数理方程第二版课后复习题答案

合集下载

数理方程 习题答案

数理方程 习题答案

数理方程习题答案数理方程习题答案数理方程是数学中一门重要的学科,它研究的是各种各样的方程。

在学习数理方程的过程中,习题是不可或缺的一部分。

通过解习题,我们可以加深对数理方程的理解,掌握解题的方法和技巧。

在这篇文章中,我将为大家提供一些数理方程习题的答案,希望能对大家的学习有所帮助。

1. 求解方程:2x + 5 = 17。

解:将方程化简,得到2x = 17 - 5,即2x = 12。

再将等式两边同时除以2,得到x = 6。

所以方程的解为x = 6。

2. 求解方程组:2x + y = 73x - 2y = 4解:可以使用消元法来求解这个方程组。

首先,将第一个方程乘以2,得到4x + 2y = 14。

然后将第二个方程与这个结果相加,得到7x = 18。

再将等式两边同时除以7,得到x = 18/7。

将x的值代入第一个方程,可以求得y的值为y = 7 - 2x = 7 - 2(18/7) = 7 - 36/7 = 7/7 - 36/7 = -29/7。

所以方程组的解为x = 18/7,y = -29/7。

3. 求解二次方程:x^2 - 5x + 6 = 0。

解:可以使用因式分解法来求解这个二次方程。

首先,将方程化简,得到(x - 2)(x - 3) = 0。

根据乘积为零的性质,可以得到x - 2 = 0或者x - 3 = 0。

解这两个方程,可以得到x = 2或者x = 3。

所以方程的解为x = 2或者x = 3。

4. 求解三次方程:x^3 - 3x^2 + 2x - 4 = 0。

解:可以使用综合除法来求解这个三次方程。

首先,将方程按照降幂排列,得到x^3 - 3x^2 + 2x - 4 = 0。

然后,尝试将方程的第一项x^3除以x的最高次数x^3,得到商为1。

将这个商乘以方程的所有项,得到x^3 - 3x^2 + 2x - 4 - (x^3 - 3x^2 + 2x - 4) = 0。

化简这个等式,可以得到0 = 0。

数理方程试题及解答二

数理方程试题及解答二

数理方程试题二一、填空:(10×2分=20分)1.边界条件2.初始状态3.定解条件.4.边值问题5.拉普拉斯方程的连续解6.狄利克莱问题7.牛曼问题8.()⎰⎰⎰⎰⎰⎰⎰⎰ΩΓΩ⋅-∂∂=∇dV gradv gradu dS n vudV v u 2 9.()()()0001114M M M M u M u m u M dS n r r n πΓ⎡⎤⎛⎫∂∂=--⎢⎥ ⎪ ⎪∂∂⎢⎥⎝⎭⎣⎦⎰⎰10.()()()()01!21220≥++Γ-=++∞=∑n m n m x x J m n mn mm n二、选择题:(5×4分,共20分)1.A; 2. B; 3. C; 4. C; . 5. D .三、(7分)解定解问题()()()()()⎪⎩⎪⎨⎧==≤≤='=><<=''-''=.0,,0,0;0,,0,;0,0,002t l u t u l x x g u x f x u t l x u c u t t xx tt解:令()()()()()()()2,0X x T t u x t X x T t X x c T t λ''''=≠⇒==-,()()()()20,0T t c T t X x X x λλ''''+=+=由方程()()()()000X x X x X X l λ''+=⎧⎪⎨==⎪⎩解出()()sin 1,2,3,n n n X x B x n l π== 由方程()()20T t c T t λ''+=解出:()()cos sin 1,2,3,.n nn n ct n ctT t C D n l lππ''=+= -----------4分 从而有:()(),cos sin sin 1,2,3,n n n n ct n ct n x u x t C D n l l l πππ⎛⎫=+= ⎪⎝⎭ 叠加起来:()()11,,cos sin sin ,n n n n n n ct n ct n x u x t u x t C D l l l πππ∞∞==⎛⎫==+ ⎪⎝⎭∑∑ 代入初始条件确定,n n C D 有:()()002sin 2sin l n l nn C x xdx l ln D x xdx n c l πϕπψπ⎧=⎪⎪⎨⎪=⎪⎩⎰⎰ ------------------------------------3分四、(7分)证明: ()[]()x xJ x xJ x01d d= 证明: ()()()()(),!21!32!2221222266244220 +-++-+-=k x x x x x J k k k()()().!1!21!4!32!3!22!22212127755331 ++-++⋅⋅-⋅⋅+⋅-=++k k x x x x x x J k k k---------------------4分将()x J 1乘以x 并求导数,得()[]()()⎥⎦⎤⎢⎣⎡++-++⋅-=++ !1!21!222d d d d 12223421k k x x x x x xJ x k k k()()+-++-=+221233!212k x x x k k k()()()(),!21!32!222122226624422⎥⎦⎤⎢⎣⎡+-++-+-= k x x x x x k k k即()[]()x xJ x xJ x01d d=---------------------------------------------------------------3分 五、(7分)由定解问题 ()()⎪⎩⎪⎨⎧+∞<<-∞='+∞<<-∞=''=''==x x u x x u u a u t t t xx tt ,,;002ψϕ导出达朗贝尔公式。

数理方程习题解答

数理方程习题解答

+
α
2 2
=
α32
+
α
2 4
,取单位特征方向,
α12
+
α
2 2
+ α32
+
α
2 4
= 1。所以,α12
+
α
2 2
= α32
+
α
2 4
=
1 2
。记
α1
=
1 2
cosθ ,
α2
=
1 2
sinθ ,α3
=
1 2
cosϑ,
α4
=
1 2
sinϑ
,则
α
=
⎛ ⎜⎝
1 2
cosθ ,
1 sinθ , 2
1 2
cosϑ,
则杆上各点 在时刻 的位移是

在杆上任取一段,其两端点静止时的坐标为
,此小杆段在时刻 的相对伸长
为: 律知张力为
,令
得 点在时刻 的相对伸长为ux (x, t) ,由 Hooke 定
,再此小杆段上用 Newton 第二定律得
两边同除 并令
得:
若杨氏模量为 为常数则得:

1 牛顿(Newton)第二定律与动量守恒定律等价,也可以用动量守恒定律来见方程,见《数学物理方程 讲义》 (姜礼尚、陈亚浙)P1
=
1 2
sinθ ,α3
=
±
1 sinθ ,则 2
α
=
⎛ ⎜⎝
cosθ
,
1 sinθ , ± 2
1 2
sin
θ
⎞ ⎟⎠

( ) 2 对波动方程utt − a2 uxx + uyy = 0 过直线l : t = 0, y = 2x 的特征平面。

数学物理方程第二版答案(平时课后习题作业)

数学物理方程第二版答案(平时课后习题作业)

数学物理方程第二版答案第一章.颠簸方程§ 1 方程的导出。

定解条件4. 绝对柔嫩逐条而平均的弦线有一端固定,在它自己重力作用下,此线处于铅垂均衡地点,试导出此线的细小横振动方程。

解:如图 2,设弦长为l ,弦的线密度为,则 x 点处的张力 T ( x) 为T ( x)g(lx)且 T( x) 的方向老是沿着弦在 x 点处的切线方向。

仍以 u( x, t) 表示弦上各点在时辰 t 沿垂直于 x 轴方向的位移,取弦段 ( x, xx), 则弦段两头张力在 u 轴方向的投影分别为g(l x) sin ( x); g (l( xx)) sin (xx)此中 (x) 表示 T (x) 方向与 x 轴的夹角又sintgux.于是得运动方程x2u[l( xx)]u∣xxg [lx]u∣x gt 2xx利用微分中值定理,消去x ,再令 x0 得2ug[( l x) ut 2] 。

x x5. 考证u( x, y,t )t 21在锥 t 2 x 2 y 2 >0 中都知足颠簸方程x 2 y 22u2u2u证:函数 u( x, y,t )1在锥 t 2x 2 2内对变量 t 2x 2 y 2t 2 x 2y >0y 2x, y, t 有u3二阶连续偏导数。

且(t2x 2 y 2) 2 tt2u35(t2x2y 2) 23(t2x2y2) 2 t2t23(t 2x 2y 2) 2 (2t 2x2y 2)u3x2 y 2)2 x(t2x2u35t2x2y223 t2x2y22 x 2x25 t2x2y22 t22 x2y22 u5同理t2x2y22 t2x22y2y22 u 2u52u .所以t 2 x 2y 2 2 22x 2 y 2x2y2tt2即得所证。

§2 达朗贝尔公式、波的传抪3.利用流传波法,求解颠簸方程的特点问题(又称古尔沙问题)2ua 22ut 2x 2u x at 0(x) (0)(0)u x at( x).解: u(x,t)=F(x-at)+G(x+at)令 x-at=0得 ( x) =F ( 0) +G ( 2x )令 x+at=0得( x) =F (2x ) +G(0)所以F(x)=( x) -G(0).2G ( x ) = ( x) -F(0).2且F ( 0) +G(0)= (0) (0).所以u(x,t)=(xat) + ( x at ) - (0).22即为古尔沙问题的解。

数理方程第二版 课后习题答案教学教材

数理方程第二版 课后习题答案教学教材

数理方程第二版课后习题答案第一章曲线论§1 向量函数1. 证明本节命题3、命题5中未加证明的结论。

略2. 求证常向量的微商等于零向量。

证:设,为常向量,因为所以。

证毕3. 证明证:证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。

证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。

所以,,根据数量函数的Lagrange中值定理,有其中,,介于与之间。

从而上式为向量函数的0阶Taylor公式,其中。

如果在区间上处处有,则在区间上处处有,从而,于是。

证毕5. 证明具有固定方向的充要条件是。

证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。

充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是因为,故,从而为常向量,于是,,即具有固定方向。

证毕6. 证明平行于固定平面的充要条件是。

证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。

充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。

如果,则与不共线,又由可知,,,和共面,于是,其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。

证毕§2曲线的概念1. 求圆柱螺线在点的切线与法平面的方程。

解:,点对应于参数,于是当时,,,于是切线的方程为:法平面的方程为2. 求三次曲线在点处的切线和法平面的方程。

解:,当时,,,于是切线的方程为:法平面的方程为3. 证明圆柱螺线的切线和轴成固定角。

证:令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则证毕4. 求悬链线从起计算的弧长。

数理方程第二版 课后习题答案

数理方程第二版 课后习题答案

第一章曲线论§1 向量函数1. 证明本节命题3、命题5中未加证明的结论。

略2. 求证常向量的微商等于零向量。

证:设,为常向量,因为所以。

证毕3. 证明证:证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。

证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。

所以,,根据数量函数的Lagrange中值定理,有其中,,介于与之间。

从而上式为向量函数的0阶Taylor公式,其中。

如果在区间上处处有,则在区间上处处有,从而,于是。

证毕5. 证明具有固定方向的充要条件是。

证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。

充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是因为,故,从而为常向量,于是,,即具有固定方向。

证毕6. 证明平行于固定平面的充要条件是。

证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。

充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。

如果,则与不共线,又由可知,,,和共面,于是,其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。

证毕§2曲线的概念1. 求圆柱螺线在点的切线与法平面的方程。

解:,点对应于参数,于是当时,,,于是切线的方程为:法平面的方程为2. 求三次曲线在点处的切线和法平面的方程。

解:,当时,,,于是切线的方程为:法平面的方程为3. 证明圆柱螺线的切线和轴成固定角。

证:令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则证毕4. 求悬链线从起计算的弧长。

数学物理方程第二版(谷超豪)答案

数学物理方程第二版(谷超豪)答案

( x) (1 ) 2
若 E ( x) E 为常量,则得
x h
2u x u [ E (1 ) 2 ] 2 x h x t
E
x u x 2u [(1 ) 2 ] (1 ) 2 2 x h x h t
数学物理方程答案
4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡 位置,试导出此线的微小横振动方程。 解:如图 2,设弦长为 l ,弦的线密度为 ,则 x 点处的张力 T ( x) 为
其中
其中 k 为支承的刚度系数。由此得边界条件
(
k E
特别地,若支承固定于一定点上,则 v(t ) 0, 得边界条件
(
u u ) ∣ x l 0 。 x
同理,若 x 0 端固定在弹性支承上,则得边界条件

u ∣ x 0 k[u(0, t ) v(t )] x u ( u ) ∣ x 0 f (t ). x E
x u( x, t ); x x u( x x, t )
其相对伸长等于 令
[ x x u ( x x, t )] [ x u ( x, t )] x u x ( x x, t ) x
x 0 ,取极限得在点 x 的相对伸长为 u x ( x, t ) 。由虎克定律,张力 T ( x, t ) 等于
2u u g [(l x) பைடு நூலகம் 。 2 x x t
5. 验证
u ( x, y , t )
1 t x y
2 2 2
在锥 t 2 x 2 y 2 >0 中都满足波动方程
2u 2u 2u 1 2 2 证:函数 u ( x, y, t ) 在锥 t 2 x 2 y 2 >0 内对变量 2 2 2 2 t x y t x y

数学物理方程第二版习题解答 第二章

数学物理方程第二版习题解答 第二章

n =0 ∞
∑ Cn e
n =0
sin
2n + 1 x 2
∑ C n sin
2n + 1 x 2
ω
因热源可迭加,故有 F ( x, t ) = F1 ( x, t ) + F2 ( x, t )。将所得代入
2 2
∂u ∂ u = a 2 2 + f ( x, t ) 即得所求: ∂t ∂x
2
因此
f ( x) sin π∫
2 2

sin
2
2
X ' (0) = X ' (l ) = a = 0 即 b 可任意,故 X ( x) ≡ 1 为一非零解。 (3) 当 λ > 0 时,通解为
X ( x) = A cos λ x + B sin λ x X ' ( x) = − A λ sin λ x + B λ cos λ x X ' (0) = B l = 0 X ' (l ) = − A l sin l l + B l cos l l = 0 B=0 因 λ ≠ 0, 故相当于 A sin l l = 0 要 X ( x) 非零,必需 A ≠ 0, 因此必需 sin l l = 0, 即
足微分方程
2 k ∂ 2 u k1 P ∂u (u − u 0 ) + 0.24i 2r = − ∂t cρ ∂x cρω cρω
2 k a = − cρ
4. 设一均匀的导线处在周围为常数温度 u 0 的介质中,试证 :在常电流作用下导线的温度满
其中 i 及 r 分别表示导体的电流强度及电阻系数,表示横截面的周长,ω 表示横截面面积,而 k 表 示导线对于介质的热交换系数。 解:问题可视为有热源的杆的热传导问题。因此由原 71 页(1.7)及(1.8)式知方程取形式为

概率论与数理统计及其应用第二版课后问题详解

概率论与数理统计及其应用第二版课后问题详解
P( A) 1 50%
(4) P( A | B ) P( AB ) 45% 9 ;
P(B ) 1 15% 17
(5) P( A | B) P( AB) 5% 1 。
P(B) 15% 3
文案大全
实用文档
11,在 11 张卡片上分别写上 engineering 这 11 个字母,从中任意连
数大于 330 的概率。
解:仅由数字 0,1,2,3,4,5 组成且每个数字之多出现一次的全
体三位数的个数有 55 4 100 个。(1)该数是奇数的可能个数为
4 43 48 个,所以出现奇数的概率为
48 0.48 100
(2)该数大于 330 的可能个数为 2 4 5 4 5 4 48,所以该数大于
上打字的概率分别为多少?
解:设“程序因打字机发生故障而被破坏”记为事件 M ,“程序在 A,B,C 三台打字机上打字”分别记为事件 N1, N2 , N3 。则根据全概率公式有
3
P(M ) P(Ni )P(M | Ni ) 0.6 0.01 0.3 0.05 0.1 0.04 0.025 , i 1
白球,放回,并放入 1 只白球;若取到红球不放回也不放入另外的球。
连续取球 4 次,求第一、二次取到白球且第三、四次取到红球的概率。
解:(1)由题意可得 P(A B) P(A) P(B) P(AB) 0.7 ,所以
P( A | B) P( AB) 0.1 1 , P(B | A) P( AB) 0.1 1 ,
特定的销售点得到 k(k n) 张提货单的概率。
解:根据题意, n(n M ) 张提货单分发给 M 个销售点的总的可能分法

数理方程课后习题(带答案)

数理方程课后习题(带答案)

u0 X0T0 B0A0 C0
0
Tn
a2n22
l2
Tn
0
a2n22 t
Tn Ane l2
un XnTn
ABea2nl222t nn
cons l
xCea2nl222t n
cosn
l
x
un 0unC 0n 1Cnea2n l2 22tconlsx
数学物理方程与特殊函数
第2章习题选讲
u(uutx(,0x0,)at)2xx,20u2,,u(lx,t) 0,
由此可得:w (x)1
xt
dt
f()dC xA ,
a2 0 0
其中
C1 l(BAa 1 2 0 ldt0 tf()d),
数学物理方程与特殊函数
第2章习题选讲
然后用分离变量解
v(vt0,t)a2
2v x2 , 0, v(l,
t)
0,
0 x l,t 0 t 0
v(x,0) g(x) w(x), 0 x l
0xl1,0yl2 0yl2
u(x,0)0,u(x,l2)(x), 0xl1
uXY
XX0,
X(0)X(l1)0
0xl1
YY0
n n2 nl1 2,n1,2,3,L
n
Xn An sin l1 x
Yn
n2 2
l12
Yn
0
ny
ny
Yn Cnel1 Dne l1
数学物理方程与特殊函数
第2章习题选讲
un 1unn 1Cnenl1 yD nenl1 ysinnl1 x u(x,0)n 1CnDnsinnl1x0 u(x,l2)(x)n 1 C nenl1l2D nenl1l2 sinn l1x

数理方程第二版(谷超豪)答案第一章-第三章

数理方程第二版(谷超豪)答案第一章-第三章

的通解可以写成
u=
F ( x − at ) + G ( x + at ) h−x
其中 F,G 为任意的单变量可微函数,并由此求解它的初值问题:
t = 0 : u = ϕ (x ),
解:令 (h − x )u = v 则
∂u = Ψ ( x ). ∂t
∂v (h − x ) ∂u = u + ∂v , (h − x )2 ∂u = (h − x ) u + ∂x ∂x ∂x ∂x
∂u ,故 ( x, x + ∆x ) 上所受摩阻力为 ∂t ∂u − b ⋅ p( x )s ( x ) ⋅ ∆x ∂t
运动方程为:
ρ (x )s (x )∆x ⋅
∂ 2u
∂u ∂u ∂u x − b ⋅ ρ (x )s (x )∆x = ES x + ∆x − ES ∂x ∂t ∂t ∂t 2
∂ ∂v ∂u ∂ 2v 2 ∂u 2 ∂u [(h − x) = −(u + ) + (h − x) + (h − x) = (h − x)(u + 2 ) ∂x ∂x ∂x ∂x ∂x ∂ x
又 代入原方程,得
(h − x ) ∂
2
u
∂t 2
=
∂ 2v ∂t 2
(h − x ) ∂

2
v
∂x 2
ρg (l − x) sin θ ( x); ρg (l − ( x + ∆x)) sin θ ( x + ∆x)
其中 θ ( x) 表示 T ( x) 方向与 x 轴的夹角 又 于是得运动方程
sin θ ≈ tgθ =
∂u ∂x.

数理方程第二版 课后习题答案讲解学习

数理方程第二版 课后习题答案讲解学习

数理方程第二版课后习题答案第一章曲线论§1 向量函数1. 证明本节命题3、命题5中未加证明的结论。

略2. 求证常向量的微商等于零向量。

证:设,为常向量,因为所以。

证毕3. 证明证:证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。

证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。

所以,,根据数量函数的Lagrange中值定理,有其中,,介于与之间。

从而上式为向量函数的0阶Taylor公式,其中。

如果在区间上处处有,则在区间上处处有,从而,于是。

证毕5. 证明具有固定方向的充要条件是。

证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。

充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是因为,故,从而为常向量,于是,,即具有固定方向。

证毕6. 证明平行于固定平面的充要条件是。

证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。

充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。

如果,则与不共线,又由可知,,,和共面,于是,其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。

证毕§2曲线的概念1. 求圆柱螺线在点的切线与法平面的方程。

解:,点对应于参数,于是当时,,,于是切线的方程为:法平面的方程为2. 求三次曲线在点处的切线和法平面的方程。

解:,当时,,,于是切线的方程为:法平面的方程为3. 证明圆柱螺线的切线和轴成固定角。

证:令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则证毕4. 求悬链线从起计算的弧长。

数理方程习题答案

数理方程习题答案

习题2.12.解:振动方程:2,0,0tt xx u a u x L t =<<>边界条件:00,0x x x Lu u ====初始条件:,0t t t b ux u L====习题2.23.解:根据牛顿冷却定律有:44()ukdsdt u dsdt n σϕ∂-=-∂∴初始条件为: 44()su u n k σϕ∂=--∂习题2.33.解:0000,0,0,0000,(,)x x a y y bz z cu x a y b z c u u u uuux y ϕ======∆=<<<<<<======习题2.42.<4)解:该方程为一般二阶线性偏微分方程,首先对其进行化简:特征方程:23410dy dy dx dx ⎛⎫-+= ⎪⎝⎭解得:121,3x y x y ϕϕ-=-=作代换:13x yx y ξη=-⎧⎪⎨=-⎪⎩11113xy xy Q ξξηη-⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦所以:1112111212221222Ta a a a Q Qa a a a ⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦21110321331212111033⎡⎤--⎡⎤⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥---⎣⎦⎣⎦⎢⎥⎣⎦12000b Lc b L c c f ξξηη=-==-===于是有:u ξη=11212()()()()()u g u g d f f f ξξξξηξη==+=+⎰121()()3u f x y f x y ∴=-+-是原方程的解。

习题2.52.证明: 显然0t u==由含参变量的求导法则,有000(,;)(,;)t t tt u V dtd u d V x t V x t t t dtdtV d tττττττ==∂∂==+-∂∂∂=∂⎰⎰tt u =∴=2222220020(,;)(,;)()(,)(,)tt tt xx tt tt xx V V x t dt V x y t u a u d a d t tdt x V a V d f x f x τττττττ=∂∂∂-=+-∂∂∂=-+=⎰⎰⎰<此处f(x,t?>)另外有:(0,;)00(,;)00t tx t tx Lu V t d d uV L t d d ττττττ========⎰⎰⎰⎰证毕。

数理方程参考答案4第四章 积分变换法

数理方程参考答案4第四章 积分变换法

若 在 点连续,则
1
定义
设函数 f ( x) 在 (−∞, +∞) 上的任意有限区间上满足狄利克雷条件,在 (−∞, +∞) 上绝
对可积,则称广义积分

的傅里叶变换,或者称为 定义 称
的像函数。通常记为
,或


的傅里叶逆变换,或者称为 傅里叶变换及其逆变换的基本性质
的像原函数。记为
.
性质 1(线性性质) 傅里叶变换及其逆变换都是线性变换,即
其中 , 是任意常数。 性质 2(相似性质) 对于任意实常数 ,有 . 性质 3(位移性质)对于任意实常数 ,有 , 性质 4(微分性质)设 , 的傅里叶变换存在,则 . 一般地,若 , ,…, 的傅里叶变换存在,则 . 性质 5(乘多项式性质)设 的傅里叶变换存在,则
2
.
. 性质 6 (积分性质) . 性质 7 (对称性质) . 定义 于所有的 设函数 和 是 上定义的函数。 如果广义积分 对
2 ∂ 2u 2 ∂ u a − = 0 (−∞ < x < +∞, t > 0), ∂t 2 ∂x 2 ∂u u| ψ ( x). ( x), = = t =0 ϕ ∂t t =0
的解为
二维拉普拉斯方程的边值问题
∂ 2u ∂ 2u = 0 ( −∞ < x < +∞, y > 0), ∂x 2 + ∂ y2 u | = f ( x ), x =0 u = 0. |xlim |→+∞ 的解为
2
s2
例3 解
求函数 F ( p ) = 因为
p 的拉普拉斯逆变换 p − 2 p +5

(整理)数理方程第二版课后习题答案

(整理)数理方程第二版课后习题答案

第一章曲线论§ 1向量函数1 .证明本节命题3、命题5中未加证明的结论略2 .求证常向量的微商等于零向量。

证:设31,回为常向量,因为r(t4- At) -r(t) c-c 11m = lim = 0it —AtAt —At所以E33 .证明⑹ p 2(t)则此向量在该区间上是常向量 证:设[=«r)=)⑴ 返 [回 回1为定义在区间口上的向量函数,因为 回在区间口上可导当且仅当数量函数 晅],EH3和EH3在区间 口上可导。

所 以,।° I ,根据数量函数的Lagrange 中值定理,有证毕4.利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,x(t) - X(t o ) 4- %)y(t) =y(S)+ y r (日”(t -力式 t) = z(M)+ /(%)《一其中 51,囹,因介于口与口之间。

从而* =3(口 =比⑷ y(t) 4 t)} =+ £(%)(「-1) y(j) + 4(%)«-咐 《%) +={刀(珀 “幻)+ X(sp 4电)/(%)}("明=『口 +年一%)上式为向量函数的 0阶 Taylor 公式,其中 :—卜("'_‘(")_一 ⑻):。

如果在 区间口上处处有F ⑴=口⑷ *)曰!,则在区间口上处处有适三从而F = (,©) y'(%) ,(1)] = o]于是E3。

证毕5 .证明左逗1具有固定方向的充要条件是F 黑亍二°1证:必要性:设F=1a)l 具有固定方向,则F =直力1可表示为F =, 其中四为某个数量函数,目为单位常向量,于是f"=。

⑴P 住"X" Q] 充分性:如果区三可,可设[_叫,令巨运三叵画,其中四为某个 数量函数,回为单位向量,因为F=p 岸前⑴+。

("'⑴]于是r x ? = O-*p(t)2(t) x [p'(t)?(t) + p(t)e (t) - O^*p 2(f)[e(t) x e (t) - 0 因为回,故国亘1,从而F⑷x.(t)=。

数学物理方程第二版谷超豪主编的课本的课后答案

数学物理方程第二版谷超豪主编的课本的课后答案

1、一个偏微分方程所含有的未知函数最高阶导数的阶数称为这个偏微分方程的阶。

2、如果方程对未知函数及其各阶导数总体来说是线性的,则称这个方程是线性方程,否则称这个方程是非线性方程。

3、几种不同原因的综合所产生的效果等于这些不同原因单独产生的效果(即假设其他原因不存在时,该原因所产生的效果)的累加。

这个原理称为叠加原理。

4、I 【22222//0u t a u x ∂∂-∂∂=0:(),/()t u x u t x ϕψ==∂∂=】初值问题I 的解为(,)[()()]/2(1/2)()x atx atu x t x at x at a d ϕϕψαα+-=-+-+⎰此公式称为达朗贝尔公式5、依赖区间(x-at,x+at ) 第一章课后题2.8求解波动方程的初边值问题222200{//sin |0,/|sin }t t u t u x t x u u t x ==∂∂-∂∂==∂∂=解:()0()11(,)sin sin sin 22x t x tt x t x t u x t d d t xττξξτξξ+-+---=+=⎰⎰⎰sin(1,2,...)k k C x k l π=为常微分方程()()0X x X x λ''+=满足边界条件(0)0,()0X X l ==的固有函数(或特征函数)而222k lπλ=称为相应的固有值。

2222200:(),()0,:0u u a t x ut u x x tx x l u ϕψ∂∂-=∂∂∂===∂===初值问题,的解是(,)cos sin sin k k k a k a k a u x t A t B t xl l l πππ⎛⎫=+ ⎪⎝⎭又可以写成(,)cos()sink k k k k u x t N t x lπωθ=+其中,cos sin K K k k K aN lπωθθ===K N 称为波的振幅,K ω称为圆频率,k θ称为波的初位相。

数学物理方程第二版习题解答第四章

数学物理方程第二版习题解答第四章
§2 二 阶 方 程 的 特 征 理 论 1、 求下列方程的特征方程和特征方向
因此引变换

∂u ∂u = (1 + ∂x ∂x
1 − 2 2 x )
(1)
3 2)
∂ 2u ∂x1
2
+
∂ 2u ∂x 2
2
=
∂ 2u ∂x3
2
+
∂ 2u ∂x 4
2
∂ u ∂ξ
2
2
=
1
2
∂ u
2
2
1 + ξ ∂ξ
+ (− ξ(1 + ξ 2 )
uξη +
1 (uξ − uη ) = 0 2(ξ − η )
dy 2 ) + y = 0, dx
∂ 2u
当 y=0 为抛物线型, 已是标准形式. 当 y>0 为椭圆形. 特征方程为 ( 解之得 因此引变换 有
2 ∂ 2u ∂u ∂u 2 ∂ u = (2 + cos ξ) + 2(4 − cos ξ) + (2 − cos ξ) − sin ξ + sin ξ 2 2 2 ∂ξ∂η ∂ξ ∂η ∂ξ ∂ξ ∂η ∂u ∂u ∂u = − ∂y ∂ξ ∂η 2 2
∂u ∂u ∂u = + ∂ξ ∂ξ ∂η ∂ 2u ∂ 2u ∂ 2u ∂ 2u ∂ 2u = + + + 2 ∂ξ∂η ∂ξ∂η ∂η 2 ∂ξ 2 ∂ξ 2
− − ∂u ∂u ∂u = ( −( − y ) 2 ) + (− y ) 2 ∂y ∂ξ ∂η ∂ 2u ∂ 2u ∂ 2u ∂ 2u −1 −1 y y = − + − − + ( ) 2 ( ( ) ) (− y ) −1 ∂ξ∂η ∂y 2 ∂ξ 2 ∂η 2 1 1

数学物理方程第二版(谷超豪)答案

数学物理方程第二版(谷超豪)答案

其中 h 为圆锥的高(如图 1) 证:如图,不妨设枢轴底面的半径为 1,则 x 点处截面的半径 l 为:
l 1 x h
x h
2
所以截面积 s( x) (1 ) 。利用第 1 题,得
( x) (1 ) 2
若 E ( x) E 为常量,则得
x h
2u x u [ E (1 ) 2 ] 2 x h x t
1 h x x 1 h d c 2 2a x 2
o
x
1 1 h d c Gx h x x 2 2a x 2
o
x
所以
u ( x, t )
1 [(h x at ) ( x at ) (h x at ) ( x at )] 2(h x)
( x)
3. 利用传播波法,求解波动方程的特征问题(又称古尔沙问题)
2 2u 2 u 2 a x 2 t u x at0 ( x) u ( x). x at0
(0) (0)
数学物理方程答案
解:u(x,t)=F(x-at)+G(x+at) 令 x-at=0 令 x+at=0 所以 得 ( x) =F(0)+G(2x) 得 ( x) =F(2x)+G(0) F(x)= ( ) -G(0). G(x)= ( ) -F(0). 且 所以 F(0)+G(0)= (0) (0). u(x,t)= (
2 5 2 2 2 x y t 2x 2 y 2 2

y
所以 即得所证。
2u x 2

2u y 2
t

数学物理方程 4-5章课后部分习题答案 李明奇主编 电子科技大学出版社

数学物理方程 4-5章课后部分习题答案 李明奇主编 电子科技大学出版社

数理方程第二次作业习题4.11. 求下列波动方程Cauchy 问题的解:(2)⎩⎨⎧=====xu uu a u t tt xxtt 02,5。

解:代入达朗贝尔公式,可得:521)55(21),(+=++=⎰+-xt d at x u at x atx ξξ。

6.求下列强迫振动的Cauchy 问题的解:(1):⎩⎨⎧==+===2002,5x u u e u a u t t t xxx tt解:令)(),(),(x w t x v t x u +=,代入原方程,得:xxx xx ttew a v a v++=22。

取2)(a e x w x-=,得:⎪⎩⎪⎨⎧=+====222,5xv ae vv a v t tx t xxtt 。

由Alembert d '公式,得:531)(2121)5()5(21),(3222222++++=+⎥⎦⎤⎢⎣⎡+++=+-+-+-⎰t a tx eead aaea e t x v atx atx atx atx atx at x ξξ所以原问题的解为531)(2121)5()5(21),(32222222++-++=+⎥⎦⎤⎢⎣⎡+++=+-+-+-⎰t a ae tx eead aaea e t x u x atx atx atx atx atx at x ξξ7.求解下列定解问题:⎩⎨⎧==>+∞<<-∞=-++==)(),(0,,020022x u x u t x u a u u u t t t xx t tt ψϕεε。

解:令)0(),,(),(>=-ββt x v et x u t,代入原方程得:)2()(2222=+-+-+-v v v a v t xx tt βεβεβε取εβ=,可得:⎩⎨⎧+==>+∞<<-∞=-==)()(),(0,,0002x x v x v t x v a v t t t xx tt εϕψϕ由达朗贝尔公式得:[][]⎰+-++-++=atx atx d aat x at x t x v ξξεϕξψϕϕ)()(21)()(21),( 所以,原定解问题的解为:[][]⎰+-++-++=atx atx ttd aeat x at x et x u ξξεϕξψϕϕββ)()(21)()(21),(习题4.21. 求解半无界弦定解问题:⎪⎩⎪⎨⎧===>+∞<<====0cos ,sin 0,0,0002x t t t xx tt u x u x ut x u a u 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章曲线论§1 向量函数1. 证明本节命题3、命题5中未加证明的结论。

略2. 求证常向量的微商等于零向量。

证:设,为常向量,因为所以。

证毕3. 证明证:证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。

证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。

所以,,根据数量函数的Lagrange中值定理,有其中,,介于与之间。

从而上式为向量函数的0阶Taylor公式,其中。

如果在区间上处处有,则在区间上处处有,从而,于是。

证毕5. 证明具有固定方向的充要条件是。

证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。

充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是因为,故,从而为常向量,于是,,即具有固定方向。

证毕6. 证明平行于固定平面的充要条件是。

证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。

充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。

如果,则与不共线,又由可知,,,和共面,于是,其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。

证毕§2曲线的概念1. 求圆柱螺线在点的切线与法平面的方程。

解:,点对应于参数,于是当时,,,于是切线的方程为:法平面的方程为2. 求三次曲线在点处的切线和法平面的方程。

解:,当时,,,于是切线的方程为:法平面的方程为3. 证明圆柱螺线的切线和轴成固定角。

证:令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则证毕4. 求悬链线从起计算的弧长。

解:5. 求抛物线对应于的一段的弧长。

解:6. 求星形线,的全弧长。

解:7. 求旋轮线,对应于一段的弧长。

解:8. 求圆柱螺线从它与平面的交点到任意点的弧长。

解:圆柱螺线与平面的交点为,交点对应的参数为,而,9. 求曲线,在平面与平面之间的弧长。

解:取为曲线参数,曲线的向量参数方程为:平面对应于参数,平面对应于参数,10. 将圆柱螺线化为自然参数表示。

解:,因为自然参数11. 求极坐标方程给定的曲线的弧长表达式。

解:极坐标方程给定的曲线的方程可化为向量参数形式:§3 空间曲线1. 求圆柱螺线在任意点的密切平面的方程。

解:密切平面的方程为即2. 求曲线在原点的密切平面、法平面、从切平面、切线、主法线、副法线的方程。

解:原点对应于参数,于是在处,密切平面的方程为副法线的方程为法平面的方程为:切线的方程为从切平面的方程为主法线的方程为3. 证明圆柱螺线的主法线和轴垂直相交。

证:一方面,主法线的方程为另一方面,过圆柱螺线上任意一点作平面π与轴垂直,π的方程为,π与轴的交点为,过与的直线显然与轴垂直相交,而其方程为这正是主法线的方程,故主法线和轴垂直相交。

证毕4.在曲线的副法线的正向取单位长,求其端点组成的新曲线的密切平面。

解:令,则曲线的方程可表示为:设的副法线向量为,则有根据题意,新曲线的方程可表示为}将代入上式,整理后,得于是新曲线的密切平面为:即:5. 证明球面曲线的法平面通过球的中心。

证:设曲线为球心在原点,半径为的球面上的曲线,其中为自然参数。

曲线(C)上任意一点P(P点的向径为)处的基本向量为,,。

则有上式两边关于求导,得设为法平面上的点的向径,则曲线(C)上任意一点P处的法平面的向量方程为根据(2)式满足方程(3),故法平面过原点。

证毕6. 证明过原点平行于圆柱螺线的副法线的直线的轨迹是锥面。

证:设过原点且与平行的直线上的点为,则直线的方程为化为参数方程,得则有这说明直线上的点都在锥面上。

证毕7. 求下列曲线的曲率和挠率。

,解: 对于曲线(1)对于曲线(2)8. 给定曲线,求(1)基本单位向量,,;(2)曲率和挠率;(3)验证伏雷内公式。

解: 对于给定曲线,有其中,根据(5)(6)(8)式可得,根据(6)(9)(10)式,可得,又根据(6)式,得另一方面,根据(4)(7)(8)(10)式,可得从而,。

9. 证明:如果曲线的所有切线都经过一个定点,则此曲线是直线。

证1:设曲线(C)的向量参数方程为:,其中为自然参数。

(C)上任意一点P(P点的向径为)处的基本向量为,,。

因为(C)在P点处的切线都经过一定点Q(Q点的向径设为),所以与共线,进而有(1)上式两端关于求导并利用Frenet公式,得:(2)(2)式中的为(C )在P 点处的曲率。

又(2)式中,这是因为如果,则同时与和共线,但这是不可能的,因为和是相互正交的单位向量。

从而根据(2)式有,即(C )是直线。

证毕证2:设曲线的方程为)(t r r =,因为曲线上任一点r 的切线经过一定点0r ,则0r r -与'r 共线,但'0')(r r r -=,于是0r r -与'0)(r r -共线,从而)(0r r -⨯'0)(r r -=0,由此可知0r r -具有固定的方向,即0r r -与一个常向量p 平行,于是0r r -=p λ,或p r r λ+=0,这说明曲线上的点r 都在以p 为方向向量,过点0r 的直线上,所以曲线为直线。

证毕10. 证明:如果曲线的所有密切平面都经过一个定点,则此曲线是平面曲线。

证:设曲线(C )的向量参数方程为:,其中为自然参数。

曲线(C )上任意一点P (P 点的向径为)处的基本向量为,,。

因为我们只研究不含逗留点的曲线(参见教科书P.31的脚注),即 ,而即(C )上任何点的曲率。

设(C )在P 点处的密切平面都经过一个定点Q (Q 点的向径设为),则为(C )在P 点处的密切平面上的一个向量,从而有 (1)(1) 式两端关于求导并利用Frenet 公式,得: (2)(2)式中的为(C)在P点处的挠率。

由(2)式可知,或者但,因为如果结合(1)式,可知与共线,于是(3)(3)式两端关于求导并利用Frenet公式,得:(4)(4)式中的为(C)在P点处的曲率。

因为,所以,结合(3)知同时与和共线,但这是不可能的,因为和是相互正交的单位向量。

这个矛盾说明,于是由(2)式可知,只能,曲线(C) 是平面曲线。

证毕11. 证明:如果曲线的所有法平面都包含常向量,则此曲线是平面曲线。

证1:设曲线(C)的向量参数方程为:,其中为自然参数。

(C)上任意一点P(P点的向径为)处的基本向量为,,。

因为(C)在P点处的法平面都包含常向量,则有(1)注意到,(1)式两端关于从到求积分,得:(2)(2)式说明曲线(C)在以常向量为法向量且过点的平面上。

证毕证2:设曲线(C)的向量参数方程为:,其中为自然参数。

(C)上任意一点P(P点的向径为)处的基本向量为,,。

因为我们只研究不含逗留点的曲线(参见教科书P.31的脚注),即,而即(C)上任何点的曲率。

因为(C)在P点处的法平面都包含常向量,则(1)上式两端关于求导并利用Frenet公式,得:(2)因为,所以(3) ,结合(1)式可知与共线,从而(4)(4)式两端关于求导并利用Frenet公式,得:(5)(5)式中,否则,根据(3)式,和将同时成立,即既与平行,又与垂直,这是矛盾。

于是只能是,所以曲线(C) 是平面曲线。

证毕12. 证明曲率为常数的空间曲线的曲率中心的轨迹仍是曲率等于常数的曲线。

证:设曲率为常数的空间曲线(C)的向量参数方程为:,其中为自然参数。

(C)上任意一点P处的基本向量为,,,曲率半径为,又设(C)的曲率中心的轨迹为,的曲率记为,根据题意,的方程为(1)式两边关于求导,得(4)式说明的曲率也是常数且。

证毕13. 证明曲线(C):为平面曲线,并求出它所在平面的方程。

解:由上式可知,(C)为平面曲线。

令,则有(C)所在平面的方程为。

14. 设在两条曲线和的点之间建立了一一对应关系,使它们在对应点的切线平行,证明它们在对应点的主法线以及副法线也分别平行。

证:设曲线的方程为,,其中为的自然参数,曲线的方程为,,其中为曲线的自然参数。

因为所讨论的曲线都是正则曲线,于是曲线上的点和区间内的参数一一对应,曲线上的点和区间内的参数一一对应,如果两条曲线的点与之间建立了一一对应关系,则对应的参数与之间也建立了一一对应关系,从而设,,和为曲线在点处的基本向量,,,和为曲线在点处的基本向量,曲线在点处的曲率和挠率分别记为和,曲线在点处的曲率和挠率分别记为和。

如果两条曲线总保持在对应点与处的切线平行,则有,其中(2)式两边关于求导,得从而,(4)式说明和在对应点与处的主法线平行。

又因为,由(2)式和(4)式,得(5) 式说明和在对应点与处的副法线平行。

证毕15. 设在两条曲线和的点之间建立了一一对应关系,使它们在对应点的主法线总是相互平行,证明它们在对应点的切线成固定角。

证:设曲线的方程为,,其中为的自然参数,曲线的方程为,,其中为曲线的自然参数。

因为所讨论的曲线都是正则曲线,于是曲线上的点和区间内的参数一一对应,曲线上的点和区间内的参数一一对应,如果两条曲线的点与之间建立了一一对应关系,则对应的参数与之间也建立了一一对应关系,从而设,,和为曲线在点处的基本向量,,,和为曲线在点处的基本向量,曲线在点处的曲率和挠率分别记为和,曲线在点处的曲率和挠率分别记为和,如果两条曲线总保持在对应点与处的主法线平行,则有,其中根据(2)式,可得设与之间的夹角为,则根据(3)式,(4)式说明和在对应点与处的切线成固定角。

证毕16. 如果曲线的主法线是曲线的副法线,的曲率和挠率分别为和,求证其中是常数。

证:设曲线的方程为,,其中为的自然参数,曲线的方程为,,其中为曲线的自然参数。

因为所讨论的曲线都是正则曲线,于是曲线上的点和区间内的参数一一对应,曲线上的点和区间内的参数一一对应,如果两条曲线的点与之间建立了一一对应关系,则对应的参数与之间也建立了一一对应关系,从而设,,和为曲线在点处的基本向量,,,和为曲线在点处的基本向量,曲线在点处的曲率和挠率分别记为和,曲线在点处的曲率和挠率分别记为和。

如果曲线的主法线是曲线的副法线,依题意,有下面两式成立:,其中。

(3)式两边关于求导,得整理(4)式,可得利用(2)式,在(5)式两边与作内积,得(6)式中由于故,从而为常数,(5)式化为(7)式两边关于求导,得因为,上式两边同时与作内积,得根据(7)式,(9)式等价于即从而,。

相关文档
最新文档