2008年高考试题——数学文(全国卷2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年普通高等学校招生全国统一考试
文科数学(必修+选修I)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页. 考试结束后,将本试卷和答题卡一并交回.
第Ⅰ卷
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.
3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:
如果事件A B ,互斥,那么 球的表面积公式
()()()P A B P A P B +=+
2
4πS R =
如果事件A B ,相互独立,那么 其中R 表示球的半径
()()()P A B P A P B = 球的体积公式
如果事件A 在一次试验中发生的概率是p ,那么 3
4π3
V R =
n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径
()(1)
(012)k
k
n k
k n P k C p p k n -=-= ,,,,
一、选择题
1.若sin 0α<且tan 0α>是,则α是( ) A .第一象限角 B . 第二象限角 C . 第三象限角
D . 第四象限角
2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( ) A .{}01,
B .{}101-,,
C .{}012,
,
D .{}1012-,,,
3.原点到直线052=-+y x 的距离为( ) A .1
B .3
C .2
D .5
4.函数1()f x x x
=-的图像关于( )
A .y 轴对称
B . 直线x y -=对称
C . 坐标原点对称
D . 直线x y =对称
5.若13
(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( )
A .a <b <c
B .c <a <b
C . b <a <c
D . b <c <a
6.设变量x y ,满足约束条件:222y x x y x ⎧⎪
+⎨⎪
-⎩,
,.
≥≤≥,则y x z 3-=的最小值为( )
A .2-
B .4-
C .6-
D .8-
7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( ) A .1 B .
12
C .12
-
D .1-
8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( ) A .3 B .6
C .9
D .18
9.4
4
)1()1(x x +
-的展开式中x 的系数是( )
A .4-
B .3-
C .3
D .4
10.函数x x x f cos sin )(-=的最大值为( ) A .1
B .
2
C .3
D .2
11.设ABC △是等腰三角形,120ABC ∠=
,则以A B ,为焦点且过点C 的双曲线的离心率为( ) A .
22
1+ B .
2
3
1+ C . 21+ D .31+
12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1 B .2 C .3 D .2
2008年普通高等学校招生全国统一考试
文科数学(必修+选修I)
第Ⅱ卷
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.
13.设向量(12)(23)==,
,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学
又有女同学的不同选法共有 种(用数字作答)
15.已知F 是抛物线2
4C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为
(22)M ,,则ABF △的面积等于 .
16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:
充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)
三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13
A =-
,3cos 5
B =
.
(Ⅰ)求sin C 的值;
(Ⅱ)设5BC =,求ABC △的面积. 18.(本小题满分12分)
等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .
19.(本小题满分12分)
甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2.
设甲、乙的射击相互独立.
(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;
(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.
20.(本小题满分12分)
如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且EC E C 31=. (Ⅰ)证明:1A C ⊥平面B E D ; (Ⅱ)求二面角1A DE B --的大小.
21.(本小题满分12分)
设a ∈R ,函数2
3
3)(x ax x f -=.
(Ⅰ)若2=x 是函数)(x f y =的极值点,求a 的值;
(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,
,在0=x 处取得最大值,求a 的取值范围. 22.(本小题满分12分)
设椭圆中心在坐标原点,(20)(01)A B ,
,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.
(Ⅰ)若6ED DF =
,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.
A
B C
D E
A 1
B 1
C 1
D 1
2008年普通高等学校招生全国统一考试 文科数学试题(必修+选修Ⅰ)参考答案和评分参考
评分说明:
1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.
一、选择题
1.C 2.B 3.D 4.C 5.C 6.D 7.A 8.B 9.A 10.B 11.B 12.C 提示:
1、αα,0sin < 在第三或四象限,0tan >α,α在第一或三象限α∴为第三象限角
2、}1,0,1{},21|{-=∈<≤-=⋂Z x x x N M
3、555=
=
d
4、)(x f 为奇函数
5、c a b x x e <<∴<<-∴<<-0ln 111
6、当⎩⎨
⎧=-=2
2y x 时,83min -=-=y x Z
7、ax y 2'
=,当1=x 时,
122,2'
=∴==a a a y 8、如图,,60,32o
SAO SA =∠=
则6,3,360sin =
∴==⋅=AB AO SA SO o
6363
12
=⨯=∴V
9、4
4
4
)1()1()1(x x x -=+
-
,x ∴的系数为41
4-=-C
10、)4
sin(2cos sin )(π
-
=-=x x x x f )(x f ∴最大值为2
11、设1||=AB ,则3=
AC ,13||||2-=-=CB AC a ,
1||2==AB C ,2
1322+=
=
∴a
c e
12、1O 与2O 的公共弦为AB ,球心为O,AB 中点
C
D
B
A
S
为C ,则四边形C OO O 21为矩形,所以
OC AC AC OA OC O O ⊥===,1||,2|||,|||21
3||||||2
2
=
-=
∴AC OA OC
二、填空题
13.2 14.420 15.2
16.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.
13、20)2(7)32(4)32,2(=∴=+-+∴++=+λλλλλλb a ; 14、4203
63
103
16=--C C C ; 15
、
设
)
,(),(2211y x B y x A ,
),(4441
22
1221
2122
2x x y y x y x y -=-∴⎪⎩⎪⎨⎧==141
21212=+=--y y x x y y AB ∴所在直线方程为22-=-x y 即x y =,又4,04212==⇒⎩⎨
⎧==x x x y x
y , 22||||2
11||24||2||12==
∴==-=
∆OF AB S OF x x AB ABF ;
注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:
(Ⅰ)由5cos 13
A =-,得12sin 13
A =
,
由3cos 5
B =
,得4sin 5
B =. ··································································································· 2分
所以16sin sin()sin cos cos sin 65
C A B A B A B =+=+=
. ················································· 5分
(Ⅱ)由正弦定理得4
5sin 13512sin 313
BC B AC A ⨯⨯=
=
=. ························································· 8分
所以ABC △的面积1sin 2
S BC AC C =⨯⨯⨯1131652
3
65
=⨯⨯⨯83
=. ····························· 10分
18.解:
设数列{}n a 的公差为d ,则
3410a a d d =-=-, 642102a a d d =+=+,
104由3610a a a ,,成等比数列得2
3106a a a =, 即2(10)(106)(102)d d d -+=+, 整理得2
10100d d -=,
解得0d =或1d =. ·················································································································· 7分 当0d =时,20420200S a ==. ····························································································· 9分 当1d =时,14310317a a d =-=-⨯=, 于是2012019202
S a d ⨯=+207190330=⨯+=. ····························································· 12分
19.解:
记12A A ,分别表示甲击中9环,10环,
12B B ,分别表示乙击中8环,9环,
A 表示在一轮比赛中甲击中的环数多于乙击中的环数,
B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,
12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.
(Ⅰ)112122A A B A B A B =++ , ························································································ 2分
112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++
112122()()()()()()P A P B P A P B P A P B =++
0.30.40.10.40.10.40.2=⨯+⨯+⨯=. ·
················································································ 6分 (Ⅱ)12B C C =+, ·················································································································· 8分
2
2
2
13()[()][1()]30.2(10.2)0.096P C C P A P A =-=⨯⨯-=, 3
3
2()[()]0.20.008P C P A ===,
1212()()()()0.0960.0080.104P B P C C P C P C =+=+=+=. ····································· 12分 20.解法一:
依题设,2AB =,1CE =.
(Ⅰ)连结AC 交B D 于点F ,则BD AC ⊥.
1在平面1A C A 内,连结E F 交1A C 于点G ,
由于
1A A A C F C
C E
==
故1Rt Rt A AC FCE △∽△,1AA C CFE ∠=∠, CFE ∠与1FC A ∠互余.
于是1A C EF ⊥.
1A C 与平面B E D 内两条相交直线BD EF ,都垂直,
所以1A C ⊥平面B E D . ············································································································ 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H D E ⊥,
故1A HG ∠是二面角1A DE B --的平面角. ········································································· 8分
EF =
=
C E C F C G EF ⨯==
,3
E G ==
.
13
E G E F
=
,13
EF FD G H D E
⨯=
⨯
=
.
又1A C ==
,113
A G A C C G =-=
.
11tan A G A H G H G
∠=
=
所以二面角1A DE B --
的大小为arctan ·································································· 12分 解法二:
以D 为坐标原点,射线D A 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.
依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.
A
B C
D E
A 1
B 1
C 1
D 1 F
H G
(021)(220)D E D B ==
,,,,,,11(224)(204)A C DA =--= ,,,,,. ······································· 3分 (Ⅰ)因为10A C DB = ,10A C DE =
,
故1A C BD ⊥,1A C DE ⊥. 又DB DE D = ,
所以1A C ⊥平面D B E . ············································································································ 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则
DE ⊥
n ,1D A ⊥ n .
故20y z +=,240x z +=.
令1y =,则2z =-,4x =,(412)=-,,n . ······································································ 9分
1A C <>
,n 等于二面角1A DE B --的平面角,
111cos 42A C A C A C
<>==
,n n n . 所以二面角1A DE B --
的大小为arccos 42
. ································································· 12分
21.解:
(Ⅰ)2
()363(2)f x ax x x ax '=-=-.
因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =. 经验证,当1a =时,2x =是函数()y f x =的极值点. ······················································ 4分 (Ⅱ)由题设,3
2
2
2
()336(3)3(2)g x ax x ax x ax x x x =-+-=+-+.
当()g x 在区间[02],
上的最大值为(0)g 时, (0)(2)g g ≥,
即02024a -≥. 故得65
a ≤
. ······························································································································ 9分
反之,当65
a ≤
时,对任意[02]x ∈,
,
2
6()(3)3(2)5
g x x x x x +-+≤
2
3(210)5x x x =+- 3(25)(2)5
x x x =
+-
0≤,
而(0)0g =,故()g x 在区间[02],
上的最大值为(0)g . 综上,a 的取值范围为65⎛⎤
-∞ ⎥⎝
⎦
,. ·························································································· 12分
22.(Ⅰ)解:依题设得椭圆的方程为
2
2
14
x
y +=,
直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ·················································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22
(14)4k x +=,
故21x x =-=
.①
由6ED DF = 知01206()x x x x -=-
,得021215(6)77x x x x =+==;
由D 在A B 上知0022x kx +=,得0212x k
=+.
所以
212k
=
+,
化简得2
242560k k -+=, 解得23
k =
或38
k =
. ················································································································· 6分
(Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到A B
的距离分别为
1h =
=
2h =
=. ········································································ 9分
又AB =
=,所以四边形AEBF 的面积为 121
()2S A B h h =+
1
4(12)
2k +=
=
=
≤
当21k =,即当1
2k =时,上式取等号.所以S
的最大值为. ································· 12分 解法二:由题设,1BO =,2A O =.
设11y kx =,22y kx =,由①得20x >,210y y =->,
故四边形AEBF 的面积为
BEF AEF S S S =+△△
222x y =+ ·
··································································································································· 9分
=
=
≤
=
当222x y =时,上式取等号.所以S
的最大值为 ···················································· 12分。