第5章课后习题测验答案及讲解

合集下载

编译原理-第5章-习题与答案2上课讲义

编译原理-第5章-习题与答案2上课讲义

编译原理-第5章-习题与答案2第五章习题5-1 设有文法G[S]:S→A/ A→aA∣AS∣/(1) 找出部分符号序偶间的简单优先关系。

(2) 验证G[S]不是简单优先文法。

5-2 对于算符文法G[S]:S→E E→E-T∣T T→T*F∣F F→-P∣P P→(E)∣i(1) 找出部分终结符号序偶间的算符优先关系。

(2) 验证G[S]不是算符优先文法。

5-3 设有文法G′[E]:E→E1 E1→E1+T1|T1 T1→T T→T*F|F F→(E)|i其相应的简单优先矩阵如题图5-3所示,试给出对符号串(i+i)进行简单优先分析的过程。

题图5-3 文法G′[E]的简单优先矩阵5-4 设有文法G[E]:E→E+T|TT→T*F|FF→(E)|i其相应的算符优先矩阵如题图5-4所示。

试给出对符号串(i+i)进行算符优先分析的过程。

题图5-4 文法G[E]的算符优先矩阵5-5 对于下列的文法,试分别构造识别其全部可归前缀的DFA和LR(0)分析表,并判断哪些是LR(0)文法。

(1) S→aSb∣aSc∣ab(2) S→aSSb∣aSSS∣c(3) S→A A→Ab∣a5-6 下列文法是否是SLR(1)文法?若是,构造相应的SLR(1)分析表,若不是,则阐明其理由。

(1) S→Sab∣bR R→S∣a(2) S→aSAB∣BA A→aA∣B B→b(3) S→aA∣bB A→cAd∣ε B→cBdd∣ε5-7 对如下的文法分别构造LR(0)及SLR(1)分析表,并比较两者的异同。

S→cAd∣b A→ASc∣a5-8 对于文法G[S]:S→A A→BA∣ε B→aB∣b(1) 构造LR(1)分析表;(2) 给出用LR(1)分析表对输入符号串abab的分析过程。

5-9 对于如下的文法,构造LR(1)项目集族,并判断它们是否为LR(1)文法。

(1) S→A A→AB∣ε B→aB∣b(2) S→aSa∣a第5章习题答案25-1 解:(1) 由文法的产生式和如答案图5-1(a)所示的句型A//a/的语法树,可得G中的部分优先关系如答案图5-1(b)所示。

第5章资本成本与资本结构(习题及解析)

第5章资本成本与资本结构(习题及解析)

第5章资本成本与资本结构(习题及解析)第5章资本成本与资本结构一、本章习题(一)单项选择题1.资本成本包括( )。

A.筹资费用和使用费用 B.筹资费用和利息费用C.借款利息、债券利息和手续费用 D.利息费用和向所有者分配的利润2.企业在使用资本过程中向股东支付的股利或者向债权人支付的利息属于( )。

A.固定费用 B.不变费用 C.筹资费用 D.用资费用3.在计算个别资本成本时,不必考虑筹资费用的是()。

A.普通股成本 B.债券成本 C.长期借款成本 D.留存收益成本4.某企业向银行取得借款500万元,年利率7%,期限3年。

每年付息一次,到期还本,所得税税率25%,手续费忽略不计,则该项借款的资本成本为()。

A.3.5% B.5.25% C.4.5% D.3%5.某企业按面值发行100万元的优先股,筹资费率为2%,年股息率为9%,若该企业适用的的所得税率为25%,则该优先股的资本成本为()。

A.9% B.2% C.9.18% D.6.89% 6.某企业以赊销方式销售甲产品,为了吸引客户尽快付款,企业给出的信用条件是(2/10,n/30),下面描述正确的是()。

A.10天之内付款,可享受0.2%的折扣B.折扣率是2%,折扣期是30天C.10天之后30天之内付款,可享受2%的折扣D.10天之内付款,可享受2%的折扣7.某企业发行5年期债券,债券面值为1000元,票面利率8%,每年付息一次,发行价为1100元,筹资费率2%,所得税税率为25%,则该债券的资本成本是()。

A.7.13% B.5.57% C.5.82% D.6.15%8.某公司拟增发新的普通股票,发行价为15元/股,筹资费率为3%,该公司本年支付股利为1.2元,预计股利每年增长5%,所得税率为25%,则该普通股资本成本为( )。

A.12.37% B.10.83% C.12.99% D.13.66%9.假定某企业的权益资本与负债资本的比例为60∶40,据此可断定该企业()。

第5章_经营决策分析习题

第5章_经营决策分析习题

第5章_经营决策分析习题第五章课后练习题整理(附答案)⼀、单选题1、在有关产品是否进⾏深加⼯决策中,深加⼯前的半产品成本属于()A.估算成本B.重置成本C.机会成本D.沉没成本2、在进⾏半产品是否进⼀步深加⼯决策时,应对半成品在加⼯后增加的收⼊和()进⾏分析研究。

A.进⼀步加⼯前的变动成本B.进⼀步加⼯追加的成本C.进⼀步加⼯前的全部成本D.加⼯前后的全部成本3、设⼀⽣产电⼦器件的企业为满⾜客户追加订货的需要,增加了⼀些成本开⽀,其中()是专属固定成本。

A.为及时完成该批产品的⽣产,⽽要购⼊⼀台新设备B.为及时完成该批追加订货,需要⽀付职⼯加班费C.⽣产该批产品机器设备增加的耗电量D.该⼚为⽣产该批产品以及以后的⽣产建造了⼀间新的⼚房4、某⼚需要零件甲,其外购单价为10元,若⾃⾏⽣产,单位变动成本为6元,且需要为此每年追加10000元的固定成本,通过计算可知,当该零件的年需要量为()时,外购、⾃制两种⽅案等效。

A.2500 B.3000 C.2000 D.18005、某公司⽣产⼀种化⼯产品甲,进⼀步加⼯可以⽣产⾼级化⼯产品⼄,甲、⼄两种产品在市场上的售价为50元每千克、120元每千克,但⼄产品的⽣产每年需要追加固定成本20000元,单位变动成本为10元,若每千克甲可加⼯0.6千克⼄,则以下选择中,该公司应( )。

A.进⼀步加⼯⽣产产品⼄B.当产品甲的年销售量超过1250千克,将甲加⼯为⼄C.将甲出售,不加⼯D.两种⽅案均可6、在固定成本不变的情况下,下列()应该采取采购的策略。

A.⾃制单位变动成本⼩于外购价格B.⾃制单位变动成本=外购价格C.⾃制单位变动成本⼤于外购成本D.⾃制单位产品成本⼤于外购成本7、在产销平衡的情况下,⼀个企业同时⽣产多种产品,其中⼀种单位边际贡献为正的产品最终变为亏损产品,其根本原因是()A.该产品存在严重积压B.该产品总成本太⾼C.该产品上分担的固定成本相对较⾼D.该产品的销量太⼩8、下列哪种成本为相关成本()A.可避免成本B.共同成本C.联合成本D.沉没成本9、下列哪种成本为⽆关成本()A.沉没成本B.专属成本C.可避免成本D.增量成本10、如果把不同产量作为不同⽅案来理解的话,边际成本实际上就是不同⽅案形成的()A.相关成本B.沉没成本C.差量成本D.付现成本11、设某企业⽣产某种半成品2000件,完成⼀定加⼯⼯序后,可以⽴即出售,也可以进⼀步深加⼯之后再出售,如果⽴即出售,每件售价15元,若深加⼯后出售,售价为24元,但要多付深加⼯成本9500元,则继续进⾏深加⼯的机会成本为()A.48000 B.30000 C.9500 D.1800012、如上题条件,⽴即出售的机会成本为()A.48000 B.30000 C.38500 D.1800013、有⼀批可修复废品,存在两种处置⽅案,⼀个是降价后直接出售,⼀个是修复后按正常价格出售,修复成本为3000元,降价后出售收⼊为7000元,修复后出售收⼊为11000元,那么差量损益为()A.3000 B.4000 C.8000 D.100014、在短期经营决策中,企业不接受特殊价格追加订货的原因是买⽅出价低于()A.正常价格B.单位产品成本C.单位变动成本D.单位固定成本⼆、多选题1、下列各项中,属于决策分析过程的特征的有()A.本质的主观能动性B.依据的客观性C.⽅案的可选择性D.时间上的未来性2、按照决策条件的肯定程度,可将决策划分为以下类型()A.战略决策B.确定型决策C.风险型决策D.不确定型决策3、下列各项中,属于⽣产经营决策中相关成本的是()A.增量成本B.机会成本C.专属成本D.沉没成本E.不可避免成本4、下列各项中,备选⽅案中不涉及相关收⼊的是()A.差别损益分析法B。

物理学教程(第二版)[上册]第五章课后习题答案解析详解

物理学教程(第二版)[上册]第五章课后习题答案解析详解

物理学教程第二版第五章课后习题答案第五章 机械振动5-1 一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2A,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )题5-1图分析与解(B )图中旋转矢量的矢端在x 轴上投影点的位移为-A /2,且投影点的运动方向指向Ox 轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(B ).5-2 一简谐运动曲线如图(a )所示,则运动周期是( )(A) 2.62 s (B) 2.40 s (C) 2.20 s(D )2.00 s题5-2图分析与解 由振动曲线可知,初始时刻质点的位移为A /2,且向x 轴正方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为-3/π2.振动曲线上给出质点从A /2 处运动到x =0处所需时间为1 s ,由对应旋转矢量图可知相应的相位差65232πππϕ=+=∆,则角频率1s rad 65Δ/Δ-⋅==πϕωt ,周期s 40.22==ωπT .故选(B ). 5-3 两个同周期简谐运动曲线如图(a )所示, x 1的相位比x 2的相位( )(A )落后2π(B )超前2π(C )落后π(D )超前π分析与解 由振动曲线图作出相应的旋转矢量图(b )即可得到答案为(B ).题5 -3图5-4 两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅仍为A ,则这两个简谐运动的相位差为( )(A )60 (B )90 (C )120 (D )180分析与解 由旋转矢量图可知两个简谐运动1和2的相位差为120 时,合成后的简谐运动3的振幅仍为A .正确答案为(C ).题5-4图5-5 若简谐运动方程为⎪⎭⎫ ⎝⎛+=4ππ20cos 10.0t x ,式中x 的单位为m ,t 的单位为s.求:(1)振幅、频率、角频率、周期和初相;(2)s 2=t 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1)将()()m π25.0π20cos 10.0+=t x 与()ϕω+=t A x cos 比较后可得:振幅A =0.10m ,角频率1s rad π20-⋅=ω,初相ϕ=0.25π,则周期s 1.0/π2==ωT ,频率Hz /1T =v .(2)s 2=t 时的位移、速度、加速度分别为()m 1007.7π25.0π40cos 10.02-⨯=+=t x()-1s m 44.4π25.0π40sin π2d /d ⋅-=+-==t x v()-22222s m 1079.2π25.0π40cos π40d /d ⋅⨯-=+-==t x a5-6 一远洋货轮,质量为m ,浮在水面时其水平截面积为S .设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期.分析 要证明货轮作简谐运动,需要分析货轮在平衡位置附近上下运动时,它所受的合外力F 与位移x 间的关系,如果满足kx F -=,则货轮作简谐运动.通过kx F -=即可求得振动周期k m ωT /π2/π2==. 证 货轮处于平衡状态时[图(a )],浮力大小为F =mg .当船上下作微小振动时,取货轮处于力平衡时的质心位置为坐标原点O ,竖直向下为x 轴正向,如图(b )所示.则当货轮向下偏移x 位移时,受合外力为∑'+=F P F其中F '为此时货轮所受浮力,其方向向上,大小为gSx mg gSx F F ρρ+=+='题5-6图则货轮所受合外力为kx gSx F P F -=-='-=∑ρ式中gS k ρ=是一常数.这表明货轮在其平衡位置上下所作的微小振动是简谐运动.由∑=t x m F 22d d /可得货轮运动的微分方程为0d d 22=+m gSx t x //ρ令m gS /ρω=2,可得其振动周期为gS ρm πωT /2/π2==5-7 如图(a )所示,两个轻弹簧的劲度系数分别为1k 、2k .当物体在光滑斜面上振动时.(1)证明其运动仍是简谐运动;(2)求系统的振动频率.题5-7图分析 从上两题的求解知道,要证明一个系统作简谐运动,首先要分析受力情况,然后看是否满足简谐运动的受力特征(或简谐运动微分方程).为此,建立如图(b )所示的坐标.设系统平衡时物体所在位置为坐标原点O ,Ox 轴正向沿斜面向下,由受力分析可知,沿Ox 轴,物体受弹性力及重力分力的作用,其中弹性力是变力.利用串联时各弹簧受力相等,分析物体在任一位置时受力与位移的关系,即可证得物体作简谐运动,并可求出频率υ.证 设物体平衡时两弹簧伸长分别为1x 、2x ,则由物体受力平衡,有2211sin x k x k mg ==θ(1)按图(b )所取坐标,物体沿x 轴移动位移x 时,两弹簧又分别被拉伸1x '和2x ',即21x x x '+'=.则物体受力为 ()()111222sin sin x x k mg x x k mg F '+-='+-=θθ(2) 将式(1)代入式(2)得1122x k x k F '-='-=(3) 由式(3)得11k F x /-='、22k F x /-=',而21x x x '+'=,则得到()[]kx x k k k k F -=+-=2121/式中()2121k k k k k +=/为常数,则物体作简谐运动,振动频率 ()m k k k k πm k ωv 2121/21/π21π2/+=== 讨论 (1)由本题的求证可知,斜面倾角θ对弹簧是否作简谐运动以及振动的频率均不产生影响.事实上,无论弹簧水平放置、斜置还是竖直悬挂,物体均作简谐运动.而且可以证明它们的频率相同,均由弹簧振子的固有性质决定,这就是称为固有频率的原因.(2)如果振动系统如图(c )(弹簧并联)或如图(d )所示,也可通过物体在某一位置的受力分析得出其作简谐运动,且振动频率均为()m k k v /π2121+=,读者可以一试.通过这些例子可以知道,证明物体是否作简谐运动的思路是相同的.5-8 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s.当t =0 时,(1)物体在正方向端点;(2)物体在平衡位置、向负方向运动;(3)物体在x =-1.0×10-2m 处,向负方向运动;(4)物体在x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅A 和周期T 已知的条件下,确定初相φ是求解简谐运动方程的关键.初相的确定通常有两种方法.(1)解析法:由振动方程出发,根据初始条件,即t =0 时,x =x 0和v =v 0来确定φ值.(2)旋转矢量法:如图(a )所示,将质点P 在Ox 轴上振动的初始位置x 0和速度v 0的方向与旋转矢量图相对应来确定φ.旋转矢量法比较直观、方便,在分析中常采用.题5-8图解 由题给条件知A =2.0 ×10-2 m ,1s π4/2-==T ω,而初相φ可采用分析中的两种不同方法来求.解析法:根据简谐运动方程()ϕω+=t A x cos ,当0t =时有()ϕω+=t A x cos 0,sin 0ϕωA -=v .当(1)A x =0时,1cos 1=ϕ,则01=ϕ;(2)00=x 时,0cos 2=ϕ,2π2±=ϕ,因00<v ,取2π2=ϕ;(3)m 100120-⨯=.x 时,50cos 3.=ϕ,3π3±=ϕ,由00<v ,取3π3=ϕ;(4)m 100120-⨯-=.x 时,50cos 4.-=ϕ,3ππ4±=ϕ,由00>v ,取3π44=ϕ. 旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初相分别为01=ϕ,2π2=ϕ,3π3=ϕ,3π44=ϕ. 振幅A 、角频率ω、初相φ均确定后,则各相应状态下的运动方程为(1)()m t πcos4100.22-⨯=x(2)()()m /2πt π4cos 100.22+⨯=-x(3)()()m /3πt π4cos 100.22+⨯=-x(4)()()m0.22+10=-xcos⨯/3π44tπ5-9有一弹簧,当其下端挂一质量为m的物体时,伸长量为9.8 ×10-2 m.若使物体上、下振动,且规定向下为正方向.(1)当t=0 时,物体在平衡位置上方8.0 ×10-2m处,由静止开始向下运动,求运动方程.(2)当t=0时,物体在平衡位置并以0.6m·s-1的速度向上运动,求运动方程.分析求运动方程,也就是要确定振动的三个特征物理量A、ω和φ.其中振动的角频率是由弹簧振子系统的固有性质(振子质量m及弹簧劲度系数k)决定的,即k mω=/,k可根据物体受力平衡时弹簧的伸长来计算;振幅A和初相φ需要根据初始条件确定.题5-9图解物体受力平衡时,弹性力F与重力P的大小相等,即F=mg.而此时弹簧的伸长量Δl=9.8 ×10-2m.则弹簧的劲度系数k=F/Δl =mg/Δl.系统作简谐运动的角频率为1ωmk//g=s=l10-∆=(1)设系统平衡时,物体所在处为坐标原点,向下为x轴正向.由初始条件t =0 时,x10=8.0 ×10-2m、v10=0 可得振幅()m 10082210210-⨯=+=./ωv x A ;应用旋转矢量法可确定初相π1=ϕ[图(a )].则运动方程为()()m π10t cos 100.821+⨯=-x(2)t =0时,x 20=0、v 20=0.6 m·s -1,同理可得()m 100622202202-⨯=+=./ωv x A ;2/π2=ϕ[图(b )].则运动方程为 ()()m π5.010t cos 100.622+⨯=-x5-10 某振动质点的x -t 曲线如图(a )所示,试求:(1)运动方程;(2)点P 对应的相位;(3)到达点P 相应位置所需的时间.分析 由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题.本题就是要通过x -t 图线确定振动的三个特征量A 、ω和0ϕ,从而写出运动方程.曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比较方便.解 (1)质点振动振幅A =0.10 m.而由振动曲线可画出t 0=0 和t 1=4 s时旋转矢量,如图(b )所示.由图可见初相3/π0-=ϕ(或3/π50=ϕ),而由()3201//ππω+=-t t 得1s 24/π5-=ω,则运动方程为()m 3/π24π5cos 10.0⎪⎭⎫ ⎝⎛-=t x题5-10图(2)图(a )中点P 的位置是质点从A /2 处运动到正向的端点处.对应的旋转矢量图如图(c )所示.当初相取3/π0-=ϕ时,点P 的相位为()000=-+=p p t ωϕϕ(如果初相取成3/π50=ϕ,则点P 相应的相位应表示为()π200=-+=p p t ωϕϕ.(3)由旋转矢量图可得()3/π0=-p t ω,则s 61.=p t .5-11 质量为10 g 的物体沿x 的轴作简谐运动,振幅A =10 cm ,周期T =4.0 s ,t =0 时物体的位移为,cm 0.50-=x 且物体朝x 轴负方向运动,求(1)t =1.0 s 时物体的位移;(2)t =1.0 s 时物体受的力;(3)t =0之后何时物体第一次到达x =5.0 cm 处;(4)第二次和第一次经过x =5.0 cm 处的时间间隔.分析根据题给条件可以先写出物体简谐运动方程)cos(ϕω+=t A x .其中振幅A ,角频率Tπ2=ω均已知,而初相ϕ可由题给初始条件利用旋转矢量法方便求出. 有了运动方程,t 时刻位移x 和t 时刻物体受力x m ma F 2ω-==也就可以求出. 对于(3)、(4)两问均可通过作旋转矢量图并根据公式t ∆=∆ωϕ很方便求解.解由题给条件画出t =0时该简谐运动的旋转矢量图如图(a )所示,可知初相3π2=ϕ.而A =0.10 m ,1s 2ππ2-==T ω.则简谐运动方程为m )3π22πcos(10.0+=t x (1)t =1.0 s 时物体的位移m 1066.8m )3π22π0.1cos(10.02-⨯-=+⨯=x(2)t =1.0 s 时物体受力N1014.2N)1066.8()2π(101032232---⨯=⨯-⨯⨯⨯-=-=x m F ω (3)设t =0时刻后,物体第一次到达x =5.0 cm 处的时刻为t 1,画出t =0和t =t 1时刻的旋转矢量图,如图(b )所示,由图可知,A 1与A 的相位差为π,由t ∆=∆ωϕ得s 2s 2/ππ1==∆=ωϕt (4)设t =0时刻后,物体第二次到达x =5.0 cm 处的时刻为t 2,画出t =t 1和t = t 2时刻的旋转矢量图,如图(c )所示,由图可知,A 2与A 1的相位差为3π2,故有 s 34s 2/π3/π212==∆=-=∆ωϕt t t题 5-11 图5-12 图(a )为一简谐运动质点的速度与时间的关系曲线,且振幅为2cm ,求(1)振动周期;(2)加速度的最大值;(3)运动方程. 分析 根据v -t 图可知速度的最大值v max ,由v max =Aω可求出角频率ω,进而可求出周期T 和加速度的最大值a max =Aω2.在要求的简谐运动方程x =A cos (ωt +φ)中,因为A 和ω已得出,故只要求初相位φ即可.由v -t 曲线图可以知道,当t =0 时,质点运动速度v 0=v max /2 =Aω/2,之后速度越来越大,因此可以判断出质点沿x 轴正向向着平衡点运动.利用v 0=-Aωsinφ就可求出φ. 解 (1)由ωA v =max 得1s 51-=.ω,则s 2.4/π2==ωT(2)222max s m 1054--⋅⨯==.ωA a(3)从分析中已知2/sin 0ωA ωA =-=v ,即21sin /-=ϕ6/π5,6/π--=ϕ因为质点沿x 轴正向向平衡位置运动,则取6/π5-=,其旋转矢量图如图(b )所示.则运动方程为()cm 6π55.1cos 2⎪⎭⎫⎝⎛-=t x题5-12图5-13 有一单摆,长为1.0m ,最大摆角为5°,如图所示.(1)求摆的角频率和周期;(2)设开始时摆角最大,试写出此单摆的运动方程;(3)摆角为3°时的角速度和摆球的线速度各为多少?题5-13图分析 单摆在摆角较小时(θ<5°)的摆动,其角量θ与时间的关系可表示为简谐运动方程()ϕωθθ+=t cos max ,其中角频率ω仍由该系统的性质(重力加速度g 和绳长l )决定,即l g /=ω.初相φ与摆角θ,质点的角速度与旋转矢量的角速度(角频率)均是不同的物理概念,必须注意区分. 解 (1)单摆角频率及周期分别为s 01.2/π2;s 13.3/1====-ωT l g ω(2)由0=t 时o max 5==θθ可得振动初相0=ϕ,则以角量表示的简谐运动方程为t θ13.3cos 36π=(3)摆角为3°时,有()60cos max ./==+θθϕωt ,则这时质点的角速度为()()1max 2max max s2180800cos 1sin /d d --=-=+--=+-=..ωθϕωωθϕωωθθt t t线速度的大小为1s m 218.0/d d -⋅-==t l v θ讨论 质点的线速度和角速度也可通过机械能守恒定律求解,但结果会有极微小的差别.这是因为在导出简谐运动方程时曾取θθ≈sin ,所以,单摆的简谐运动方程仅在θ较小时成立.*5-14 一飞轮质量为12kg ,内缘半径r =0.6m,如图所示.为了测定其对质心轴的转动惯量,现让其绕内缘刃口摆动,在摆角较小时,测得周期为2.0s ,试求其绕质心轴的转动惯量.题5-14图分析 飞轮的运动相当于一个以刃口为转轴的复摆运动,复摆振动周期为c /π2mgl J T =,因此,只要知道复摆振动的周期和转轴到质心的距离c l ,其以刃口为转轴的转动惯量即可求得.再根据平行轴定理,可求出其绕质心轴的转动惯量.解 由复摆振动周期c /π2mgl J T =,可得22π4/m g r TJ =(这里r l C ≈).则由平行轴定理得222220m kg 83.2π4⋅=-=-=mr mgrT mr J J 5-15 如图(a )所示,质量为 1.0 ×10-2kg 的子弹,以500m·s -1的速度射入木块,并嵌在木块中,同时使弹簧压缩从而作简谐运动,设木块的质量为4.99 kg ,弹簧的劲度系数为8.0 ×103 N·m -1,若以弹簧原长时物体所在处为坐标原点,向左为x 轴正向,求简谐运动方程.题5-15图分析 可分为两个过程讨论.首先是子弹射入木块的过程,在此过程中,子弹和木块组成的系统满足动量守恒,因而可以确定它们共同运动的初速度v 0,即振动的初速度.随后的过程是以子弹和木块为弹簧振子作简谐运动.它的角频率由振子质量m 1+m 2和弹簧的劲度系数k 确定,振幅和初相可根据初始条件(初速度v 0和初位移x 0)求得.初相位仍可用旋转矢量法求. 解 振动系统的角频率为()121s 40-=+=m m k /ω由动量守恒定律得振动的初始速度即子弹和木块的共同运动初速度v 0为12110s m 0.1-⋅=+=m m v m v又因初始位移x 0=0,则振动系统的振幅为()m 105.2//202020-⨯==+=ωωx A v v图(b )给出了弹簧振子的旋转矢量图,从图中可知初相位2/π0=ϕ,则简谐运动方程为()()m π0.540cos 105.22+⨯=-t x5-16 如图(a )所示,一劲度系数为k 的轻弹簧,其下挂有一质量为m 1的空盘.现有一质量为m 2的物体从盘上方高为h 处自由落入盘中,并和盘粘在一起振动.问:(1)此时的振动周期与空盘作振动的周期有何不同?(2)此时的振幅为多大?题5-16图分析 原有空盘振动系统由于下落物体的加入,振子质量由m 1变为m 1 + m 2,因此新系统的角频率(或周期)要改变.由于()2020/ωx A v +=,因此,确定初始速度v 0和初始位移x 0是求解振幅A 的关键.物体落到盘中,与盘作完全非弹性碰撞,由动量守恒定律可确定盘与物体的共同初速度v 0,这也是该振动系统的初始速度.在确定初始时刻的位移x 0时,应注意新振动系统的平衡位置应是盘和物体悬挂在弹簧上的平衡位置.因此,本题中初始位移x 0,也就是空盘时的平衡位置相对新系统的平衡位置的位移.解 (1)空盘时和物体落入盘中后的振动周期分别为k m ωT /π2/π21== ()k m m ωT /π2/π221+='='可见T ′>T ,即振动周期变大了.(2)如图(b )所示,取新系统的平衡位置为坐标原点O .则根据分析中所述,初始位移为空盘时的平衡位置相对粘上物体后新系统平衡位置的位移,即g kmg k m m k g m l l x 2211210-=+-=-= 式中k g m l 11=为空盘静止时弹簧的伸长量,l 2=g km m 21+为物体粘在盘上后,静止时弹簧的伸长量.由动量守恒定律可得振动系统的初始速度,即盘与物体相碰后的速度gh m m m m m m 22122120+=+=v v 式中gh 2=v 是物体由h 高下落至盘时的速度.故系统振动的振幅为()gm m khk g m x A )(21/2122020++='+=ωv 本题也可用机械能守恒定律求振幅A .5-17 质量为0.10kg 的物体,以振幅1.0×10-2 m 作简谐运动,其最大加速度为4.0 m·s -1求:(1)振动的周期;(2)物体通过平衡位置时的总能量与动能;(3)物体在何处其动能和势能相等?(4)当物体的位移大小为振幅的一半时,动能、势能各占总能量的多少?分析 在简谐运动过程中,物体的最大加速度2max ωA a =,由此可确定振动的周期T .另外,在简谐运动过程中机械能是守恒的,其中动能和势能互相交替转化,其总能量E =kA 2/2.当动能与势能相等时,E k =E P =kA 2/4.因而可求解本题. 解 (1)由分析可得振动周期s 314.0/π2/π2max ===a A ωT(2)当物体处于平衡位置时,系统的势能为零,由机械能守恒可得系统的动能等于总能量,即J 100221213max22k -⨯====.mAa mA E E ω (3)设振子在位移x 0处动能与势能相等,则有42220//kA kx =得m 100772230-⨯±=±=./A x(4)物体位移的大小为振幅的一半(即2x A =/)时的势能为4221212P /E A k kx E =⎪⎭⎫⎝⎛==则动能为43P K /E E E E =-=5-18 一劲度系数k =312 1m N -⋅的轻弹簧,一端固定,另一端连接一质量kg 3.00=m 的物体,放在光滑的水平面上,上面放一质量为kg 2.0=m 的物体,两物体间的最大静摩擦系数5.0=μ.求两物体间无相对滑动时,系统振动的最大能量.分析简谐运动系统的振动能量为2p k 21kA E E E =+=.因此只要求出两物体间无相对滑动条件下,该系统的最大振幅max A 即可求出系统振动的最大能量.因为两物体间无相对滑动,故可将它们视为一个整体,则根据简谐运动频率公式可得其振动角频率为mm k+=0ω.然后以物体m 为研究对象,它和m 0一起作简谐运动所需的回复力是由两物体间静摩擦力来提供的.而其运动中所需最大静摩擦力应对应其运动中具有最大加速度时,即max 2max A m ma mg ωμ==,由此可求出max A . 解根据分析,振动的角频率mm k+=0ω 由max 2max A m ma mg ωμ==得kgm m g A μωμ)(02max +=则最大能量J1062.92)(])([212132220202max max -⨯=+=+==kg m m kg m m k kA E μμ5-19 已知两同方向、同频率的简谐运动的运动方程分别为()()m π75.010cos 05.01+=t x ;()()m π25.010cos 06.02+=t x .求:(1)合振动的振幅及初相;(2)若有另一同方向、同频率的简谐运动()()m 10cos 07033ϕ+=t x .,则3ϕ为多少时,x 1+x 3的振幅最大?又3ϕ为多少时,x 2+x 3的振幅最小?题5-19图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动的合成仍为一简谐运动,其角频率不变;合振动的振幅()12212221cos 2ϕϕ-++=A A A A A ,其大小与两个分振动的初相差12ϕϕ-相关.而合振动的初相位()()[]22112211cos cos sin sin arctan ϕϕϕϕϕA A A A ++=/解 (1)作两个简谐运动合成的旋转矢量图(如图).因为2/πΔ12-=-=ϕϕϕ,故合振动振幅为()m 1087cos 2212212221-⨯=-++=.ϕϕA A A A A合振动初相位()()[]rad1.48arctan11cos cos sin sin arctan 22112211==++=ϕϕϕϕϕA A A A /(2)要使x 1+x 3振幅最大,即两振动同相,则由π2Δk =ϕ得,...2,1,0,π75.0π2π213±±=+=+=k k k ϕϕ要使x 1+x 3的振幅最小,即两振动反相,则由()π12Δ+=k ϕ得(),...2,1,0,π25.1π2π1223±±=+=++=k k k ϕϕ5-20 两个同频率的简谐运动1 和2 的振动曲线如图(a )所示,求(1)两简谐运动的运动方程x 1和x 2;(2)在同一图中画出两简谐运动的旋转矢量,并比较两振动的相位关系;(3)若两简谐运动叠加,求合振动的运动方程.分析 振动图已给出了两个简谐运动的振幅和周期,因此只要利用图中所给初始条件,由旋转矢量法或解析法求出初相位,便可得两个简谐运动的方程.解 (1)由振动曲线可知,A =0.1 m,T =2s,则ω=2π/T =πs-1.曲线1表示质点初始时刻在x =0 处且向x 轴正向运动,因此φ1=-π/2;曲线2 表示质点初始时刻在x =A /2 处且向x 轴负向运动,因此φ2=π/3.它们的旋转矢量图如图(b )所示.则两振动的运动方程分别为()()m 2/ππcos 1.01-=t x 和()()m 3/ππcos 1.02+=t x(2)由图(b )可知振动2超前振动1 的相位为5π/6. (3)()ϕω+'=+=t A x x x cos 21其中()m 0520cos 212212221.=-++='ϕϕA A A A A()12π0.268arctan cos cos sin sin arctan22112211-=-=++=ϕϕϕϕϕA A A A则合振动的运动方程为 ()()m π/12πcos 052.0-=t x题5-20 图5-21 将频率为348 Hz 的标准音叉振动和一待测频率的音叉振动合成,测得拍频为3.0Hz .若在待测频率音叉的一端加上一小块物体,则拍频数将减少,求待测音叉的固有频率.分析 这是利用拍现象来测定振动频率的一种方法.在频率υ1和拍频数Δυ=|υ2-υ1|已知的情况下,待测频率υ2可取两个值,即υ2=υ1 ±Δυ.式中Δυ前正、负号的选取应根据待测音叉系统质量改变时,拍频数变化的情况来决定.解 根据分析可知,待测频率的可能值为υ2=υ1 ±Δυ=(348 ±3) Hz因振动系统的固有频率mkπ21=v ,即质量m 增加时,频率υ减小.从题意知,当待测音叉质量增加时拍频减少,即|υ2-υ1|变小.因此,在满足υ2与Δυ均变小的情况下,式中只能取正号,故待测频率为υ2=υ1+Δυ=351 Hz*5-22 图示为测量液体阻尼系数的装置简图,将一质量为m 的物体挂在轻弹簧上,在空气中测得振动的频率为υ1,置于液体中测得的频率为υ2,求此系统的阻尼系数.题5-22图分析 在阻尼不太大的情况下,阻尼振动的角频率ω与无阻尼时系统的固有角频率ω0及阻尼系数δ有关系式220δωω-=.因此根据题中测得的υ1和υ2(即已知ω0、ω),就可求出δ.解 物体在空气和液体中的角频率为10π2v =ω和2π2v =ω,得阻尼系数为2221220π2v v -=-=ωωδ。

概率论与数理统计第五章课后习题及参考答案

概率论与数理统计第五章课后习题及参考答案

概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<X P X P )103010(<-<-=X P )1030(<-=X P 709.0101.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<X P X P )2010020(<-<-=X P )20100(<-=X P 87205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<X P .解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,35)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<X P X P )4144(<-<-=X P )414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(⋅->⋅-=X P )2251020020000(>⋅-=X P 由独立同分布的中心极限定理,1020020000⋅-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>⋅-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,1600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--⨯⨯-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--⨯⨯-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<X P ))()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--⋅-≤⋅-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=X P )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(⋅->⋅-=T P )91.03010300(>⋅-≈T P ,由独立同分布的中心极限定理,3010300⋅-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>⋅-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。

孙培青《中国教育史》(第3版)课后习题答案详解-第5章 魏晋商北朝时期的教育

孙培青《中国教育史》(第3版)课后习题答案详解-第5章 魏晋商北朝时期的教育

第5章魏晋商北朝时期的教育1.试述魏晋时期教育制度方面出现的新变化。

答:魏晋时期的教育事业,总体上呈衰落景况,但仍有许多值得后世承继的教育特色和教育成就,在教育制度上也出现了一些新变化,主要表现在以下几个方面:(1)专科教育得到发展。

设了律学、书学、算学、文学、医学等实用学科的学校,丰富了封建教育制度的内容,也拓展了教育的职能,使教育适应社会发展的需求。

(2)地方教育制度的正式确立。

不仅普遍设置州郡学,而且建立了州郡学校教育制度,这是我国正式实行地方学校教育制度的开始。

(3)私学得到发展,并成为教育的台柱。

私学多为名师大儒开办,不仅质量与规模超过官学,而且分布面更广,类型多样化。

(4)家庭教育得到重视。

士族十分重视家族教育,并以家学为专业,出现了许多儒学世家,家训、家诫等有关家教的著述也大量出现。

(5)落后地区文化教育事业起步与发展。

当时随着人口大迁移,文化教育也南迁西移,这样促进了文教事业在落后区域的传播与发展。

(6)少数民族教育的兴盛。

少数民族入主中原后,重视儒学教育,大力发展学校教育事业,这些措施提高了少数民族的文化水准,加速了这些地区的封建化进程,促使汉族和少数民族的融合,形成共同的文化、思想。

2.比较南北朝学校教育之异同。

答:南北朝时期处于长期的分裂和朝代更替的过程中,南朝包括宋、齐、梁、陈四个朝代,北朝包括北魏、北齐、北周。

南北朝之间的教育既具有共同点,又具有不同点,具体分析如下:(1)南北朝教育的相同点①南北朝的各个朝代中,都注重对教育的发展和兴盛,推进教育体制的完善,从中央到地方建立起来一个较为完善的教育体制,保障教育的质量和进步。

同时由于朝代的更替,战乱的发生,学校教育处于时断时续的状态,在乱世中也没有发挥出自身的正常作用。

②南北朝无论中央官学,还是地方官学,都崇尚学校教育中儒家思想的统治地位,基本上是以经学为主要教授内容。

③不论南朝还是北朝,都盛行博涉的学风,以至罕有纯粹的儒门学者,官学学官也大多为博学洽闻之士,这是与汉代学风不同之处。

计算物理学(刘金远)第5章:微分方程(课后习题及答案)

计算物理学(刘金远)第5章:微分方程(课后习题及答案)

5.1 计算物理学第5章:微分方程课后习题答案初值问题【5.1.1】采用euler 方法求初值问题'2/, 01(0)1y y x y x y =-££ìí=î【解】取0.1h =,1(,)(2/)n n n n n n n n y y hf x y y h y x y +=+=+-x0.00.10.20.3y 1.000 1.1000 1.1918 1.2774【5.1.2】用euler 预测-校正公式求初值问题22', (0)1y x y y ì=-í=î【解】取0.1h =,1(,)n n n n y y hf x y +=+111(,)n n n n y y hf x y +++=+1000(,)0.9y y hf x y =+=221011(,)10.1(0.10.9)0.92y y hf x y =+=+´-=【5.1.3】用euler 公式和梯形公式建立的预测-校正公式求初值问题'23, 0(0)1y x y x y =+£ìí=î取0.1h =,(1)求(0.1)y ;(2)编程计算0:0.01:2x =【解】1111(,)1[(,)(,)]2n n n n n n n n n n y y hf x y y y h f x y f x y ++++=+=++10001000110.1(23) 1.30.05[(23)(23)]1.355y y x y y y x y x y =++==++++=【5.1.4】用显式Euler 方法,梯形方法和预估-校正Euler 方法给出求初值问题1,01(0)1d y y x x dx y ì=-++<<ïíï=î的迭代公式(取步长0.1h =)【解】取0.1h =,,0,1,k x kh k ==L ,(1)显式Euler 方法12(,)(1)(1)k k k k k k k y y hf x y y h y kh y h kh h+=+=+-++=-++1911010010k k k y y +=++(2)梯形方法为1121()2(2)(21)2219112110510k k k k k k k h y y f f h y k h h y hy k +++=++-+++=+=++(3)预估-校正Euler 方法为1111(,)[(,)(,)],20,1,,1x k k k k k k k k k k k y y h f x y h y y f x y f x y k n ++++=+ìïï=++íï=-ïîL 221(1/2)(/2)0.9050.00950.1k k k y y h h kh h h hy k +=-++-+=++【5.1.5】考虑下面初值问题2'''(0)1;'(0)2y y y t y y ì=-++í==î使用中点RK2,取步长0.1h =,求出()y h 的近似值【解】00,0.1t h =='y u y æö=ç÷èø,012u æö=ç÷èø,2''(,)'y u f t u y y t æö==ç÷-++èø,1002(,)1k f t u æö==ç÷èø,2001212 1.111(,)(0.05,0.05)(0.05,)21 2.0522 2.05 2.050.891.1 2.050.05k f t h u hk f f æöæöæö=++=+=ç÷ç÷ç÷èøèøèøæöæö==ç÷ç÷-++èøèø102 1.2052.089u u hk æö=+=ç÷èø,1(0.1) 1.205y y ==【5.1.6】考虑下面初值问题2'''2''(0)1;'(0)0,''(0)2y y y t y y y ì=++í===-î使用中点RK2,取步长0.2h =,求出()y h 的近似值【解】00,0.2t h ==取表示符号'''y u y y æöç÷=ç÷ç÷èø,2''(,)''2''y u f t u y y y t æöç÷==ç÷ç÷++èø,0102u æöç÷=ç÷ç÷-èø,010002000'()0(,)''()262()''()y t k f t u y t y t y t t æöæöç÷ç÷===-ç÷ç÷ç÷ç÷++èøèø200121011(,)(0.1,00.12)2226 10.20.2(0.1,0.2) 1.4 1.41.4 3.9721( 1.4)0.1k f t h u hk f f æöæöç÷ç÷=++=+-ç÷ç÷ç÷ç÷-èøèøæö--æöæöç÷ç÷ç÷=-=-=-ç÷ç÷ç÷ç÷ç÷ç÷-´+-èøèøèø1020.960.281.206u u hk æöç÷=+=-ç÷ç÷-èø,(0.2)0.96y =【5.1.7】采用Rk4编程求下列微分方程的初值问题:(1)23'1, (0)0y y x y =++=(2)2'2(1), (1)2y y x y =+--=(3)'', ()0,'()3y y y y p p =-==【5.1.8】求下面微分方程组的数值解2323'2'4(0)1,(0)0x x y t t t y x y t tx y ì=-+--ï=+-+íï==î补充题【5.1.1】对微分方程'(,)y f x y =用Sinpson 求积公式推出数值微分公式【解】{}111111111'(,)4(,)(,)3n n x n n n n n n n n x y dx y y h f x y f x y f x y +-+---++=-=++ò【5.1.2】用标准的4阶龙格库塔方法求初值问题',(0)1y x y y =+ìí=î,取0.1h =,计算出(0.2)y 【解】()1123422/6i i y y h k k k k +=++++1213243(,)(/2,/2)(/2,/2)(,)i i i i i i i i k f x y k f x h y hk k f x h y hk k f x h y hk ==++=++=++'(,)y f x y x y ==+,00(,)(0,1)x y =100200130024003(,)1(/2,/2) 1.1(/2,/2) 1.105(,) 1.2105k f x y k f x h y hk k f x h y hk k f x h y hk ===++==++==++=()10123422/6 1.1103y y h k k k k =++++=,11(,)(0.1,1.1103)x y =111211*********(,) 1.2103(/2,/2) 1.3208(/2,/2) 1.3263(,) 1.4429k f x y k f x h y hk k f x h y hk k f x h y hk ===++==++==++=()2112342(0.2)22/6 1.2428y y y h k k k k y ==++++==然后由22(,)(0.2,1.2428)x y =计算3(0.3)y y =,。

第5章-习题详解

第5章-习题详解

z B w 0
α
Φ = ∫ B ⋅ dS = e y Bm sin(ωt ) ⋅ en hw
S
h y en
= Bm hw sin(ωt ) cos α dΦ = −ωBm hw cos(ωt ) cos α in = − dt
x 穿过线圈的磁通变化既 (2) 线圈以角速度 ω 旋转时, 习题 5-1 题图 有因磁场随时间变化引起的,又有因线圈转动引起 的。此时线圈面的法线 e n 是时间的函数,表示为 en (t ) , α = ωt 。因此
Φ = B (t ) ⋅ en (t ) S = e y Bm sin(ωt ) ⋅ e y hw cos α = Bm hw sin(ωt ) cos(ωt )

in
=−
dΦ = −ωBm hw cos 2ωt dt
5-2
长直导线载有电流 i = I m cos ωt ,其附近有一 a × b 的矩形线框,如图所示。在下列两 种情况下求线圈中的感应电动势:(1)线圈静止不动;(2)线圈以速度 v 向右方运动。
导体表面外侧的坡印廷矢量s由高斯定理可知面电荷在导体外产生的电场为当轴向通以均匀分布的恒定电流i设以电流流向为z坐标方向时导体内的电场为根据边界条件导体表面上电场的切向分量应连续即oz恒定电流i在导体外产生的磁场为521在球坐标系下已知真空中时变电磁场的电场强度为cossin
第 5 章 时变电磁场
5-1
C/ m 2
10 4 cos(ωt − kz ) ,电缆的内外导体之间填充了理想 r 介质,介质参数为 ε r = 2, µ r = 1 。求:理想介质中的电场强度 E 和磁场强度 H 。
在无源区域,已知电磁场的电场强度 E = e x 0.1sin(6.28 ×109 t − 20.9 z ) V/m,求空间任一 点的磁场强度 H 和磁感应强度 B。

计导-课后习题参考答案(第5章

计导-课后习题参考答案(第5章

第5章计算机组成一、复习题1.计算机由哪三个子系统组成?答:计算机由中央处理单元、主存储器和输入/输出子系统组成。

2.CPU又哪几个部分组成?答:;CPU由算术逻辑单元(ALU)、控制单元和寄存器组成。

3.ALU的功能是什么?答:ALU(即算术逻辑单元)用于算术运算和逻辑运算。

4.描述一下几种不同的寄存器。

答:寄存器是用来临时存放数据的高速独立的存储单元。

寄存器有三种:数据寄存器、指令寄存器和程序计数器。

其功能如下:①数据寄存器:数据寄存器用来保存复杂运算的中间结果,可以提高运算速度。

②指令寄存器:指令寄存器存储CPU从内存中逐条取出的指令,解释并执行指令。

③程序计数器:程序计数器保存当前正在执行的指令,当前的指令执行完后,计数器自动加1,指向下一条指令的地址。

5.控制单元的功能是什么?答:控制单元控制各部件协调工作,对取到指令寄存器中的指令进行译码并产生控制信号以完成操作。

控制通过线路的开(高电平)或关(低电平)来实现。

6.字和字节有什么区别?答:数据是以称之为字的位组的形式在存储器中传入和传出。

字就是指执行一条指令时可以处理的二进制数位数。

不同的机器字可以取8位、16位、32位,甚至是64位。

而字节是指8位二进制位。

7.主存的功能是什么?答:主存是存储单元的集合,用于临时存储数据和程序。

8.兆字节的近似值和实际值的字节数如何对应?答:其实际值是220字节,近似值是106字节。

9.存储地址用哪种数的表示法表示?答:地址本身也使用位模式表示,通常用无符号二进制整数表示。

10.RAM和ROM有何区别?答:RAM是随机存取存储器,是主存的主要组成部分。

具有可随机读写、易失性的特点。

ROM是只读存储器,具有只读、非易失性特点。

11.SRAM和DRAM有何区别?答:SRAM技术使用传统的触发器门电路,通电时数据始终存在,不需要刷新,速度快但价格昂贵;DRAM技术使用电容器,内存单元需要周期性地刷新(因为漏电),速度慢,但是便宜。

2019秋新版高中生物必修一《第5章细胞的能量供应和利用》课后习题与探讨答案

2019秋新版高中生物必修一《第5章细胞的能量供应和利用》课后习题与探讨答案

第5章细胞的能量供应和利用本章出思维导图1教材旁栏问题和练习及答案2第1节降低化学反应活化能的酶问题探讨1773年,意大利科学家斯帕兰札尼(L. Spallanzani, 1729—1799 )做了一个巧妙的实验:将肉块放入小巧的金属笼内,然后让鹰把小笼子吞下去。

过一段时间后,他把小笼子取出来,发现笼内的肉块消失了。

讨论:1.为什么要将肉块放在金属笼内?【答案】便于取出实验材料(肉块),排除物理性消化对肉块的影响,确定其是否发生了化学性消化。

2.是什么物质使肉块消失了?【答案】是胃内的化学物质将肉块分解了。

3.怎样才能证明你的推测?【答案】收集胃内的化学物质,看看这些物质在体外是否也能将肉块分解。

一、酶的作用和本质探究与实践1.与1号试管相比,2号试管出现什么不同的现象?这一现象说明什么?【答案】2号试管放出的气泡多。

这一现象说明加热能促进过氧化氢的分解,提高反应速率。

2.在细胞内,能通过加热来提高反应速率吗?【答案】不能。

3.3号和4号试管未经加热,也有大量气泡产生,这说明什么?【答案】说明FeCl3中的Fe3+和新鲜肝脏中的过氧化氢酶都能加快过氧化氢分解的速率。

4.3号试管与4号试管相比,哪支试管中的反应速率快?这说明什么?为什么说酶对于细胞内化学反应的顺利进行至关重要?【答案】4号试管的反应速率比3号试管快得多,说明过氧化氢酶比Fe3+的催化效率高得多。

细胞内每时每刻都在进行着成千上万种化学反应,这些化学反应需要在常温、常压下高效率地进行,只有酶能够满足这样的要求,所以说酶对于细胞内化学反应的顺利进行至关重要。

思考•讨论1.巴斯德和李比希的观点各有什么积极意义?各有什么局限性?【答案】巴斯德认为发酵与活细胞有关,是合理的;认为发酵是整个细胞而不是细胞中的某些物质在起作用,是不正确的。

李比希认为引起发酵的是细胞中的某些物质,是合理的;认为这些物质只有在酵母细胞死亡并裂解后才能发挥作用,是不正确的。

【工程力学 课后习题及答案全解】第5章静力学基本原理与方法应用于弹性体习题解

【工程力学 课后习题及答案全解】第5章静力学基本原理与方法应用于弹性体习题解

∑MA
=0
, FRB
=
1 2
ql
(→)
C C
D A FAx
FAy (a)
B
C
FRB
A
FAx FAy (b)
B FRB
∑ Fx
=
0

FAx
=
1 2
ql
(←)
弯距图如图(b-1),其中 | M |max = ql 2 。 图(c):
∑ Fx = 0 , FAx = ql (←)
∑MA =0
ql 2

ql
习题 5-3 图
5-4 应用平衡微分方程,试画出图示各梁的剪力图和弯矩图,并确定
M。 max
解:(a) ∑ M A
= 0 , FRB
=
M 2l
(↑)
A
EB A
CD
C
— 27 —
FRA
FRB
FRA
| FQ |max 、
B FRB
∑ Fy
=
0

FRA
=
−M 2l
(↓)
| FQ
|max =
M 2l

| M |max = 2M
4
由 MA = MB = 0,可知 A、B 简支,由 此得梁上载荷及梁的支承如图(a)或(b) 所示。
(d) 习题 5-6 图
q = 0.2kN/m
A C
B
A
1kN
(a)
— 29 —
0.2kN/m
C
B
0.3kN
(b)
5-7 试作图示刚架的弯矩图,并确定 | M |max 。 解:图(a): ∑ M A = 0
B1

线性代数(含全部课后题详细答案)5第五章线性方程组习题解答.docx

线性代数(含全部课后题详细答案)5第五章线性方程组习题解答.docx

习题五1・填空题(1)当方程的个数等于未知数的个数时,Ax = b有惟一解的充分必要条件是解因为R(A) = R(A \b) = n是4x = b有惟一解的充要条件.故由R(A) = n可得\A\^0.(2)线性方程组X)+兀2 =Q|,兀2 + 兀3 = °2,可+兀4 =。

3, x4 + %)=a4有解的充分必要条件是______ .解对方程组的增广矩阵施行初等行变换所以方程组有解的充要条件是R(A) = R(B),(3)设川阶方阵力的各行元素之和均为零,且-1,则线性方程组Ax = 0的通解为_____________________解令1x =.■■丄显然x满足方程组,又因为R(A) = n-l f所以2?(/) = 1,即方程组的基础解系中有一个向量,通解为⑴1 T x = k . =£(1,1,・・・,1)T, £为任意常数.■■(4)设/为〃阶方阵,|力|=0,且伽的代数余子式4,工0 (其屮,\<k<n,丿= 1,2, •••/),则Ax = O 的通解 ______ •解 因为同=0,又九・工0,所以R(4)F — 1,并且有f0, i 壬 k;认+。

皿+・・・+绻仆仏|=0,匚=匕所以(血|,心2,…,血)丁是方程组的解,又因为R(A) = n-h 可知方程组的通解为TX = c(4】,42,…,4J ,其中c 为任意常数.(5)设Q 】A= a;■ ■其中,a 严J (i 韭j; i,j = \,2,…,n),则非齐次线性方程组A Jx = b 的解是x = _________解 x = (l,0,0,・・・,0)T.解 ci — —2 .2.单项选择题(1) _______________________________ 齐次线性方程组4x5^5xl = 〃解的情况是 •(A)无解;(B)仅有零解;(C)必有非零解; (D)可能有非零解,也可能没有非零解.答(C).(2) 设〃元齐次线性方程组的系数矩阵的秩/?(/) = 〃-3,且垃,$为此方程组的三个线性无关的解,则此方程组的基础解系是 ______ .1a 29Cl;■ ■"a 1(6)设方程1 a1、1有无穷多个解,(A) -6, 2§, 3§3+§] - 2§2;(B) §1+§2, §2 - §3,刍+厶;答(A).(3)要使§=(l,0,2)T, :=(0,1,—1)T都是线性方程组Ax = O的解,只要/为(A) (-2 1);(B)1)(C)1-1) '-1 0 2、;(D)4-2-2、0 1 -L\ / <011/答(A).(4)已知屈,良是Ax = h的两个不同的解, a n a2是相应的齐次方程组Ax = 0的基础解系,k^k2为任意常数,则Ax = b的通解是______(A) kg + k2 a +~~~—(c)kg +他(屈-角)+ " 2"(B) kg + k2a -a2) + 卩';几(D) k0\ + k2 (0] - 02)+ 卩'答(B).(5)设斤阶矩阵/的伴随矩阵A^O则对应的齐次线性方程组Ax = 0的基础解系是_______ .(A)不存在;(B)仅含一个非零解向量;(C)含有两个线性无关的解向量;(D)含有三个线性无关的解向量.答(B).(6)设有齐次线性方程组Ax =〃和Bx = 0,其屮〃均为mxn矩阵,现有4个命题:①若Ax = 0的解均是Bx = 0的解,则R(A)>R(B);②若R(A) > R(B),则Ax = 0的解均是Bx = 0的解;③若Ax = 0与Bx = 0同解,则R⑷二R(B);④若R(A) = R(B),则Ax = 0 与 Bx = 0同解.以上命题正确的是—(A)①,②;答(B). (B)①,③;若:是非齐次线性方程组Ax = b的互不相等的解,(C)②,④; (D)③,④.(7)设/是mxn矩阵,B是nxm矩阵,则线性方程组(AB)x = 0(A)当n>m时仅有零解;(C)当m > n时仅有零解;答(D). (B)当n>m时必有非零解;(D)当m > n时必有非零解.(8)设力是〃阶矩阵,a是〃维列向量. 若秩(B) A a "0>Ax = a必有惟一解;=秩(昇),则线性方程组.(C)A a'A么、=0仅有零解;(D)& °丿& °丿J丿(A) Ax = a必有无穷多解;〃必有非零解. 答(D).3.求下列齐次线性方程组的一个基础解系X { + X 2+ 2兀3 -兀4 = 0,(1) { 2兀]+ *2 + 兀3 一 兀4 = °,2X] + 2X 2 + X3 + 2兀=°;解对系数矩阵施行初等行变换,有与原方程组同解的方程组为4X3~~X4 =0,或写为4其中为任意常数•所以,基础解系为4、X )+ 2X 2 + X3 — X4 = 0, (2) < 3旺 + 6X 2 -x 3 - 3X 4 = 0,5x } +10x 2 +呂-5X 4 =0; 解<12 1 -0<1 2 0 -1] A = 3 6 -1 -3 T 0 0 1 0<5 \ 10 1 _5丿<0 0 0°丿与原方程组同解的方程组为(42 -1、1 0 0 ~31 -1 T 0 1 0 3 1 24 70 0 1~3>A= 21 ,2 2或写为£ =-2x 2兀3 = 0,其中,X 2, x 4可取任意常数你伦,故所以,基础解系为"-2、 1 0 <0,2x, + 3X 2 -兀3 +5兀4 = 0, 3X| + x 2 + 2*3 — 7兀4 = 0, 4兀]+x 2 - 3X 3 + 6兀=0,X] —2X 2 + 4X 3 -7X 4 = 0; 解7?(力)=4 = 〃,方程组组只有零解.3%] + 4X 2 一 5X 3 + 7X 4 = 0,2%j 一 3X 2 + 3X 3 一 2X 4 = 0, 4x, +1 lx 2 -13X 3 +I6X4 = 0, 7xj - 2X 2 + X3 + 3X 4 = 0.V3 -1 5、(\-2 4 7、3 1 2 -7 0 -3 1 21 -264 1 -3 6 0 0 1 5J -2 4 一7丿〔0 0 0 327丿A =x } +2XX =4. 求解下列非齐次线性方程组.4旺 + 2X 2 一 x 3 = 2,(1) < 3兀]—x 2 +2X 3 =10,11 兀I + 3 兀2 = &解对增广矩阵施行初等行变换<42 -1 * 2、<13 -3 '-8、B = 3 -1 2 10T-10 11 343 0 1 8丿<0 0 0 -6y« 7$ 与原方程组同解的方程组为或写为所以皐础解系为<32 -3 11 3丿3 V 13 4. 17 3 17' 19 20 ---- X173 ]73—13 * — A 17 3 17 19 — 20■ _17~ J 173 17 19 17 131720 17X = 兀2兀3<3> 1917 + k. 厂-13、-20J 丿」7丿=0, x 4,所以 /?(/) = 2, R(B) = 3.无解.2兀 + 3尹+ z = 4, x — 2y + 4z = -5, 3x + 8尹一 2z = 13,4x- j? + 9z = -6;R(A) = R(B) = 2,所以原方程组有解.与原方程组同解的方程组为x = —2z — 1, y= z + 2, z =2x+ y- z+w=l,4x+2尹一 2z+w=Z 2x+ y- z-w=l ;<2 4 2R(A) = R(B) = 2.原方程组有解.与原方程组同解的方程组为1 1 1x =——y+ —z + —,2 2 2 y= y , z =所以原方程组的通解为厂2 31 ・4<1 0 2・ -1)1 -2 4 -5T0 1 -1 2 3 8 -2 130 0 0 0 <4 -1 9<0 00 •°丿 B =/ 、"-2、r-ny =k 1 + 2 工丿k b<-1 -2z,z .5. 问九取何值时,非齐次线性方程组九X] + x 2 + x 3 = L2x+ y- z+ w=l, 3x-2y+ z-3w=4, x+4p-3z+5w=-2・[1]<r~222 1+ Z+10 0\ 丿< )<1、rp2 + & 0 02 < 0>o20 01 -24 -1 1 1 -3-351 4 -2£ 7 5 7£ 7 9 76 7 5 7= = 原方程组有解. 与原方程组同解的方程组为1 1 6 X = —z + —w + —,7 7 7 5 9 5 2 y = — z -- w —,7 7 7 z = z,故通解为6\z \ X「1、< ny5-9 =k 、 7 + k"0 zo< 7>7 _5 ~7 0y z严« X] +心2 +兀3 =入,£ +勺+ Z =九'(1)有惟一解;(2)无解;(3)有无穷个解? 解系数行列式2 1 1D= 1 几 1 =(久一1)2(2 + 2)・1 1A当2工1且2工-2时D H O,方程组有惟一解.当2 = 1时,对增广矩阵施行初等行变换则R(4) = R(B) = 1<3,故原方程组有解且有无穷多解.当A = -2时,对增广矩阵施行初等行变换<-21 1r'11 -2 4、B =1 -21-2 T 1 -2 1 -2< 11 -2 4><-2 1 1<1 1 -2 4、<1 1 -2 4、 T0 -3 3 -6 T 0 -3 3 -6 ,<0 3 -3 9丿<0 0 0 3丿/?(/) = 2, R(B) = 3.所以方程组无解.6. 非齐次线性方程组—2%| ++ 兀3 = —ZX { 一2兀2 + 兀3 =儿兀1 + X 2 - 2X 3 =九2当入取何值时有解?并求出它的全部解.解对增广矩阵施行初等行变换,得<-2 1 1 -2)<11 -2B = 1 -21T0 -3 3 A(1 —兄)< J1-2 才丿0 0 (久一1)仇+ 2)丿当Q H I 且2^-2时,R(4) = 2, R(B) = 3方程组无解. 当2 = 1时,有Q o -1 r0 1 —1 o o o o ?R(4) = R(B) = 2,方程组有解,且与原方程组同解的方程组为<1 1 1r—> 0 0 0 0<0 0 0 0.故原方程组的解为当2 = -2时,有10—12、1 -12 (0 0 0 0丿与原方程组同解的方程组为故方程组的解为(2—九)X] +2x, —2兀3 = 1,7.设{2旺+(5-九)吃- 化=2, 问九为何值吋,此方程组有惟一解、无解或有无穷—2^| —4七 + (5 —九)七=一入一1,多解?并在有无穷多解时求出其通解.解系数行列式2-2 2 -2D= 25-2 -4 =-(2-1)2(2-10). -2-45 —久当2工1且2工10时,方程组有惟一解. 当2 = 1时,有< 12-2<1 2 -2B =2 4 -42 T0 0 0 0<-2 -44_2丿<0 00 0丿R(4) = R(B) = 1,方程组有无穷多解,此时兀2 二 k\1 + 0卫3丿<1>x =X] + 2兀2 一2兀3 = 1 通解为/ 、兀2,-2、 1+嘉0 + ⑴0 "丿< °丿<1>\ / x =当2 = 10时,有厂-8 2 -2r(2 -5 -4 2B =2 -5 -42 T 01 1 1「2 -4 -5 —11丿,00 -3/?(/) = 2, R(B) = 3,故方程组无解.8•问为何值时,非齐次线性方程组(1) 有惟一解,求出惟一解; 解方程组的增广矩阵兀[+兀2X?_ *2 +(Q _ 3)兀3 _ 2X 4 =b. 3X[ + 2X 2 + X3 + ax 4 =-l有无穷多解,并写出通解.+ X3 + X4 = 0,+ 2X + 2X = 1,1 1 1 0、1 1 1 0) 0 12 21T0 1221 0 -1 67-3 -2 b0 0 a-\ 0 b + l<3 21a j 丿<0 00 a-\o>当GH1时,R(A) = R(B) = 4,方程组有惟一解.B Trr. —a + b — 2 a — 2b + 3所以,£ = ----------- ,也= ---------- ,兀3a-\ 'a-1 B T(0a-ia —2b —a-\b + la-1=0.b+1所以,当Q = 1且b^-\时,/?(/!) = 2, R(B) = 3,方程组无解.(2)无解;(3) B此时V 、[1、24 ,”2七% =364求该方程组的通解.解 斤=4,尸=/?(/)二3,所以川一尸=1,令则§为基础解系,故方程组的通解为<0厂3、624835 J0丿<4>、6丿©=2小-(小+吃)而当G = 1且/? = 一1时,有1 o -1 -r —1、0 12 2 1 B T0 0 0R(A) = R(B) = 2,方程组有解,且与原方程组同解的方程组为x 4 = _1,x 2 +2兀3 +2 兀4 = h或写为故原方程组的通解为其中心为任意实数9.设四元非齐次线性力程组的系数矩阵的秩为3,已知% ,弘,〃3是它的三个解向量,且其中R 可取任意常数.10. 设4〃都是〃阶方阵,且AB = O .证明R(A) + R(B)S ・证明设B = ®,筠,…,仇),则有Ab. =0 (丿=1, 2,…,n)・可见每个曾都是Ax = O 的解向量.因R(A) = r,可知/lx 二〃的解空间的维数是n-r ,所以向量组叽 X ,…,叽的秩小于等于 m ,从而— i 于是R(4) + R(B)— + (m) = n.11. 己知非齐次线性方程组X )+吃 +兀3 +兀4 = _] 4%j + 3X 2 + 5X 3 —X 4 = —1 ax } + x? + 3X 3 + hx 4 = 1有3个线性无关的解.(1) 证明方程组的系数矩阵Z 的秩R(A) = 2; (2) 求的值及方程组的通解.解(1)设a p a 2,a 3是方程组Ax =0的3个线性无关的解,其中<111 1、r-rA = 4 3 5 -14 -i1 3 b)则有A©、_a?) = 0、A(a 、_aj = 0 ,即a } -a 2,a }-a y 是对应齐次线性方程组Ax = O 的解,且线 性无关.(否则,易推出a,,a 2,a 3线性相关,矛盾).所以n-R(A)>2,即4 — R(/)n2nR(/)52.又矩阵/中有一个2阶子式】1 =-1^0,所 以7?(/1)>2.因此R(A) =2.(2) 因为<1 1 1 1 ><1 1 1 1、<1 1 11 ) A = 4 3 5 -1 T 0 -11-5T0 -11-5W 13 b 丿(0 \-a3-a b_a 丿<0 0 4 —2Q b + 4a — 5丿又7?(力)=2,贝ijJ4-2d = 0, J G = 2, 爲+ 4a-5 = 0 戶爲二-3.对原方程组的增广矩阵施行初等行变换,x = kg\+TJ\ = k<1 1 1 1 -1、<1 0 2 -4 2、 B = 4 3 5 -1 -1 —> 0 1 -1 5 -3<2 1 3 -3 /<0 0 0 0 0>故原方稈组与下面的方程组同解Xj — —2 兀3 + 4 兀4 + 2x 2= x 3 - 5X 4 _ 3选兀3,兀为自由变量,则故所求通解为1a,b,c 不全为零,矩阵〃 =2 .3且AB = O,求线性方程组Ax = O 的通解.解 由于AB = O ,故&/) + 7?(〃)53,又由a,b,c 不全为零,可知R(A) > 1. 当&H9 时,R(B) = 2 ,于是R(A) = 1;当 k = 9 时,)= 1,于是 R(4) = 1 或 7?(/) = 2.①对于殳工9,由AB = O 可得由于7=(l,2,3)T,%=(3,6,k)T 线性无关,故弘,弘为Ax = O 的一个基础解系,于是Ax = O 的通 解为x =C X TJ { + c 2r]2,其中q,C2为任意常数.②对于k = 9,分别就R(A) = 2和/?(/) = 1进行讨论.如果R(4) = 2 ,则Ax = 〃的基础解系由一个向量构成.又因为/ 2 = 0 ,所以Ax = O 的通解为X = C 1(1,2,3)T ,其中q 为任意常数.如果7?(/) = 1,则Ax = O 的基础解系由两个向量构成.又因为力的第1行是(a,b,c),且a,b,c 不 全为零,所以Ax = 0 等价于 ax } + bx 2 += 0 .不妨设 a 工0 , “】=(一/>,。

电工技术第5章(李中发版)课后习题及详细解答

电工技术第5章(李中发版)课后习题及详细解答

第5章非正弦周期电流电路分析5.1 一锯齿波电流的波形如图5.1所示,从表5.1中查出其傅里叶三角级数,并写出其具体的展开式。

解查表5.1,得锯齿波电流的傅里叶级数为:由图5.1可知:(A)(rad/s)将I m和ω代入傅里叶级数,得:5.2 画出非正弦周期电压(V)的频谱图。

解在无特别说明的情况下,一般所说的频谱是专指幅频谱而言的。

由非正弦周期电压u的表达式可知其直流分量为V,一次谐波分量的幅值为V,三次谐波分量的幅值为V,将它们用相应的线段按频率高低依次排列起来,即得到非正弦周期电压u的频谱图,如图5.2所示。

图5.1 习题5.1的图图5.2 习题5.2解答用图5.3 试求图5.3所示波形的有效值和平均值。

分析求非正弦周期信号的有效值和平均值有两种方法:一种是利用有效值和平均值的定义式计算,另一种是求出非正弦周期信号的傅里叶级数后根据有效值和平均值与各分量的关系计算。

由于求函数的傅里叶级数计算繁琐,故在没有求出函数傅里叶级数的情况下,采用第一种方法较为简便。

如果已知函数的傅里叶级数,则采用第二种方法较为简便。

本题采用第一种方法。

解根据图5.3写出电压u的表达式,为:所以,电压u的有效值为:平均值为:5.4 求下列非正弦周期电压的有效值和平均值。

(1)振幅为10V的全波整流电压;(2)(V)分析第(1)小题利用有效值和平均值的定义式计算较为简便,第(2)小题利用有效值和平均值与各分量的关系计算较为简便。

解(1)振幅为10V的全波整流电压的波形如图5.4所示,由图可知该全波整流电压的表达式为:其有效值为:(V)平均值为:(V)图5.3 习题5.3的图图5.4 习题5.4解答用图(2)有效值为:(V)因为非正弦周期信号的平均值就等于其直流分量,所以:(V)5.5 将上题中的两个电压分别加在两个阻值为5Ω的电阻两端,试求各电阻所消耗的平均功率。

分析求非正弦周期电路的平均功率也有两种方法:一种是利用平均功率的定义式计算,另一种是利用平均功率与各次谐波平均功率的关系计算。

基础物理学第五章(静电场)课后习题答案

基础物理学第五章(静电场)课后习题答案

第五章 静电场 思考题5-1 根据点电荷的场强公式2041rqE ⋅=πε,当所考察的点与点电荷的距离0→r 时,则场强∞→E ,这是没有物理意义的。

对这个问题该如何解释? 答:当时,对于所考察点来说,q 已经不是点电荷了,点电荷的场强公式不再适用.5-2 0FE q =与02014q E r r πε=⋅两公式有什么区别和联系? 答:前式为电场(静电场、运动电荷电场)电场强度的定义式,后式是静电点电荷产生的电场分布。

静电场中前式是后一式的矢量叠加,即空间一点的场强是所有点电荷在此产生的场强之和。

5-3 如果通过闭合面S 的电通量e Φ为零,是否能肯定面S 上每一点的场强都等于零?答:不能。

通过闭合面S 的电通量e Φ为零,即0=⋅⎰SS d E,只是说明穿入、穿出闭合面S的电力线条数一样多,不能讲闭合面各处没有电力线的穿入、穿出。

只要穿入、穿出,面上的场强就不为零,所以不能肯定面S 上每一点的场强都等于零。

5-4 如果在闭合面S 上,E 处处为零,能否肯定此闭合面一定没有包围净电荷? 答:能肯定。

由高斯定理∑⎰=⋅内qS d E S1ε,E 处处为零,能说明面内整个空间的电荷代数和0=∑内q,即此封闭面一定没有包围净电荷。

但不能保证面内各局部空间无净电荷。

例如,导体内有一带电体,平衡时导体壳内的闭合高斯面上E 处处为零0=∑内q,此封闭面包围的净电荷为零,而面内的带电体上有净电荷,导体内表面也有净电荷,只不过它们两者之和为零。

5-5 电场强度的环流lE dl ⋅⎰表示什么物理意义?0lE dl⋅=⎰表示静电场具有怎样的性质?答:电场强度的环流lE dl ⋅⎰说明静电力是保守力,静电场是保守力场。

0lE dl⋅=⎰表示静电场的电场线不能闭合。

如果其电场线是闭合曲线,我们就可以将其电场线作为积分回路,由于回路上各点沿环路切向,得⎰≠⋅Ll d E 0,这与静电场环路定理矛盾,说明静电场的电场线不可能闭合。

公司金融第5章-资本预算的一些问题习题及答案讲解学习

公司金融第5章-资本预算的一些问题习题及答案讲解学习

第五章资本预算中的一些问题一、概念题增量现金流量、沉没成本、、营运资本、折旧、名义现金流量,实际现金流量、净现值等价年度成本、更新决策、扩展决策二、单项选择1、与投资决策有关的现金流量包括()A初始投资+营业现金流量B初始投资+营业现金流量+终结现金流量C初始投资+终结现金流量D初始投资+投资现金流量+终结现金流量2、以下说法正确的是()A沉没成本应该计入增量现金流量B机会成本是投入项目中的资源成本C营运资本是流动资产与流动负债的差额D计算增量现金流量不应考虑项目附加效应3、折旧的税盾效应说法正确的是()A 原因是折旧税前扣减B 税盾效应随利率增加而减小C依赖于未来的通货膨胀率 D 降低了项目现金流量4、名义利率为7%,通货膨胀率为2%,实际利率是()A 7% B6% C 4.9% D 2%5、在一个5年期和7年期的项目中选择,应该使用的资本预算决策是:A盈利指数B周期匹配C扩展决策D等价年度成本6、投资时机的决策原则是选择()时间进行投资A 增量现金流量最高B项目税后利润最高C净现值最高 D 成本最小三、多项选择题1、现金流量估算原则正确的是()A现金流量应该是税前现金流量 B 现金流量应该是税后现金流量C现金流量应该是增量的D如果现金流量是公司现金流量,折现率使用权益资本成本E现金流量是名义现金流量,折现率使用名义折现率2、在对是否投资新工厂时,下面那些科目应作为增量现金流量处理()A场地与现有建筑物的市场价值B拆迁成本与场地清理费用C上一年度新建通道成本D新设备使管理者精力分散,导致其他产品利润下降E 总裁专用喷气飞机的租赁费用分摊3、税率提高对净现值影响包括()A折旧税盾效应增加 B 折旧税盾效应减小C所得税增加D所得税减小E无影响4在更新决策中,现金流量的变化正确的是()A新设备购置成本B新设备购置成本—旧设备金额C新设备降低经营成本D新设备使用增加折旧的节税效应E新设备试用期末残值5、以下说法正确的是()A净现值法只能用于相同寿命期的项目比较B净现值法可应用于对不同寿命期的项目比较C 当公司面临有限资源时,可使用盈利指数法D寿命不同期的项目,可使用等价现金年度法或周期匹配法6以下对净现值计算说法正确的是()A可以用名义现金流量与名义折现率来计算B可以用实际现金流量与实际折算率计算C A,B两种方法计算结果不同D按照名义现金流量与实际利率计算的净现值偏大E按照实际现金流量与名义利率计算的净现值偏大7、以下说法正确的是()A等价年度成本大的项目可以采纳 B 等价年度成本小的项目可以采纳C在项目寿命期内是收到现金流量,等价年度成本大的项目应该被采纳D 在项目寿命期内是支出现金流量,等价年度成本小的项目应该被采纳E等价年度成本=净现值/项目持续期限四、计算题1、某公司5年中每年都会得到100000元,名义折现率为8%,通货膨胀率为4%,分别用名义折现率和实际折算率计算净现值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5-1 设二进制符号序列为110010001110,试以矩形脉冲为例,分别画出相应的单极性码波形、双极性码波形、单极性归零码波形、双极性归零码波形、二进制差分码波形及八电平码波形。

解: 1 1 0 0 1 0 0 0 1 1 1 0
单极性码:
双极性码:
单极性归零码:
双极性归零码:
二进制差分码:
八电平码:
5-7 已知信息代码为100000000011,求相应的AMI码、HDB3码、PST 码及双相码。

解:信息代码:100000000011
AMI码:+1000000000-1+1
HDB3码:+1000+V-B00+V0-1+1
PST码:+0-+-+-+-++-
双相码:100101010101010101011010
5-8 已知信息代码为1010000011000011,试确定相应的AMI码及HDB3码,并分别画出它们的波形图。

解: 1 0 1 0 0 0 0 0 1 1 0 0
0 0 1 1
AMI码:+1 0 -1 0 0 0 0 0 +1 –1 0 0 0 0 +1 -1 HDB3码:+1 0 -1 0 0 0 –V 0 +1 –1 +B 0 0 +V –1 +1
5-9 某基带传输系统接收滤波器输出信号的基本脉冲为如图P5-5所示的三角形脉冲:
(1)求该基带传输系统的传输函数H(ω);
(2)假设信道的传输函数C(ω)=1,发送滤波器和接收滤波器具有相同的传输函数,即G T(ω)=G R(ω),试求这时G T(ω)或G R(ω)的表示式。

P5-5
解:(1)H(ω)=∫∞
-∞
h(t)e-jωt dt
=∫0Ts/2(2/T s)te-jωt dt +∫Ts Ts/22(1-t/T s)e-jωt dt
=2∫Ts
Ts/2 e-jωt dt+2/T s∫
Ts/2 t e-jωt dt-2/T
s
∫Ts
Ts/2
t e-jωt dt
=- 2 e-jωt/(jω)︱Ts
Ts/2+2/T s [-t/(jω)+1/ω2] e-jωt︱
Ts/2
-2/T s [-t/(jω)+1/ω2] e-jωt︱Ts
Ts/2
=2 e-jωTs/2(2- e-jωTs/2- e-jωTs/2)/(ω2T s)
=4 e-jωTs/2[1-cos(ωT s/2)]/(ω2T s)
=8 e-jωTs/2sin2(ωT s/4)/(ω2T s)
=2/T s·Sa2(ωT s/4) e-jωTs/2(2)∵H(ω)=G T(ω)C(ω)G R(ω) C(ω)=1, G T(ω)=G R(ω)
∴G T(ω)=G R(ω)=√2/T s·Sa(ωT s/4) e-jωTs/4
5-11 设基带传输系统的发送滤波器、信道及接收滤波器组成总特性为H(ω),若要求以2/T s波特的速率进行数据传输,试检验图P5-7各种H(ω)满足消除抽样点上的码间干扰的条件否?
s s s s
(a) (b)
-4π/T s0 4π/T sω -π/T s0 π/T sω
(c)(d)
图P5-7
解:根据奈奎斯特准则,若要求以2/T s的速率进行数据传输,系统无码间干扰的频域条件是:
∑H(ω+4iπ/T s)=常量,︱ω︱≤2π/T s
∴(a)不满足,系统有码间干扰;
(b)不满足,系统有码间干扰;
(c)满足,系统无码间干扰;
(d)不满足,系统有码间干扰。

5-12 设某数字基带传输的传输特性H(ω)如图P5-8所示。

其中α为某个常数(0≤α≤1):
(1)试检验该系统能否实现无码间干扰传输?
(2)试求该系统的最大码元传输速率为多少?这时的系统频带利用率为多大?
图P5-8
解:(1)该系统的传输特性在ω0处满足互补对称性,即
∑H(ω+2iω0)=常量,︱ω︱≤ω0
该系统能实现无码间干扰传输;
(2)该系统的最大码元传输速率为:R B=ω0/π=2f0;
此系统占用信道带宽为B c=(1+α)f0,
系统的频带利用率为R B/B c=2/(1+α) B/Hz
5-18 以表5-2中第Ⅳ类部分响应系统为例,试画出包括预编码在内的系统组成方框图。

解:。

相关文档
最新文档