八年级下册数学教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下册数学教学设计
16.1 二次根式(1)
一、学习目标:
知识与技能:1、根据算术平方根的意义了解二次根式的概念,能判断一个式子
是不是二次根式。
2、掌握二次根式有意义的条件。
过程与方法:先提出问题,让学生探讨、分析问题,师生共同归纳得出概念。
情感态度与价值观:经过探索二次根式的重要结论,发展学生观察、发现问题
的能力及研究问题的严谨性。
二、学习重点:理解二次根式的概念
三、学习难点:明确二次根式有意义的条件,并运用其解决具体问题。
四、学习过程
(一)复习引入:
1、已知一个正数x,满足x2 = a,x是a的________, 记为______, a一定是_______数。
2、(1) 4的算术平方根为_______ ,用式子表示为 __________;
(2) 16的算术平方根是_______,用式子表示为 __________;
(3) 0 的算术平方根是_______;
(4)正数a的算术平方根为_______,
(5)-7_______算术平方根。
归纳:_______和_______都有算术平方根;_______没有算术平方根
(二)出示学习目标:1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
(三)探索新知、提出问题
思考:用带有根号的式子填空
1、面积为3的正方形的边长是_______,面积为S的正方形的边长是_______。
2、一个长方形的围栏,长是宽的2倍,面积为130平方米,则它的宽为_______米。
3、一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时离地面的高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,那么t为_______.
很明显:所得的结果都表示一些正数的算术平方根。像这样一些非负数的算术平方根的式子,我们就把它称二次根式。一般地,我们把形如a(a≥0)的式子叫做二次根式
(学生举例巩固)
(四)议一议
1、-1有算术平方根吗?
2、0的算术平方根是多少?
3、当a<0时,有意义吗?
点评:1、表示非负数a的算术平方根。
2、a可以是数也可以是一个含有字母的式子。
3. a ≥0,a ≥0.其中a ≥0是a 有意义的前提条件。
试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?
340)
3a ; ;5.
分析:二次根式应该满足两个条件:第一有二次根号,第二被开方数是正数或0。
(五)深入探究
教师指出:含有字母的算术平方根具有一般性,这是需要研究的一类式子。
探究:1、当x 取何值时,下列各二次根式有意义?
223x ③ 12x
分析:由二次根式的定义可知,被开方数一定要大于或等于0.以43-x 为例,要满足
3x-4≥0 即x ≥43
时,43-x 在实数范围内有意义。学生独立完成后两题。 2、(1)若33a a 有意义,则a 的值为___________. (2)若
x 在实数范围内有意义,则x 为( )。 A.正数
B.负数
C.非负数
D.非正数
(六)拓展延伸
1、 (1)在式子中,x 的取值范围是____________.
(2)已知0,则x-y = _____________.
(3)已知y 2 ,则x
y = _____________。 (七)巩固练习
1、课后练习1、2题
2、(1m 的取值范围是_____________
(211m m 有意义,则m 的取值范围是____________
(3)若实数x ,y 满足y=223x ,则yx 的值为____________
(八)反馈总结 (学生归纳总结)
1.非负数a的算术平方根≥0)叫做二次根式.
二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a必须是非负数。
2.式子)0
a的取值是非负数。
(
a
(九)布置作业
教材19页复习巩固1题、综合运用5题。
16.1 二次根式性质(2)
一、学习目标2=a(a≥0)和(a≥0),并利用它们进
行计算和化简.
a
≥0)是一个非负数,用具体数据结合算术平方根的意义导出
)2=a(a≥0)、(a≥0),并利用这个结论解决具体
问题,最后运用结论严谨熟练地解题.
情感态度与价值观:培养学生的逻辑推理能力,由特殊到一般的归纳得出结论,
锻炼语言表达能力。
二、学习重点:(2=a(a≥0)a(a≥0)及其运用.
三、学习难点:探究导出(2=a(a≥0).当a≥0a才成立
四、学习过程
(一)、复习引入
1.什么叫二次根式?
2.当a≥0a<0有意义吗?
(二)、探究新知
1. a≥0)是一个什么数呢?
得出
2. 做一做:根据算术平方根的意义填空:
)2=_______;)2=_______;2=______;)2=_______;
2=______;2=_______;)2=_______.
是44的非
)2=4.综上可知有
3. 讲解例2
分析:我们可以直接利用(2=a (a ≥0)的结论解题.
4. 巩固练习
2 2 2 )2 ( 2
22- 5. 在实数范围内分解下列因式:
(1)x 2-3 (2)x 4-4 (3) 2x 2-3
(三)探索升华
1. 我们猜想当a ≥0时,是否也成立呢?下面我们就来探究这个问题.
;
=________=_______. 2. 明确:根据算术平方根的意义,我们可以得到:
=110=23=037.
3. 巩固练习
(1 (2 (3 (45)2(x ≥0) (6)
(2 (7))2 (8))2
(四)、应用拓展
当a ≥0;当a<0,•并根据这一性质回答下列问题.
(1)若,则a 可以是什么数?
(2)若,则a 可以是什么数?
明确:根据(1)、(2)可知│a │.
( 五)、归纳小结