具间断系数拟线性椭圆型方程和方程组的正则性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
具间断系数拟线性椭圆型方程和方程组的正则性本文研究内容主要由如下四个部分组成:1、建立具VMO间断系数散度型拟线性椭圆方程组弱解的具最优Holder指数的部分Holder连续性估计;2、研究在弱条件下的具退化椭圆的A-调和型方程组弱解梯度的BMO正则性;3、得到定义在Carnot群上的具VMO间断系数的次椭圆方程组弱解梯度在Morrey空间的正则性估计;4、在自然增长条件下,分别研究半线性次椭圆方程和更一般的次椭圆A-调和方程的弱解的具最优Holder指数内部Holder连续性.下面分章节叙述具体内容:第一章简述本研究的选题背景、综述本文相关的文献资料和最新发展动态;同时也给出在正文研究中有关的基本概念和基本事实.第二章分别在可控增长条件和自然增长条件下,研究VMO间断系数的二阶散度型拟线性椭圆方程组弱解具最优Holder指数的部分Holder连续性.采用改进的A-调和逼近技术,建立方程组弱解和某个A-调和函数之间的逼近关系,再结合Caccioppoli不等式,得到在"小能量"下的Holder连续性(部分正则性).与经典的扰动法相比较,该方法避免了反向Holder不等式的使用,并在一定程度上简化了证明.第三章研究一类具弱正则系数的退化椭圆型方程组弱解梯度在全空间上的BMO正则性.基于退化椭圆型方程组弱解梯度的广义Morrey空间估计,建立了弱解梯度在BMO空间的正则性.第四章研究定义于Carnot群上在可控增长条件下具VMO系数的A-调和型次椭圆方程组,当p在2的附近扰动时其弱解梯度在Morrey空间的正则性,由此得到在Q-n<λ<p时弱解具最优Holder指数的Holder连续性.这里需要指出的是,对于一般的p,即使是p-Laplacian,其正则性仍是未知的,文中基于反向Holder 不等式,得到弱解梯度更高的可积性,通过迭代不等式,建立具确切指数的
Holder连续性.第五章研究在自然增长条件下半线性次椭圆方程有界弱解的内
部Holder连续性.通过线性化为线性问题的上下解问题,利用经典的De
Giorgi-Moser-Nash迭代,结合向量场下的Poincare不等式和密度引理,得到Hanack不等式,从而建立方程弱解的内部Holder连续性估计.第六章考虑更一般的A-调和型次椭圆方程在自然增长条件下弱解的内部Holder连续性估计.基于密度引理和De Giorgi-Moser-Nash迭代技巧,证明A-调和型次椭圆方程的有界解的局部Holder连续性.第七章是总结和展望.。