人教版A版高中数学高二必修五 3.3线性规划实际应用问题的求解

合集下载

人教A数学必修五课件:第3章 3.3.2 第2课时 线性规划的实际应用

人教A数学必修五课件:第3章 3.3.2 第2课时 线性规划的实际应用
36 800 [设租用 A 型车 x 辆,B 型车 y 辆,租金为 z 元,
36x+60y≥900, 则yy-+xx≤≤721,,
x,y∈N,
画出可行域(如图中阴影部分内的整点),则目标函数 z=1 600x
+2 400y 在点(5,12)处取得最小值 zmin=36 800 元.]
合作探究 提素养
(3)求解——解这个纯数学的线性规划问题. (4)作答——就应用题提出的问题作出回答.
线性规划中的最优整数解问题
【例 2】 某运输公司有 7 辆载重量为 6 吨的 A 型卡车,4 辆载 重量为 10 吨的 B 型卡车,有 9 名驾驶员.在建筑某段高速公路的工 程中,此公司承包了每天运送 360 吨沥青的任务.已知每辆卡车每天 往返次数为:A 型车 8 次,B 型车 6 次,每辆卡车每天往返的成本费 为:A 型车 160 元,B 型车 280 元.每天派出 A 型车与 B 型车各多少 辆时,公司花的成本费最低?
解答线性规划应用题的一般步骤 (1)审题——仔细阅读,对关键部分进行“精读”,准确理解题 意,明确有哪些限制条件,起关键作用的变量有哪些.由于线性规划 应用题中的变量比较多,为了理顺题目中量与量之间的关系,有时可 借助表格来理顺.
(2)转化——设元.写出约束条件和目标函数,从而将实际问题 转化为数学上的线性规划问题.
[提示] 分析题意,我们可得到以下式子
x+y≤25 000 000, 12x+10y≥3 000 000, x≥0, y≥0.
1.已知目标函数 z=2x+y,且变量 x,y 满足约束条件 x-4y≥-3,
3x+5y<25, 则( ) x≥1,
A.zmax=12,zmin=3 B.zmax=12,无最小值 C.zmin=3,无最大值 D.z 既无最大值又无最小值

高中数学 3.3.2简单的线性规划问题课件 新人教A版必修5

高中数学 3.3.2简单的线性规划问题课件 新人教A版必修5

(1)z=x2+(y-5)2 表示可行域内任一点(x,y)到达点 M(0,5)的
距离的平方,过 M(0,5)的距离的平方,过 M 作 AC 的垂线,易知 栏

垂足 N 在 AC 上,故


MN= 1|+0-(5-+21)| 2= 32=322.
MN2=3
2
22=92,故
z
的最小值为29.
完整版ppt
完整版ppt
5
解析:作出不等式组表示的平面区域(即可行域).
(1)将 w=x+2y 变形为 y=-12x+w2,得到斜率为-12,在 y 轴上
截距为w2的一簇随 w 变化的平行直线,作过原点的直线 y=-12x,由

图 1 可知,当平移此直线过点(0,2)时,直线在 y 轴上的截距w2最大,目链

目 链

点评:由题目可获得以下主要信息:在约束条件下,
①求 z=x2+y2-10y+25=x2+(y-5)2 的最小值;②求 z=2xy++11
=2·x-y-(--121) 的取值范围.解答本题可先将目标函数变形找到它的
几何意义,再利用解析几何完知整识版求pp最t 值.
11
解析:作出可行域,如图 A(1,3),B(3,1),C(7,9).
9
把 z=2x+y 变形为 y=-2x+z,得到斜率为-2,在 y 轴上的
截距为 z,随 z 变化的一簇平行直线.
由图可以看出,当直线 z=2x+y 经过可行域上的点 A 时,截距 栏
z 最大,经过点 B 时,截距 z 最小.
目 链
解方程组x3-x+4y5+y-3=25=0,0,得 A 点坐标为(5,2).
范围是( )

高中数学 第三章 不等式 3.3.2 简单的线性规划问题常

高中数学 第三章 不等式 3.3.2 简单的线性规划问题常

线性规划的常见题型及其解法线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致.归纳起来常见的命题探究角度有: 1.求线性目标函数的最值. 2.求非线性目标函数的最值. 3.求线性规划中的参数. 4.线性规划的实际应用.本节主要讲解线性规划的常见基础类题型.【母题一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b,通过求直线的截距z b的最值,间接求出z 的最值.【解析】画出不等式组⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,表示的平面区域如图中阴影部分所示,由目标函数z =2x +3y 得y =-23x +z 3,平移直线y =-23x 知在点B 处目标函数取到最小值,解方程组⎩⎪⎨⎪⎧x +y =3,2x -y =3,得⎩⎪⎨⎪⎧ x =2,y =1,所以B (2,1),z min =2×2+3×1=7,在点A 处目标函数取到最大值,解方程组⎩⎪⎨⎪⎧x -y =-1,2x -y =3,得⎩⎪⎨⎪⎧x =4,y =5,所以A (4,5),z max =2×4+3×5=23.【答案】A【母题二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.点(x ,y )在不等式组表示的平面区域内,y 2x -1=12·y -0⎝ ⎛⎭⎪⎫x -12表示点(x ,y )和⎝ ⎛⎭⎪⎫12,0连线的斜率;x 2+y 2表示点(x ,y )和原点距离的平方;x 2+y 2+6x -4y +13=(x +3)2+(y -2)2表示点(x ,y )和点(-3,2)的距离的平方.【解析】(1)由约束条件⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧x =1,3x +5y -25=0,解得A ⎝⎛⎭⎪⎫1,225.由⎩⎪⎨⎪⎧ x =1,x -4y +3=0,解得C (1,1).由⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,解得B (5,2).∵z =y 2x -1=y -0x -12×12∴z 的值即是可行域中的点与⎝ ⎛⎭⎪⎫12,0连线的斜率,观察图形可知z min =2-05-12×12=29. (2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方. 结合图形可知,可行域上的点到原点的距离中,d min =|OC |=2,d max =|OB |=29.∴2≤z ≤29.(3)z =x 2+y 2+6x -4y +13=(x +3)2+(y -2)2的几何意义是: 可行域上的点到点(-3,2)的距离的平方. 结合图形可知,可行域上的点到(-3,2)的距离中,d min =1-(-3)=4,d max =-3-2+-2=8∴16≤z ≤64.1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义. 2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b ,通过求直线的截距z b的最值,间接求出z 的最值.(2)距离型:形一:如z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离;形二:z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离的平方.(3)斜率型:形如z =y x ,z =ay -b cx -d ,z =y cx -d ,z =ay -bx,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.【提醒】 注意转化的等价性及几何意义.角度一:求线性目标函数的最值1.(2014·新课标全国Ⅱ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .2【解析】作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点A (5,2)时,对应的z 值最大.故z max =2×5-2=8.【答案】B2.(2015·高考天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .40【解析】作出约束条件对应的平面区域如图所示 ,当目标函数经过点(0,3)时,z 取得最大值18.【答案】C3.(2013·高考陕西卷)若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( )A .-6B .-2C .0D .2【解析】如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部分,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点(-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6.【答案】A角度二:求非线性目标的最值4.(2013·高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12【解析】已知的不等式组表示的平面区域如图中阴影所示,显然当点M 与点A 重合时直线OM 的斜率最小,由直线方程x +2y -1=0和3x +y -8=0,解得A (3,-1),故OM 斜率的最小值为-13.【解析】C5.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1的取值范围 .【解】由不等式组画出可行域如图中阴影部分所示,目标函数z =2x +y -1x -1=2+y +1x -1的取值范围可转化为点(x ,y )与(1,-1)所在直线的斜率加上2的取值范围,由图形知,A 点坐标为(2,1),则点(1,-1)与(2,1)所在直线的斜率为22+2,点(0,0)与(1,-1)所在直线的斜率为-1,所以z 的取值范围为(-∞,1]∪[22+4,+∞).【答案】(-∞,1]∪[22+4,+∞)6.(2015·郑州质检)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]【解析】如图所示,不等式组表示的平面区域是△ABC 的内部(含边界),x 2+y 2表示的是此区域内的点(x ,y )到原点距离的平方.从图中可知最短距离为原点到直线BC 的距离,其值为1;最远的距离为AO ,其值为2,故x 2+y 2的取值范围是[1,4].【答案】B7.(2013·高考北京卷)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.【解析】作出可行域,如图中阴影部分所示,则根据图形可知,点B (1,0)到直线2x -y =0的距离最小,d =|2×1-0|22+1=255,故最小距离为255. 【答案】2558.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,|AB |的最小值等于( )A .285B .4C .125D .2【解析】不等式组⎩⎪⎨⎪⎧x ≥1x -2y +3≥0y ≥x,所表示的平面区域如图所示,解方程组⎩⎪⎨⎪⎧x =1y =x ,得⎩⎪⎨⎪⎧x =1y =1.点A (1,1)到直线3x -4y -9=0的距离d =|3-4-9|5=2,则|AB |的最小值为4.【答案】B角度三:求线性规划中的参数9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A .73 B .37 C .43D .34【解析】不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝ ⎛⎭⎪⎫12,52.当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43,所以k =73.【解析】A10.(2014·高考北京卷)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-12【解析】D 作出线性约束条件⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0的可行域.当k >0时,如图①所示,此时可行域为y 轴上方、直线x +y -2=0的右上方、直线kx -y +2=0的右下方的区域,显然此时z =y -x 无最小值.当k <-1时,z =y -x 取得最小值2;当k =-1时,z =y -x 取得最小值-2,均不符合题意.当-1<k <0时,如图②所示,此时可行域为点A (2,0),B ⎝ ⎛⎭⎪⎫-2k,0,C (0,2)所围成的三角形区域,当直线z =y -x 经过点B ⎝ ⎛⎭⎪⎫-2k ,0时,有最小值,即-⎝ ⎛⎭⎪⎫-2k =-4⇒k =-12.【答案】D11.(2014·高考安徽卷)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A .12或-1 B .2或12C .2或1D .2或-1【解析】法一:由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一,只要z A =z B >z C 或z A =z C >z B 或z B=z C >z A ,解得a =-1或a =2.法二:目标函数z =y -ax 可化为y =ax +z ,令l 0:y =ax ,平移l 0,则当l 0∥AB 或l 0∥AC 时符合题意,故a =-1或a =2.【答案】D12.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4.下,当3≤s ≤5时,目标函数z =3x +2y 的最大值的取值范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]【解析】 由⎩⎪⎨⎪⎧x +y =s ,y +2x =4,得⎩⎪⎨⎪⎧x =4-s ,y =2s -4,,则交点为B (4-s,2s -4),y +2x =4与x 轴的交点为A (2,0),与y 轴的交点为C ′(0,4),x +y =s 与y 轴的交点为C (0,s ).作出当s =3和s =5时约束条件表示的平面区域,即可行域,如图(1)(2)中阴影部分所示.(1) (2)当3≤s <4时,可行域是四边形OABC 及其内部,此时,7≤z max <8; 当4≤s ≤5时,可行域是△OAC ′及其内部,此时,z max =8. 综上所述,可得目标函数z =3x +2y 的最大值的取值范围是[7,8]. 【答案】D13.(2015·通化一模)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,则a 的值为________.【解析】∵x +2y +3x +1=1+y +x +1,而y +1x +1表示过点(x ,y )与(-1,-1)连线的斜率,易知a >0, ∴可作出可行域,由题意知y +1x +1的最小值是14,即⎝ ⎛⎭⎪⎫y +1x +1min =0--3a --=13a +1=14⇒a =1.【答案】1角度四:线性规划的实际应用14.A ,B 两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A 产品需要在甲机器上加工3小时,在乙机器上加工1小时;B 产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A 产品每件利润300元,B 产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.【解析】 设生产A 产品x 件,B 产品y 件,则x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y ≤11,x +3y ≤9,x ∈N ,y ∈N ,生产利润为z=300x +400y .画出可行域,如图中阴影部分(包含边界)内的整点,显然z =300x +400y 在点A 处取得最大值,由方程组⎩⎪⎨⎪⎧3x +y =11,x +3y =9,解得⎩⎪⎨⎪⎧x =3,y =2,则z max =300×3+400×2=1 700.故最大利润是1 700元.【答案】1 70015.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润w (元); (2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?【解析】(1)依题意每天生产的伞兵个数为100-x -y ,所以利润w =5x +6y +3(100-x -y )=2x +3y +300.(2)约束条件为⎩⎪⎨⎪⎧5x +7y +-x -y ,100-x -y ≥0,x ≥0,y ≥0,x ,y ∈N .整理得⎩⎪⎨⎪⎧x +3y ≤200,x +y ≤100,x ≥0,y ≥0,x ,y ∈N .目标函数为w =2x +3y +300. 作出可行域.如图所示:初始直线l 0:2x +3y =0,平移初始直线经过点A 时,w有最大值.由⎩⎪⎨⎪⎧x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50.最优解为A (50,50),所以w max =550元.所以每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,最大利润为550元.一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)【解析】根据题意知(-9+2-a )·(12+12-a )<0.即(a +7)(a -24)<0,解得-7<a <24. 【答案】B2.(2015·临沂检测)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 的最小值是( )A .-3B .0C .32D .3【解析】作出不等式组⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3表示的可行域(如图所示的△ABC 的边界及内部).平移直线z =x -y ,易知当直线z =x -y 经过点C (0,3)时,目标函数z =x -y 取得最小值,即z min =-3.【答案】A3.(2015·泉州质检)已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA →·OP →的最大值为( )A .-2B .-1C .1D .2【解析】如图作可行域,z =OA →·OP →=x +2y ,显然在B (0,1)处z max =2.【答案】D4.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .⎣⎢⎡⎦⎥⎤53,5B .[0,5]C .⎣⎢⎡⎭⎪⎫53,5D .⎣⎢⎡⎭⎪⎫-53,5 【解析】画出不等式组所表示的区域,如图阴影部分所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是⎣⎢⎡⎭⎪⎫-53,5.【答案】D5.如果点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为( ) A .2 B .1 C .3D .0【解析】由题意知(6-8b +1)(3-4b +5)<0,即⎝ ⎛⎭⎪⎫b -78(b -2)<0,∴78<b <2,∴b 应取的整数为1.【答案】B6.(2014·郑州模拟)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)【解析】如图,根据题意得C (1+3,2).作直线-x +y =0,并向左上或右下平移,过点B (1,3)和C (1+3,2)时,z =-x +y 取范围的边界值,即-(1+3)+2<z <-1+3,∴z =-x +y 的取值范围是(1-3,2).【答案】A7.(2014·成都二诊)在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0,所表示的平面区域上一动点,则直线OP 斜率的最大值为( )A .2B .13C .12D .1【解析】作出可行域如图所示,当点P 位于⎩⎪⎨⎪⎧x +y =2,y =1,的交点(1,1)时,(k OP )max =1.【答案】D8.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1C .12D .14【解析】不等式⎩⎪⎨⎪⎧x +y ≤1,x ≥0,y ≥0,所表示的可行域如图所示,设a =x +y ,b =x -y ,则此两目标函数的范围分别为a =x +y ∈[0,1],b =x -y ∈[-1,1],又a +b =2x ∈[0,2],a -b =2y ∈[0,2],∴点坐标(x +y ,x -y ),即点(a ,b )满足约束条件⎩⎪⎨⎪⎧0≤a ≤1,-1≤b ≤1,0≤a +b ≤2,0≤a -b ≤2,作出该不等式组所表示的可行域如图所示,由图示可得该可行域为一等腰直角三角形,其面积S =12×2×1=1.【答案】B9.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为4,则ab 的取值范围是( )A .(0,4)B .(0,4]C .[4,+∞)D .(4,+∞)【解析】作出不等式组表示的区域如图阴影部分所示,由图可知,z =ax +by (a >0,b >0)过点A (1,1)时取最大值,∴a +b =4,ab ≤⎝⎛⎭⎪⎫a +b 22=4,∵a >0,b >0,∴ab ∈(0,4].【答案】B10.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π【解析】作出不等式组所表示的可行域如图中阴影部分所示,则根据图形可知,以AB 为直径的圆的面积的最大值S =π×⎝ ⎛⎭⎪⎫422=4π.【答案】D11.(2015·东北三校联考)变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 取得最大值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}【解析】作出不等式组所表示的平面区域,如图所示.易知直线z =ax +y 与x -y =2或3x +y =14平行时取得最大值的最优解有无穷多个,即-a =1或-a =-3,∴a =-1或a =3.【答案】B12.(2014·新课标全国Ⅰ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a=( )A .-5B .3C .-5或3D .5或-3【解析】法一:联立方程⎩⎪⎨⎪⎧x +y =a ,x -y =-1,解得⎩⎪⎨⎪⎧x =a -12,y =a +12,代入x +ay =7中,解得a =3或-5,当a =-5时,z =x +ay 的最大值是7;当a =3时,z =x +ay 的最小值是7.法二:先画出可行域,然后根据图形结合选项求解.当a =-5时,作出不等式组表示的可行域,如图(1)(阴影部分).图(1) 图(2)由⎩⎪⎨⎪⎧ x -y =-1,x +y =-5得交点A (-3,-2),则目标函数z =x -5y 过A 点时取得最大值.z max =-3-5×(-2)=7,不满足题意,排除A ,C 选项.当a =3时,作出不等式组表示的可行域,如图(2)(阴影部分).由⎩⎪⎨⎪⎧x -y =-1,x +y =3得交点B (1,2),则目标函数z =x +3y 过B 点时取得最小值.z min =1+3×2=7,满足题意.【答案】B13.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定的平面区域的面积是( )A .12 B .π4C .1D .π2【解析】因为ax +by ≤1恒成立,则当x =0时,by ≤1恒成立,可得y ≤1b(b ≠0)恒成立,所以0≤b ≤1;同理0≤a ≤1.所以由点P (a ,b )所确定的平面区域是一个边长为1的正方形,面积为1.【答案】C14.(2013·高考北京卷)设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A .⎝⎛⎭⎪⎫-∞,43B .⎝ ⎛⎭⎪⎫-∞,13C .⎝⎛⎭⎪⎫-∞,-23D .⎝⎛⎭⎪⎫-∞,-53【解析】当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0.如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m<-12m -1,解得m <-23.【答案】C15.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x的图象上存在区域D 上的点,则a 的取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)【解析】平面区域D 如图所示.要使指数函数y =a x的图象上存在区域D 上的点,所以1<a ≤3. 【解析】A16.(2014·高考福建卷)已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .49【解析】由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.【解析】C17.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k x --1表示一个三角形区域,则实数k 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)【解析】已知直线y =k (x -1)-1过定点(1,-1),画出不等式组表示的可行域示意图,如图所示. 当直线y =k (x -1)-1位于y =-x 和x =1两条虚线之间时,表示的是一个三角形区域.所以直线y =k (x -1)-1的斜率的范围为(-∞,-1),即实数k 的取值范围是(-∞,-1).当直线y =k (x -1)-1与y =x 平行时不能形成三角形,不平行时,由题意可得k >1时,也可形成三角形,综上可知k <-1或k >1.【答案】D18.(2016·武邑中学期中)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 的最大值为( )A .4B .6C .8D .10【解析】区域如图所示,目标函数z =2x +y 在点A (3,2)处取得最大值,最大值为8.【答案】C19.(2016·衡水中学期末)当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m时,z =x -3y 的最大值为8,则实数m 的值是( )A .-4B .-3C .-2D .-1【解析】画出可行域如图所示,目标函数z =x -3y 变形为y =x 3-z3,当直线过点C 时,z 取到最大值,又C (m ,m ),所以8=m -3m ,解得m =-4. 【答案】A20.(2016·湖州质检)已知O 为坐标原点,A ,B 两点的坐标均满足不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x -1≥0,则tan∠AOB 的最大值等于( )A .94 B .47 C .34D .12【解析】如图阴影部分为不等式组表示的平面区域,观察图形可知当A 为(1,2),B 为(2,1)时,tan ∠AOB 取得最大值,此时由于tan α=k BO =12,tan β=k AO =2,故tan ∠AOB =tan (β-α)=tan β-tan α1+tan βtan α=2-121+2×12=34. 【解析】C 二、填空题21.(2014·高考安徽卷)不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.【解析】作出不等式组表示的平面区域如图中阴影部分所示,可知S △ABC =12×2×(2+2)=4.【答案】422.(2014·高考浙江卷)若实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则x +y 的取值范围是________.【解析】作出可行域,如图,作直线x +y =0,向右上平移,过点B 时,x +y 取得最小值,过点A 时取得最大值.由B (1,0),A (2,1)得(x +y )min =1,(x +y )max =3.所以1≤x +y ≤3. 【答案】[1,3]23.(2015·重庆一诊)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为____.【解析】根据约束条件作出可行域,如图中阴影部分所示,∵z =3x -y ,∴y =3x -z ,当该直线经过点A (2,2)时,z 取得最大值,即z max =3×2-2=4.【答案】424.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.【解析】目标函数w =x 2+y 2-4x -4y +8=(x -2)2+(y -2)2,其几何意义是点(2,2)与可行域内的点的距离的平方.由实数x ,y 所满足的不等式组作出可行域如图中阴影部分所示,由图可知,点(2,2)到直线x +y -1=0的距离为其到可行域内点的距离的最小值,又|2+2-1|2=322,所以w min =92.【答案】9225.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM |的最小值是________.【解析】如图所示阴影部分为可行域,数形结合可知,原点O 到直线x +y -2=0的垂线段长是|OM |的最小值,∴|OM |min =|-2|12+12=2.【答案】 226.(2016·汉中二模)某企业生产甲、乙两种产品,已知生产每吨甲产品要用水3吨、煤2吨;生产每吨乙产品要用水1吨、煤3吨.销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元,若该企业在一个生产周期内消耗水不超过13吨,煤不超过18吨,则该企业可获得的最大利润是______万元.【解析】设生产甲产品x 吨,生产乙产品y 吨,由题意知⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,利润z =5x +3y ,作出可行域如图中阴影部分所示,求出可行域边界上各端点的坐标,经验证知当x=3,y=4,即生产甲产品3吨,乙产品4吨时可获得最大利润27万元.【答案】2727.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:________亩.【解析】设黄瓜和韭菜的种植面积分别为x亩,y亩,总利润为z万元,则目标函数为z=(0.55×4x-1.2x)+(0.3×6y-0.9y)=x+0.9y.线性约束条件为⎩⎪⎨⎪⎧x+y≤50,1.2x+0.9y≤54,x≥0,y≥0,即⎩⎪⎨⎪⎧x+y≤50,4x+3y≤180,x≥0,y≥0.画出可行域,如图所示.作出直线l0:x+0.9y=0,向上平移至过点A时,z取得最大值,由⎩⎪⎨⎪⎧x+y=50,4x+3y=180,解得A(30,20).【答案】3028.(2015·日照调研)若A为不等式组⎩⎪⎨⎪⎧x≤0,y≥0,y-x≤2表示的平面区域,则当a从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.【解析】平面区域A 如图所示,所求面积为S =12×2×2-12×22×22=2-14=74.【答案】7429.(2014·高考浙江卷)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.【解析】画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤4,1≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤32.【答案】⎣⎢⎡⎦⎥⎤1,3230.(2015·石家庄二检)已知动点P (x ,y )在正六边形的阴影部分(含边界)内运动,如图,正六边形的边长为2,若使目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,则k 的值为________.【解析】由目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,结合图形分析可知,直线kx +y =0的倾斜角为120°,于是有-k =tan 120°=-3,所以k =3.【答案】 331.设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围 .【解析】变换目标函数为y =-1m x +z m ,由于m >1,所以-1<-1m<0,不等式组表示的平面区域如图中的阴影部分所示,根据目标函数的几何意义,只有直线y =-1m x +zm在y 轴上的截距最大时,目标函数取得最大值.显然在点A 处取得最大值,由y =mx ,x +y =1,得A ⎝ ⎛⎭⎪⎫11+m ,m 1+m ,所以目标函数的最大值z max=11+m +m 21+m<2,所以m 2-2m -1<0,解得1-2<m <1+2,故m 的取值范围是(1,1+2).【答案】(1,1+2)32.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,若目标函数z =x -y 的最小值的取值范围是[-2,-1],则目标函数的最大值的取值范围是________.【解析】不等式组表示的可行域如图中阴影部分(包括边界)所示,目标函数可变形为y =x -z ,当z 最小时,直线y =x -z 在y 轴上的截距最大.当z 的最小值为-1,即直线为y =x +1时,联立方程⎩⎪⎨⎪⎧y =x +1,y =2x -1,可得此时点A 的坐标为(2,3),此时m =2+3=5;当z 的最小值为-2,即直线为y =x +2时,联立方程⎩⎪⎨⎪⎧y =x +2,y =2x -1,可得此时点A 的坐标是(3,5),此时m =3+5=8.故m 的取值范围是[5,8].目标函数z =x -y 的最大值在点B (m -1,1)处取得,即z max =m -1-1=m -2,故目标函数的最大值的取值范围是[3,6].【答案】[3,6]33.(2013·高考广东卷)给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.【解析】线性区域为图中阴影部分,取得最小值时点为(0,1),最大值时点为(0,4),(1,3),(2,2),(3,1),(4,0),点(0,1)与(0,4),(1,3),(2,2),(3,1),(4,0)中的任何一个点都可以构成一条直线,共有5条 ,又(0,4),(1,3),(2,2),(3,1),(4,0)都在直线x +y =4上,故T 中的点共确定6条不同的直线. 【答案】634.(2011·湖北改编)已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为__________.【解析】∵a =(x +z,3),b =(2,y -z ),且a ⊥b ,∴a ·b =2(x +z )+3(y -z )=0,即2x +3y -z =0.又|x |+|y |≤1表示的区域为图中阴影部分,∴当2x +3y -z =0过点B (0,-1)时,z min =-3,当2x +3y -z =0过点A (0,1)时,z min =3. ∴z ∈[-3,3]. 【答案】[-3,3]35.(2016·衡水中学模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.【解析】作出线性约束条件表示的平面区域,如图中阴影部分所示.若m =0,则z =x ,目标函数z =x +my 取得最小值的最优解只有一个,不符合题意. 若m ≠0,则目标函数z =x +my 可看作斜率为-1m 的动直线y =-1m x +zm,若m <0,则-1m>0,由数形结合知,使目标函数z =x +my 取得最小值的最优解不可能有无穷多个;若m >0,则-1m<0,数形结合可知,当动直线与直线AB 重合时,有无穷多个点(x ,y )在线段AB 上,使目标函数z =x +my 取得最小值,即-1m=-1,则m =1.综上可知,m =1. 【答案】1。

2020秋高中数学人教A版必修5同步:3.3-3.3.2第2课时 线性规划的实际应用

2020秋高中数学人教A版必修5同步:3.3-3.3.2第2课时 线性规划的实际应用
答案:C
4.某企业生产甲、乙两种产品均需用 A,B 两种原 料.已知生产 1 吨甲、乙产品所需原料及每天原料的可用 限额如下表所示.如果生产 1 吨甲、乙产品可获利润分别 为 3 万元、4 万元,则该企业每天可获得的最大利润为 ()
项目 甲 乙 原料限额
A/吨 3 2
12
B/吨 1 2
8
A.12 万元 B.16 万元 C.17 万元 D.18 万元
[知识提炼·梳理] 线性规划在实际问题中的题型 主要掌握两种类型:一是给定一定数量的人力、物 力资源,问怎样运用这些资源能使完成的任务量最大, 收到的效益最大;二是给定一项任务,问怎样统筹安排, 能使完成的这项任务耗费的人力、物力资源最小.
[思考尝试·夯基] 1.思考判断(正确的打“√”,错误的打“×”) (1)将目标函数的直线平行移动,最先通过或最后通 过的顶点便是最优解.( ) (2) 当 线 性 目 标 函 数 的 直 线 与 可 行 域 的 某 条 边 平 行 时,最优解可能有无数个.( ) 答案:(1)× (2)√
C.36 800 元
D.38 400 元
解析:设租用 A 型车 x 辆,B 型车 y 辆,租金为 z 元, 36x+60y≥900, 则yy- +xx≤ ≤72, 1, x,y∈N* .
画出可行域(如图中阴影部分内的整点),则目标函数 z=1 600x+2 400y 在点(5,12)处取得最小值,zmin=36 800(元).
x-y≥0, 2.若满足条件x+y-2≤0,的整点(x,y)(整点是指
y≥a 横、纵坐标都是整数的点)恰有 9 个,则整数 a 的值为( )
A.-3 B.-2 C.-1 D.0 解析:不等式组所表示的平面区域如图阴影部分所 示,当 a=0 时,只有 4 个整点,分别为(1, 1),(0,0),(1,0),(2,0). 当 a=-1 时,正好增加(-1,-1), (0,-1),(1,-1),(2,-1),(3,-1)5 个整点,所以 a=-1.

人教A版高二数学必修五第三章3-3-2 第2课时 简单线性规划的应用共33张 精品

人教A版高二数学必修五第三章3-3-2 第2课时 简单线性规划的应用共33张 精品

探究点1 简单线性规划问题及在实际问题中的应用
一、用量最省问 例题1 营养学家指出,成人良好的日常饮食应该至少 提供0.075 kg的碳水化合物,0.06 kg的蛋白质,0.06 kg 的脂肪.1 kg食物A含有0.105 kg碳水化合物,0.07 kg蛋 白质,0.14 kg脂肪,花费28元;而1 kg食物B含有0.105 kg碳水化合物,0.14 kg蛋白质,0.07 kg脂肪,花费21元. 为了满足营养专家指出的日常饮食要求,同时使花 费最低,需要同时食用食物A和食物B多少kg?
A规格 2
第二种钢板
1
B规格 1 2
C规格 1 3
今需要A,B,C三种规格的成品分别15,18,27 块,用数学关系式和图形表示上述要求.各截这 两种钢板多少张可得所需A,B,C三种规格成品, 且使所用钢板张数最少?
分析:列表
第一种钢板 第二种钢板
成品块数
A规格
B规格
C规格
张数
2
1
1
x
1
2
3
y
2x y x 2y x 3y
第2课时 简单线性规划的应用
在实际问题中常遇到两类问题: 一是在人力、物力、资金等资源一定的条件
下,如何使用它们来完成最多的任务;
二是给定一项任务,如何合理地安排和规划 能以最少的人力、物力、资金等资源来完成它.
下面我们来看看线性规划在实际中的一些应用.
1.体会线性规划的基本思想,并能借助几何直 观解决一些简单的实际问题;(重点) 2.利用线性规划解决具有限制条件的不等式; 3.培养学生搜集、整理和分析信息的能力,提 高学生数学建模和解决实际问题的能力.
0.
y
66,
作出可行域,

人教A版高中数学必修五课件3.3.3简单线性规划问题.pptx

人教A版高中数学必修五课件3.3.3简单线性规划问题.pptx
(1,1)
(5,2)
复习线性规划解题步骤
解线性规划问题的一般步骤: 第一步:在平面直角坐标系中作出可行域; 第二步:在可行域内找到最优解所对应的点; 第三步:解方程的最优解,从而求出目标函数 的最大值或最小值。
线性规划的实际应用
例题分析: P78 例题1
练习: P80 第4题
• 解线性规划应用问题的一般步骤:
高中数学课件
(鼎尚图文*****整理制作)
3.3.3简单线性规划问题 实际应用
复习线性规划
问题:
目标函数 (线性目标函数)
设z=2x+y,式中变量满足
下列条件:
3xx45yy235 x 1
y
x=1 C 3x+5y-25=0
B
A x-4y+3=0
求z的最大值与最小值。
O
x
可行域
复习线性规划
线性规划:求线性目标函数在线性约束条件下的最 大值或最小值的问题,统称为线性规划问题.
可行解 :满足线性约束条
件的解(x,y)叫可行解; 2x+y=3
2x+y=12
可行域 :由所有可行解组来自成的集合叫做可行域;最优解 :使目标函数取得 最大或最小值的可行解叫 线性规划问题的最优解。
可行域
1、理清题意,列出表格; 2、设好变元,列出线性约束条件(不 等式组)
与目标函数; 3、准确作图; 4、根据题设精度计算。
作业: P85 第5题

人教A版高中数学必修五《3-3 简单的线性规划问题》PPT课件

人教A版高中数学必修五《3-3 简单的线性规划问题》PPT课件

y=-2x+ z
2x+y=0
o
问题4:z几何意义是:
斜率为-2的直线在y轴上的截距
x-4y=-3
A
3x+5y=25
x B 当直线过点 B(1,1)时,z 最小,即zmin=3
当直线过点A(5,2)时,z最大,即zmax= 2×5+2=12
有关概念
约束条件:由x、y的不等式(方程)构成的不等式组。
线性约束条件:约束条件中均为关于x、y的一次不等式或方程。
答 4、 作出答案。
练习1.设z=2x+y,式中变量满足下列条件:
2x 3y 12 0
y
x y 3
x0
y0
求z的最值
x y 3
0
x
2x 3y 12 0
l0:2x+y=0
练习2: 式中x, y满足下列条件 求函数z=7x+y最大值,
y
2x 5 y 15 x y 0 6 x8
x-y=o
0 6
y
o
x
【引例】:
某工厂用A、B两种配件生产甲、乙两种产品, 每生产一件甲产品使用4个A配件并耗时1h,每生 产一件乙产品使用4个B配件并耗时2h,该厂每天 最多可从配件厂获得16个A配件和12个B配件,按 每天工作8h计算,该厂所有可能的日生产安排是 什么?
甲产品
每件耗时( h)
1
A配件(个) 4
产品
原料A数量(kg 原料B数量(kg) 利润(元) )
生产甲种产
3
品1工时
1
30
生产乙种产
2
品1工时
2
40
限额数量
1200
800

高中数学 3.3.2.2 线性规划的实际应用课件 新人教A版必修5

高中数学 3.3.2.2 线性规划的实际应用课件 新人教A版必修5

-7-
目标引航
自主预习
课堂互动
典型考题
随堂练习
【做一做 1-2 】 有 5 辆载重 6 吨的汽车,4 辆载重 4 吨的汽车,要运送 一批货物,设需载重 6 吨的汽车 x 辆,载重 4 吨的汽车 y 辆,则完成这项运输 任务的线性目标函数为( A.z=6x+4y C.z=x+y 答案:A 0 ≤ x ≤ 1, 【做一做 1-3 】 设 z=2y-2x,其中 x,y 满足条件 0 ≤ y ≤ 2, 则 z 的最小 2y-x ≥ 1, 值为 答案:0 . ) B.z=5x+4y D.z=4x+5y
-5-
目标引航
自主预习
课堂互动
典型考题
随堂练习
一般地,对目标函数 z=ax+by,若 b>0,则纵截距与 z 同号,因此,纵 截距最大时,z 也最大;若 b<0,则纵截距与 z 异号,因此,纵截距最大时,z 反而 最小.
-6-
目标引航
自主预习
课堂互动
典型考题
随堂练习
【做一做 1-1 】 完成一项装修工程,请木工需付工资每人 50 元,请瓦工 需付工资每人 40 元.现有工人工资预算 2 000 元,设木工 x 人,瓦工 y 人,则完 成这项工程的线性约束条件是( 50x + 40y = 2 000, A. x∈������,y∈������ 50x + 40y ≥ 2 000, C. 答案:B x∈������,y∈������ D. B. ) 50x + 40y ≤ 2 000, x∈������,y∈������ 40x + 50y ≤ 2 000, x∈������,y∈������
-12-

高中数学人教A版必修5第三章3.3.2简单的线性规划问题(二)课件

高中数学人教A版必修5第三章3.3.2简单的线性规划问题(二)课件

学段 初中 高中
硬件建设 班级学生数 配备教师数 万元
45
2
26/班
40
3
54/班
教师年薪 万元
2/人 2/人
分别用数学关系式和图形表示上述限制条件。若 根据有关部门的规定,初中每人每年可收学费1600 元,高中每人每年可收学费2700元。那么开设初中 班和高中班多少个?每年收费的学费总额最多?
解:设开设初中班x个,高中班y个。因办学规模以 20~30个班为宜,所以, 20≤x+y≤30
2x+y=15 x+y=12 x+2y=18
x 27
x+3y=27
当直线经过点A时z=x+y=11.4, 但它不是最优整数解. 作直线x+y=12
B(3,9)和C(4,8)在直线上,且在可行域内, 整点是B(3,9)和C(4,8),它们是最优解. 答(略)
{2x+y≥15, x+2y≥18, x+3y≥27, x≥0, x∈N* y≥0 y∈N*
目标函数t = x+y
y 15
B(3,9)
9
C(4,8)
A(18/5,39/5)
打网格线法
x+y =0
2 1 0 12 78
x
18
27
作出直线 x+y=0,
2x+y=15
x+2y=18 x+3y=27
当直线经过点A时t=x+y=11.4,但它不是最优整数解,
在可行域内打出网格线, 将直线x+y=11.4继续向上平移,
7 x 7 y 5
14x 7 y 6
x
1 7
得M点的坐标为:

2019年高中数学人教A版必修5课件:3.3.2.2简单线性规划的应用(45张)

2019年高中数学人教A版必修5课件:3.3.2.2简单线性规划的应用(45张)

解析:设甲种 x 组,乙种 y 组. 5x+4y≤25, 3x+5y≤20, 则x≥y, y≥1, * * x∈N ,y∈N , 总的组数 z=x+y,作出该不等式组表示的平面区域如图中 阴影部分所示,寻找整点分析,知选 D. 答案:D
4.某厂拟用集装箱托运甲、乙两种货物,集装箱的体积、 质量、可获利润和托运能力限制等数据列在下表中,那么为了获 得最大利润,甲、乙两种货物应各被托运的箱数为( ) 体积/ 质量/箱 利润/箱 货物 箱(m3) (50 kg) (百元) 5 2 20 甲 4 5 10 乙 托运 24 13 限制 A.4,1 B.3,2 C.1,4 D.2,4
解析:设每周需用谷物饲料 x kg,动物饲料 y kg,每周总的 饲 料 费 用 为 z 元 , 由 题 意 得 1 x+y≥35 000, y≥ x, ≤x≤50 000, y≥0, 5 而 z=0.28x+0.9y.如图所示,作出以上不等式组所表示的平 面区域,即可行域,
作一组平行直线 0.28x+0.9y=z,其中经过可行域内的点且 1 和原点最近的直线经过直线 x+y=35 000 和直线 y=5x 的交点 87 500 17 500 87 500 17 500 A 3 , 3 , 即 x= 3 , y= 3 时, 饲料费用最低. 所 以,谷物饲料和动物饲料应按 5∶1 的比例混合,此时成本最低.
类型二 线性规划中的最优整数解问题 [例 2] 某公司计划在今年内同时出售变频空调机和智能洗 衣机,由于这两种产品的市场需求量非常大,有多少就能销售多 少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月 供应量,以使得总利润达到最大.已知对这两种产品有直接限制 的因素是资金和劳动力,关于这两种产品的有关数据如下表:

人教版A版高中数学高二必修五 3.3利用“线性规划巧解动直线与线段相交问题

人教版A版高中数学高二必修五 3.3利用“线性规划巧解动直线与线段相交问题

利用“线性规划”巧解动直线与线段相交问题山东 孙道斌在平面直角坐标系中,如果直线:l 0=++C By Ax 与线段AB 相交,那么线段AB 的两个端点A ),(11y x 和B ),(22y x 必居于直线l 的两侧(或在直线l 上),此时有)(11C By Ax ++0)(22≤++C By Ax ①;如果直线l 与线段AB 不相交,那么线段AB 的两个端点A 和B 必居于直线l 的同侧,此时有)(11C By Ax ++0)(22>++C By Ax ②。

利用以上两个结论,可以非常简捷地解决动直线与线段相交问题。

举例说明。

例1已知直线l 过点)2,1(-P ,且与以),(、03)3,2(B A --为端点的线段相交,求直线的斜率k 的范围。

解: 直线l 过点)2,1(-P ,且斜率为k 。

)(的方程为:直线12+=-∴x k y l即02=++-k y kx又直线l 与线段AB 相交,∴由结论①得:0)203)(232(≤++-+++-k k k k即0)24)(5(≤+-k k , 解得:521≥-≤k k 或。

例2直线l 04:=-+y x 与线段AB 无公共点,其中点)(、a B a A 2,1)3,2(+,求a 的范围。

解: 直线l 与线段AB 无公共点 ∴ 由结论②得:0)421)(432(>-+-++a a即0)32)(1(>-+a a 解得:231>-<a a 或。

列3已知)(、5,2)1,3(B A ,动直线01:=++m y mx l 与线段AB 相交,求m 的取值范围。

解: 直线l 与线段AB 相交∴ 由结论①得:0)152)(113(≤++++mm m m解得:41754175+-≤≤--m 。

总之,对于例1,动直线过定点,对于例2,动直线为一组平行线,此两例均可用数形结合法,但都较繁且易出错;但对例3,数形结合法不适合。

此三例,若运用本文中的两个结论,则简捷且不宜出错。

高中数学(3.3.2简单线性规划问题)示范教案新人教A版必修5

高中数学(3.3.2简单线性规划问题)示范教案新人教A版必修5

使目标函数取得最大值和最小值,它们都叫做这个问题的最优解
课堂小结
用图解法解决简单的线性规划问题的基本步骤:
1. 首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域)
2. 设 t=0 ,画出直线 l 0
3. 观察、分析,平移直线 l 0,从而找到最优解
4. 最后求得目标函数的最大值及最小值
已知条件,找出约束条件和目标函数,利用图解法求得最优解
. 为突出重点,本节教学应指
导学生紧紧抓住化归、数形结合的数学思想方法将实际问题数学化、代数问题几何化
课时安排 3 课时
三维目标
一、知识与技能
1. 运用线性规划问题的图解法,并能应用它解决一些简单的实际问题 掌握线性规划的意义以及约束条件、目标函数、可行解、可行域、
2x

3y
12,

x
12 , 7
5x 4 y 20.
20 y.
7
令 90x+100y=t ,作直线 :90x+100y=0 ,即 9x+10y=0 的平行线 90x+100y=t ,当 90x+100y=t
过点 M( 12 , 20 )时,直线 90x+100y=t 中的截距最大 77
12
20
由此得出 t 的值也最大, z ma =90× +100×
线y
2 x
1 z ,这说明,截距
z[]3
可以由平面内的一个点的坐标唯一确定
33
. 可以看到直
线y
2 x 1 z 与表示不等式组的区域的交点坐标满足不等式组,而且当截距 33
z 最大时, 3
z 取最大值,因此,问题转化为当直线

高中数学人教A版必修5课件:3.3.2.1 简单的线性规划问题

高中数学人教A版必修5课件:3.3.2.1 简单的线性规划问题

题型一
题型二
题型三
1 ≤ ������ + ������ ≤ 5, 正解:解法一:作出二元一次不等式组 -1 ≤ ������-������ ≤ 3 所表示的平面区域(如图中的阴影部分所示)即可行域. 考虑 z=2x-3y,把它变形为 y= 3 ������ − 3 ������, 得到斜率为 3 , 且随z 变 化的一组平行直线.− ������是直线在y 轴上的 截距,当直线截距最大时,z 的值最小,当然直 线要与可行域相交,即在满足约束条件时目 标函数 z=2x-3y 取得最小值;当直线截距最 小时,z 的值最大,当然直线要与可行域相交, 即在满足约束条件时目标函数 z=2x-3y 取 得最大值.
解析:不等式组表示的平面区域如 图阴影部分所示.作出直线y=ax(a>0),并平移该直线,当直线在y轴 上的截距最大时,z最大.又目标函数仅 在点(3,1)处取最大值. 故-a<-1,即a>1. 答案:(1,+∞)
题型一
������ + ������ ≥ 0, 【变式训练 2】 (1)变量 x,y 满足约束条件 ������-2������ + 2 ≥ 0, ������������-������ ≤ 0, ( D.2 ).
1 3 2 1 2
题型一
题型二
题型三
由图可见,当直线 z=2x-3y 经过可行域上的点 A 时,截距最大,即 z 最小. ������-������ = -1, 得点A 的坐标为(2,3), ������ + ������ = 5, ∴zmin=2x-3y=2×2-3×3=-5. 当直线 z=2x-3y 经过可行域上的点 B 时,截距最小,即 z 最大. 解方程组 ������-������ = 3, ������ + ������ = 1, 得点 B 的坐标为(2,-1), ∴zmax=2x-3y=2×2-3×(-1)=7. ∴-5≤2x-3y≤7. ∴2x-3y 的取值范围是[-5,7]. 解方程组

人教版A版高中数学高二必修五 3.3用线性规划解决生产生活问题

人教版A版高中数学高二必修五 3.3用线性规划解决生产生活问题

用线性规划解决生产生活问题山西 马志君日常生产生活很多问题,可抽象转化为线性规划问题解决,求解的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。

例1 某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资余额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?解:设投资人分别用x 、y 万元投资甲、乙两个项目由题意知⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+008.11.03.010y x y x y x 目标函数z=x+0.5y上述不等式组表示的平面区域如图1所示,阴影部分(含边界)即为可行域。

作直线l 0:x+0.5y=0,并作平行于直线l 0的一组直线x+0.5y=z ,z ∈R ,与可行域相交,其中有一条直线经过可行域上的M 点,且与直线x+0.5y=0的距离最大,这里M 点是直线x+y=10与直线0.3x+0.1y=1.8的交点。

解方程组⎩⎨⎧=+=+8.11.0|3.010y x y x 得⎩⎨⎧==64y x 此时z=1×4+0.5×6=7(万元)∵7>0,∴当x=4,y=6时,z 取得最大值。

答:投资人用4万元投资甲项目,6万元投资乙项目,才能在确保保亏损不超过1.8万元的前提下,使可能的盈利最大。

例2 要将两种大小不同的钢板截成A 、B 、C 三种规格,第一张钢板可同时截成三种规格小钢板块数分别为1、3、1;第二张钢板可同时截成三种规格小钢板块数分别为1、1、4,第一张钢板面积为1平方单位,第二张钢板面积为3平方单位,今需要A 、B 、C 三种规格的成品各14、23、39块,问各截这两种钢板多少张可得到所需三种规格成品,且使所用钢板面积最小,并求出这个最小面积。

解:设截第一种钢板x 张,第二种钢板y 张,满足条件,则⎪⎪⎩⎪⎪⎨⎧∈∈+≥+≥+Ny N x y x y x y x ,39423314 其目标函数z=x+3y 取最小值,作出如图2所示的可行域,可知最优解在(325,317)附近。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划实际应用问题的求解
山东唐午阳唐富新
在线性规划的实际问题中,主要有两种类型. 而即便是简单的线性规划问题,题中的条件也常常较多,因此,在解题前应切实做到认真细致地审清题目,将所有的约束条件悉数罗列出来,尤其是约束条件中有没有等号、未知数x,y,z是否是正整数、有没有包含零等都应考虑清楚;另外,还应弄清楚约束条件和目标函数的区别,不能混为一谈. 要解决实际中的线性规划问题,就要根据实际空间列出不等式组,继而画出平面区域. 再找出实际要求的目标函数,然后求出其最值.
一、求解方法
解决实际问题的关键在于正确理解题意,将一般文字语言转化为数学语言进而建立数学模型,而建立线性规划问题的数学模型一般按以下步骤:
①明确问题中有待确定的未知量,并用数学符号表示;
②明确问题中所有的约束条件,并用线性不等式表示;
③明确问题的目标,并用目标函数表示,按问题的不同,求其最大值或最小值.
利用线性规划解决实际问题的一般步骤为:
①模型建立;
②模型求解;
③模型应用.
但有时根据实际问题的需要,在“模型建立”前需要作出“模型假设”,在“模型求解”后需要作出“模型分析”和“模型检验”,这需要根据具体问题而定.
解线性规划问题的关键步骤是在图上完成的,所以作图应尽可能精确,图上操作尽可能规范. 但考虑到作图必然有误差,加入图上的最优点并不明显易辨时,不妨将几个可能是最优点的坐标都求出来,然后逐一检查,以确定最优解.
二、典题例析
某公司的仓库A存有货物12吨,仓库B存有货物8吨,现按7吨、8吨和5吨把货物分别调运给甲、乙、丙三个商店,从仓库A运货到商店甲、乙、丙,每吨货物的运费为8元、6元、9元;从仓库B运货到商店甲、乙、丙,每吨货物的运费为3元、4元、5元,问如何安排调运方案,才能使得两个仓库运货到三个商店的总运费最少?
解析:(1)模型建立
设仓库A运给甲、乙商店的货物分别为x吨、y吨,
则仓库A运给丙商店的货物为(12-x-y)吨;
从而仓库B运给甲、乙、丙商店的货物应分别为(7-x)吨、(8-y)吨、[5-(12-x-y)]=(x+y-7)吨,
于是总运费为z = 8x + 6y + 9(12 - x - y)+3(7 - x)+4(8 - y)+5(x + y - 7)
= x - 2y + 126.
从而得到本题的数学模型是:
求总运费z = x - 2y + 126在约束条件
120,
70,
80,
70,
,0.
x y
x
y
x y
x y
--≥

⎪-≥
⎪⎪
-≥

⎪+-≥


⎪⎩
即在
07,
08,
7,
12
x
y
x y
x y
≤≤

⎪≤≤


+≥

⎪+≤

下的最小值.
(2)模型求解
作出上述不等式组所表示的平面区域,即可行域,如图,
作出直线l:x- 2 y= 0,把直线l作平行移动,
显然当直线l移动到过点A(0,8)时,
在可行域内z = x -2 y + 126取得最小值
min
z= 0 - 2×8 + 126 = 110, 即x = 0, y = 8时总运费最少.
(3)模型应用
安排的调运方案是:仓库A运给甲、乙、丙商店的货物分别为0吨、8吨、4吨;仓库B运给甲、乙、丙商店的货物分别为7吨、0吨、1吨时,可使得从两个仓库运货物到三个商店的总运费最少.
y。

相关文档
最新文档