或者两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
2.聚合物纳米复合材料:聚合物基体与至少一维是纳米范畴的添加剂所组成的混合物。
3.比强度:抗拉强度与密度之比。
比强度高的材料能承受高的应力。
4.比模量:弹性模量与密度之比。
比模量高,说明材料轻,刚性人。
5.碳纤维:由有机纤维通过一系列阶段性的热处理碳化而制成的,一种耐高温,抗拉强度高, 弹性模量大,质轻的纤维状材料。
6.晶须:由高纯度单晶牛长而成的,直径儿微米,长度儿十微米的单晶纤维材料。
7.环氧树脂:泛指含有两个或者两个以上环氧基,以脂肪族或芳香族等有机化合物为骨架, 并能通过环氧基团反应形成冇用的热固性产物的高分子低聚物。
&玻璃钢(FRP)::即纤维强化塑料,一般指用玻碉纤维增强不饱和聚脂、环氧树脂巧酚醸树脂基体。
以玻璃纤维或其制品作增强材料的增强犁料,称谓为玻璃纤维增强塑料,或称谓玻璃钢。
9.生物降解聚合物:指可由微生物导致断链发生矿化的聚合物。
10.磁性聚合物纳米复合材料:指至少一维是纳米级(1-lOOnm)的无机磁性组分,以颗粒、纤维和薄片的形式埋入有机聚合物中所构成的材料。
11.不饱和聚酯树脂:指有线性结构的主链上同时貝有重复酣键及不饱和双键的一类聚合物。
12.区别高分子,聚合物和聚合物材料的含义?高分子:在结构上由许多个实际或概念上的低分了结构作为重复单元组成的高分了量分了, 其分了量通常在10000以上。
聚合物:由一种或几种结构单元通过共价键连接起来的分子量很高的化合物。
聚合物材料:指山许多和同的简单的结构单元通过共价键重复连接而成的高分子量化合物。
弹性体:指硫化的聚合物材料,它们的玻璃化转变低于室温,其他性能还包括具有大形变的能力,并且应力样放示可回复到原始长度。
二.填空题1.聚合材料按基体材料分类:聚合物基复合材料,金加基复合材料,无机非金属基复合材料(陶瓷基和水泥基)2.复合材料按材料作用分为:结构复合材料和功能复合材料。
复合材料期末复习资料
材料
Al2O3 ZrO2 Si3N4 SiC B4C 马氏体时效钢 Ni-Cr-Mo钢 Ti6Al14V 7075铝合金
KIC/MPa·m1/2 4~15 1~2 5~6 3.5~6 5~6
100 45 40 50
2.3 聚合物材料
• 聚合物(高分子化合物):是指那些众多 原子或原子团主要以共价键结合而成的相 对分子质量在一万以上的化合物。
材料 HV/GPa 材料 HV/GPa
金刚石 90
Si3N4
20
MgO
6.6
ZrO2 14~16
SiC
33 莫莱石 16
Al2O3
23.7
B4C
16
SiO2
5.4
C-BN
70
表2-6 陶瓷的室温强度
材料
弯曲强度/MPa 拉伸强度/MPa
烧结Al2O3(<5%气孔率) 烧结ZrO2(<5%气孔率) 烧结莫莱石(<5%气孔率)
Pb,增强体 SiC、Al2O3、Gr。
2.2 陶瓷材料
2.2.1 陶瓷材料发展历史及概念内涵
• 传统陶瓷:是采用粘土及其天然矿物质经粉碎加工、 成型、烧结等过程制得,如日用陶瓷、建筑陶瓷、 电瓷,其主要原料是硅酸盐矿物,所以归属于硅酸 盐类材料。
• 特种陶瓷:高温陶瓷、介电陶瓷、压电陶瓷、高导 热陶瓷、高耐腐蚀陶瓷,所用材料不局限于天然矿 物,而是扩大到经过人工提纯加工或合成的化工材 料。
• 现代陶瓷:是以特种陶瓷为基础由传统陶瓷发展起 来的又具有与传统陶瓷不同的鲜明特点的一类新型 陶瓷。它早已超出传统陶瓷的概念和范畴,是高新 技术的产物
2.2.2 陶瓷的分类
1. 按化学成分分类
① 氧化物陶瓷:Al2O3、SiO2、MgO、ZrO2、CeO2、CaO、 Cr2O3及莫莱石(3Al2O3·2SiO2)和尖晶石(MgAl2O4)等, 这类CMC避免在高温、高应力环境下使用,因为Al2O3、 ZrO2的抗热震性差、 SiO2高温下容易发生蠕变和相变。
复合材料考试重点
填空1强度材料在外力作用下抵抗永久形变或断裂的能力。
2 比强度材料极限强度与密度的比值。
3模量材料在弹性变形阶段,应力与应变成正比例关系,比例系数为模量。
4 比模量模量与密度的比值。
5复合后的产物为固体时才称为复合材料,若复合产物为液体或气体时就不称为复合材料。
6用两种或两种以上纤维增强同一基体制成的复合材料称为混杂复合材料。
7 按基体材料分类聚合物基复合材料金属基复合材料无机非金属基复合材料8 按材料作用分类结构复合材料功能复合材料9 连续纤维增强金属基复合材料,在复合材料中纤维起着主要承载作用。
10 水泥混凝土制品在压缩强度、热能等方面具有优异的性能,但抗拉伸强度低,破坏前的许用应变小,通过用钢筋增强后,一直作为常用的建筑材料。
11 在连续纤维增强金属基复合材料中基体的主要作用应是以充分发挥增强纤维的性能为主。
12非连续增强金属基复合材料,基体是主要承载物,基体的强度对非连续增强金属基复合材料具有决定性的影响。
13 铁、镍元素在高温时能有效地促使碳纤维石墨化,破坏了碳纤维的结构,使其丧失了原有的强度,做成的复合材料不可能具备高的性能。
14 结构复合材料的基体大致可分为轻金属基体和耐热合金基体两大类。
15 连续纤维增强金属基复合材料一般选用纯铝或含合金元素少得单相铝合金,而颗粒、晶须增强金属基复合材料则选择具有高强度的铝合金。
16用于1000℃以上的高温金属基复合材料的基体材料主要是镍基、铁基耐热合金和金属间化合物,较成熟的是镍基、铁基高温合金。
17 无机胶凝材料主要包括水泥、石膏、菱苦土和水玻璃等。
18 水泥基材呈碱性,对金属纤维可起保护作用,但对大多数矿物纤维是不利的。
19常用的陶瓷基体主要包括玻璃、玻璃陶瓷、氧化物陶瓷、非氧化物陶瓷等。
20 复合材料中的基体有三种主要的作用:把纤维粘在一起;分配纤维间的载荷;保护纤维不受环境影响。
21 降解指聚合物主链的断裂,它导致相对分子质量下降,使材料的物理力学性能变坏。
复合材料考试复习资料
复合材料考试复习资料1、复合材料的定义:由两种或两种以上不同性能、不同形态的组分通过复合工艺组合而成的一种多相材料,它既保持了原组分材料的主要特点又显示了原组分材料所没有的新性能。
2、复合材料的特征:可设计性:即通过对原材料的选择、各组分分布设计和工艺条件的保证等,使原组分材料优点互补,因而呈现了出色的综合性能;由基体组元与增强体或功能组元所组成;非均相材料:组分材料间有明显的界面;有三种基本的物理相(基体相、增强相和界面相);组分材料性能差异很大;组成复合材料后的性能不仅改进很大,而且还出现新性能.3、复合材料的分类:按基体材料分类①聚合物基复合材料:以有机聚合物(热固性树脂、热塑性树脂及橡胶等)为基体;②金属基复合材料:以金属(铝、镁、钛等)为基体;③无机非金属基复合材料:包括陶瓷基、碳基和水泥基复合材料。
按增强材料形态分类:①纤维增强复合材料:a.连续纤维复合材料:作为分散相的长纤维的两个端点都位于复合材料的边界处;b.非连续纤维复合材料:短纤维、晶须无规则地分散在基体材料中;②颗粒增强复合材料:微小颗粒状增强材料分散在基体中;③板状增强体、编织复合材料:以平面二维或立体三维物为增强材料与基体复合而成。
其他增强体:层叠、骨架、涂层、片状、天然增强体按用途分类:①结构复合材料:用于制造受力构件;②功能复合材料:具备各种特殊性能(如阻尼、光、电、磁、摩擦、屏蔽等)③智能复合材料④混杂复合材料4、复合材料的命名:复合材料可根据增强材料和基体材料的名称来命名,通常将增强材料放在前面,基体材料放在后面,再加上“复合材料”而构成。
5、复合材料的结构设计层次:一次结构:单层设计--- 微观力学方法:取决于增强相、基体相和结合界面的力学性能,增强相的含量、分布方向等;二次结构:层合体设计--- 宏观力学方法:取决于单层材料的力学性能和铺层方法(厚度、纤维交叉方式、顺序等);三次结构:产品结构设计--- 结构力学方法:取决于层合体的力学性能、结构几何、组合与连接方式6、增强体的定义:增强体是结构复合材料中能提高材料力学性能的组分,在复合材料中起着增加强度、改善性能的作用。
复合材料期末复习资料
复合材料复习资料1复合材料的定义?复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
复合后的产物为固体时才称为复合材料,若为气体或液体,就不能成为复合材料。
2复合材料的分类:1)按基体材料类型分为:聚合物基复合材料;金属基复合材料;无机非金属基复合材料。
(始终有基字)2)按增强材料分为:玻璃纤维复合材料;碳纤维复合材料;有机纤维复合材料;金属纤维复合材料;陶瓷纤维复合材料(始终有纤维二字)3)按用途分为:功能复合材料和结构复合材料。
(两种的区别)结构复合材料主要用做承载力和此承载力结构,要求它质量轻、强度和刚度高,且能承受一定温度。
功能复合材料指具有除力学性能以外其他物理性能的复合材料,即具有各种电学性能、磁学性能、光学性能、声学性能、摩擦性能、阻尼性能以及化学分离性能等的复合材料。
3复合材料的基体:金属基---对于航天与航空领域的飞机、卫星、火箭等壳体和内部结构,要求材料的质量小、比强度和比模量高、尺寸稳定性好,选用镁、铝合金等轻金属合金做基体。
对于高性能发动机,要求材料具有高比强度、高比模量、优良的耐高温性能,同时能在高温、氧化环境中正常工作,可以选择钛基镍基合金以及金属间化合物作为基体材料;对于汽车发动机,选用铝合金基体材料;对于电子集成电路,选用银铜铝等金属为基体。
轻金属基体—铝基、镁基,使用温度在450℃左右或以下使用,用于航天及汽车零部件。
连续纤维增强金属基采用纯铝或单相铝合金,颗粒、晶须增强…采用高强度铝合金。
钛基,使用温度在650℃(450-700),用作高性能航天发动机镍基、铁基钴基及金属间化合物,使用温度在1200℃(1000℃以上),耐高温4聚合物基体一)简答题(各自优缺点)聚合物基复合材料的聚合物基主要有:不饱和聚酯树脂、环氧树脂、酚醛树脂等热固性树脂。
各自优缺点:二)聚合物基体的作用选择题:a . 将纤维黏在一起;b.分配纤维间的载荷;c .保护纤维不受环境的影响5陶瓷基特点:比金属更高的熔点和硬度,化学性质非常稳定,耐热性、抗老化性好,但脆性大,韧性差。
复合材料期末考试重点
一、复合材料为何具有可设计性?简述复合材料设计的意义。
组分的选择、各组分的含量及分布设计、复合方式和程度、工艺方法和工艺条件的控制等均影响复合材料的性能,赋予复合材料的可设计性。
意义:①每种组分只贡献自己的优点,避开自己的缺点。
②由一组分的优点补偿另一组分的缺点,做到性能互补。
③使复合材料获得一种新的、优于各组分的性能(叠加效应)。
优胜劣汰、性能互补、推陈出新。
四、在聚合物基复合材料中,为什么必须有适度的界面粘结?答:界面粘结的好坏直接影响增强体与基体之间的应力传递效果,从而影响复合材料的宏观力学性能。
界面粘结太弱,复合材料在应力作用下容易发生界面脱粘破坏,纤维不能充分发挥增强作用。
若对增强材料表面采用适当改性处理,不但可以提高复合材料的层间剪切强度,而且拉伸强度及模量也会得到改善。
但同时会导致材料冲击韧性下降,因为在聚合物基复合材料中,冲击能量的耗散是通过增强体与基体之间界面脱粘、纤维拔出、增强树料与基体之间的摩擦运动及界面层可塑性变形来实现的。
若界面粘结太强,在应力作用下,材料破坏过程中正在增长的裂纹容易扩散到界面,直接冲击增强材料而呈现脆性破坏。
适当调整界面粘结强度,使复合材料的裂纹沿界面扩展,形成曲折的路径,耗散较多的能量,则能提高复合材料的韧性。
因此,不能为提高复合材料的拉伸强度或抗弯强度而片面提高复合材料的界面粘结强度,要从复合树料的综合力学性能出发,根掘具体要求设计适度的界面粘结,即进行界向优化设计。
四、叙述金属基复合材料基体选择的原则。
答:⑴金属基复合材料构件的使用性能要求是选择金属基体材料最重要的依据。
⑵由于增强体的性质和增强机理不同,在基体材料的选择上有很大差别。
⑶选择金属基体时要充分考虑基体与增强体的相容性和物理性能匹配。
尽量避免增强体与基体合金之间有界面反应,界面润湿性良好。
八、根据下图,讨论为什么在相同体积含量下,SiC晶须增强MMC强度(抗拉与屈服强度)均高于颗粒增强MMC,而这两者的弹性模量相差不大。
复合材料考试重点
1 复合材料定义复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
2RMC(聚合物基复合材)中聚合物的主要作用是:把纤维粘接在一起;分配纤维间的荷载;保护纤维不受环境影响。
3 无机凝胶材料主要包括水泥、石膏、菱苦土和水玻璃等。
4 复合材料的增强体作用:增加强度、改善性能5 界面是复合材料的特征6 颗粒尺寸越小,体积分数越高,强化效果越好。
7 混合法则:纤维、基体对复合材料平均性能的贡献正比于它们各自的体积分数。
8 对于单向连续纤维增强复合材料弹性模量、抗张强度、泊松比、剪切强度等性能均符合混合法则9 平行于纤维方向称为“纵向”,垂直于纤维方向为“横向”。
10 忽略热膨胀系数、泊松比以及弹性变形差等引起的附加应力,认为整个材料的纵向应变是相同的。
11复合材料初始变形后的行为四个阶段1)纤维与基体均为线弹性变形;2)纤维继续线弹性变形,基体为非线性变形;3)纤维与基体都是非线性变形;4)随着纤维断裂,复合材料断裂12 金属基复合材料的第二阶段占比较大的比例,而脆性纤维复合材料未观察到第三阶段13 短纤维一般指长径比小于100的各种增强纤维。
14 复合材料的界面是指一层具有一定厚度(纳米以上)、结构随基体和增强体而异的、与基体有明显差别的新相15 复合材料的界面虽然很小,但它是有尺寸的,约几个纳米到几个微米,是一个区域,或一个带、一层,它的厚度呈不均匀分布状态16 在聚合物基复合材料的设计中:首先应考虑如何改善增强材料与基体间的浸润性;还要保证有适度的界面结合强度;同时还要减少复合材料成型中形成的残余应力;调节界面内应力和减缓应力集中17 碳纤维表面上涂覆(惰性涂层)和能与基体树脂发生反应或聚合的涂层,比较后发现,惰性涂层效果较好,活性涂层可能由于降低了相界面的浸润性而效果不良。
(浸润不良)将会在界面产生空隙,易产生应力集中而使复合材料发生开裂。
18 在复合材料成型过程中形成的(界面残余应力),会使界面传递应力的能力下降,最终导致复合材料的力学性能降低。
材料力学复合材料知识点总结
材料力学复合材料知识点总结复合材料是由两种或两种以上的材料组成的材料。
它们的组合结构使复合材料具有优异的性能,可以满足各种特殊的工程要求。
以下是关于材料力学复合材料的知识点总结。
一、复合材料的分类复合材料可以按照其成分进行分类,常见的分类包括:纤维增强复合材料、颗粒增强复合材料、结构复合材料等。
纤维增强复合材料是其中最常见和重要的类型。
二、纤维增强复合材料1. 纤维种类:常用的增强纤维有玻璃纤维、碳纤维和有机纤维等。
2. 纤维体积分数:纤维体积分数是指纤维在复合材料中所占的比例。
纤维体积分数的提高可以增强复合材料的强度和刚度。
3. 界面特性:界面是纤维与基体之间的接触区域。
优良的界面能够提高复合材料的力学性能,如界面黏结强度的提高可防止纤维脱离基体。
4. 复合材料的制备方法:常见的制备方法有手工层叠法、预浸法和纺织法等。
三、复合材料的力学性能1. 强度和刚度:复合材料的强度和刚度主要取决于增强纤维的性能和体积分数。
2. 断裂韧性:复合材料的断裂韧性取决于纤维的断裂韧性、界面黏结强度和纤维体积分数。
合理的纤维取向可以提高复合材料的断裂韧性。
3. 疲劳性能:复合材料的疲劳寿命较长,但应注意纤维和界面的损伤和疲劳裂纹的产生。
4. 热膨胀系数:复合材料的热膨胀系数通常要小于金属材料,其热膨胀性能可通过纤维取向进行调控。
四、应用领域复合材料在航空航天、汽车制造、建筑工程等领域有广泛的应用。
其中,碳纤维复合材料在航空航天领域应用较为广泛,可以制造轻型飞机、卫星等。
五、复合材料的优势和挑战复合材料具有重量轻、强度高、刚度大、抗腐蚀等优势,在一些特殊环境下比传统材料更加适用。
然而,复合材料的制备成本较高,其可靠性和维修性也是挑战所在。
在未来的发展中,随着技术的不断进步,复合材料在各个领域中的应用前景将更加广阔。
通过掌握复合材料的相关知识,我们能够更好地理解和应用这一材料,为工程和科学研究提供更多可能性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考试要求
1、考试要求:笔试,主要包括概念、主要公式及推导、原理图和计算题等形式问题;可带计算器,计算和推导要求有必要的过程;
2、看清题的每个问题,概念要清晰、计算要准确;
3、请给助教留好联系方式,以便通知考试时间和地点。
复习要点
一、基本概念和理论
1、非均匀性、各向异性以及正交各向异性的含义。
2、复合材料层合板的典型力学特点,能否举例说明,复合材料的高比强度、高比刚度的优势。
3、掌握几种典型纤维的力学性能。
4、用工程常数表示正交各向异性材料的柔度矩阵。
6、简单层板在任意方向上的应力-应变关系
6、正交各向异性简单层板的最大应力、最大应变、蔡-希尔、霍夫曼准则等强度理论表达式及其特点。
7、等强度纤维模型(强度-纤维体积分数示意图、公式及相应的解释)。
8、经典层合理论的基本假设及其A、B、D刚度矩阵表达式。
9、层合板强度分析程序的主要步骤。
10、层间应力产生的原因及危害。
11、复合材料层合板的弯曲、屈曲和振动问题主要解决什么,哪些问题值得关注。
12、Halpin-Tsai计算公式及特点。
二、重点复习题
1、利用最小余能原理,证明复合材料弹性模量的下限
2、利用材料力学分析方法,推导简单层板弹性模量E1、E2的细观力学表达式
3、对每一层性质和厚度都相同,按[0,45,-45,90]s 铺设的层合板来说,下面三个刚度矩阵哪些项为零?
4、判断:
●层合板层数的增加总会提高X方向或Y方向的轴向刚度
●对于力学载荷,A矩阵与叠层顺序无关
●对平衡铺层的层合板,刚度矩阵中D16和D26项总是零(平衡
铺层:对每一个+α铺层,总存在一个具有相同厚度和材料性质的-α铺层)
●[90]10 层合板的轴向刚度Ex比[90]4 层合板的大
●对称层合板的D11 和D22具有相同的值
5、对于下面铺层的层合板,选择每组正确的一项
层合板对称中面
层合板对称中面
6、什么角度的铺层添加到下面层合板中可以消除拉伸载荷引起的剪切变形
7、如果想得到最大的D66,如何改变层合板的铺层顺序
8、[0°/±θ/90°]s铺层的层合板A16、A26是否为零;D16和D26的含义是什么?增添什么样的铺层可以减小D16和D26
9、请简要描述一种典型复合材料制备工艺及采用该工艺制备的典型产品和其力学特点;举例说明先进复合材料在国防、航空、航天领域
的应用和作用(注意不涉密)。
10、对正交各向异性复合材料如何通过试验确定下述工程常数:E1、E2、E3、ν12、ν21、ν13、ν31、ν23、ν32、G12、G13、G23
11、对简单层板,已知E1=150GPa、E2=15GPa、ν12=0.2,与材料主方向成30度角的E x(30)=40GPa,能否给出与材料成60度角的G xy(60)12、根据下面简单层板的刚度矩阵,分别计算与材料主方向成90和45度时的
Q
ij
13、对横观各向同性复合材料,需要试验确定G12、G13、G23。
但是只能采用拉伸试验,可以采用多个试验,但为节约时间和降低成本,你需要最小化实际试验数量。
给出拟采取的试验,对每个试验确定要施加的应力和要测量的应变?从中可以直接得到什么工程常数;给出用拉伸试验获得的工程常数计算G12、G13、G23的公式。
14、对于一个角度未知的偏轴层合板,
测得
如果已知E x=8.56GPa,确定G xy和相互耦合影响系数η
15、根据下面给出的纤维和基体性能,确定简单层板的E1、E2和ν12、ν21(可选用不同的细观模型)
16、某单元体受力为τxy=σ,θ分别为0、45、90度,已知X=1000MPa,Y=S=40MPa,试用最大应力理论和蔡-希尔强度理论确定σ的最大值17、已知玻璃/环氧单层板的力学性能:E1=3.90X104MPa,
E2=1.30X104MPa,ν12=0.25,G12=0.42X104MPa,求该单层板的柔度矩阵S ij,刚度矩阵Q ij 。
若材料主方向与坐标系夹角为45°,求该坐标系下材料的Q ij
18、证明等厚度4层层合板0/-45/45/90是准各向同性层合板(拉伸刚度Aij与偏轴角θ无关)
19、已知单层板弹性常数E1=9.60X104MPa,E2=2.40X104MPa,ν12=0.40,G12=1.00X104MPa,求正交铺设5层层合板0°/90°0°/90°/0°(每层厚度t=0.1cm)所有的刚度系数
20、已知铝的工程弹性常数E=69GPa,G=26.54GPa, =0.3,给出铝的柔度矩阵分量和刚度矩阵分量。
21、对简单层板,分别说明Q11和E1的物理意义,为什么Q11比E1要大?。