高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.1指数与指数幂的运算(3)教案数学教案

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数与指数幂的运算(3)

导入新课

思路1.

同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数.并且知道,在有理数到实数的扩充过程中,增添的数是——实数.对无理数指数幂,也是这样扩充而来.既然如此,我们这节课的主要内容是:教师板书本堂课的课题(指数与指数幂的运算(3))之无理数指数幂.

思路2.

同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数与指数幂的运算(3)之无理数指数幂,教师板书本堂课的课题.

推进新课

新知探究

提出问题

①我们知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值?

③你能给上述思想起个名字吗?

④一个正数的无理数次幂到底是一个什么性质的数呢?如52,根据你学过的知识,能作出判

断并合理地解释吗?

⑤借助上面的结论你能说出一般性的结论吗?

活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容:

问题①从近似值的分类来考虑,一方面从大于2的方向,另一方面从小于2的方向.

问题②对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联.

问题③上述方法实际上是无限接近,最后是逼近.

问题④对问题给予大胆猜测,从数轴的观点加以解释.

问题⑤在③④的基础上,推广到一般的情形,即由特殊到一般.

讨论结果:①1.41,1.414,1.414 2,1.414 21,…这些数都小于2,称2的不足近似值,而

1.42,1.415,1.414 3,1.414 22,…,这些数都大于2,称2的过剩近似值.

②第一个表:从大于2的方向逼近2时,52就从51.5,51.42,51.415,51.4143,51.41422,…,即大于52的方向逼近52.

第二个表:从小于2的方向逼近2时,52就从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于52的方向逼近52.

从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面52从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于52的方向接近52,而另一方面52从51.5,51.42,51.415,51.4143,51.41422,…,即大于52的方向接近52,可以说从两个方向无限地接近52,即逼近52,所以52是一串有理数指数幂51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理数指数幂51.5,51.42,51.415,51.4143,51.41422,…,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示52的点靠近,但这个点一定在数轴上,由此我们可得到的结论是52一定是一个实数,即51.4<51.41<51.414<51.414 2<51.414

21<…<5

2

<…<5

1.41422

<5

1.4143

<5

1.415

<5

1.42

<51.5

.

充分表明52

是一个实数.

③逼近思想,事实上里面含有极限的思想,这是以后要学的知识. ④根据②③我们可以推断5

2

是一个实数,猜测一个正数的无理数次幂是一个实数.

⑤无理数指数幂的意义:

一般地,无理数指数幂a α

(a>0,α是无理数)是一个确定的实数.

也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数概念又一次得到推广,在数的扩充过程中,我们知道有理数和无理数统称为实数.我们规定了无理数指数幂的意义,知道它是一个确定的实数,结合前面的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实数指数幂. 提出问题

(1)为什么在规定无理数指数幂的意义时,必须规定底数是正数?

(2)无理数指数幂的运算法则是怎样的?是否与有理数指数幂的运算法则相通呢? (3)你能给出实数指数幂的运算法则吗?

活动:教师组织学生互助合作,交流探讨,引导他们用反例说明问题,注意类比,归纳. 对问题(1)回顾我们学习分数指数幂的意义时对底数的规定,举例说明.

对问题(2)结合有理数指数幂的运算法则,既然无理数指数幂a α

(a>0,α是无理数)是一个确定的实数,那么无理数指数幂的运算法则应当与有理数指数幂的运算法则类似,并且相通. 对问题(3)有了有理数指数幂的运算法则和无理数指数幂的运算法则,实数的运算法则自然就得到了.

讨论结果:(1)底数大于零的必要性,若a=-1,那么a α

是+1还是-1就无法确定了,这样就造

成混乱,规定了底数是正数后,无理数指数幂a α

是一个确定的实数,就不会再造成混乱. (2)因为无理数指数幂是一个确定的实数,所以能进行指数的运算,也能进行幂的运算,有理数指数幂的运算性质,同样也适用于无理数指数幂.类比有理数指数幂的运算性质可以得到无理数指数幂的运算法则: ①a r ·a s =a r+s

(a>0,r,s 都是无理数).

②(a r )s =a rs

(a>0,r,s 都是无理数).

③(a·b)r =a r b r

(a>0,b>0,r 是无理数).

(3)指数幂扩充到实数后,指数幂的运算性质也就推广到了实数指数幂. 实数指数幂的运算性质:

对任意的实数r,s,均有下面的运算性质: ①a r ·a s =a r+s

(a>0,r,s∈R ).

②(a r )s =a rs

(a>0,r,s∈R ).

③(a·b)r =a r b r

(a>0,b>0,r∈R ). 应用示例

思路1

例1利用函数计算器计算.(精确到0.001) (1)0.32.1

;(2)3.14-3

;(3)3.14

3;(4)3

3

.

活动:教师教会学生利用函数计算器计算,熟悉计算器的各键的功能,正确输入各类数,算出

相关文档
最新文档