新人教A版高中数学选修2-1:1.3简单的逻辑联结词--且或非同步练习
人教版高中数学选修2-1《1.3.2简单的逻辑联结词:或(or)》
例4 分别指出“p∨q”“p∧q”的真假.
(1)p:函数y=sin x是奇函数;q:函数y=sin x在R上单调递增;
解答
∵p真,q假,∴“p∨q”为真,“p∧q”为假. (2)p:直线x=1与圆x2+y2=1相切;q:直线x=1 与圆x2+y2=1
1
2
3
4
5
4.已知命题p:函数f(x)=(2a-1)x+b在R上是减函数;命题q:
函数g(x)=x2+ax在[1,2]上是增函数,若p∧q为真,则实数a
1 的取值范围是________. [-2, ) 2
答案 解析
1
2
3
4
5
1.“且”:当p,q都是真命题时,pq是真命题; 当p,q两个命题中有一个命题是假命题时, pq是假命题;
问题探究:
下列三个命题间有什么关系?
(1) 27是7的倍数;
(2) 27是9的倍数;
(3) 27是7的倍数或是9的倍数。
可发现,命题(3)是由命题(1)(2)使用联结词“或” 联结得到的新命题。
定义
:一般地,用逻辑联结词“或”
把命题 p 和 q 联接起来,就得到一个新命 题,记做: p ∨ q, 读做 “ p或q ”.
口诀:一假必假.
2.“或”:当p,q两个命题中有一个命题是真命题
时,p q是真命题;
当p,q都是假命题时,p q是假命题;
口诀:一真必真.
课后作业
课本第18页 习题1.3
A组:1,2 课本第18页 B组 习题1.3
谢谢指导!
相交.
2
解答
∵p真,q真,∴“p∨q”为真,“p∧q”为真.
高二数学 (新课标人教A版)选修2-1《1.3简单的逻辑联结词》教案
1.3简单的逻辑联结词1.3.1且 1.3.2或学生探究过程:1、引入在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.在数学中,有时会使用一些联结词,如“且”“或”“非”。
在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。
下面介绍数学中使用联结词“且”“或”“非”联结命题时的含义和用法。
为叙述简便,今后常用小写字母p,q,r,s,…表示命题。
(注意与上节学习命题的条件p 与结论q的区别)2、思考、分析问题1:下列各组命题中,三个命题间有什么关系?(1)①12能被3整除;②12能被4整除;③12能被3整除且能被4整除。
(2)①27是7的倍数;②27是9的倍数;③27是7的倍数或是9的倍数。
学生很容易看到,在第(1)组命题中,命题③是由命题①②使用联结词“且”联结得到的新命题,在第(2)组命题中,命题③是由命题①②使用联结词“或”联结得到的新命题,。
问题2:以前我们有没有学习过象这样用联结词“且”或“或”联结的命题呢?你能否举一些例子?例如:命题p:菱形的对角线相等且菱形的对角线互相平分。
命题q:三条边对应成比例的两个三角形相似或两个角相等的两个三角形相似。
3、归纳定义一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作p∧q读作“p且q”。
一般地,用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作p∨q,读作“p或q”。
命题“p∧q”与命题“p∨q”即,命题“p且q”与命题“p或q”中的“且”字与“或”字与下面两个命题中的“且”字与“或”字的含义相同吗?(1)若 x∈A且x∈B,则x∈A∩B。
【2020】最新高中数学第一章常用逻辑用语1-3简单的逻辑联结词1-3-1且(and)1-3-2或(or)1-3-3非(not)学
(3)±1是方程x3+x2-x-1=0的根.
[解](1)这个命题是“非p”形式的命题,其中
p:方程x2-3=0有有理根.
(2)这个命题是“p且q”形式的命题,其中p:有两个内角是45°的三角形是等腰三角形,q:有两个内角是45°的三角形是直角三角形.
1.3.3 非(not)
学习目标:1.了解逻辑联结词“且”“或”“非”的意义.(重点)2.能够判断命题“p且q”“p或q”“非p”的真假.(难点)3.会使用联结词“且”“或”“非”联结并改写成某些数学命题,会判断命题的真假.(易错点)
[自 主 预 习·探 新 知]
1.“且”
(1)定义
一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作p∧q.读作“p且q”.
[解](1)∵p是假命题,q是真命题,
∴p∧q为假命题,p∨q为真命题, p为真命题.
(2)∵p是真命题,q是假命题,
∴p∧q为假命题,p∨q为真命题, p为假命题.
(3)∵p是真命题,q是真命题,
∴p∧q为真命题,p∨q为真命题, p为假命题.
因为p∧q为假命题,p∨q为真命题,所以p与q一真一假.
若p真q假,则 所以m≥3.
若p假q真,则 所以1<m≤2.
所以m的取值范围为1<m≤2或m≥3.
母题探究:1.本例题条件不变,试求p∨q与p∧q分别为真命题时m的取值范围.
[解]由例题知,当p为真时,m>2,当q为真时1<m<3,则当p∨q为真命题时,m>1,
由复合命题的真假求参数的取值范围
[探究问题]
1.设集合A是p为真命题时参数的取值范围,则p为假命题时,参数的取值范围是什么?
§1.3_简单的逻辑联结词、全称量词与存在量词(人教A版选修2-1)
p
6
或
)
q
为真命题,p
若当若 当 若 当若 当若 当 若当pppppppppppp或真或 真或 真或 真或真或 真qqqqqqqqqqqq为假为 假为 假为 假为假为 假真时真 时真 时真 时真时真 时命,命 ,命 ,命 ,命,命 ,题c题c题c题c题c题c的的的,的的的,,,p,,取pp取取ppp取取取且且且值且且且值值值值值q范qq范范qqq范范范为为为围为为为围围围围围假假假是假假假是是是是是命命命命命命000题0<00题题<<题题题<<<c,cc≤,,ccc≤≤,,,≤≤≤则则则12则则则121212;1212;;p;;;ppp,pp,,q,,,qqqqq中中中中中中必必必必必必有有有有有有一一一一一一真真真真真真一一一一一一假假假假假假......
第三讲 简单的逻辑联结词、
全称量词与存在量词
临沂一中高三数学组
知识网络
命题及 其关系
常 充分条件
用
必要条件
逻
充要条件
辑
用
简单的逻
语
辑联结词
量词
命题
四种命题
四种命 题的相 互关系
原命题:若p则q
互否
否命题:若p则q
互逆
互为逆否 等价关系
互逆
逆命题:若q则p
互否
逆命题:若q则p
充分条件
p ⇒q
必要条件
③③∵∴∵∴ppaa和aa和>≤>≤11q12q12或中或中a有a有≥≥且且88仅仅或有或有一一12a12a<≤个<≤个aa1正<1是<88确真,,命,题∴∴,a≥a≤812或或12a<≥a≤8 1.或12<a<8
高二上学期人教A版数学选修2-1:1.3简单的逻辑联结词课件
他们具有怎样的区分呢?
命题的否定与否命题是完全不同的概念
例:写出命题p: “正方形的四条边相等”的否定与
它的否命题.
命题┓p: 正方形的四条边不相等.
P的否命题:若一个四边形不是正方形,则它的四
条边不相等.
命题的否定与否命题的区分
• (1)原命题“若P则q” 的情势,它的非命
“或”:不等式 x2x6>0的解集{ x | x<2或x>3 }
“且”:不等式 x2x6<0的解集 { x | 2< x<3 }
即 { x | x>2且x<3 }
“非”:三角形的内角和不大于180°
例1、设p:方程x2+mx+1=0有两个不等的负根,q:方程4x2+4(m2)x+1=0无实根.若p∨q为真,p∧q为假,求m的取值范围.
至多有(n-1)个
至少有(n+1)个
“或”的否定是“且”
真值表:
p
q
非p
p且q
p或q
真
真
假
真
真
真
假
假
假
真
假
真
真
假
真
假
假
真
假
假
非p
真假相反
p且q
一假必假
p或q
一真必真
拓展延伸
“或”、“且”、“非”与集合的意义相同吗?
“或” A∪B={x|x∈A或x∈B}
“且” A∩B={x|x∈A且x∈B}
“非” ∁UA={x|x∈U且x∉A}
当p,q两个命题都是假命题时,p∨q
是 假 命题.
人教A版高中数学选修2-1课件【6】简单的逻辑联结词
) B.(綈 p)∨q
C . p∧ q
D.p∨q
1 解析: 因为 f(x)=sinxcosx=2sin2x, 所以命题 p 为真命题. 又 因为
π g(x)=sinx+2=cosx,所以 π g(x)=sinx+2的图象关于
y轴
对称,所以命题 q 为假命题,所以命题 p∨q 为真命题.
3 5 a≤ 或a≥ , 5 2 2 若 p 假,q 真,则 得2≤a≤4; 2≤a≤4, 3 5 综上,实数 a 的取值范围为 <a<2 或 ≤a≤4. 2 2
12.已知命题 A:函数 f(x)=x2-4mx+4m2+2 在区间[-1,3] 上的最小值为 2; 命题 成立; 命题 C:{x|m≤x≤2m+1}⊆{x|x2-4≥0}.
解析:由于将点(-1,1)代入 y=loga(ax+2a)成立,故 p 真; 由 y=f(x)的图象关于(3,0)对称,知 y=f(x-3)的图象关于(6,0)对 称,故 q 假.
答案:C
二、填空题:每小题 5 分,共 15 分. 7.已知 p(x):x2+2x-m>0,若 p(1)是假命题且 p(2)是真命 题,则实数 m 的取值范围是________.
解析:由已知,p 和 q 都是真命题,
m<0, ∴ 2 Δ=m -4<0,
∴-2<m<0.
答案:D
5.已知命题 p:函数 f(x)=sinxcosx 的最小正周期为 π;命 题 q:函数
π g(x)=sinx+2的图象关于原点对称,则下列命题中
为真命题的是( A.綈 p
答案:[1,2)
1 9.已知命题 p:x +2x-3>0,命题 q: >1,若綈 q 3-x
2
且 p 为真,则 x 的取值范围是__________.
人教新课标版数学高二选修2-1练习1-3简单的逻辑联结词
1.3 简单的逻辑联结词1.3.1且(and)1.3.2或(or)1.3.3非(not)双基达标(限时20分钟)1.命题:“方程x2-1=0的解是x=±1”,其使用逻辑联结词的情况是().A.使用了逻辑联结词“且”B.使用了逻辑联结词“或”C.使用了逻辑联结词“非”D.没有使用逻辑联结词解析“x=±1”可以写成“x=1或x=-1”,故选B.答案 B2.已知命题p:2+2=5,命题q:3>2,则下列判断正确的是().A.“p或q”为假,“非q”为假B.“p或q”为真,“非q”为假C.“p且q”为假,“非p”为假D.“p且q”为真,“p或q”为假解析显然p假q真,故“p或q”为真,“p且q”为假,“非p”为真,“非q”为假,故选B.答案 B3.已知p:∅⊆{0},q:{1}∈{1,2}.由他们构成的新命题“p∧q”,“p∨q”,“綈p”中,真命题有().A.1个B.2个C.3个D.4个解析容易判断命题p:∅⊆{0}是真命题,命题q:{1}∈{1,2}是假命题,所以p∧q是假命题.p∨q真命题,綈p是假命题,故选A.答案 A4.命题p:方向相同的两个向量共线,q:方向相反的两个向量共线,则命题“p∨q”为________.解析方向相同的两个向量共线或方向相反的两个向量共线,即“方向相同或相反的两个向量共线”.答案方向相同或相反的两个向量共线5.若命题“綈p∨綈q”为假命题,则命题“p∧q”是______命题(用“真”、“假”填空).解析命题“綈p∨綈q”为假,其否定为“p∧q”,是真命题.答案真6.分别写出由下列各组命题构成的“p∧q”“p∨q”“綈p”形式的命题:(1)p:π是无理数,q:e是有理数;(2)p:三角形的外角等于与它不相邻的两个内角的和,q:三角形的外角大于与它不相邻的任一个内角.解(1)“p∧q”:π是无理数且e是有理数.“p∨q”:π是无理数或e是有理数.“綈p”:π不是无理数.(2)“p∧q”:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻的任一个内角.“p∨q”:三角形的外角等于与它不相邻的两个内角的和或大于与它不相邻的任一个内角.“綈p”:三角形的外角不等于与它不相邻的两个内角的和.综合提高(限时25分钟)7.若命题p:x∈A∪B,则綈p是().A.x∉A或x∉B B.x∉A且x∉BC.x∈A∩B D.x∉A或x∈B解析因x∈A∪B⇔x∈A或x∈B,所以綈p为x∉A且x∉B,故选B.答案 B8.已知命题s:“函数y=sin x是周期函数且是奇函数”,则①命题s是“p∧q”命题;②命题s是真命题;③命题綈s:函数y=sin x不是周期函数且不是奇函数;④命题綈s是假命题.其中,正确叙述的个数是().A.0 B.1 C.2 D.3解析命题s是“p∧q”命题,①正确;命题s是真命题,②正确,④正确;命题綈s:函数y=sin x不是周期函数或不是奇函数,③不正确.答案 D9.命题“若a<b,则2a<2b”的否命题为________,命题的否定为________.解析命题“若a<b,则2a<2b”的否命题为“若a≥b,则2a≥2b”,命题的否定为“若a<b,则2a≥2b”.答案若a≥b,则2a≥2b若a<b,则2a≥2b10.对于函数①f(x)=|x+2|;②f(x)=(x-2)2;③f(x)=cos(x-2).有命题p:f(x+2)是偶函数;命题q:f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数,能使p∧q为真命题的所有函数的序号是______.解析对于①,f(x+2)=|x+4|不是偶函数,故p为假命题.对于②,f(x+2)=x2是偶函数,则p为真命题:f(x)=(x-2)2在(-∞,2)上是减函数,在(2,+∞)上是增函数,则q为真命题,故p∧q为真命题.对于③,f(x)=cos(x-2)显然不是(2,+∞)上的增函数,故q为假命题.故填②.答案②11.已知命题p:1∈{x|x2<a},命题q:2∈{x|x2<a}.(1)若“p或q”为真命题,求实数a的取值范围;(2)若“p且q”为真命题,求实数a的取值范围.解若p为真,则1∈{x|x2<a},所以12<a,即a>1;若q为真,则2∈{x|x2<a},即a>4.(1)若“p或q”为真,则a>1或a>4,即a>1.故实数a的取值范围是(1,+∞).(2)若“p且q”为真,则a>1且a>4,即a>4.故实数a的取值范围是(4,+∞).12.(创新拓展)已知命题p:x1和x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立;命题q:不等式ax2+2x-1>0有解.若p∧q是假命题,綈p也是假命题.求实数a的取值范围.解∵p∧q是假命题,綈p是假命题,∴命题p是真命题,命题q是假命题.∵x 1,x 2是方程x 2-mx -2=0的两个实根, ∴⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=-2. ∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=m 2+8, ∴当m ∈[-1,1]时,|x 1-x 2|max =3.由不等式a 2-5a -3≥|x 1-x 2|对任意实数m ∈[-1,1]恒成立,可得a 2-5a -3≥3. ∴a ≥6或a ≤-1,∴当命题p 为真命题时,a ≥6或a ≤-1. 命题q :不等式ax 2+2x -1>0有解,①当a >0时,显然有解;②当a =0时,2x -1>0有解;③当a <0时,∵ax 2+2x -1>0,∴Δ=4+4a >0, ∴-1<a <0.从而命题q :不等式ax 2+2x -1>0有解时,a >-1. 又命题q 是假命题,∴a ≤-1.综上所述:⎩⎪⎨⎪⎧a ≥6或a ≤-1,a ≤-1⇒a ≤-1. 所以所求a 的取值范围为(-∞,-1].。
新课标人教版数学Ⅱ课本练习选修2-12-22-34-44-5答案 (3)
高三理科党整合,仅供高三复习全部书参考,以及高一二订正,不建议直接抄袭。
只要努力一切来得及在高考吧里零基础学生逆袭高考仅一年时间考上一本重点的例子不少。
课本是一切知识的基础,万变不离其宗! 望广大学子加油考上自己理想的大学!感谢各位提供资料的老师与同学。
答案包括选修2-1 2-2 2-3 4-4极坐标与参数方程4-5 不等式- 7 左整合人教版数学选修2—1第一章常用逻辑用语1.1.命题及其关系1.1.1命题1.1.2 四种命题1.C 2.C 3.D 4.若A不是B的子集,则A∪B≠B 5.① 6.逆7.(1)若一个数为一个实数的平方,则这个数为非负数.真命题(2)若两个三角形等底等高,则这两个三角形全等.假命题8.原命题:在平面中,若两条直线平行,则这两条直线不相交.逆命题:在平面中,若两条直线不相交,则这两条直线平行.否命题:在平面中,若两条直线不平行,则这两条直线相交.逆否命题:在平面中?若两条直线相交,则这两条直线不平行。
以上均为真命题9.若ab≠0,则a,b都不为零.真命题10.逆否命题:已知函数f(x)在R上为增函数,a,b∈R,若f(a)+f(b)<f(-a)+f(-b),则a+b<0,真命题.证明略11.甲1.1.3 四种命题间的相互关系1.C 2.D 3.B 4.0个、2个或4个 5.原命题和逆否命题6.若a+b是奇数,则a,b至少有一个是偶数;真7.逆命题:若a^2=b^2,则a=b.假命题.否命题:若a≠b,则a^2≠b^2.假命题.逆否命题:若a^2≠b^2,则a≠b.真命题8.用原命题与逆否命题的等价性来证.假设a,b,c都是奇数,则a^2,b^2,c2也都是奇数,又a^2+b^2=c^2,则两个奇数之和为奇数,这显然不可能,所以假设不成立,即a,b,c不可能都是奇数9.否命题:若a^2+b^2≠0,则a≠0或b≠0.真命题.逆否命题:若a≠0,或b≠0,则a2+b2≠0.真命题10.真┌(4a)2一4(一4a+3)<0,11.三个方程都没有实数根的情况为┤(a-1)2一4a2<0, =>-3/2<a<-l└4a2+8a<0 所以实数a的取值范围a≥一l,或a≤-3/21.2 充分条件与必要条件1.2.1 充分条件与必要条件1.A 2.B 3.A 4.(1) ≠> (2) ≠> (3) ≠> (4)≠> 5.充分不必要6.必要不充分 7.“c≤d”是“e≤f”的充分条件 8.充分条件,理由略9.一元二次方程ax^2+2x+l=0 (a≠0)有一个正根和一个负根的充要条件为a<010.m≥9 11.是1.2.2 充要条件1.C 2.B 3.D 4.假;真 5.C和D 6.λ+μ=1 7.略 8.a=-39.a≤l 10.略 11.q=-1,证明略1.3 简单的逻辑联结词1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)1.A 2.C 3.C 4.真 5.①③ 6.必要不充分7.(1)p:2<3或q:2=3;真 (2)p:1是质数或q:1是合数;假 (3)非p,p:0∈φ;真(4)p:菱形对角线互相垂直且q:菱形对角线互相平分;真8,(1)p∧q:5既是奇数又是偶数,假;p∨q:5是奇数或偶数,真;┑p:5不是偶数,真(2)p∧q:4>6且4+6≠10,假;p∨q:4>6或4+6≠10,假;┑p:4≤6,真9.甲的否定形式:x∈A,且x∈B;乙的否命题:若(x-1)(x-2)=0,则x=1,或x=2 10.m<-l 11.(5/2,+∞)1.4 全称量词与存在量词1.4.1 全称量词1.4.2 存在量词1.D 2.C 3.(1)真 (2)真 4,③5.所有的直角三角形的三边都满足斜边的平方等于两直角边的平方和6.若一个四边形为正方形,则这个四边形是矩形;全称;真7.(1)x,x^2≤0 (2)对x,若6|x则3|x (3)正方形都是平行四边形8.(1)全称;假 (2)特称;假 (3)全称;真 (4)全称;假9.p∧q:有些实数的绝对值是正数且所有的质数都是奇数,假;p∨q:有些实数的绝对值是正数或所有的质数都是奇数,真;┑p:所有实数的绝对值都不是正数,假10.(1)存在,只需m>一4即可 (2)(4,+∞) 11.a≥一21.4.3 含有一个量词的命题的否定1.C 2.A 3.C 4.存在一个正方形不是菱形 5.假6.所有的三角形内角和都不大于180°7.(1)全称;┑p假 (2)全称;┑p假 (3)全称;┑p真8.(1)┑p:存在平方和为0的两个实数,它们不都为0(至少一个不为0);假⑵┑p: 所有的质数都是偶数;假 (3)┑p:存在乘积为0的三个实数都不为0;假9.(1)假 (2)真 (3)假 (4)真 10.a≥3 11.(一√2,2)单元练习1.B 2.B 3.B 4.B 5.B 6.D 7.B 8.D 9.C 10.D11.5既是17的约数,又是15的约数:假 12.[1,2)13.在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角 14.充要;充要;必要 15.b≥016.既不充分也不必要 17.①③④ 18.a≥319.逆命题:两个三角形相似,则这两个三角形全等;假;否命题:两个三角形不全等,则这两个三角形不相似;假;逆否命题:两个三角形不相似,则这两个三角形不全等;真;命题的否定:存在两个全等三角形不相似;假20.充分不必要条件21.令f(x) = x^2+(2k一1)x+k^2,方程有两个大于1的实数根┌ △=(2k2-1)-4k2≥0,<=>┤->1,即是k<-2,所以其充要条件为k<-2.└ f (1)>0,22.(-3,2]10.a√3/3第一章导数及其应用第二章推理与证明第三章数系的扩充与复数的引入。
高中数学第一章常用逻辑用语1.3.1“且”与“或”学案(含解析)新人教A版选修2-1
1。
3。
1 “且”与“或”自主预习·探新知情景引入要在某居民楼一楼与二楼的楼梯间安一盏灯,一楼和二楼各有一个开关,使得任意一个开关都能独立控制这盏灯,你能运用“或”“且”的方法解决吗?新知导学1.逻辑联结词“或”“非"构成新命题记作读作用联结词“且”把命题p和命题q联结起来,就__p∧q____p且q__得到一个新命题用联结词“或”把命题p和命题q联结起来,__p∨q____p或q__就得到一个新命题p q p∧q p∨q真真__真____真__真假__假____真__假真__假____真__假假__假____假__预习自测1.“xy≠0"是指( A )A.x≠0且y≠0B.x≠0或y≠0C.x,y至少一个不为0 D.不都是0[解析]xy≠0当且仅当x≠0且y≠0.2.p:点P在直线y=2x-3上;q:点P在曲线y=-x2上,则使“p∧q"为真命题的一个点P(x,y)是( C )A.(0,-3)B.(1,2)C.(1,-1)D.(-1,1)[解析]点P(x,y)满足错误!,解得P(1,-1)或P(-3,-9),故选C.3.下列判断正确的是( B )A.命题p为真命题,命题“p或q”不一定是真命题B.命题“p且q”是真命题时,命题p一定是真命题C.命题“p且q”是假命题,命题p一定是假命题D.命题p是假命题,命题“p且q”不一定是假命题[解析] 因为p、q都为真命题时,“p且q”为真命题.4.由下列各组命题构成的新命题“p或q"“p且q”都为真命题的是( B )A.p:4+4=9,q:7〉4B.p:a∈{a,b,c},q:{a}{a,b,c}C.p:15是质数,q:8是12的约数D.p:2是偶数,q:2不是质数[解析] “p或q"“p且q”都为真,则p真q真,故选B.5.给出下列条件:(1)“p成立,q不成立”;(2)“p不成立,q成立”;(3)“p与q都成立”;(4)“p与q都不成立”.其中能使“p或q"成立的条件是__(1)(2)(3)__(填序号).互动探究·攻重难互动探究解疑命题方向❶命题的构成形式典例1 分别指出下列命题的构成形式及构成它的简单命题.(1)小李是老师,小赵也是老师;(2)1是合数或质数;(3)他是运动员兼教练员;(4)这些文学作品不仅艺术上有缺点,而且政治上有错误;(5)要么周长相等的两个三角形全等,要么面积相等的两个三角形全等.[规范解答](1)这个命题是“p∧q"的形式,其中,p:小李是老师;q:小赵是老师.(2)这个命题是“p∨q”的形式,其中,p:1是合数;q:1是质数.(3)这个命题是“p∧q”的形式,其中,p:他是运动员;q:他是教练员.(4)这个命题是“p∧q"的形式,其中,p:这些文学作品艺术上有缺点;q:这些文学作品政治上有错误.(5)这个命题是p∨q形式,其中p:周长相等的两个三角形全等,q:面积相等的两个三角形全等.『规律总结』1。
2020版高中数学人教A版选修2-1课件:1.3 简单的逻辑联结词
=4a2-4 0, a2 1 0,
x1+x2 -2, 解2得a a≤2-, 1.
(x1 1)(x2 1) 0 2 2a 0,
命题q:关于x的不等式ax2-ax+1>0的解集为R,等价于
a=0或
a 0, 0,
由于
a 0, 0
a 0, a2 4a
类型三 根据含逻辑联结词命题的真假求参数的范围 【典例3】设有两个命题.命题p:不等式x2-(a+1)x +1≤0的解集是∅;命题q:函数f(x)=(a+1)x在定义域内 是增函数.如果p∧q为假命题,p∨q为真命题,求a的取 值范围.
【解题指南】先求出命题p与q为真时a的取值范围,然 后根据题意讨论p,q的真假,求出参数a的取值范围.
(3)p:函数y=x2+x+2的图象与x轴没有公共点,q:不等式 x2+x+2<0无解. (4)p:函数y=cos x是周期函数,q:函数y=cos x是奇函 数.
【解题指南】先判断p,q的真假,再根据真假规定判断 “p∧q”“p∨q”,“﹁p”的真假.
【解析】(1)因为p为假命题,q为真命题, 所以p∧q为假命题,p∨q为真命题,﹁p为真命题. (2)因为p为假命题,q为假命题, 所以p∧q为假命题,p∨q为假命题,﹁p为真命题.
其中真命题是 ( A.①② C.①③
) B.③④ D.②④
【解析】选C.因为p且q为真命题,所以p为真,q为真, ﹁p为假,﹁q为假,所以p或﹁q为真, ﹁p且﹁q为假,故选C.
类型一 含逻辑联结词命题的构成 【典例1】分别写出由下列命题构成的“p∨q”“p∧q” “﹁p”形式的命题. (1)p:梯形有一组对边平行,q:梯形有一组对边相等. (2)p:-1是方程x2+4x+3=0的解,q:-3是方程x2+4x+3=0 的解.
人教版A版高中数学选修2-1课后习题解答
高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、例:(1)若x2x 2 0,则 x 1;(2) 若x 1,则x2x 20 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称 . 这是真命题 .(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:证明:命题的逆否命题是:若 a b 1,则 a2b22a 4b 3a2b22a 4b 3 (a b) (a b) 2 (a b )2b当 a b 1时原式 a b 2 2 b 3 a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则 a,b 都是偶数 . 这是假命题 .否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数 . 这是假命题 .逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b 不都是偶数 . 这是真命题 .高中数学选修2-1 课后习题答案 [ 人教版 ] ( 2)逆命题:若方程x2x m 0 有实数根,则 m 0 . 这是假命题 .否命题:若 m 0 ,则方程 x2x m 0 没有实数根 . 这是假命题 .逆否命题:若方程x2x m 0 没有实数根,则m 0 . 这是真命题 .3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是O 的两条互相平分的相交弦,交点是E,若 E和圆心 O 重合,则 AB,CD 是经过圆心 O 的弦, AB,CD 是两条直径 . 若 E 和圆心O 不重合,连结AO, BO ,CO 和DO,则OE是等腰AOB,COD的底边上中线,所以,OE AB OE CD.,AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的 . 所以, E 和 O 必然重合 . 即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件 .2、(1) p 是 q 的必要条件;(2)p是q的充分条件;( 3) p 是 q 的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形 .( 2)必要性:如果ABC 是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a2 b2 c2 ab ac bc 0所以 a2 b2 c2 ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1) 2 2 5 ,真命题;(2)3不是方程x290 的根,假命题;(3) ( 1)21,真命题 .习题 1.3 A组(P18)1、(1) 4 {2,3} 或 2 {2,3} ,真命题;(2)4{2,3} 且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1) 2 不是有理数,真命题;(2)5是15的约数,真命题;(3) 2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题.2、(1)真命题;(2)真命题;(3)真命题.练习( P26)1、(1)n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3)x R, x2x 1 0 ;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)( 1)假命题 . 存在一条直线,它在y 轴上没有截距;( 2)假命题 . 存在一个二次函数,它的图象与x轴不相交;( 3)假命题 . 每个三角形的内角和不小于 180 ;( 4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1)n N ,n2 0 ;(2)P { P P 在圆 x2 y2 r 2上}, OP r (O 为圆心);(3)( x, y) {( x, y) x, y是整数 } , 2x 4y 3 ;( 4)x0 { x x 是无理数}, x03 { q q 是有理数} .6、(1) 3 2 ,真命题;(2) 5 4 ,假命题;( 3)x0 R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1) p q;(2) ( p) ( q) ,或( p q) .2、(1)Rt ABC , C 90,A, B, C 的对边分别是 a, b, c ,则 c2 a2 b2;(2)ABC ,A, B, C 的对边分别是a b c a, b, c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a 32 , b 18 .25 253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率 k CA2 0 22 t2 t1 t 2所以, k CB2kCA由直线的点斜式方程,得直线 CB 的方程为 y2 t 2 ( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t) .由于点 M 是线段 AB 的中点,由中点坐标公式得xt, y 4 t .t4 t ,22由 x得 t 2x ,代入 y2 2得 y42x,即 x y 20 ⋯⋯①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y 1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c 0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点 M 的轨迹方程为 x 2y 24.4、解法一:设圆 x 2 y 2 6x 5 0 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CMAB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]所以,yy 1 (x 3, x0)x 3x化简得 x 2y 2 3x 0 (x 3, x 0)当 x 3 时, y0 ,点 (3,0) 适合题意;当 x 0 时, y0 ,点 (0,0) 不合题意 .解方程组x 2 y 2 3x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 2 3x0 ,5x 3.OCM 是直角三角形,3解法二:注意到利用勾股定理,得 x 2 y 2 ( x 3)2 y 2 9 ,即 x 2 y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为 xy 1 .a b因为直线 l 经过点 P(3,4) ,所以34 1 因此, ab 4a 3ba b由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3y 0 .2、解:如图,设动圆圆心 M 的坐标为 (x, y) .y由于动圆截直线 3x y 0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD4 .过点M 分别CMF E作直线 3xy 0 和 3x y 0 的垂线,垂足分别为 E ,DF ,则 AE4, CF 2 . A3x y3x yME, MF10 .10Ox连接 MA , MC ,因为 MAMC ,(第 2题)22CF 22 则有, AE MEMF所以, 16 (3 x y)24 (3 x y) 2 ,化简得, xy 10 .10 10因此,动圆圆心的轨迹方程是xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1 PF2 20 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1;(2) y2 x2 1;(3) x2 y2 1,或 y2 x2 16 16 36 16 36 163、解:由已知, a 5 , b 4 ,所以c a2 b2 3.(1)AF1 B 的周长 AF1 AF2 BF1 BF2.由椭圆的定义,得 AF1 AF2 2a , BF1 BF2 2a .所以,AF1B 的周长4a20 .(2)如果 AB 不垂直于x轴,AF1B的周长不变化 .这是因为①②两式仍然成立,AF1B 的周长20,这是定值.4、解:设点 M 的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x 1) ;kAMx 1直线 BM 的斜率y(x 1) ;kBMx 1由题意,得kAM2 ,所以y 2 y (x 1, y 0) k BM x 1 x 1化简,得 x 3 ( y 0)因此,点 M 的轨迹是直线 x 3 ,并去掉点 ( 3,0) .练习( P48)yB2 1、以点B2(或B1)为圆心,以线段OA2 (或 OA1)为半径画圆,圆与 x 轴的两个交点分别为 F1 , F2. A 1 F1O点 F1 , F2就是椭圆的两个焦点.B 1 这是因为,在 Rt B2OF2中, OB2 b , B2 F2 OA2 a ,(第 1题)所以, OF2 c . 同样有 OF1 c .2、(1)焦点坐标为( 8,0) , (8,0) ;14 .1.F2A2x( 2)焦点坐标为 (0,2) , (0, 2) .3、(1)x 2 y 21;( 2) y2x 2 1 .36 3225 164、(1)x 2y21( 2) x2y21 ,或 y 2x 2 1. 94100 64100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是 1 ,316 12 2因为221,所以,椭圆x 2y 2 1 更圆,椭圆 9x 2y 2 36 更扁;3216 12(2)椭圆 x29 y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是10 ,36105 因为2210,所以,椭圆x 2y 2 1 更圆,椭圆 x 2 9 y 2 36更扁 .356106、(1) (3, 8) ; (2) (0,2) ; (3) ( 48 , 70) .7、82 . 5 3737 7习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x 2 ( y 3)2 x 2 ( y 3) 2 10 以及椭圆的定义得,点 M 的轨迹是以 F 1(0, 3) , F 2 (0,3) 为焦点,长轴长为 10 的椭圆 .它的方程是y 2x 2 1.25 162、(1)x 2y 21; ( 2)y 2x 21 ;(3) x2y 21 ,或 y 2x 21.36 3225 9494049403、(1)不等式 2 x 2 , 4 y 4 表示的区域的公共部分;(2)不等式 25 x2 5 , 10 y10表示的区域的公共部分 .图略 .334、(1)长轴长 2a8,短轴长 2b 4 ,离心率 e 3 ,2焦点坐标分别是 ( 2 3,0) , (2 3,0) ,顶点坐标分别为 ( 4,0) , (4,0) , (0, 2) , (0,2) ;(2)长轴长 2a18 ,短轴长 2b6 ,离心率 e2 2 ,3焦点坐标分别是 (0, 6 2) , (0,6 2) ,顶点坐标分别为 (0, 9) ,(0,9) , ( 3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2 y2 1,或 y2 x2 1 ;8 5 9 81 9(3) x2 y2 1,或 y 2 x2 1 .25 9 25 96、解:由已知,椭圆的焦距F1F2 2.因为PF1F2的面积等于1,所以,1F1F2 y P 1,解得y P1. 2代入椭圆的方程,得x2 1 1 ,解得 x 15 .P5 4 215 l所以,点 P 的坐标是1) ,共有 4 个 .( ,2 QA 7、解:如图,连接 QA . 由已知,得 QA QP . O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以OA OP(第 7题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点,r为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x2 y21 ,得 9x2 6mx 2 18 0.x m 代入椭圆方程92m2 4这个方程根的判别式36m2 36(2m2 18)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 3 2,3 2) 时,直线与椭圆相交. ( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为 M (x, y) .则 x x1 x2 m .2 3因为点 M 在直线 y 3 x m 上,与 x m联立,消去 m ,得3x 2y 0 .2 3这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .高中数学选修2-1 课后习题答案 [ 人教版 ]x2y29、3.5252 2.87521.10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km. 习题 2.2 B 组( P50)1、解:设点 M 的坐标为 ( x, y) ,点 P 的坐标为( x0, y0),则 x x0,y 3y0 . 所以 x0 x ,y0 2 y ⋯⋯① .2 3因为点 P(x0 , y0 ) 在圆上,所以 x02 y02 4 ⋯⋯②.将①代入②,得点 M 的轨迹方程为 x2 4 y2 4,即 x2 y2 19 4 9所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P( x, y) ,半径为 R ,两已知圆的圆心分别为 O1, O2.分别将两已知圆的方程x 2 y2 6x 5 0 , x2 y2 6x 91 0配方,得(x 3)2 y 2 4 , ( x 3)2 y2 100当 P 与O1: ( x 3)2 y2 4 外切时,有O1P R 2 ⋯⋯①当P 与O2:( x 3)2y2100内切时,有O2P 10 R⋯⋯②①②两式的两边分别相加,得 O1P O2 P 12即, ( x 3)2 y2 (x 3) 2 y2 12 ⋯⋯③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2 y2 12 x ⋯⋯④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⋯⋯⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⋯⋯⑥36 27由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,6 3 . 解法二:同解法一,得方程( x 3)2 y2 ( x 3)2 y2 12 ⋯⋯①由方程①可知,动圆圆心P(x, y) 到点O1( 3,0)和点O2(3,0) 距离的和是常数12,第11页共38页。
高中数学(A版)选修2-1 1.3.3逻辑联结词“非”
否定 ≠
≤
例题讲解
例4 写出下列命题的否定,并判断它 们的真假:
(1) p : 3 2 ; ( 2 ) p : 空集是集合 A 的子集 ;
( 3 ) p : 等腰三角形底边上的高 和底边上的中线重合 .
解 : (1) p : 3 2 , ( 2 ) p : 空集不是集合 A 的子集 ;
真 假
和底边的
( 3 ) p : 等腰三角形底边上的高 上中线不重合
假
强调:在数学中,逻辑联结词“且”, “或”,“非”不 定联结命题.有时我们也可以用它们联结一些 “条件”,形成一些新的条件.如:
(1)" x 3" 且 " x 5 " , 它表示的是 ( 2 )" x 0 " 或 " x 5 " , 它表示的是 ( 3 )" x 0 " 的否定 , 它表示的是 :" 3 x 5 ". :" x 0 或 x 5 ". :" x 0 ".
p
读作”非p”或”p的否定”
若p是真命题,则 p 必是假命题;若 p是假命题,则 p 必是真命题.
强调:在命题和它ቤተ መጻሕፍቲ ባይዱ非命题中,有一个且只有 一个是真命题.
“非”命题对常见的几个正面词语的否定.
正面 = > 是 至多有 至少有 任 一个 一个 意 的 不是 不都是 至少有 没有一 某 两个 个 个 都是 所有 的 某些
• (1)35能被5整除;
• (2)35不能被5整除. (2)是(1)的否定
再看以下列: (1)p:平面内垂直于同一直线的二条直线平行, q:平面内垂直于同一直线的二条直线不平行; (2)p: y sin x 是周期函数, q: y sin x 不是周期函数. 其中q都是p的否定
高中数学新人教A版选修2-1课件:第一章常用逻辑用语1.3简单的逻辑联结词
【思考】视察三个命题:①2是4的约数;②2是6的约数;③2是8的
约数且是10的约数,它们之间有什么关用“且”联结得到的新命题,“且”与集合
运算中交集的定义A∩B={x|x∈A且x∈B}中“且”的意义相同,表示
“并且”,“同时”的意思.“且”作为逻辑联结词,与生活用语中“既……,
定有x>1成立,故“x>1”是“x>2”的必要不充分条件,故q为假命题,则
p∧q、 p为假命题, q为真命题,( p)∧( q)、( p)∧q为假命
题,p∧( q)为真命题,故选D.
答案D
课堂篇探究学习
探究一
探究二
探究三
当堂检测
探究一含逻辑联结词的命题的构成
例1 指出下列命题的构成情势,以及构成它的简单命题:
(3)对一个命题p全盘否定,就得到一个新命题,记作 p,读作“非p”
或“p的否定”.
名师点拨1.对于逻辑联结词“且”“或”“非”,可以分别结合集合中
的“交集”“并集”“补集”来进行理解.
2.一个命题的否定与命题的否命题不同,命题的否定只是将命题
的结论进行否定,而否命题则是将命题的条件和结论都进行否定.
形对应角相等.
(4)这个命题是p∧q情势,其中p:垂直于弦的直径平分这条弦,q:垂
直于弦的直径平分这条弦所对的两段弧.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
探究二含逻辑联结词的命题的真假判断
例2 分别指出由下列简单命题所构成的“p∧q”“p∨q”“ p”情势
的命题的真假.
(1)p:2是奇数,q:2是合数;
际意义判断命题的结构.
解(1)这个命题是p∨q情势,其中p:1是质数,q:1是合数.
人教版选修2-1.1.3简单的逻辑联结词
创设情景,引入新课
p q p q
串联电路
并联电路
且:就是两者都要、都有的意思.“且”的否定是“或” 或:就是两者至少有一个的意思(可兼有) “ 或”的否定是“且”。
非:就是否定的意思. 今后常用小写字母p,q,r,s,„表示命题。
探究新知,巩固练习 ★★ 且 (and)
1.问题1: 思考: 下列命题中,命题间有什么关系?
p∨q是真命题 p∧q为真命题
★★ 非 (not)
1.问题1 思考: 下列两组命题间有什么关系? (1)35能被5整除; (2)35不能被5整除. (3)方程 x2+x+1=0有实数根; (4)方程 x2+x+1=0无实数根 命题(2)是命题(1)的否定,命题(4)是命题 (3)的否定. 一般地,对一个命题p全盘否定,就得到一个 新命题,记作¬ p,读作“非p”或“p的否定”.
解: (2 1)p∧q )p∧q:平行四边形的对角线互相平分 ( :菱形的对角线互相垂直且平分.
有些命题如含有“……和……”、
“……与……”、“既……,又…..”等词的 命题能用“且”改写成“p∧q”的形式, 例2:用逻辑联结词“且”改写下列命题,并 判断它们的真假. (1)1既是奇数,又是素数; (2)2和3都是素数.
思考:命题P与┐p的真假关系如何? p与┐p真假性相反 填空:当p为真命题时,则┐p为 假命题;当p为假 命题时,则┐p为 真命题 .
一句话概括: 真假相反
p 真 假
¬ p
假 真
活动探究
探究1:逻辑联结词“非”的含义与集合 中学过的哪个概念的意义相同呢? 对“非”的理解,可联想到集合中的 “补集”概念,若命题p对应于集合P, 则命题非p就对应着集合P在全集U中的补 集C UP .
高中数学 专题1.3 简单的逻辑联结词(1)练习(含解析)新人教A版选修2-1(2021年整理)
高中数学专题1.3 简单的逻辑联结词(1)练习(含解析)新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学专题1.3 简单的逻辑联结词(1)练习(含解析)新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学专题1.3 简单的逻辑联结词(1)练习(含解析)新人教A版选修2-1的全部内容。
简单的逻辑联结词(1)一、选择题1.下列命题:①5>4或4〉5;②9≥3;③“若a〉b,则a+c>b+c”;④“菱形的两条对角线互相垂直".其中假命题的个数为()A.0 B.1C.2 D.3[答案]A[解析]①②都是“p或q”形式的命题,都是真命题,③为真命题,④为真命题,故选A. 2.下列命题:①方程x2-3x-4=0的判别式大于或等于0;②周长相等的两个三角形全等或面积相等的两个三角形全等;③集合A∩B是集合A的子集,且是A∪B的子集.其中真命题的个数是()A.0 B.1C.2 D.3[答案] C3.在△ABC中,“AB,→·错误!=错误!·错误!"是“|错误!|=|错误!|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案]C[解析]如图,在△AB C中,过C作CD⊥AB,则|错误!|=|错误!|·cos∠CAB,|错误!|=|错误!|·cos∠CBA,错误!·错误!=错误!·错误!⇔|错误!|·|错误!|·cos∠CAB=|错误!|·|错误!|·cos∠CBA⇔|错误!|·cos∠CAB=|错误!|·cos∠CBA⇔|错误!|=|错误!|⇔|错误!|=|错误!|,故选C.二、填空题4.“2≤3"中的逻辑联结词是________,它是________命题.(填“真”,“假”)[答案]或真5.若“x∈[2,5]或x∈{x|x〈1或x>4}”是假命题,则x的范围是____________.[答案][1,2)解析x∈[2,5]或x∈(-∞,1)∪(4,+∞),即x∈(-∞,1)∪[2,+∞),由于命题是假命题,所以1≤x<2,即x∈[1,2).三、解答题6.已知命题p:方程2x2-26x+3=0的两根都是实数;q:方程2x2-2错误!x+3=0的两根不相等,试写出由这组命题构成的“p或q”、“p且q"形式的复合命题,并指出其真假.。
高中数学 第一章 常用逻辑用语 1.3 简单的逻辑联结词 德摩根定律素材 新人教A版选修2-1
德摩根定律德·摩根定律:在命题逻辑中存在着下面关系:非(P 且 Q)=(非 P)或(非 Q)非(P 或 Q)=(非 P)且(非 Q)2020年的逻辑真题形式逻辑相当多,而不少同学都觉得形式逻辑很难。
其实形式逻辑就是那几个公式。
1)否定词代入的命题等价转化2)p->Q 等价于非Q-》非p ,3)如果p 则q,只要p就q 等价于 p->q 等价于非p 或 Q只有p,才q 等价于 q->p除非p,否则q 等价于非q-》p4)相容选言和不相容选言的区别5)一些隐藏的形式逻辑的标志。
A必须B 等价于只有B 才有A =》A->B B是A的必要条件A是B的基础,A是B的前提,等价于只有有了A 才有B B->A A是必要条件A当且仅当B,A是B的唯一条件等价于 A->B所有的A 是B 等价于 A->BMBA逻辑知识点与记忆口诀汇总大秘送注意:逻辑要考察我们对语言文字的体察和敏感度。
逻辑知识点分三大类:一是逻辑推理能力,二是综合归纳能力,三是评价论证能力。
一、逻辑推理能力。
(20分)答案一定不用多看,但是要死记住口诀,全答对没问题。
包括11性质命题、12充分条件、13必要条件假言命题,14联言、15选言、16模态命题,17复合命题 18三段论二、综合归纳能力(10分)21语义解释题2-4分,22争论焦点,23推出结论8-10分。
三、评价论证能力:(30分以上)31假设、32支持、33削弱、34评价论证分析,35指出论证缺陷、论证方法。
11、性质命题:方图记住。
Especially:下反对关系中,可能同真,不可同假,一个为真,另一个真假不能确定,一个为假,另一个一定为真。
原命题等价于逆否命题。
同理可得,否命题等价于逆命题。
负命题就是矛盾命题。
排中律、同一律和矛盾律。
同一律是形式逻辑的基本规律之一,就是在同一思维过程中,必须在同一意义上使用概念和判断,不能混淆不相同的概念和判断.公式是:”甲是甲”或”甲等于甲”包括三方面的内容:(1)思维对象的同一。
人教A版数学高二选修2-1学案1.3简单的逻辑联结词
[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P14~P17的内容,回答下列问题.(1)教材P14“思考”中的命题(3)与命题(1)、(2)之间有什么关系?提示:命题(3)是由命题(1)(2)使用联结词“且”联结得到的新命题.(2)教材P15“思考”中的命题(3)与命题(1)、(2)之间有什么关系?提示:命题(3)是由命题(1)(2)用联结词“或”联结得到的新命题.(3)教材P17“思考”中的命题(2)与命题(1)之间有什么关系?提示:命题(2)是命题(1)的否定.2.归纳总结,核心必记(1)用逻辑联结词“或”“且”“非”构成新命题①用联结词“且”把命题p和q联结起来,就得到一个新命题,记作p∧q,读作“p 且q”.②用联结词“或”把命题p和q联结起来,就得到一个新命题,记作p∨q,读作“p 或q”.③对一个命题p全盘否定,就得到一个新命题,记作,读作“非p”或“p的否定”.(2)含有逻辑联结词的命题的真假判断p q p∨q p∧q真真真真假真假真假假假真真假真假假假假真(1)“平面向量既有大小,又有方向”使用的逻辑联结词是什么?提示:且.(2)“a≥b”使用的逻辑联结词是什么?提示:或.(3)“方程x2-3=0没有有理根”使用的逻辑联结词是什么?提示:非.(4)“p∨q”为真是“p∧q”为真的什么条件?(充要、充分不必要、必要不充分、既不充分也不必要).提示:必要不充分.(5)命题的否定与否命题有什么不同?提示:命题的否定只否定命题的结论,而否命题,既否定命题的条件,又否定命题的结论.[课前反思]通过以上预习,必须掌握的几个知识点.(1)用逻辑联结词“且”、“或”、“非”构成的命题各是什么?其记法和读法各是什么?;(2)含逻辑联结词的命题的真假性有什么特点?;(3)“命题的否定”与“否命题”有什么不同?.讲一讲1.指出下列命题的形式及构成它的命题.(1)向量既有大小又有方向;(2)矩形有外接圆或有内切圆;(3)集合A⊆(A∪B);(4)正弦函数y=sin x(x∈R)是奇函数并且是周期函数.[尝试解答](1)是“p∧q”形式的命题.其中p:向量有大小,q:向量有方向.(2)是“p∨q”形式的命题.其中p:矩形有外接圆,q:矩形有内切圆.(3)是“”形式的命题.其中p:A⊆(A∪B).(4)是“p∧q”形式的命题.其中p:正弦函数y=sin x(x∈R)是奇函数,q:正弦函数y=sin x(x∈R)是周期函数.正确理解逻辑联结词“或”“且”“非”的含义是解决这类问题的关键,有些命题中并不一定包含这些联结词,这时要结合命题的具体含义分析这些命题的构成.练一练1.指出下列命题的构成形式及构成它们的简单命题.(1)李明是男生且是高一学生.(2)方程2x2+1=0没有实根.(3)12能被3或4整除.解:(1)是“p且q”形式.其中p:李明是男生;q:李明是高一学生.(2)是“非p”形式,其中p:方程2x2+1=0有实根.(3)是“p或q”形式.其中p:12能被3整除;q:12能被4整除.[思考1]若p为真命题,q为假命题,则p∨q,p∧q,的真假性是什么?名师指津:p∨q为真,p∧q为假,为假.[思考2]若p∧q为真命题,那么p∨q一定是真命题吗?反之,若p∨q为真命题,那么p∧q一定是真命题吗?名师指津:若p∧q为真,则p∨q一定为真;若p∨q为真,则p∧q的真假性不能确定.[思考3]p与綈p的真假性一定相反吗?名师指津:若p是真命题,则一定是假命题;若p是假命题,则一定是真命题.讲一讲2.分别写出由下列各组命题构成的“p∨q”“p∧q”“”形成的命题,并判断其真假.(1)p:等腰梯形的对角线相等,q:等腰梯形的对角线互相平分;(2)p :函数y =x 2-2x +2没有零点,q :不等式x 2-2x +1>0恒成立. [尝试解答] (1)p ∨q :等腰梯形的对角线相等或互相平分,真命题. p ∧q :等腰梯形的对角线相等且互相平分,假命题.:等腰梯形的对角线不相等,假命题.(2)p ∨q :函数y =x 2-2x +2没有零点或不等式x 2-2x +1>0恒成立,真命题. p ∧q :函数y =x 2-2x +2没有零点且不等式x 2-2x +1>0恒成立,假命题.:函数y =x 2-2x +2有零点,假命题.(1)命题结构的两种类型及判断方法①从含有联结词“且”“或”“非”或者与之等价的词语上进行判断. ②若命题中不含有联结词,则从命题所表达的数学意义上进行判断. (2)判断命题真假的三个步骤①明确命题的结构,即命题是“p ∧q ”“p ∨q ”还是“”;②对命题p 和q 的真假作出判断; ③由“p ∧q ”“p ∨q ”“ ”的真假判断方法给出结论.练一练2.分别写出下列含有逻辑联结词的命题的形式,并判断其真假. (1)等腰三角形顶角的平分线平分且垂直于底边; (2)1或-1是方程x 2+3x +2=0的根; (3)(A ∩B )⊆B .解:(1)这个命题是“p ∧q ”的形式,其中p :等腰三角形顶角的平分线平分底边,q :等腰三角形顶角的平分线垂直于底边,因为p 真,q 真,则“p ∧q ”真,所以该命题是真命题.(2)这个命题是“p ∨q ”的形式,其中p :1是方程x 2+3x +2=0的根,q :-1是方程x 2+3x +2=0的根,因为p 假,q 真,则“p ∨q ”真,所以该命题是真命题.(3)这个命题是“”的形式,其中p :(A ∩B )⊆B ,因为p 真,则“”假,所以该命题是假命题.讲一讲3.设p :方程x 2+2mx +1=0有两个不相等的正根;q :方程x 2+2(m -2)x -3m +10=0无实根.若使p ∨q 为真,p ∧q 为假,求实数m 的取值范围.[尝试解答] 由⎩⎪⎨⎪⎧Δ1=4m 2-4>0,x 1+x 2=-2m >0,得m <-1,所以p :m <-1.由Δ2=4(m -2)2-4(-3m +10)<0,知-2<m <3. 所以q :-2<m <3.由p ∨q 为真,p ∧q 为假可知,命题p ,q 一真一假,①当p 真q 假时,⎩⎪⎨⎪⎧m <-1,m ≥3或m ≤-2,此时m ≤-2,②当p 假q 真时,⎩⎪⎨⎪⎧m ≥-1,-2<m <3,此时-1≤m <3.综上所述,实数m 的取值范围是(-∞,-2]∪[-1,3).解决由含有逻辑联结词的三种命题的真假求参数的取值范围问题时,(1)由命题p ∧q ,p ∨q ,非p 的真假确定命题p 、q 可能的真假情况,依次讨论求解;(2)注意补集思想的应用,当“p 假”不易求解时改为求“p 真”时参数的取值范围构成的集合的补集.练一练3.设命题p :“方程x 2+mx +1=0有两个实根”,命题q :“方程4x 2+4(m -2)x +1=0无实根”,若p ∧q 为假,为假,求实数m 的取值范围.解:若方程x 2+mx +1=0有两个实根, 则Δ1=m 2-4≥0, 解得m ≤-2或m ≥2, 即p :m ≤-2或m ≥2.若方程4x 2+4(m -2)x +1=0无实根, 则Δ2=16(m -2)2-16<0, 解得1<m <3, 即q :1<m <3. 由于p ∧q 为假, 则p ,q 至少有一个为假; 又为假,则q 真,所以p 为假,即p 假q 真,从而有⎩⎪⎨⎪⎧-2<m <2,1<m <3,解得1<m <2,所以,实数m 的取值范围是(1,2).——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是含逻辑联结词的命题的真假判断,难点是根据含逻辑联结词的命题的真假性求参数的取值范围.2.本节课要重点掌握的规律方法(1)判断含逻辑联结词的命题真假的方法,见讲2.(2)根据含逻辑联结词命题的真假求参数的方法,见讲3.3.注意以下三个等价关系(1)p∧q为真⇔p和q同时为真;(2)p∨q为真⇔p和q中至少有一个为真;(3)p为真⇔为假.。
人教A版选修2-1第一章第5课时同步练习§1.3简单的逻辑联结词
§1.3简单的逻辑联结词一、选择题1、命题“p ”或“非p ”( )A 、可能都是真命题B 、可能都是假命题C 、一真一假D 、只有p 是真命题2、“a+b>2c ”的一个充分不必要条件是( )A 、a>c 或b>cB 、a>c 且b<cC 、a>c 且b>cD 、a>c 或b<c3、用反证法证明命题“如果a>b,那么33b a >”时,假设的内容应是( ) A 、33b a =B 、33b a <C 、且33b a =33b a < D 、或33b a =33b a < 4、如果原命题的结论是“p 且q ”形式,那么否命题的结论形式是( )A 、q p ⌝⌝且B 、q p ⌝⌝或C 、q p 或⌝D 、p q 或⌝5、如果原命题的结论是“p 或q ”形式,那么否命题的结论形式是( )A 、q p ⌝⌝或B 、q p 或⌝C 、p q 或⌝D 、q p ⌝⌝且6、|x|+|y|0≠等价于( )A 、x=0且y=0B 、x=0或y=0C 、00≠≠y x 且D 、00≠≠y x 或7、命题“存在实数x,使|x+1|4,02<≤x 且”是( )A 、“p 或q ”的形式B 、“非p ”的形式C 、真命题D 、假命题8、的是且""""B A x B x A x ⋂∉∉∉( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件9、若命题p:0是偶数,命题q :2是3的约数,则下列命题中为真的是( )A 、q p ∧B 、q p ∨C 、p ⌝D 、q p ⌝∧⌝10、如果命题“非p 或非q ”是假命题,则在下列各结论中正确的是( )(1)命题“q p ∧”是真命题; (2)命题“q p ∧”是假命题;(3)命题“q p ∨”是真命题; (4)命题“q p ∨”是假命题;A 、(1)(3)B 、(2)(4)C 、(2)(3)D 、(1)(4)11、设A 、B 是全集U 的子集,命题p 为“3B A ⋂∈”,则命题“非p ”为( ):A 、)()(3BC A C U U ⋃∈ B 、 )()(3B C A C U U ⋂∈C 、B A ⋃∈3D 、B A ⋃∉312、设p 、q 是两个命题,则“复合命题p 或q 为真,p 且q 为假”的充要条件是( )A 、p 、q 中至少有一个为真B 、p 、q 中至少有一个为假C 、p 、q 中只有一个为真D 、p 为真,q 为假13、由下列各组命题构成“p 或q ”、“p 且q ”、“非p ”形式的复合命题中,“p 或q ”为真,“p 且q ”为假,“非p ”为真的是( )A 、p :3为偶数;q :4是奇数B 、p :3+2=6;q :5>3C 、{}b a a p ,:∈;q :{a}≠⊂ {a,b}D 、Q ≠⊂R ;N=N14、下列命题:(1)5>4或4>5;(2)9≥3;(3)命题“若a>b,则a+c>b+c ”;(4)命题“菱形的两条对角线互相垂直”,其中,假命题的个数是( )A 、0B 、1C 、2D 、315、若p 、q 是两个简单命题,且“p 或q ”的否定是真命题,则必有( )A 、p 真q 真B 、p 假q 假C 、p 真q 假D 、p 假q 真二、填空题16、由命题p:6是12的约数,q: 6是24的约数,构成“p 或q ”的形式的命题是 ;“p 且q ”的形式的命题是 ;“非p ”的形式的命题是 ;17、若把命题""B A ⊆看成一个复合命题,那么复合命题的形式是 ,其中构成它的两个简单命题是 、 。
高二数学人教A版选修2-1课件:1.3 简单的逻辑联结词
易错点:(1)用逻辑联结词联结两个命题时,简单联结两个命题的条件和
结论而出错.
(2)对命题的否定与否命题概念区别不清而出错.
【典型例题 5】已知 p:对角线相等的四边形为矩形,q:对角线互相平分
的四边形为矩形,则以下说法中正确的是(
)
A.p∨q 为对角线相等且互相平分的四边形是矩形
B.���p 为对角线不相等的四边形不是矩形
������ ≤ 2, 1 < ������ < 3,
解得 m≥3 或 1<m≤2,
∴m 的取值范围为{m|m≥3 或 1<m≤2}.
首页
J 基础知识 ICHU ZHISHI
Z 重点难点 HONGDIAN NANDIAN
S 随堂练习 UITANG LIANXI
探究一
探究二
探究三
探究四
探究四易错辨析
【典型例题 4】已知:p:方程 x2+mx+1=0 有两个不等的负实数根;q:方 程 4x2+4(m-2)x+1=0 无实数根.若 p∨q 为真,p∧q 为假,求 m 的取值范围.
探究一
探究二
探究三
首页
探究四
J 基础知识 ICHU ZHISHI
Z 重点难点 HONGDIAN NANDIAN
S 随堂练习 UITANG LIANXI
C.p∨q 为真命题
D.(���p)∧q 为假命题
首页
J 基础知识 ICHU ZHISHI
Z 重点难点 HONGDIAN NANDIAN
S 随堂练习 UITANG LIANXI
探究一
探究二
探究三
探究四
错解一:答案:A 错因分析:用“且”联结两个命题时,简单联结了两个命题的条件和结论, 没有理解“且”的含义. 对于 A 中命题是真命题,而事实上,p,q 都是假命题,p∧q 应为假命题. 所以 A 是不正确的. 错解二:答案:B 错因分析:命题的否定与否命题的概念混淆导致错误.命题“若 p,则 q” 的否定为“若 p,则���q”,否命题为“若���p,则���q”.故 B 是不正确的. 正解:∵p 是假命题,∴���p 是真命题.又 q 是假命题, ∴(���p)∧q 是假命题. 答案:D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p 是“第一次击中飞
机”,命题 q 是“第二次击中飞机”.试用 ∧, ﹁) 表示下列命题:
p, q 以及逻辑联结词“或”“且”“非” ( ∨,
(1) 命题 s:两次都击中飞机;
(2) 命题 r :两次都没击中飞机;
(3) 命题 t :恰有一次击中了飞机;
(4) 命题 u:至少有一次击中了飞机.
【答案】 (1) 两次都击中飞机表示:第一次击中飞机且第二次击中飞机,所以命题
)
A. 1 个
B. 2 个
C. 3 个
D. 4 个
【答案】 C [ ①中使用逻辑联结词“且”; ②中没有使用逻辑联结词; ③中使用逻辑联
结词“非”;④中使用逻辑联结词“或”.命题①③④使用了逻辑联结词,
共有 3 个,故选
C. ]
2.已知 p: x∈A∩ B,则 ﹁p 是 (
)
A. x∈A 且 x∈/ B
q 为真时, 5- 2a>1,即 a<2,由 p∨q 为真命题, p∧ q 为假命题知, p 和 q 一真一假,
即 p 真 q 假或 p 假 q 真
- 2<a<2
a≤- 2或 a≥2
所以
或
,解得 a≤- 2.]
a≥2
a<2
5.已知命题 p:关于 x 的方程 x2+ 2ax+ 1= 0 有两个大于- 1 的实数根,命题 q:关于 x 的不等式 ax2- ax+ 1>0 的解集为 R,若 p∨ q 与 ﹁q 同时为真命题,求实数 a 的取值范围 .
【答案】A [ 依题意,﹁p:“甲没有降落在指定范围”, ﹁ q:“乙没有降落在指定范围”,
因此“至少有一位学员没有降落在指定范围”可表示为
( ﹁p) ∨( ﹁ q) . ]
2.设 a, b, c 是非零向量.已知命题 p:若 a· b= 0,b· c= 0a∥c. 则下列命题中真命题是 ( )
反,故 a∥c,所以命题 q 是真命题.选项 A 中, p∨ q 是真命题,故 A 正确; 选项 B 中, p∧ q 是假命题,故 B 错误;选项 C 中, ﹁p 是真命题, ﹁q 是假命题,所以 ( ﹁
p) ∧ ( ﹁q) 是假命题,故 C错误;选项 D 中, p∨ ( ﹁q) 是假命题,所以 D 错误. ]
p:“甲的成绩超过 9
环”,命题 q:“乙的成绩超过 8 环”,则命题“ p∨ ( ﹁q) ”表示 ________.
【答案】甲的成绩超过 9 环或乙的成绩没有超过 8 环 [ ﹁ q 表示乙的成绩没有超过 8 环,
所以命题“ p∨ ( ﹁q) ”表示甲的成绩超过 9 环或乙的成绩没有超过 8 环. ]
(1) 若“ p 或 q”为真命题,则 a>1 或 a>4,即 a>1.
故实数 a 的取值范围是 (1 ,+∞ ) .
2
(2) 若“ p 且 q”为真命题,则 a>1 且 a>4,即 a>4. 故实数 a 的取值范围是 (4 ,+∞ ) .
10.在一次模拟打飞机的游戏中,小李接连射击了两次,设命题
为真,“非 q”为假,故①④⑤⑥正确. ]
三、解答题 9.已知命题 p: 1∈ { x| x2<a} ,命题 q: 2∈ { x| x2<a} .
(1) 若“ p 或 q”为真命题,求实数 a 的取值范围;
(2) 若“ p 且 q”为真命题,求实数 a 的取值范围. 【答案】若 p 为真命题,则 1∈ { x| x2<a} , 故 12<a,即 a>1; 若 q 为真命题,则 2∈ { x| x2<a} ,故 22<a,即 a>4.
8.已知命题 p:{2} ∈ {1,2,3} ,q:{2} ? {1,2,3} .给出下列结论:①“ p 或 q”为真;
②“ p 或 q”为假;③“ p 且 q”为真;④“ p 且 q”为假;⑤“非 p”为真;⑥“非 q”为假.其
中正确结论的序号是 ________.
【答案】 ①④⑤⑥ [ 由题意知, p 假 q 真,故“ p 或 q”为真, “ p 且 q”为假, “非 p”
p∧ q) ∨ ( p∧ q) .
能力提升
1.在一次跳伞训练中,甲、乙两位学员各跳一次. 设命题 p 是“甲降落在指定范围”,
q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为
()
A. ( ﹁p) ∨( ﹁ q)
B. p∨( ﹁ q)
C. ( ﹁p) ∧( ﹁ q)
D. p∨q
s
表示为 p∧q.
(2) 两次都没击中飞机表示:第一次没有击中飞机且第二次没有击中飞机,所以命题
r
表示为 ﹁p∧ ﹁q.
(3) 恰有一次击中了飞机包含两种情况: ①第一次击中飞机且第二次没有击中飞机,此时表示为 ②第一次没有击中飞机且第二次击中飞机,此时表示为 所以命题 t 表示为 ( p∧ ﹁q) ∨( ﹁p∧ q) .
其中,叙述正确的是 ________( 填序号 )
【答案】①②④ [ 命题 s 是“ p∧ q”形式的命题, ①正确;命题 s 是真命题,②正确; 命题 ﹁s:函数 y=sin x 不是周期函数或不是奇函数, ③不正确; 命题 ﹁s 是假命题, ④正确. ]
7.在一次射击比赛中,甲、乙两位运动员各射击一次,设命题
∴x 满足- 1< x< 3 且 x∈ Z,故满足条件的集合为 { x| - 1<x< 3, x∈ Z} . ]
二、填空题
6.已知命题 s:“函数 y= sin x 是周期函数且是奇函数”,则
①命题 s 是“ p∧ q”形式的命题;
②命题 s 是真命题; ③命题 ﹁ s:函数 y=sin x 不是周期函数且不是奇函数; ④命题 ﹁ s 是假命题.
x 的集合
1
为(
)
A. { x| x≤- 1 或 x≥3, x∈/ Z}
B. { x| -1≤ x≤3, x∈/ Z}
C. { x| x<- 1 或 x∈ Z}
D. { x| - 1< x<3, x∈ Z} 【答案】 D [ p:x≥3或 x≤- 1, q: x∈ Z,由 p∧ q, ﹁q 同时为假命题知, p 假 q 真,
B. x∈/ A 或 x∈/ B
C. x∈/ A 且 x∈/ B
D. x∈A∪ B
【答案】 B [ x∈A∩ B,即 x∈ A 且 x∈ B,故 ﹁p 是 x∈/ A 或 x∈/ B.]
3.已知命题 p:3≥3, q: 3> 4,则下列判断正确的是 ( ) A. p∨q 为真, p∧ q 为真, ﹁ p 为假 B. p∨q 为真, p∧ q 为假, ﹁ p 为真 C. p∨q 为假, p∧ q 为假, ﹁ p 为假 D. p∨q 为真, p∧ q 为假, ﹁ p 为假 【答案】 D [ ∵ p 为真命题, q 为假命题,∴ p∨q 为真, p∧ q 为假, ﹁p 为假,应选 D.]
3.
p:
1 x-
<0 3
,
q:
x
2-
4
x
-
5<0,若
p∧ q 为假命题,则
x 的取值范围是 ________.
【答案】 ( -∞,- 1] ∪ [3 ,+∞)
[ p 为真时,由
1 x-3<0 得 x<3,q 为真时,由
x2- 4x
-5<0 得- 1<x<5,若 p∧ q 为假命题,则 p 为假命题或 q 为假命题,所以 x≥3或 x≤- 1 或 x≥5,即 x≤- 1 或 x≥3.]
1.3 简单的逻辑联结词——且、或、非
( 建议用时: 40 分钟 )
基础练习
一、选择题
1.给出下列命题:① 2014 年 2 月 14 日是中国传统节日元宵节,同时也是西方的情人 节;② 10 的倍数一定是 5 的倍数;③梯形不是矩形;④方程 x2= 1 的解是 x=± 1. 其中使用
逻辑联结词的命题有 (
p∧ ﹁q; ﹁ p∧ q.
(4) 法一:命题 u 表示:第一次击中飞机或第二次击中飞机,所以命题
u 表示为 p∨q.
法二: ﹁ u:两次都没击中飞机,即是命题 r ,所以命题 u 是 ﹁r ,从而命题 u 表示为 ﹁ ( ﹁
p∧ ﹁ q) .
法三: 命题 u 表示: 第一次击中飞机且第二次没有击中飞机, 或者第一次没有击中飞机 且第二次击中飞机, 或者第一次击中飞机且第二次击中飞机, 所以命题 u 表示为 ( p∧ ﹁q) ∨ ( ﹁
4.给出命题
p:函数 y= x2-x- 1 有两个不同的零点;
1 q:若 x<1,则 x>1. 那么在下列
四个命题中,真命题是 ( )
A. ( ﹁p) ∨q
B. p∧q
C. ( ﹁p) ∧( ﹁ q)
D. ( ﹁p) ∨ ( ﹁q)
【答案】 D [ 对于 p,函数对应的方程 x2- x- 1= 0 的判别式 Δ = ( -1) 2-4×( - 1) =
5>0,所以函数有两个不同的零点,故 p 为真.
1
对于
q,当
x<0 时,不等式
<1 x
恒成立;当
x>0 时,不等式的解集为
{ x| x>1} .故不等式
1
<1 x
的解集为
{ x| x<0 或 x>1} .故命题
q 为假命题.
结合各选项知,只有 ( ﹁p) ∨ ( ﹁q) 为真.故选 D.]
5.已知 p: | x-1| ≥2, q:x∈ Z,若 p∧ q,﹁q 同时为假命题,则满足条件的
【答案】若命题
p 为真,则
Δ = 4a2 -4≥0 - a>-1 ( - 1) 2-2a+ 1>0