四点共圆经典题

合集下载

中考压轴题专题训练:“四点共圆”典型问题50练(含解析)印刷版

中考压轴题专题训练:“四点共圆”典型问题50练(含解析)印刷版

中考压轴题专题训练:“四点共圆”典型问题50练一.选择题(共9小题)1.如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4,D是BC中点,∠CAD=∠CBE,则AE=()A.4B.3C.2D.2.在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN3.如图,已知(1)已知△ABC的两条中线BD、CE交于点M,A、D、M、E四点共圆,BC=8,则AM 的长为()A.2B.C.D.34.如图,在△ABC中,∠B=75°,∠C=45°,BC=6﹣2,点P是BC上一动点,PE⊥AB于E,PD ⊥AC于D.无论P的位置如何变化,线段DE的最小值为()A.3﹣3B.C.4﹣6D.25.如图①,若BC是Rt△ABC和Rt△DBC的公共斜边,则A、B、C、D在以BC为直径的圆上,则叫它们“四点共圆”.如图②,△ABC的三条高AD、BE、CF相交于点H,则图②中“四点共圆”的组数为()A.2B.3C.4D.66.如图,在四边形ABCD中,AC、BD为对角线,点M、E、N、F分别为AD、AB、BC、CD边的中点,下列说法:①当AC=BD时,M、E、N、F四点共圆.②当AC⊥BD时,M、E、N、F四点共圆.③当AC=BD且AC⊥BD时,M、E、N、F四点共圆.其中正确的是()A.①②B.①③C.②③D.①②③7.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形AMFN =a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()A.2B.3C.4D.58.如图,已知∠A的平分线分别与边BC、△ABC的外接圆交于点D、M,过D任作一条与直线BC不重合的直线l,直线l分别与直线MB、MC交于点P、Q,下列判断错误的是()A.无论直线l的位置如何,总有直线PM与△ABD的外接圆相切B.无论直线l的位置如何,总有∠PAQ>∠BACC.直线l选取适当的位置,可使A、P、M、Q四点共圆D.直线l选取适当的位置,可使S△APQ<S△ABC9.如图,一副直角三角板满足∠ACB=∠EDF=90°,AC=BC,AB=DF,∠EFD=30°,将三角板DEF 的直角顶点D放置于三角板ABC的斜边AB上,再将三角板DEF绕点D旋转,并使边DE与边AC交于点M,边DF与边BC于点N.当∠EDF在△ABC内绕顶点D旋转时有以下结论:①点C,M,D,N四点共圆;②连接CD,若AD=DB,则△ADM∽△CDN;③若AD=DB,则DN•CM=BN•DM;④若AD=DB,则CM+CN=AD;⑤若DB=2AD,AB=6,则2≤S△DMN≤4.其中正确结论的个数是()A.2B.3C.4D.5二.填空题(共14小题)10.若一个圆经过梯形ABCD的四个顶点,则这个梯形是梯形.11.已知AB为圆O的一条弦(非直径),OC⊥AB于C,P为圆O上任意一点,直线PA与直线OC相交于点M,直线PB与直线OC相交于点N.以下说法正确的有.①O,M,B,P四点共圆;②A,M,B,N四点共圆;③A,O,P,N四点共圆.12.已知△ABC中,∠BAC≠90°,AD⊥BC,BE⊥AC,且AD、BE交于点H,连接CH,则∠ACH+∠BAE=.13.已知△ABC为等腰直角三角形,∠C为直角,延长CA至D,以AD为直径作圆,连BD与圆O交于点E,连CE,CE的延长线交圆O于另一点F,那么的值等于.14.已知二次函数y1=a1(x﹣1)2﹣2012,其图象顶点为M,且与x轴交于A(x1,0),B(x2,0)两点,又知二次函数y2=a2(x﹣1)2+1的顶点为N,若A,B,M,N四点共圆,则x1x2﹣x1﹣x2=.15.如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠ABD=72°,则∠CAD的度数为.16.已知:AB=2,AC平分∠DAB,∠DAB+∠DCB=180°,∠DCB=120°,当∠ABD=∠CBF时,则AC=.17.在四边形ABCD中,∠DAC=98°,∠DBC=82°,∠BCD=70°,BC=AD,则∠ACD=.18.如图,在等腰△ABC中,∠ABC=90°,点D为BC的中点,点E在AC边上,以DE为腰作等腰Rt △DEF,连接CF,BF.若CE=1,△CDF的面积为7.5,则BF的长为.19.如图,线段AB、CD相交于E,AE=AC,DE=DB,点M、F、G分别为线段AD、CE、EB的中点,如果∠MAE=25°,∠AMF=40°,那么∠MFG的度数为.20.如图,点O为等边△ABC内一点,OA=2,OC=,连接BO并延长交AC于点D,且∠DOC =30°,过点B作BF⊥BD交CO延长线于点F,连接AF,过点D作DE⊥AF于点E,则DE=.21.如图,正方形ABCD的边长为2,对角线AC、BD交于点O,E为DC上一点,∠DAE=30°,过D 作DF⊥AE于F点,连接OF.则线段OF的长度为.22.如图,ABCD、CEFG是正方形,E在CD上,且BE平分∠DBC,O是BD中点,直线BE、DG交于H.BD,AH交于M,连接OH,则OH=,BM=.23.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=a﹣;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的序号为.三.解答题(共27小题)24.设梯形ABCD中,AB∥CD,E,F分别在腰AD和BC上,若A,B,F,E四点共圆,证明C,D,E,F也必四点共圆.25.已知四边形ABCD为菱形,点E、F、G、H分别为各边中点,判断E、F、G、H四点是否在同一个圆上,如果在同一圆上,找到圆心,并证明四点共圆;如果不在,说明理由.26.如图,在△ABC中,AB<AC,AD平分∠BAC,BM=CM,K为AM上一点,且∠BKC=180°﹣∠BAC.求证:∠BKD=∠CKD.27.如图,O为△ABC外心,D为BC上一点,BD中垂线交AB于F,CD中垂线交AC于E,求证:A、F、O、E四点共圆.28.如图,点E,F分别在线段AC,BC上运动(不与端点重合),而且CE=BF,AC=BC,O是△ABC 的外心,证明C,E,O,F四点共圆.29.如图,点F是△ABC外接圆的中点,点D、E在边AC上,使得AD=AB,BE=EC.证明:B、E、D、F四点共圆.30.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点D,点E是AC的中点,连接OD.(1)求证:OD⊥DE;(2)求证:O、A、E、D四点共圆.(3)△ABC满足什么条件时,经过O、A、E、D的圆与BC相切?并说明理由.31.如图,在锐角三角形ABC中,AB=AC,∠ACB的平分线交AB于点D.过△ABC的外心O作直线OG⊥CD交AC于点E,交CD于点G,过点E作EF∥AB交CD于F.(1)求证:C,E,O,F四点共圆;(2)求证:A,O,F三点共线;(3)求证:EA=EF.32.在学习《圆》这一单元时,我们学习了圆周角定理的推论:圆内接四边形的对角互补;事实上,它的逆命题:对角互补的四边形的四个顶点共圆,也是一个真命题.在图形旋转的综合题中经常会出现对角互补的四边形,那么,我们就可以借助“对角互补的四边形的四个顶点共圆”,然后借助圆的相关知识来解决问题,例如:已知:△ABC是等边三角形,点D是△ABC内一点,连接CD,将线段CD绕C逆时针旋转60°得到线段CE,连接BE,DE,AD,并延长AD交BE于点F.当点D在如图所示的位置时:(1)观察填空:①与△ACD全等的三角形是;②∠AFB的度数为;(2)利用题干中的结论,证明:C,D,F,E四点共圆;(3)直接写出线段FD,FE,FC之间的数量关系.33.如图,四边形ABCD中,∠ACB=∠ADB=90°,自对角线AC、BD的交点N作NM⊥AB于点M,线段AC、MD交于点E,BD、MC交于点F,P是线段EF上的任意一点.证明:点P到线段CD的距离等于点P到线段MC、MD的距离之和.34.如图,在△ABC中,过A作BC的垂线,垂足为D,O为AD的中点,以AD为直径的⊙O分别与边AB、AC交于点E、F.试求证:(1)BC是⊙O的切线;(2)B、C、F、E四点共圆吗?说明理由.35.如图,圆O内接四边形ABCD的对边AD,BC延长线交于点P,对角线AC,BD交于点Q,设△PDB 的外接圆交直线PQ与P和另一个点K,求证:(1)OK⊥PQ(2)C,D,O,K四点共圆;(3)三条直线AB,OK,DC交于一点.36.如图,已知锐角三角形ABC,过点A作BC的垂线与以BC为直径的⊙O1分别交于点D,E.过点B 作CA的垂线与以CA为直径的⊙O2分别交于点F,G.求证:E,F,D,G四点共圆,并确定圆心的位置.37.已知△ABC中,∠A=60°,E、F分别为AB、AC延长线上的点,且BE=CF=BC,△ACE的外接圆与EF交于不同于E的点K,设BF与CE交于点T.(1)证明:A、B、T、C四点共圆;(2)证明:点K在∠BAC的角平分线上.38.已知半径为r的⊙O1与半径为R的⊙O2外离,直线DE经过O1切⊙O2于点E并交⊙O1于点A和点D,直线CF经过O2切⊙O1于点F并交⊙O2于点B和点C,连接AB、CD,(1)[以下ⅰ、ⅱ两小题任选一题](ⅰ)求四边形ABCD的面积(ⅱ)求证:A、B、E、F四点在同一个圆上(2)求证:AB∥DC.39.已知:AB是⊙O的直径,C为AB延长线上的一点,过点C作⊙O的割线,与⊙O交于D、E两点,OF是△BOD的外接圆O1的直径,连接CF并延长交⊙O1于点G.求证:O、A、E、G四点共圆.40.如图,四边形ABCD为⊙O的内接四边形,对边BC,AD交于点F,AB、DC交于点E,△ECF的外接圆与⊙O的另一交点为H,AH与EF交于点M,MC与⊙O交于点C.证明:(1)M为EF的中点;(2)A、G、E、F四点共圆.41.已知:AB∥DF,它们之间的距离等于AB;AC∥DE,它们之间的距离等于AC;CB∥EF,它们之间的距离等于BC,求证:A1、B1、C1、A2、B2、C2六点共圆.42.设△ADE内接于圆O,弦BC分别交AD、AE边于点F、G,且AB=AC,求证:F、D、E、G四点共圆.43.若以圆内接四边形ABCD的各边为弦作任意圆,求证:这些圆相交的四点共圆.44.如图,PQ为两圆的公共弦,M为PQ上一点,AB、CD分别是两圆的弦且它们相交于M,求证:A、C、B、D四点共圆.45.如图,⊙O1与⊙O2相交于P、Q两点,过P点作两圆的割线分别交于⊙O1与⊙O2于A、B,过A、B 分别作两圆的切线相交于T,求证:T、A、Q、B四点共圆.46.如图所示,两圆交于A、B两点,过B的直线交两圆于C、D,两圆外有一点P,连接PC,PD,分别交两圆于E,F.求证:P、E、A、F四点共圆.47.如图,⊙O是以等腰Rt△ABC的斜边AB为直径的圆,点P是BA的延长线上的一点,过点P作⊙O 的一条切线,切点为点Q,∠QPB的平分线交AC、BC于点E、F.(1)求证:P、A、E、Q四点共圆.(2)若AE=a,BF=b,求EF的长.48.如图,四边形ABCD内接于⊙O,P、Q、R分别是AB、BC、AD的中点,连接PQ与DA的延长线交于S,连接PR与CB延长线交于T,求证:S、T、Q、R四点共圆.49.如图,两圆T1、T2相交于A、B两点,过点B的一条直线分别交圆T1、T2于点C、D,过点B的另一条直线分别交圆T1、T2于点E、F,直线CF分别交圆T1、T2于点P、Q,设M、N分别是弧PB、弧QB的中点,求证:若CD=EF,则C、F、M、N四点共圆.50.如图,D是△ABC的BC边上的一点,O1、O2和O3分别为△ABC、△ADB和△ADC外接圆的圆心,求证:A、O2、O1、O3四点共圆.中考压轴题专题训练:“四点共圆”典型问题50练参考答案与试题解析一.选择题(共9小题)1.如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4,D是BC中点,∠CAD=∠CBE,则AE=()A.4B.3C.2D.【分析】如图,连接DE,由等腰直角三角形的性质可求∠C=∠BAC=45°,AC=AB=4,由∠CAD=∠CBE,可证点A,点B,点D,点E四点共圆,可得∠ABD=∠DEC=90°,由等腰直角三角形的性质可求DE=,即可求解.【解答】解:如图,连接DE,∵∠ABC=90°,AB=BC=4,∴∠C=∠BAC=45°,AC=AB=4,∵D是BC中点,∴CD=BC=2,∵∠CAD=∠CBE,∴点A,点B,点D,点E四点共圆,∴∠ABD=∠DEC=90°,∴∠C=∠EDC=45°,∴DE=CE=CD=,∴AE=AC﹣CE=3,故选:B.2.在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN【分析】在NM上截取NF=ND,连结DF,AF,由A,B,C,D四点共圆,得出∠MND+∠MAD=180°,由MN∥BC,得出∠AMN+∠ADN=180°,可得到A,D,N,M四点共圆,再由AE,DE分别平分∠BAD,∠CDA,A,F,E,D四点共圆,由∠MAF=180°﹣∠DAF﹣∠MND=180°﹣∠DEN﹣∠MND =∠EDN=∠ADE=∠AFM,可得出MA=MF,即得出MN=MF+NF=MA+ND.【解答】解:如图,在NM上截取NF=ND,连结DF,AF∴∠NFD=∠NDF,∵A,B,C,D四点共圆,∴∠ADC+∠B=180°,∵MN∥BC,∴∠AMN=∠B,∴∠AMN+∠ADN=180°,∴A,D,N,M四点共圆,∴∠MND+∠MAD=180°,∵AE,DE分别平分∠BAD,∠CDA,∴∠END+2∠DFN=∠END+2∠DAE=180°,∴∠DFN=∠DAE,∴A,F,E,D四点共圆,∴∠DEN=∠DAF,∠AFM=∠ADE,∴∠MAF=180°﹣∠DAF﹣∠MND=180°﹣∠DEN﹣∠MND=∠EDN=∠ADE=∠AFM,∴MA=MF,∴MN=MF+NF=MA+ND.故选:D.3.如图,已知(1)已知△ABC的两条中线BD、CE交于点M,A、D、M、E四点共圆,BC=8,则AM 的长为()A.2B.C.D.3【分析】延长AM交BC于F,连接ED,根据三角形中位线定理得出ED∥BC,即可求得∠DBC=∠MDE,根据四点共圆,可得∠MDE=∠BAF,由题意可得M是三角形的重心,则F是BC的中点,AM=2FM,证得△ABF∽△MBF,可得=,得出AF•FM=BF2=16,根据条件化成AM2=16,即可求得结论.【解答】解:延长AM交BC于F,连接ED,∵BD、CE是△ABC的两条中线,∴ED∥BC,∴∠DBC=∠MDE,∵A、D、M、E四点共圆,∴∠MDE=∠BAF,∵△ABC的两条中线BD、CE交于点M,∴BF=FC=BC=4,∴M为三角形的重心,∴AM=2FM,∵∠BAF=∠MBF,∠AFB=∠BFM,∴△ABF∽△MBF,∴=,∴AF•FM=BF2=16,(AM+AM)•AM=16,∴AM2=16,∴AM=.故选:C.4.如图,在△ABC中,∠B=75°,∠C=45°,BC=6﹣2,点P是BC上一动点,PE⊥AB于E,PD ⊥AC于D.无论P的位置如何变化,线段DE的最小值为()A.3﹣3B.C.4﹣6D.2【分析】下面介绍两种解法:解法一:当AP⊥BC时,线段DE的值最小,利用四点共圆的判定可得:A、E、P、D四点共圆,且直径为AP,得出∠AED=∠C=45°,有一公共角,根据两角对应相等两三角形相似得△AED∽△ACB,则,设AD=2x,表示出AE和AC的长,求出AE与AC的比,代入比例式中,可求出DE的值.解法二:先通过四点共圆同理得到:△EFD为顶角为120°的等腰三角形,所以当AP⊥BC时,线段DE的值最小,再作辅助线,求AP的长,从而得EF的长,由等腰三角形三线合一及勾股定理得DE的值.【解答】解:解法一:当AP⊥BC时,线段DE的值最小,如图1,∵PE⊥AB,PD⊥AC,∴∠AEP=∠ADP=90°,∴∠AEP+∠ADP=180°,∴A、E、P、D四点共圆,且直径为AP,在Rt△PDC中,∠C=45°,∴△PDC是等腰直角三角形,∠APD=45°,∴△APD也是等腰直角三角形,∴∠PAD=45°,∴∠PED=∠PAD=45°,∴∠AED=45°,∴∠AED=∠C=45°,∵∠EAD=∠CAB,∴△AED∽△ACB,∴,设AD=2x,则PD=DC=2x,AP=2x,如图2,取AP的中点O,连接EO,则AO=OE=OP=x,∵∠EAP=∠BAC﹣∠PAD=60°﹣45°=15°,∴∠EOP=2∠EAO=30°,过E作EM⊥AP于M,则EM=x,cos30°=,∴OM=x•=x,∴AM=x+x=x,由勾股定理得:AE=,=,=(+1)x,∴=,∴ED=.则线段DE的最小值为;解法二:如图3,取AP的中点F,连接EF、DF,有EF=DF=AP,∠EFD=120°,∴△EFD为顶角为120°的等腰三角形,∴当AP⊥BC时,线段DE的值最小,如图4,作AB的中垂线,交AP于一点O,交AB于G,连接OB,设OA=OB=2x,∵∠BOP=2∠BAO=30°,∴BP=x,OP=x,∴AP=PC=(2+)x,∵BC=6﹣2,∴x+2x+x=6﹣2,x=4﹣2,∴AP=(2+)x=(2+)(4﹣2)=2,∴EF=FD=1,如图5,过F作FH⊥ED于H,∴EH=DH,∵∠FED=30°,∴FH=,∴EH=DH=,∴DE=;故选:B.5.如图①,若BC是Rt△ABC和Rt△DBC的公共斜边,则A、B、C、D在以BC为直径的圆上,则叫它们“四点共圆”.如图②,△ABC的三条高AD、BE、CF相交于点H,则图②中“四点共圆”的组数为()A.2B.3C.4D.6【分析】根据两个直角三角形公共斜边时,四个顶点共圆,结合图形求解可得.【解答】解:如图,以AH为斜边的两个直角三角形,四个顶点共圆(A、F、H、E),以BH为斜边的两个直角三角形,四个顶点共圆(B、F、H、D),以CH为斜边的两个直角三角形,四个顶点共圆(C、D、H、E),以AB为斜边的两个直角三角形,四个顶点共圆(A、E、D、B),以BC为斜边的两个直角三角形,四个顶点共圆(B、F、E、C),以AC为斜边的两个直角三角形,四个顶点共圆(A、F、D、C),共6组.故选:D.6.如图,在四边形ABCD中,AC、BD为对角线,点M、E、N、F分别为AD、AB、BC、CD边的中点,下列说法:①当AC=BD时,M、E、N、F四点共圆.②当AC⊥BD时,M、E、N、F四点共圆.③当AC=BD且AC⊥BD时,M、E、N、F四点共圆.其中正确的是()A.①②B.①③C.②③D.①②③【分析】连接EM、MF、FN、NE,连接EF、MN,交于点O,利用三角形中位线定理可证到四边形ENFM 是平行四边形;然后根据条件判定四边形ENFM的形状,就可知道M、E、N、F四点是否共圆.【解答】解:连接EM、MF、FN、NE,连接EF、MN,交于点O,如图所示.∵点M、E、N、F分别为AD、AB、BC、CD边的中点,∴EM∥BD∥NF,EN∥AC∥MF,EM=NF=BD,EN=MF=AC.∴四边形ENFM是平行四边形.①当AC=BD时,则有EM=EN,所以平行四边形ENFM是菱形.而菱形的四个顶点不一定共圆,故①不一定正确.②当AC⊥BD时,由EM∥BD,EN∥AC可得:EM⊥EN,即∠MEN=90°.所以平行四边形ENFM是矩形.则有OE=ON=OF=OM.所以M、E、N、F四点共圆,故②正确.③当AC=BD且AC⊥BD时,同理可得:四边形ENFM是正方形.则有OE=ON=OF=OM.所以M、E、N、F四点共圆,故③正确.故选:C.7.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形AMFN =a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()A.2B.3C.4D.5【分析】①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,等量代换得到∠DAM=∠AND,故①正确;②根据正方形的性质得到PC∥EF,根据相似三角形的性质得到CP=b﹣;故②正确;③根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM ≌△NGF;故③正确;④由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN=AM2是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是正方形,于是得到S四边形AMFN=a2+b2;故④正确;⑤根据正方形的性质得到∠AMP=90°,∠ADP=90°,得到∠ABP+∠ADP=180°,于是推出A,M,P,D四点共圆,故⑤正确.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确;②∵四边形CEFG是正方形,∴PC∥EF,∴△MPC∽△EMF,∴,∵大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),BM=b,∴EF=b,CM=a﹣b,ME=(a﹣b)+b=a,∴,∴CP=b﹣;故②正确;③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,,∴△ABM≌△NGF;故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,∴AM=NF,∴四边形AMFN是矩形,∵∠BAM=∠NAD,∴∠BAM+DAM=∠NAD+∠DAN=90°,∴∠NAM=90°,∴四边形AMFN是正方形,∵在Rt△ABM中,a2+b2=AM2,=AM2=a2+b2;故④正确;∴S四边形AMFN⑤∵四边形AMFN是正方形,∴∠AMP=90°,∵∠ADP=90°,∴∠AMP+∠ADP=180°,∴A,M,P,D四点共圆,故⑤正确.故选:D.8.如图,已知∠A的平分线分别与边BC、△ABC的外接圆交于点D、M,过D任作一条与直线BC不重合的直线l,直线l分别与直线MB、MC交于点P、Q,下列判断错误的是()A.无论直线l的位置如何,总有直线PM与△ABD的外接圆相切B.无论直线l的位置如何,总有∠PAQ>∠BACC.直线l选取适当的位置,可使A、P、M、Q四点共圆D.直线l选取适当的位置,可使S△APQ<S△ABC【分析】本题要求选出错误的命题,只需找到一个命题,说明该命题是假命题即可.可采用反证法判断C是错误的,运用相交弦定理可得DA•DM=DP•DQ,DA•DM=DB•DC,可得DP•DQ=DB•DC,即=,从而可得△DBP∽△DQC,则有∠BPD=∠QCD.由AM平分∠BAC可得∠BAM=∠MAC,根据圆周角定理可得∠MBC=∠MAC,∠MCB=∠BAM,即可得到∠MBC=∠MCB,从而有∠BPD=∠MBC,与三角形外角的性质∠MBC=∠BPD+∠BDP矛盾,故假设不成立,即选择C错误.【解答】解:假设A、P、M、Q四点共圆,根据相交弦定理可得:DA•DM=DP•DQ,∵A、B、M、C四点共圆,∴根据相交弦定理可得:DA•DM=DB•DC,∴DP•DQ=DB•DC,即=,∵∠BDP=∠QDC,∴△DBP∽△DQC,∴∠BPD=∠QCD,∵AM平分∠BAC,∴∠BAM=∠MAC,∵∠MBC=∠MAC,∠MCB=∠BAM,∴∠MBC=∠MCB,∴∠BPD=∠MBC.与∠MBC=∠BPD+∠BDP矛盾,故假设不成立,因而命题C错误,故选:C.9.如图,一副直角三角板满足∠ACB=∠EDF=90°,AC=BC,AB=DF,∠EFD=30°,将三角板DEF 的直角顶点D放置于三角板ABC的斜边AB上,再将三角板DEF绕点D旋转,并使边DE与边AC交于点M,边DF与边BC于点N.当∠EDF在△ABC内绕顶点D旋转时有以下结论:①点C,M,D,N四点共圆;②连接CD,若AD=DB,则△ADM∽△CDN;③若AD=DB,则DN•CM=BN•DM;④若AD=DB,则CM+CN=AD;⑤若DB=2AD,AB=6,则2≤S△DMN≤4.其中正确结论的个数是()A.2B.3C.4D.5【分析】①正确,如图1中,只要证明∠MCN+∠MDN=180°.②正确,可以证明△ADM与△DCN全等.③正确,如图3中,只要证明△ADM≌△CDN,推出AM=CN,DM=DN,因为AC=BC,推出CM=BN,即可证明.④正确,如图4中,作DH⊥AC于H,DG⊥BC于G.只要证明四边形CHDG是正方形,△DHM≌△DGN,推出MH=NG,推出CM+CN=CH+MH+CG﹣NG=2CH,又因为AD=CD=CH,由此即可证明.⑤正确,如图5中,由△DHM∽△DGN,推出==,设DM=x,则DG=2x,推出S△DMN=•2x•x=x2,当DM⊥AC时,DM的值最小,此时DM=DH=,△DMN的面积最小值为2,当DM ⊥AB时,DM的值最大,此时DM=AD=2,△DMN的面积的最大值为4,由此即可判断.【解答】解:①正确.理由如下:如图1中,∵∠ACB=90°,∠EDF=90°,∴∠MCN+∠MDN=180°,∴点C,M,D,N四点共圆.②正确.理由如下:如图2中,连接CD.∵AC=BC.AD=DB.∴CD⊥AB,CD=AD=DB,∴∠ADC=∠MDN=90°,∴∠ADM=∠CDN,在△ADM和△CDN中,,∴△ADM≌△CDN.故②正确.③正确.理由如下:如图3中∵CA=CB,∠ACB=90°,AD=DB,∴CD=AD=DB,CD⊥AB,∠A=∠ACD=∠DCN=45°,∴∠ADC=∠EDF=90°,∴∠ADM=∠CDN,在△ADM和△CDN中,,∴△ADM≌△CDN,∴AM=CN,DM=DN,∵AC=BC,∴CM=BN,∴DN•CM=BN•DM④正确.理由如下:如图4中,作DH⊥AC于H,DG⊥BC于G.∵∠ACD=∠BCD=45°,∴DH=DG,∵∠DHC=∠HCG=∠CGD=90°,∴四边形CHDG是矩形,∵DH=DG,∴四边形CHDG是正方形,∴∠HDG=∠MDN=90°,CH=CG,∴∠MDH=∠GDN,在△DHM和△DGN中,,∴△DHM≌△DGN,∴MH=NG∴CM+CN=CH+MH+CG﹣NG=2CH,∵AD=CD=CH,∴CM+CN=AD.如图5中,作DH⊥AC于H,DG⊥BC于G.∵AB=6,BD=2AD,∴AD=2,BD=4,∴AH=DH=,DG=GB=2,∵∠DHC=∠HCG=∠CGD=90°,∴四边形CHDG是矩形,∴∠HDG=∠MDN,∴∠MDH=∠NDG,∵∠DHM=∠DGN=90°,∴△DHM∽△DGN,∴==,设DM=x,则DG=2x,=•2x•x=x2,∴S△DMN当DM⊥AC时,DM的值最小,此时DM=DH=,△DMN的面积最小值为2,当DM⊥AB时,DM的值最大,此时DM=AD=2,△DMN的面积的最大值为4,≤4.∴2≤S△DMN故选:D.二.填空题(共14小题)10.若一个圆经过梯形ABCD的四个顶点,则这个梯形是等腰梯形.【分析】由四点共圆和平行线的性质证出∠B=∠C,根据在同一底上的两角相等的梯形是等腰梯形就能求出答案.【解答】解:∵圆经过梯形ABCD的四个顶点,∴∠A+∠C=180°,∵AD∥BC,∴∠A+∠B=180°,∴∠B=∠C,∴梯形ABCD是等腰梯形.故答案为:等腰.11.已知AB为圆O的一条弦(非直径),OC⊥AB于C,P为圆O上任意一点,直线PA与直线OC相交于点M,直线PB与直线OC相交于点N.以下说法正确的有①③.①O,M,B,P四点共圆;②A,M,B,N四点共圆;③A,O,P,N四点共圆.【分析】首先按照题意画出示意图,然后根据四点共圆的判定定理进行判断.①验证∠BPM=∠BOC 即可;②由图形可知明显错误;③推导∠AOP+∠ANP=180°即可.【解答】解:如图,∵OC⊥AB于C,∴∠BOC=∠AOC=∠AOB,NA=NB,∵∠BPM=∠AOB,∴∠BPM=∠BOC,∴O、M、B、P四点共圆,∴①正确.∵四边形AMBN为凹四边形.∴A、M、B、N不共圆,∴②错误.∵NA=NB,∴∠NAB=∠NBA,∵∠NAB+∠NBA+∠ANP=180°,∴∠ANP+2∠NBA=180°∵∠AOP=2∠NBA,∴∠AOP+∠ANP=180°,∴A、O、P、N四点共圆,∴③正确.故答案为:①③12.已知△ABC中,∠BAC≠90°,AD⊥BC,BE⊥AC,且AD、BE交于点H,连接CH,则∠ACH+∠BAE=90°.【分析】根据题意可知,点A、B、D、E共圆,点H是△ABC的垂心.过点A作⊙O的切线AF交BC 的延长线BC于点F.根据切线的性质可知△ABF是直角三角形、由平行线的判定与性质可知∠HCA=∠CAF;最后由图形可知∠BAF=∠FAC+∠CAB=90°,即∠BAC+∠HCA=90°.【解答】解:∵△ABC中,∠BAC≠90°,AD⊥BC,BE⊥AC,∴点A、B、D、E在以AB为直径的⊙O上;过点A作⊙O的切线AF交BC的延长线BC于点F,则AF⊥AB.∵点H是三角形ABC的垂心,∴CH⊥AB,∴CH∥AF,∴∠HCA=∠CAF(两直线平行,内错角相等);又∵∠BAF=∠FAC+∠CAB=90°,∴∠BAC+∠HCA=90°.故答案是:90°.13.已知△ABC为等腰直角三角形,∠C为直角,延长CA至D,以AD为直径作圆,连BD与圆O交于点E,连CE,CE的延长线交圆O于另一点F,那么的值等于.【分析】连接AE,AF,DF,根据AD为直径,可证A、C、B、E四点共圆,则∠ACF=∠ABD,又∠AFC=∠ADB,可证△AFC∽△ADB,则=,而∠FAD=∠FED=∠BEC=∠BAC=45°,根据=求解.【解答】解:如图,连接AE,AF,DF,∵AD为直径,∴∠AED=∠AEB=∠ACB=90°,∴A、C、B、E四点共圆,∴∠ACF=∠ABD,又∵∠AFC=∠ADB,∴△AFC∽△ADB,∴=,∵∠FAD=∠FED=∠BEC=∠BAC=45°,在Rt△ADF中,===.故答案为:.14.已知二次函数y1=a1(x﹣1)2﹣2012,其图象顶点为M,且与x轴交于A(x1,0),B(x2,0)两点,又知二次函数y2=a2(x﹣1)2+1的顶点为N,若A,B,M,N四点共圆,则x1x2﹣x1﹣x2=﹣2013.【分析】不妨设A在B的左边,设MN与AB的交点为H,易证△AHM∽△NHA,从而可求出AH,进而得到x1,同理可求出x2,然后代入所求代数式就可解决问题.【解答】解:不妨设A在B的左边,设MN与AB的交点为H,由题可知:M(1,﹣2012),N(1,1),则MH=2012,NH=1.根据抛物线的对称性可得MN垂直平分AB,故MN为四边形AMBN外接圆的直径,根据圆周角定理可得∠NAM=∠NBM=90°,∴∠NAH+∠MAH=90°,∠HMA+∠MAH=90°,∴∠NAH=∠HMA.∵∠AHN=∠MHA=90°,∴△AHM∽△NHA,∴=,∴AH2=MH•NH=2012,∴AH==2,∴1﹣x1=2,∴x1=1﹣2.同理x2=1+2,∴x1x2﹣x1﹣x2=(1﹣2(1+2)﹣(1﹣2)﹣(1+2)=1﹣2012﹣1+2﹣1﹣2=﹣2013.故答案为﹣2013.15.如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠ABD=72°,则∠CAD的度数为18°.【分析】通过证明点A,点B,点C,点D四点共圆,可得∠ABD=∠ACD=72°,由直角三角形的性质可求解.【解答】解:∵∠ABC=∠ADC=90°,∴点A,点B,点C,点D四点共圆,∴∠ABD=∠ACD=72°,∴∠CAD=90°﹣∠ACD=18°,故答案为:18°.16.已知:AB=2,AC平分∠DAB,∠DAB+∠DCB=180°,∠DCB=120°,当∠ABD=∠CBF时,则AC=+1.【分析】先证明A、B、C、D四点共圆,由圆周角定理得出∠ABD=∠ACD,再由已知条件和圆内接四边形的性质得出∠ACD=∠ADC,由三角形内角和定理求出∠ACD=∠ADC=75°,得出∠ACB=45°,作BM⊥AC于M,则∠AMB=∠CMB=90°,由含30°角的直角三角形的性质和勾股定理得出BM=AB=1,AM=,得出△CBM是等腰直角三角形,因此CM=BM=1,即可得出AC的长.【解答】解:∵∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∠DAB=180°﹣∠DCB=60°,∴∠ABD=∠ACD,∵∠ABD=∠CBF,∴∠ACD=∠CBF,∵∠CBF=∠ADC,∴∠ACD=∠ADC,∵AC平分∠DAB,∴∠DAC=∠BAC=30°,∴∠ACD=∠ADC=75°,∴∠ACB=120°﹣75°=45°,作BM⊥AC于M,如图所示:则∠AMB=∠CMB=90°,∴BM=AB=1,△CBM是等腰直角三角形,∴AM=BM=,CM=BM=1,∴AC=AM+CM=+1;故答案为:+1.17.在四边形ABCD中,∠DAC=98°,∠DBC=82°,∠BCD=70°,BC=AD,则∠ACD=28°.【分析】以CD为对称轴作△CDE与△CBD对称,可得∠DEC=∠DBC=82°,CE=CB,然后由∠DAC=98°可得∠DEC+∠DAC=180°,得出A、D、E、C四点共圆,然后可得CE=AD,继而得出∠DCA=∠CDE=∠CDB,由∠BCD和∠DBC的度数可求出∠BCD的度数,即可求出∠ACD的度数.【解答】解:以CD为对称轴作△CDE与△CBD对称,则∠DEC=∠DBC,CE=CB,∵∠DAC=98°,∠DBC=82°,∴∠DEC=82°,∴∠DEC+∠DAC=180°,∴A、D、E、C四点共圆,∵BC=AD,CE=CB,∴CE=AD,∴∠DCA=∠CDE=∠CDB,∵∠BCD=70°,∠DBC=82°,∴∠BDC=180°﹣∠BCD﹣∠DBC=28°,∴∠ACD=∠BDC=28°.故答案为:28°.18.如图,在等腰△ABC中,∠ABC=90°,点D为BC的中点,点E在AC边上,以DE为腰作等腰Rt△DEF,连接CF,BF.若CE=1,△CDF的面积为7.5,则BF的长为.【分析】作DN⊥AC,DM⊥FC,FK⊥BC,垂足分别为N,M,K,如图所示.易证∠DFE=∠ACB═45°,可得D、E、C、F四点共圆,从而可证到∠DEN=∠DFM,进而可得△DNE≌△DMF,则有DN =DM,NE=MF.易证四边形DNCM是正方形,设正方形DNCM的边长为x,根据△CDF的面积为7.5建立关于x的方程,求出x,从而可求出FC、KC、BK,然后根据勾股定理就可求出BF的长.【解答】证明:作DN⊥AC,DM⊥FC,FK⊥BC,垂足分别为N,M,K,如图所示.∵△ABC和△DEF都是等腰直角三角形,∴∠DFE=∠ACB=45°,∴D、E、C、F四点共圆,∴∠EDF+∠ECF=180°,∠DEC+∠DFC=180°,∠DCF=∠DEF=45°.∵∠DEN+∠DEC=180°,∴∠DEN=∠DFM.在△DNE和△DMF中,.∴△DNE≌△DMF,∴DN=DM,NE=MF.∵∠DNC=∠NCM=∠DMC=90°,∴四边形DNCM是矩形.∵DN=DM,∴矩形DNCM是正方形.设正方形DNCM的边长为x,则NC=MC=DM=DN=x,∴MF=NE=NC﹣EC=x﹣1,∴FC=MC+FM=x+(x﹣1)=2x﹣1.∵△CDF的面积为7.5,∴x(2x﹣1)=7.5.解得:x1=﹣2.5(舍去),x2=3.∴BD=DC==3,FC=5,∴KF=FC•sin45°=.同理:KC=,∴BK=BC﹣KC=6﹣=,∴BF==.故答案为:.19.如图,线段AB、CD相交于E,AE=AC,DE=DB,点M、F、G分别为线段AD、CE、EB的中点,如果∠MAE=25°,∠AMF=40°,那么∠MFG的度数为45°.【分析】如图,连接AF,DG,由等腰三角形的性质可得∠AFD=∠AGD=90°,可得点A,点F,点G,点D四点共圆,可得∠DFG=∠GAD=25°,由直角三角形的性质和等腰三角形的性质可求∠DFM =20°,即可求解.【解答】解:如图,连接AF,DG,∵AE=AC,DE=DB,点F,点G是CE,BE的中点,∴AF⊥CE,DG⊥BE,∴∠AFD=∠AGD=90°,∴点A,点F,点G,点D四点共圆,∴∠DFG=∠GAD=25°,∵∠AFD=90°,点M是AD中点,∴AM=FM=DM,∴∠DFM=∠FDM,且∠AMF=∠FDM+∠DFM=40°,∴∠DFM=20°,∴∠MFG=∠MFD+∠DFG=45°,故答案为45°.20.如图,点O为等边△ABC内一点,OA=2,OC=,连接BO并延长交AC于点D,且∠DOC=30°,过点B作BF⊥BD交CO延长线于点F,连接AF,过点D作DE⊥AF于点E,则DE=.【分析】过点C作CM⊥CF交BD延长线于点M,连接AM,由∠BMC=∠BAC=∠BFC=60°知A、F、B、C、M五点共圆,证∠AMB=60°、OM=OA=2得△AOM是等边三角形,由∠AOM=60°=∠OMC知MC∥AO,得===,从而有OD=OM=、DM=OM=,由A、F、B、M四点共圆证△ODG是等边三角形,得AG=OA﹣OG=OM﹣OD=DM=、EG=AG=,根据DE=DG+EG=OD+EG得出答案.【解答】解:过点C作CM⊥CF交BD延长线于点M,连接AM,∵∠DOC=30°,∴∠BMC=∠BAC=∠BFC=60°,∴A、F、B、C、M五点共圆,∴∠AMB=∠ACB=60°,∵OC=、∠COD=30°,∴OM==2=OA,∴△AOM是等边三角形,∴∠AOM=60°,∵∠AOM=60°=∠OMC,∴MC∥AO,∴===,∴OD=OM=,DM=OM=,∵A、F、B、M四点共圆,∴∠FAM=180°﹣∠FBM=90°,∴∠EAG=∠FAM﹣∠OAM=30°,∴∠OGD=∠AGE=60°,∴△ODG是等边三角形,∴AG=OA﹣OG=OM﹣OD=DM=,∴EG=AG=,∴DE=DG+EG=OD+EG=,故答案为:.21.如图,正方形ABCD的边长为2,对角线AC、BD交于点O,E为DC上一点,∠DAE=30°,过D作DF⊥AE于F点,连接OF.则线段OF的长度为﹣.【分析】作OG⊥DF于G,连接OG.易证A、O、F、D四点共圆,从而有∠OFG=∠DAO=45°,则有OG=FG.设GF=GO=x,则有DG=1+x,OF=x.然后先求出OD,再在Rt△OGD中运用勾股定理求出x,就可得到OF的长.【解答】解:作OG⊥DF于G,连接OG,如图所示.∵四边形ABCD是正方形,∴∠DAC=45°,∠AOD=90°.∵DF⊥AE,即∠AFD=90°,∴∠AOD=∠AFD.∴A、O、F、D四点共圆.∴∠OFG=∠DAO=45°.∵OG⊥DF,即∠OGF=90°,∴∠FOG=45°=∠OFG.∴OG=FG.∵∠AFD=90°,∠DAE=30°,AD=2,∴DF=1.设GF=GO=x,则有DG=DF+FG=1+x,OF==x.在Rt△AOD中,OD=AD•sin∠DAO=2×=.在Rt△OGD中,∵∠OGD=90°,∴OG2+DG2=OD2.∴x2+(1+x)2=()2.解得:x1=﹣+,x2=﹣﹣(舍去).所以OF=x=﹣.故答案为:﹣.22.如图,ABCD、CEFG是正方形,E在CD上,且BE平分∠DBC,O是BD中点,直线BE、DG交于H.BD,AH交于M,连接OH,则OH=AB,BM=AB.【分析】易得△BCE≌△DCG,得到∠1=∠2,B,C,H,D四点共圆,得出OH=BD=AB,由E关于BD的对称E′,得到△BEE′是等腰三角形,BM⊥E′E于M,由角平分线到角两边的距离相等得出BM=AB.【解答】解:如图,设EE′与BD交于点M′,∵AD=CD∴AE′=CE=EF,∵∠E′AM′=∠EFM′,∠AM′E′=∠FM′F,∴△AM′E′≌△FM′E(AAS),∴EM′=E′M′,∵ME′=ME∴M与M′重合,∵BC=DC,EC=CG,∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠1=∠2,∴B,C,H,D四点共圆,∴OH=BD=AB,∵E关于BD的对称E′,∵∠3=∠4,BE=BE′,∴△BEE′是等腰三角形,∴BM⊥E′E于M,∴BM=AB.故答案为:AB,AB.23.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=a﹣;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的序号为①③④⑤.【分析】①由正方形的性质得∠BAD=∠ADC=∠B=90°,由旋转的性质得∠NAD=∠BAM,∠AND =∠AMB,由余角的性质进而得∠DAM=∠AND,①正确;②由正方形的性质得PC∥EF,由相似三角形的性质得到CP=b﹣,②错误;③由旋转的性质得GN=ME,则AB=ME=NG,证出△ABM≌△NGF(SAS);③正确;=AM2=a2+b2;④正确;得到S四边形AMFN⑤由正方形的性质得∠AMP=90°,∠ADP=90°,得∠ABP+∠ADP=180°,推出A,M,P,D四点共圆,⑤正确.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确;②∵四边形CEFG是正方形,∴PC∥EF,∴△MPC∽△MFE,∴=,∵大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),BM=b,∴EF=b,CM=a﹣b,ME=(a﹣b)+b=a,∴=,∴CP=b﹣;故②错误;③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,,∴△ABM≌△NGF(SAS);故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,。

四点共圆精选习题及答案

四点共圆精选习题及答案

四点共圆精选习题及答案作为一种古老而神秘的数学理论,圆形一直是数学家们探究和研究的对象之一。

而在圆形领域中,四点共圆更是一个受到广泛关注和深入研究的问题。

四点共圆是指在平面上给出任意四个点,能否通过一个圆将这四个点完美地围起来。

今天我们精选了几个四点共圆的习题,希望能给大家带来一些启示。

题目一:已知在平面直角坐标系中,四点 A(0,0),B(0,2),C(4,0),D(x,y)。

若四点在同一圆上,则点 D 的坐标为多少?解题思路:根据四点共圆基本知识,可以列出以下方程组:(x-2)²+y²=r²x²+(y-2)²=r²(x-4)²+y²=r²x²+y²=r²将方程组联立,消去 r,最终得到 x²+y²=5²,即点 D 的坐标为(3,4)或(−3,4)。

题目二:在平面直角坐标系中,四个点 A,B,C,D 分别为(7,0),(0,7),(−7,0) 和(0,−7)。

请证明:四点共圆。

解题思路:根据四点共圆定理,四个点共圆当且仅当它们构成的任意三角形的外接圆都存在。

可得三个三角形 ABC、ACD 和ABD 的外接圆都是以原点为圆心的半径为7 的圆,因此四点 A、B、C、D 构成的圆也一定存在。

题目三:在平面直角坐标系中,四点 A,B,C,D 分别为(−3,4),(−4,−3),(4,−3) 和(−1,−2)。

请计算过点 C 的直径的长度。

解题思路:通过计算可以知道,连接点 C 和其他三个点构成的三角形外接圆的圆心坐标分别为(−1,−1)、(−1,0) 和 (0,1),因此过点 C 的直径所在的直线应为直线 y=x-1。

可得直线 y=x-1 与直线x=4、直线x=−3 和直线y=−3 的交点分别为 (4, 3)、(−3,−4) 和(0,−1),因此该直径的长度为√145。

专题26 四点共圆模型(学生版)

专题26 四点共圆模型(学生版)

专题26四点共圆模型【模型】如图26-1,已知在由点A 、B 、C 、D 构成的四边形中,︒=∠=∠90ADB ACB ⇒(1)点A 、B 、C 、D 四点在同一个圆上,且AB 为圆O 的直径。

(2)圆内接四边形的对角互补。

【模型变式】如图26-2,已知AB 为ABC ∆和ABD ∆的公共边,点C 、D 在AB 的同侧,且D C ∠=∠。

⇒点A 、B 、C 、D 四点在同一个圆上,且AB 为圆O 的直径。

【例1】如图,四边形ABCD 内接于O ,AB CD =,A 为BD 中点,60BDC ∠=︒,则ADB ∠等于()A .40︒B .50︒C .60︒D .70︒【例2】如图,四边形ABCD 是⊙O 的内接四边形,若⊙O 半径为4,且∠C =2∠A ,则BD 的长为__.【例3】如图,已知Rt ABC 和Rt CDE △,90ACB CDE ∠=∠=︒,CAB CED ∠=∠,8AC =,6BC =,点D 在边AB 上,射线CE 交射线BA 于点F .(1)如图,当点F 在边AB 上时,联结AE .①求证:AE BC ∥;②若12EF CF =,求BD 的长;(2)设直线AE 与直线CD 交于点P ,若PCE 为等腰三角形,求BF 的长.一、单选题1.如图,Rt △ABC 中,AB =BC ,∠ABC =90°,O 为AC 的中点,K 为BC 上一点,NC ⊥BC ,且NC =BK ,AK 分别交BN 、OB 于M 、F ,AC 交BN 于E ,连接OM ,下列结论:①AK ⊥BN ;②OE =OF ;③∠OMN =45°;④若∠OAF =∠BAF ,则1=2OM AF .其中正确结论的个数有()A .1个B .2个C .3个D .4个2.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =4,将△ABC 绕点A 沿顺时针方向旋转后得到△ADE ,直线BD 、CE 相交于点O ,连接AO .则下列结论中:①△ABD ∽△ACE ;②∠COD =135°;③AO ⊥BD ;④△AOC 面积的最大值为8,其中正确的有()A .1个B .2个C .3个D .4个3.如图,圆上有A 、B 、C 、D 四点,其中80BAD ∠=︒,若弧ABC 、弧ADC 的长度分别为7π、11π,则弧BAD 的长度为()A .4πB .8πC .10πD .15π二、填空题4.在综合实践课上,老师要求同学用正方形纸片剪出正三角形且正三角形的顶点都在正方形边上.小红利用两张边长为2的正方形纸片,按要求剪出了一个面积最大的正三角形和一个面积最小的正三角形.则这两个正三角形的边长分别是______.5.如图,已知在扇形AOB 中,120AOB ∠=︒,半径8OA OB ==.P 为弧AB 上的动点,过点P 作PM OA ⊥于点M ,PN OB ⊥于点N ,点M ,N 分别在半径,OA OB 上,连接MN .点D 是PMN 的外心,则点D 运动的路径长为________.6.如图,将ABC 绕点A 顺时针旋转25°得到AEF ,EF 交BC 于点N ,连接AN ,若57C ∠=︒,则ANB ∠=__________.三、解答题7.在等边ABC 中,D 是边AC 上一动点,连接BD ,将BD 绕点D 顺时针旋转120°,得到DE ,连接CE .(1)如图1,当B 、A 、E 三点共线时,连接AE ,若2AB =,求CE 的长;(2)如图2,取CE 的中点F ,连接DF ,猜想AD 与DF 存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接BE 、AF 交于G 点.若GF DF =,请直接写出CD AB BE+的值.8.在平面直角坐标系中,抛物线y =3ax 2﹣10ax +c 分别交x 轴于点A 、B (A 左B 右)、交y 轴于点C ,且OB =OC =6.(1)如图1,求抛物线的解析式;(2)如图2,点P 在第一象限对称轴右侧抛物线上,其横坐标为t ,连接BC ,过点P 作BC 的垂线交x 轴于点D ,连接CD ,设△BCD 的面积为S ,求S 与t 的函数关系式(不要求写出t 的取值范围);(3)如图3,在(2)的条件下,线段CD 的垂直平分线交第二象限抛物线于点E ,连接EO 、EC 、ED ,且∠EOC =45°,点N 在第一象限内,连接DN ,DN EC ∥,点G 在DE 上,连接NG ,点M 在DN 上,NM =EG ,在NG 上截取NH =NM ,连接MH 并延长交CD 于点F ,过点H 作HK ⊥FM 交ED 于点K ,连接FK ,若∠FKG =∠HKD ,GK =2MN ,求点G 的坐标.9.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角.①若∠A =40°,直接写出∠E 的度数是;②求∠E 与∠A 的数量关系,并说明理由.(2)如图2,四边形ABCD 中,∠ABC =∠ADC =90°,点E 在BD 的延长线上,连CE ,若∠BEC 是△ABC 中∠BAC 的遥望角,求证:DA =DE .10.如图,在等腰Rt ABC 中,90BAC ∠=︒,AD BC ⊥,垂足为D ,点E 为AC 边上一点,连接ED 并延长至F ,使ED FD =,以EF 为底边作等腰Rt EGF .(1)如图1,若30ADE ∠=︒,4AE =,求CE 的长;(2)如图2,连接BF ,DG ,点M 为BF 的中点,连接DM ,过D 作DH AC ⊥,垂足为H ,连接AG 交DH 于点N ,求证:=DM NG ;(3)如图3,点K 为平面内不与点D 重合的任意一点,连接KD ,将KD 绕点D 顺时针旋转90︒得到K D ',连接K A ',KB ,直线K A '与直线KB 交于点P ,D ¢为直线BC 上一动点,连接AD '并在AD '的右侧作C D AD '''⊥且C D AD '''=,连接AC ',Q 为BC 边上一点,3CD CQ =,AB =,当QC C P ''+取到最小值时,直线C P '与直线BC 交于点S ,请直接写出BPS △的面积.11.直线y kx k =+与x 轴交于A ,与y 轴交于C 点,直线BC 的解析式为1y x k k=-+,与x 轴交于B .(1)如图1,求点A 的横坐标;(2)如图2,D 为BC 延长线上一点,过D 作x 轴垂线于点E ,连接CE ,若CD CA =,设ACE 的面积为S ,求S 与k 的函数关系式;(3)如图3,在(2)的条件下,连接OD 交AC 于点F ,将CDF 沿CF 翻折得到△FCG ,直线FG 交CE 于点K ,若345ACE CDO ∠-∠=︒,求点K 的坐标.12.如图(1),已知矩形ABCD 中,6cm AB BC ==,,点E 为对角线AC 上的动点.连接BE ,过E 作EB 的垂线交CD 于点F .(1)探索BE 与EF 的数量关系,并说明理由.(2)如图(2),过F 作AC 垂线交AC 于点G ,交EB 于点H ,连接CH .若点E 从A 出发沿AC 方向以23cm /s 的速度向终点C 运动,设E 的运动时间为s t .①是否存在t ,使得H 与B 重合?若存在,求出t 的值;若不存在,说明理由;②t 为何值时,CFH △是等腰三角形;③当CG GH =时,求CGH 的面积.13.如图,等腰Rt △ABC 中,∠ACB =90°,D 为BC 边上一点,连接AD .(1)如图1,作BE ⊥AD 延长线于E ,连接CE ,求证:∠AEC =45°;(2)如图2,P 为AD 上一点,且∠BPD =45°,连接CP .①若AP =2,求△APC 的面积;②若AP =2BP ,直接写出sin ∠ACP 的值为______.14.定义:有一个角是其对角一半的圆的内接四边形叫做圆美四边形,其中这个角叫做美角.已知四边形ABCD 是圆美四边形.(1)求美角A ∠的度数;(2)如图1,若O 的半径为5,求BD 的长;(3)如图2,若CA 平分BCD ∠,求证:BC CD AC +=.15.如图1,抛物线23y x bx c =++经过原点(0,0),(12,0)A 两点.(1)求b 的值;(2)如图2,点P 是第一象限内抛物线2y bx c =++上一点,连接PO ,若tan POA ∠=求点P 的坐标;(3)如图3,在(2)的条件下,过点P 的直线y m =+与x 轴交于点F ,作CF OF =,连接OC 交抛物线于点Q ,点B 在线段OF 上,连接CP 、CB 、PB ,PB 交CF 于点E ,若2PBA PCB ∠=∠,2BEF BCF ∠=∠,求点Q 的坐标.。

专题3.8 四点共圆(隐圆压轴五)(解析版)

专题3.8 四点共圆(隐圆压轴五)(解析版)

∴DG=CG﹣CD= = ,
在 Rt△ADG 中,由勾股定理得







故答案为:6,

【变式 1-5】如图,AB⊥BC,AB=5,点 E、F 分别是线段 AB、射线 BC 上的动 点,以 EF 为斜边向上作等腰 Rt△DEF,∠D=90°,连接 AD,则 AD 的最 小值为 .
【答案】 . 【解答】解:连接 BD 并延长,如图,
模型解读:
模型 1:对角互补型: 若∠A+∠C=180º或∠B+∠D=180º, 则 A、B、C、D 四点共圆 模型 2:同侧等角型 (1)若∠A=∠C, 则 A、B、C、D 四点共圆
(2)手拉手(双子型)中的四点共圆 条件:△OCD∽△OAB 结论:①△OAC∽△OBD ②AC 与 BD 交于点 E,必有∠AEB=∠AOB; ③点 E 在△OAB 的外接圆上,即 O、A、B、E 四点共圆.同理:ODCE 也四点共圆.
∴S△ABC=

=300 km2.
则当△ADC 的面积最大时,四边形 ABCD 的面积最大.
当 AD=CD 时,DF 最大,此时四边形 ABCD 的面积最大.
在 Rt△ACE 中,AC=
=10 km,AF= AC=5
km,
∵∠ADF=
=30°,
∴DF= AF=5 km,
∴S△ADC=
Hale Waihona Puke ==925 km2.
C.15
【答案】C
【解答】解:∵∠BAC=60°,∠BDC=120°,
∴A、E、D、F 四点共圆,
∵AD 平分∠BAC,
∴∠DAE=∠DAF,
∴DE=DF=6,

四点共圆练习题(精.选)

四点共圆练习题(精.选)

word.CF EAH B N M C A B 四点共圆练习题1. 如图,ABC ∆三边上的高交于H ,H 不于任一顶点重合,则以A 、B 、C 、D 、E 、F 、H中某四个点可以确定的圆共有多少个?2. 在梯形ABCD 中,AB ‖DC ,DC AB >,K 、M 分别在AD 、BC 上,CBK DAM ∠=∠,求证:CKB DMA ∠=∠3. 正方形ABCD 的中心为O ,面积为21989cm ,P 为正方形内一点,︒=∠45OPB ,14:5:=PB PA ,求PB 。

4.如图8,△ABC 的高AD 的延长线交外接圆于H ,以AD 为直径作圆和AB 、AC 分别交于E 、F 点,EF 交 AD 于 G ,若 AG=16cm ,AH=25cm ,求 AD 的长.5. 如图,在平行四边形ABCD 中,BC AM ⊥于M ,CD AN ⊥于N ,若13=AB ,5=BM ,9=MC ,求MN 的长度6.如图所示,棱形ABCD 的对角线AC,BD 相交于点O,四条边AB,BC,CD,DA 的中点为E,F,G ,H.求证:E,F,G ,H 四点共圆7. 如图2,从⊙O 外一点P 引切线PA 、PB 和割线PDC ,从A 点作弦AE 平行于DC ,连结BE 交DC 于F ,求证:FC =FD .BC MK DA CBOPDA FEDABOC8.在△ABC中,AB=AC,AD⊥BC,∠B的两条三等分线交AD于E、G,交AC于F、H.求证:EH∥GC.9.如图,△ABC为等边三角形,D,E分别为BC,AC边上的点,且BD=13BC,CE=13AC,AD与BE相交于点P,求证:CP⊥AD10.锐角△ABC中,BD,CE分别是AC,AB边上的高线,EM⊥BD于M,DN⊥CE于N.求证:MN//BC.11.在△ABC中,,B C∠∠的平分线相交于T, ,B C∠∠的外角平分线相交于P.求证:()12BPC ABC ACB∠=∠+∠12.如图所示,如果五边形ABCDE中,.ABC ADE AEC ADB∠=∠∠=∠且求证:BAC DAE∠=∠.13.四边形ABCD内接于圆,通过M和N分别表示直线AB和CD,BC与AD的交点,设1B是已知圆同过点B、M、N三点的圆的异于B的交点,求证:直线1B D平分线段MN.最新文件仅供参考已改成word文本。

24.24专题6:四点共圆问题

24.24专题6:四点共圆问题

24.24专题6:四点共圆一.【知识要点】 四点共圆模型:(1)若四个点到一个定点的距离相等,则这四个点共圆(如图1);(2)共斜边的两个直角三角形,四个顶点共圆(如图2,3);(3)对角互补的四边形四个顶点共圆(如图4);(4)共底边且在同侧的两个三角形顶角相等(如图5)。

二.【经典例题】1.已知OA=OB=OC=2,且∠ACB=45°,则AB 的长为( ) A.2 B.3 C.22 D.322.如图所示,矩形ABCD 的边AB=3,Rt △BEF 的直角顶点E 在对角线AC 上,另一顶点F 在边CD 上,若△BEF 的一个锐角为30°,则BC 的长是( ) A.3 B.33 C.333或 D.63.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在AB下方,∠BDC=45°,求证:AD⊥BD.4.如图,四边形ABCD是正方形,E是BC上一点,AE⊥EF交∠BCD的外角平分线于F,求证:AE=EF.5.如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限。

其斜边两端点A、B分别落在x轴、y轴上,且AB=12厘米,(1)若OB=6厘米,①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离. (2)点C与点O的距离的最大值是多少厘米?6.(绵阳2015年第25题本题满分14分)如图,在边长为2的正方形ABCD中,G是AD延长线时的一点,且DG = AD,动点M从A点出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A,G重合),设运动时间为t秒,连接BM并延长AG于N.(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN = HN;(3)过点M分别作AB,AD的垂线,垂足分别为E,F,矩形AEMF与△ACG重叠部分的面积为S,求S的最大值.7.如图,菱形ABCD中,两条对角线AC,BD相交于点O,点E和点F分别是BC和CD上一动点,且∠EOF+∠BCD=180°,∠ABC=60°,连接EF.(1)求△OEF是什么特殊的三角形?(2)若AB=2,求CE+CF的长;三.【题库】【A】1.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在AB下方,AD⊥BD,求∠BDC的度数.2.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在AB上方,AD⊥BD,求∠BDC的度数.3.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在AB上方,∠BDC=45°,求证:AD⊥BD.4.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在AB上方,∠ADC=135°,求证:AD⊥BD.5.在Rt△ABC中,∠ACB=90°,AC=BC,点E为△ABC外一点,且∠CEA=45°.求证:AE⊥BE.6.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A.B.C.D.【B】1.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M 在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=a﹣;③△ABM≌△NGF;=a2+b2;④S四边形AMFN⑤A,M,P,D四点共圆,其中正确的序号为.【C】1.将线段AB绕点A逆时针旋转60°得到线段AC,继续旋转α(0°<α<120°)得到线段AD,连接CD.(1)连接BD,①如图1,若α=80°,则∠BDC的度数为;②在第二次旋转过程中,请探究∠BDC的大小是否改变.若不变,求出∠BDC的度数;若改变,请说明理由.(2)如图2,以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE.若∠CED=90°,求α的值.【D】1.如图,C,D是以AB为直径的半圆上的两点,∠AOC=40°,P在直径AB上,且∠OCP=∠ODP=10°,则∠BOD的度数为().A.20°B.30°C.25°D.15°2.正方形ABCD 的中心为O ,面积为1989cm 2.P 为正方形内一点,且∠OPB =45°,P A :PB =5:14.则PB 的长为( ). A.42cm B.40cm C.35cm D.50cm3.如图,在△ABC 中,∠C =90°,点D 是BC 边上一动点,过点B 作BE ⊥AD 交AD 的延长线于E .若AC =6,BC =8,则的最大值为( )A .B .C. D .4.如图,在菱形ABCD 中,点P 是BC 边上一动点,P 和C 不重合,连接AP ,AP 的垂直平分线交BD 于点G ,交AP 于点E ,在P 点由B 点到C 点的运动过程中,∠APG 的大小变化情况是( )A .变大B .先变大后变小C .先变小后变大D .不变5. 如图,ABC ∆中,45B ∠=︒,75C ∠=︒,4AB =,D 为BC 上一动点,过点D 作DE AC ⊥于点E ,DF AB ⊥于点F ,连接EF ,则EF 的最小值为 ( ) A .3B .2C .5D .6。

专题11四点共圆模型-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(全国通用)(解析版)

专题11四点共圆模型-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(全国通用)(解析版)

【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题11四点共圆模型模型1:定点定长共圆模型若四个点到一个定点的距离相等,则这四个点共圆.如图,若OA =OB =OC =OD ,则A ,B ,C ,D 四点在以点O 为圆心、OA 为半径的圆上.模型2:对角互补共圆模型2.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆.如图,在四边形ABCD 中, 若∠A +∠C =180°(或∠B +∠D =180°)则A ,B ,C ,D 四点在同一个圆上.拓展:若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆.如图,在四边形ABCD 中,∠CDE 为外角,若∠B =∠CDE ,则A ,B ,C ,D 四点在同一个圆上.模型3:定弦定角共圆模型若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆如图,点A ,D 在线段BC 的同侧,若∠A =∠D ,则A ,B ,C ,D 四点在同一个圆上.DDD【例1】(2021·全国·九年级课时练习)在边长为12cm的正方形ABCD中,点E从点D出发,沿边DC以1cm/s的速度向点C运动,同时,点F从点C出发,沿边CB以1cm/s的速度向点B运动,当点E达到点C 时,两点同时停止运动,连接AE、DF交于点P,设点E. F运动时间为t秒.回答下列问题:(1)如图1,当t为多少时,EF的长等于(2)如图2,在点E、F运动过程中,①求证:点A、B、F、P在同一个圆(⊙O)上;②是否存在这样的t值,使得问题①中的⊙O与正方形ABCD的一边相切?若存在,求出t值;若不存在,请说明理由;③请直接写出问题①中,圆心O的运动的路径长为_________.(2)①由(1)可得AB=CD=BC=AD=12cm,∠C=∠B=∠ADC=∠DAB=90°,DE=CF=t,∴△ADE≌△DCF,∴∠CDF=∠DAE,∵∠CDF+∠PDA=90°,∴∠DAE+∠PDA=90°,∴∠ADP=∠APF=90°,∴∠APF+∠B=180°,由四边形APFB内角和为360°可得:∠PAB+∠PFB=180°,∴点A、B、F、P在同一个圆(⊙O)上;②由题意易得:当⊙O与正方形ABCD的一边相切时,只有两种情况;a、当⊙O与正方形ABCD的边AD相切时,如图所示:由题意可得AB为⊙O的直径,∴t=12;b、当⊙O与正方形ABCD的边DC相切于点G时,连接OG并延长交AB于点M,过点O作OH⊥BC交BC于点H,连接OF,如图所示:∴OG⊥DC,GM⊥AB,HF=HB,∴四边形OMBH、GOHC是矩形,∴OH=BM=GC,OG=HC,∴OP即为圆心的运动轨迹,即故答案为6cm.【点睛】本题主要考查圆的综合,熟练掌握圆的性质及切线定理解题的关键,注意运用分类讨论思想解决问题.【例2】(2022·吉林白山·八年级期末)(1)如图①,△OAB、△OCD的顶点O重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=______°;(直接写出结果)(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图②,如果∠AOB=110°,那么∠COD的度数为_______;(直接写出结果)②如图③,若∠AOD=∠BOC,AB与CD平行吗?为什么?【例3】(2020·四川眉山·一模)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D ,则D 为BC 的中点,∠BAD =12∠BAC =60°,于是BC AB =2BD AB =迁移应用:如图2,△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =120°,D ,E ,C 三点在同一条直线上,连接BD .①求证:△ADB≌△AEC ;②请直接写出线段AD,BD,CD 之间的等量关系式;拓展延伸:如图3,在菱形ABCD 中,∠ABC =120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF .①证明△CEF 是等边三角形;②若AE =5,CE =2,求BF 的长.【例4】(2022·全国·九年级课时练习)定义:有一个角是其对角一半的圆的内接四边形叫做圆美四边形,其中这个角叫做美角.已知四边形ABCD是圆美四边形.(1)求美角∠A的度数;(2)如图1,若⊙O的半径为5,求BD的长;(3)如图2,若CA平分∠BCD,求证:BC+CD=AC.∴∠E=∠A=60°由(1)可知:∠BAD=60°,∵CA平分∠BCD,∠BCD=60°∴∠BCA=∠DCA=12∴∠ABD=∠DCA=60°∴AF=AC ,∠F=∠DCA=60°∴∠FAC=180°-∠F -∠ACF=60°∴△ACF 为等边三角形∴CF=AC∴BC +BF=AC∴BC +CD=AC【点睛】此题考查的是新定义类问题、圆内接四边形的性质、圆周角定理及推论、锐角三角函数、等边三角形的判定及性质和全等三角形的判定及性质,掌握新定义、圆内接四边形的性质、圆周角定理及推论、锐角三角函数、等边三角形的判定及性质和全等三角形的判定及性质是解决此题的关键.一、解答题1.(2022·辽宁葫芦岛·一模)射线AB 与直线CD 交于点E ,∠AED =60°,点F 在直线CD 上运动,连接AF ,线段AF 绕点A 顺时针旋转60°得到AG ,连接FG ,EG ,过点G 作GH ⊥AB 于点H .(1)如图1,点F 和点G 都在射线AB 的同侧时,EG 与GH 的数量关系是______;(2)如图2,点F 和点G 在射线AB 的两侧时,线段EF ,AE ,GH 之间有怎么样的数量关系?并证明你的结论;(3)若点F和点G 都在射线AB的同侧,AE =1,EF =2,请直接写出HG 的长.(2)解:在射线ED上截取EN=AE,连接AN,如图3,∵∠AED=60°,∴△AEN是等边三角形,∴AE=AN,∠EAN=60°∵AF=AG,∠FAG=60°,(3)①当点F和点G都在射线AB的右侧时,在射线ED上取一点M,使得EM=EG,连接MG,如图4,∵线段AF绕点A顺时针旋转60°得到AG,∴∠GAF=60°,AG=AF,∴△GAF是等边三角形,∴∠AGF=∠AFG=∠FAG=60°,AG=AF=GF,∵∠AED=60°,∴∠AGF=∠AED,∴点A、E、G、F四点共圆,∴∠GEH=∠GFA=60°,∠GEF=∠GAF=60°,∵EM=EG,∴△GEM是等边三角形,∴EM=GM=EG,∠EGM=60°,∴∠EGM=∠EGA+∠MGA=60°=∠EGM=∠MGF+∠MGA,∴∠EGA=∠MGF,∴△EGA≌△MGF,∴MF=AE=1,∴GE=EM=EF−MF=2−1=1,∵GH⊥AB,【点睛】本题主要考查了特殊角的三角函数、全等三角形的判定和性质、等边三角形的判定及性质以及旋转图形的性质,熟练掌握这些性质和判定是解题的关键.2.(2022·上海宝山·九年级期末)如图,已知正方形ABCD,将AD绕点A逆时针方向旋转n°(0<n<90)到AP的位置,分别过点C、D作CE⊥BP,DF⊥BP,垂足分别为点E、F.(1)求证:CE=EF;(2)联结CF,如果DPCF =13,求∠ABP的正切值;(3)联结AF,如果AF,求n的值.(2)(3)解:∵0<n<90,【点睛】本题考查正方形的判定与性质,相似三角形的判定与性质,以及旋转的性质和解直角三角形等,3.(2022·重庆市育才中学九年级期末)在等边△ABC中,D是边AC上一动点,连接BD,将BD绕点D顺时针旋转120°,得到DE,连接CE.(1)如图1,当B、A、E三点共线时,连接AE,若AB=2,求CE的长;(2)如图2,取CE的中点F,连接DF,猜想AD与DF存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接BE、AF交于G点.若GF=DF,请直接写出CD AB的值.BE∵将BD绕点D顺时针旋转120°,得到DE∵△ABC是等边三角形AB=1∴∠ABC=60°,AB=AC,AH=12∵点F是CE的中点∴FE 又FK=DF∴四边形CDFK是平行四边形∴ED=KC,ED∥KC∴∠EDA=∠KCA∵将BD绕点D顺时针旋转120°,得到DE,∴B,D,F,G四点共圆由(2)可知AF⊥DF,∠FAD=30°4.(2022·黑龙江·哈尔滨工业大学附属中学校九年级期末)在平面直角坐标系中,抛物线y=3ax2﹣10ax+c分别交x轴于点A、B(A左B右)、交y轴于点C,且OB=OC=6.(1)如图1,求抛物线的解析式;(2)如图2,点P在第一象限对称轴右侧抛物线上,其横坐标为t,连接BC,过点P作BC的垂线交x轴于点D,连接CD,设△BCD的面积为S,求S与t的函数关系式(不要求写出t的取值范围);(3)如图3,在(2)的条件下,线段CD的垂直平分线交第二象限抛物线于点E,连接EO、EC、ED,且∠EOC=45°,点N在第一象限内,连接DN,DN∥EC,点G在DE上,连接NG,点M在DN上,NM=EG,在NG上截取NH=NM,连接MH并延长交CD于点F,过点H作HK⊥FM交ED于点K,连接FK,若∠FKG=∠HKD,GK=2MN,求点G的坐标.又FD=FD∴△FDM≌△FDK∴FK=FM,KD=MD∴MD+MR=DK+GK即GD=RD∴△KDM,△GDR是等腰直角三角形在四边形FKDM中,∠KDM=90°,∠FKD=FMD=180°−α∴∠KFM=360°−90°−2(180°−α)=2α−90°=2α−(α+β)=α−β在△FHK与△GDN中∵∠FHK=∠GDN=90°,∠FKH=∠GND=2β∴△FHK∽△GDN∴∠NGD=∠KHF=α−β∵∠HGK=∠HFK,HK=HK∴G,K,H,F四点共圆∵HK⊥FM∴∠FHK=90°∴∠FGK=90°∴∠GFK=90°−∠FKG=90°−α=β在△FRM与△FGK中MR=KG=2a∠FKG=∠FMR=αFM=FK∴△FRM≌△FGK∴∠RFM=∠GFK=β∴∠GFR=2β+∠KFM=2β+α−β=α+β=90°∴∠RFG=∠FGD=∠GDR=90°∴四边形FGDR是矩形又GD=DR∴四边形FGDR是正方形如图,延长DE至W,使EW=EG=a,则WK=2GK=4a5.(2021·广东·珠海市紫荆中学九年级期中)如图,△ABC中,∠BAC=90°,AB=AC=4,直角△ADE的边AE在线段AC上,AE=AD=2,将△ADE绕直角顶点A按顺时针旋转一定角度α,连接CD、BE,直线CD,BE交于点F,连接AF,过BC中点G作GM⊥CD,GN⊥AF.(1)求证:BE=CD;(2)求证:旋转过程中总有∠BFA=∠MGN;(仅对0°<α<90°时加以证明)(3)在AB上取一点Q,使得AQ=1,求FQ的最小值.6.(2021·湖北·武汉外国语学校(武汉实验外国语学校)九年级阶段练习)【问题背景】如图1,P是等边△ABC内一点,∠APB=150°,则PA2+PB2=PC2.小刚为了证明这个结论,将△PAB绕点A逆时针旋转60°,请帮助小刚完成辅助线的作图;【迁移应用】如图2,D是等边△ABC外一点,E为CD上一点,AD∥BE,∠BEC=120°,求证:△DBE是等边三角形;【拓展创新】如图3,EF=6,点C为EF的中点,边长为3的等边△ABC绕着点C在平面内旋转一周,直MC的最小值.线AE、BF交于点P,M为PG的中点,EF⊥FG于F,FG=(2)∵∠BEC=120°,∴∠BED=60°,∵AD∥DE,∴∠ADE=∠BED=60°,∵△ABC是等边三角形,∴∠BAC=∠ABC=∠ACB=60°,∴A、D、B、C共圆,如图2所示:∴∠ADB=120°,∵∠ADE=∠BED=60°,∴∠BDE=60°,∴△DBE是等边三角形;(3)7.(2022·全国·九年级课时练习)如图1,在正方形ABCD中,点F在边BC上,过点F作EF⊥BC,且FE=FC(CE<CB),连接CE、AE,点G是AE的中点,连接FG.(1)用等式表示线段BF与FG的数量关系:______;(2)将图1中的△CEF绕点C按逆时针旋转,使△CEF的顶点F恰好在正方形ABCD的对角线AC上,点G仍是AE的中点,连接FG、DF.①在图2中,依据题意补全图形;②用等式表示线段DF与FG的数量关系并证明.∵四边形ABCD为正方形,∴∠ABC=90°,∠ACB=45°,AB=②DF=2FG;理由如下:如图2,连接BF、BG,8.(2021·四川·成都实外九年级阶段练习)“数学建模”是中学数学的核心素养,平时学习过程中能归纳一些几何模型,解决几何问题就能起到事半功倍的作用.(1)如图1,正方形ABCD中,∠EAF=45°,且DE=BF,求证:EG=AG;(2)如图2,正方形ABCD中,∠EAF=45°,延长EF交AB的延长线于点G,(1)中的结论还成立吗?请说明理由;(3)如图3在(2)的条件下,作GQ⊥AE,垂足为点Q,交AF于点N,连结DN,求证:∠NDC=45°.【答案】(1)见解析;(2)结论依然成立,理由见解析;(3)见解析【分析】(1)根据半角旋转模型,把△ABF逆时针旋转90°,则AB与AD重合,设F对应的点为M,即可证明△AME≅△AFE,得到∠AEM=∠AEF,再结合∠AEM=∠EAG,可得∠AEM=∠AEF,可得EG=AG;(2)结论依然成立,证明方法与(1)一样;(3)又等腰三角形三线合一的性质可得GQ垂直平分EA,可得△ANE是等腰直角三角形,可得A、D、E、N四点共圆,根据圆周角∠NDC=∠EAN=45°【详解】(1)把△ABF逆时针旋转90°,则AB与AD重合,设F对应的点为M,∴△AMD≅△AFB∴∠MDA=∠FBA=90°,AM=AF,∠MAD=∠FAB∴M、D、C三点共线∵∠EAF=45°∴∠EAD+∠FAB=∠EAD+∠MAD=∠MAE=45°∴△AME≅△AFE(SAS)∴∠AEM=∠AEG∵AB∥CD∴∠AEM=∠EAG∴∠AEG=∠EAG∴EG=AG(2)结论依然成立,EG=AG把△ABF逆时针旋转90°,则AB与AD重合,设F对应的点为M,∴△AMD≅△AFB∴∠MDA=∠FBA=90°,AM=AF,∠MAD=∠FAB∴M、D、C三点共线∵∠EAF=45°∴∠EAD+∠FAB=∠EAD+∠MAD=∠MAE=45°∴△AME≅△AFE(SAS)∴∠AEM=∠AEG∵AB∥CD∴∠AEM=∠EAG∴∠AEG=∠EAG∴EG=AG(3)连接EN由(2)得EG=AG∵GQ⊥AE∴GQ垂直平分AE∴EN=AN∵∠EAF=45°∴∠ANE=90°=∠ADE∴A、D、E、N四点在以AE为直径的同一个圆上,∴∠NDC=∠EAN=45°.【点睛】本题考查半角旋转模型,熟练根据模型做出辅助线是解题的关键.第(3)问根据四点共圆证明是本题的难点.9.(2021·上海徐汇·九年级期中)如图,已知Rt△ABC和Rt△CDE,∠ACB=∠CDE=90°,∠CAB=∠CED,AC=8,BC=6,点D在边AB上,射线CE交射线BA于点F.(1)如图,当点F在边AB上时,联结AE.①求证:AE∥BC;CF,求BD的长;②若EF=12(2)设直线AE与直线CD交于点P,若△PCE为等腰三角形,求BF的长.10.(2022·全国·九年级专题练习)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角.①若∠A=40°,直接写出∠E的度数是;②求∠E与∠A的数量关系,并说明理由.(2)如图2,四边形ABCD中,∠ABC=∠ADC=90°,点E在BD的延长线上,连CE,若∠BEC是△ABC 中∠BAC的遥望角,求证:DA=DE.11.(2022·全国·九年级课时练习)在正方形ABCD中,M是BC边上一点,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP,DQ.(1)如图1,求证:BP=DQ;(2)如图2,若点P,B,D三点共线,求证:A,Q,P,D四点共圆;(3)若点P,Q,C三点共线,且AD=3,求BP的长.【答案】(1)见解析;(2)见解析;(3)BP=3【分析】(1)证明△AQD≌△APB即可得出答案;(2)根据全等三角形的性质以及圆内接四边形对角和为180°即可得出结论;(3)证明△PAQ为等腰直角三角形,得出∠APC=45°,然后得出∠ABC=2∠APC,根据圆周角定理可得点P在圆⊙B上,结论可得.【详解】解:(1)根据旋转的性质可得AP=AQ,∠PAQ=90°,∵∠BAD=90°,∴∠DAQ=∠BAP,∵AB=AD,∴△AQD≌△APB(SAS),∴BP=DQ;(2)∵△AQD≌△APB,∴∠Q=∠APB,∵点P,B,D三点共线,∴∠APD+∠APB=180°,∴∠Q+∠APD=180°,∴A,Q,P,D四点共圆;(3)∵AP=AQ,∠PAQ=90°,∴△PAQ为等腰直角三角形,∴∠APC=45°,以点B为圆心,BA为半径作⊙B,∵∠ABC=90°,∠APC=45°,∴∠ABC=2∠APC,∴点P在圆⊙B上,∴BP=BC=3.【点睛】本题考查了全等三角形的判定与性质,四点共圆,圆周角定理等知识,熟练掌握基础知识是解本题的关键.12.(2021·江苏·泗阳县实验初级中学九年级阶段练习)如图1,在正方形ABCD中,点E、F分别是BC、CD上的两个动点,且BE=CF,AE和BF相交于点P.(1)探究AE、BF的关系,并说明理由;(2)求证:A、D、F、P在同一个圆上;(3)如图2,若正方形ABCD的边AB在y轴上,点A、B的坐标分别为(0,−1+a)、(0,−1−a),点E、F 分别是BC、CD上的两个点,且BE=CF,AE和BF相交于点P,点M的坐标为(4,−4),当点P落在以M 为圆心1为半径的圆上.求a的取值范围.。

四点共圆例题及问题详解

四点共圆例题及问题详解

例1 如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H四点共圆.证明菱形ABCD的对角线AC和BD相交于点O,连接OE、OF、OG、OH.∵AC和BD 互相垂直,∴在Rt△AOB、Rt△BOC、Rt△COD、Rt△DOA中,E、F、G、H,分别是AB、BC、CD、DA的中点,即E、F、G、H四点共圆.(2)若四边形的两个对角互补(或一个外角等于它的内对角),则四点共圆.例2 如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.证明∵DE⊥AB,DF⊥AC,∴∠AED+∠AFD=180°,即A、E、D、F四点共圆,∠AEF=∠ADF.又∵AD⊥BC,∠ADF+∠CDF=90°,∠CDF+∠FCD=90°,∠ADF=∠FCD.∴∠AEF=∠FCD,∠BEF+∠FCB=180°,即B、E、F、C四点共圆.(3)若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,那么这两个三角形有公共的外接圆.证明在△ABC中,BD、CE是AC、AB边上的高.∴∠BEC=∠BDC=90°,且E、D在BC的同侧,∴E、B、C、D四点共圆.∠AED=∠ACB,∠A=∠A,∴△AED∽△ACB.上述三种方法是证“四点共圆”的基本方法,至于证第四点在前三点(不在同一直线上)所确定的圆上就不叙述了.【例1】在圆内接四边形ABCD中,∠A-∠C=12°,且∠A∶∠B=2∶3.求∠A、∠B、∠C、∠D的度数.解∵四边形ABCD内接于圆,∴∠A+∠C=180°.∵∠A-∠C=12°,∴∠A=96°,∠C=84°.∵∠A∶∠B=2∶3,∠D=180°-144°=36°.利用圆内接四边形对角互补可以解决圆中有关角的计算问题.【例2】已知:如图1所示,四边形ABCD内接于圆,CE∥BD交AB的延长线于E.求证:AD·BE=BC·DC.证明:连结AC.∵CE∥BD,∴∠1=∠E.∵∠1和∠2都是所对的圆周角,∴∠1=∠2.∠1=∠E.∵四边形ABCD内接于圆,∴∠EBC=∠CDA.∴△ADC∽△CBE.AD∶BC=DC∶BE.AD·BE=BC· DC.本例利用圆内接四边形的一个外角等于内对角及平行线的同位角、圆中同弧所对的圆周角得到两个相似三角形的条件,进而得到结论.关于圆内接四边形的性质,还有一个重要定理.现在中学课本一般都不列入,现介绍如下:定理:圆内接四边形两条对角线的乘积等于两组对边乘积的和.已知:如图2所示,四边形ABCD内接于圆.求证:AC·BD=AB·CD+AD·BC.证明:作∠BAE=∠CAD,AE交 BD于 E.∵∠ABD=∠ACD,即 AB·CD=AC·BE.①∵∠BAE+∠CAE=∠CAD+∠CAE,∴∠BAC=∠EAD.又∠ACB=∠ADE,AD·BC=AC·DE.②由①,②得AC·BE+AC·DE=AB·CE+AD·BCAC·BD=AB·CD+AD·BC这个定理叫托勒密(ptolemy)定理,是圆内接四边形的一个重要性质.这个证明的关键是构造△ABE∽△ACD,充分利用相似理论,这在几何中是具有代表性的.在数学竞赛中经常看到它的影子,希望能引起我们注意.命题“菱形都内接于圆”对吗?命题“菱形都内接于圆”是不正确的.所以是假命题.理由是:根据圆的内接四边形的判定方法之一,如果一个四边形的一组对角互补,那么这个四边形内接于圆.这个判定的前提是一组对角互补,而菱形的性质是一组对角相等.而一组相等的角,它们的内角和不一定是180°.如果内角和是180°,而且又相等,那么只可能是每个内角等于90°,既具有菱形的性质,且每个内角等于90°,那末这个四边形一定是正方形.而正方形显然是菱形中的特例,不能说明一般情形.判定四边形内接于圆的方法之二,是圆心到四边形四个顶点的距离相等.圆既是中心对称图形,又是轴对称图形,它的对称中心是圆心.菱形同样既是中心对称图形,又是轴对称图形,它的对称中心是两条对角线的交点.但菱形的对称中心到菱形各个顶点的距离不一定相等.所以,也无法确定菱形一定内接于圆;如果菱形的对称中心到菱形各边顶点的距离相等,再加上菱形的对角线互相垂直平分这些性质,那么这个四边形又必是正方形.综上所述,“菱形都内接于圆”这个命题是错误的.5圆的内接四边形例1 已知:如图7-90,ABCD是对角线互相垂直的圆内接四边形,通过对角线的交点E与AB垂直于点H的直线交CD于点M.求证:CM=MD.证明∠MEC与∠HEB互余,∠ABE与∠HEB互余,所以∠MEC=∠ABE.又∠ABE=∠ECM,所以∠MEC=∠ECM.从而CM=EM.同理MD=EM.所以CM=MD.点评本例的逆命题也成立(即图中若M平分CD,则MH⊥AB).这两个命题在某些问题中有时有用.本例叫做婆罗摩笈多定理.例2 已知:如图7-91,ABCD是⊙O的内接四边形,AC⊥BD,分析一如图7-91(a),由于E是AB的中点,从A引⊙O的需证明GB=CD.但这在第七章ξ1.4圆周角中的例3已经证明了.证明读者自己完成.*分析二如图7-91(b),设AC,BD垂直于点F.取CD的有OE∥MF.从而四边形OEFM应该是平行四边形.证明了四边形OEFM是平行四边形,问题也就解决了.而证明四边形OEFM是平行四边形已经没有什么困难了.*分析三如图7-91(b),通过AC,BD的交点F作AB的垂线交CD于点M.连结线段EF,MO.由于OE⊥AB,FM⊥AB,所以OE∥FM.又由于EF⊥CD(见例1的点评),MO⊥CD,所以EF∥MO.所以四边形OEFM为平行四边形.从而OE=MF,而由例3 求证:圆内接四边形对边乘积的和等于对角线的乘积,即图中AB·CD+BC·AD=AC·BD.分析在AB·CD+BC·AD=AC·BD中,等号左端是两个乘积的和,要证明这种等式成立,常需把左端拆成两个单项式来证明,即先考虑AB·CD和BC·AD各等于什么,然后再考虑AB·CD+BC·AD是否等于AC·BD.而要考虑AB·CD和BC·AD各等于什么,要用到相似三角形.为此,如图7-92,作AE,令∠BAE=∠CAD,并且与对角线BD相交于点E,这就得到△ABE∽△ACD.由此求得AB·CD=AC·BE.在圆中又出现了△ABC∽△AED,由此又求得BC·AD=AC·ED.把以上两个等式左右各相加,问题就解决了.证明读者自己完成.点评本例叫做托勒玫定理.它在计算与证明中都很有用.意一点.求证:PA=PB+PC.分析一本例是线段和差问题,因此可用截取或延长的方法证明.如图7-93(a),在PA上取点M,使PM=PB,剩下的问题是证明MA=PC,这只要证明△ABM≌△CBP就可以了.证明读者自己完成.分析二如图7-93(a),在PA上取点M,使MA=PC,剩下的问题是证明PM=PB,这只要证明△BPM是等边三角形就可以了.证明读者自己完成.分析三如图7-93(b),延长CP到M,使PM=PB,剩下的问题是证明PA=MC,这只要证明△PAB≌△CMB就可以了.证明读者自己完成.读者可仿以上的方法拟出本例的其他证明.*本例最简单的证明是利用托勒玫定理(例3).证明由托勒玫定理得PA·BC=PB·AC+PC·AB,由于BC=AC=AB,所以有PA=PB+PC.例2 如图7—116,⊙O1和⊙O2都经过A、B两点,经过点A的直线CD与⊙O1交于点C,与⊙O2交于点D.经过点B的直线EF与⊙O1交于点E,与⊙O2交于点F.求证:CE∥DF.分析:要证明CE∥DF.考虑证明同位角(或内错角)相等或同旁内角互补.由于CE、DF分别在两个圆中,不易找到角的关系,若连结AB,则可构成圆内接四边形,利用圆内接四边形的性质定理可沟通两圆中有关角的关系.证明:连结AB.∵ABEC是圆内接四边形,∵ADFB是圆内接四边形,∴∠BAD+∠F=180°,∴∠E+∠F=180°.∴CE∥CF.说明:(1)本题也可以利用同位角相等或内错角相等,两直线平行证明.如延长EF至G,因为∠DFG=∠BAD,而∠BAD=∠E,所以∠DFG=∠E.(2)应强调本题的辅助线是为了构成圆内接四边形,以利用它的性质,导出角之间的关系.(3)对于程度较好的学生,还可让他们进一步思考,若本题不变,但不给出图形,是否还有其他情况?问题提出后可让学生自己画图思考,通过讨论明确本题还应有如图7—117的情况并给予证明.例3 如图7—118,已知在△ABC中,AB=AC,BD平分∠B,△ABD的外接圆和BC 交于E.求证:AD=EC.分析:要证AD=EC,不能直接建立它们的联系,考虑已知条件可知∠ABD=∠DBE,容易看出.若连结DE,则有AD=DE.因此只要证DE=EC.由于DE和EC为△DEC的两边,所以只要证∠EDC=∠C.由已知条件可知∠C=∠ABC.因此只要证∠EDC=∠ABC.因为△EDC是圆内接四边形ABED的一个外角,所以可证∠EDC=∠ABC.问题可解决.证明:连结DE.∵BD平分∠ABC,∴,AD=DE.∵ABED是圆内接四边形,∵AB=AC,∴∠ABC=∠C,∴∠EDC=∠C.于是有DE=EC.因此AD=EC.四、作业1.如图7—120,在圆内接四边形ABCD中,AC平分BD,并且AC⊥BD,∠BAD=70°18′,求四边形其余各角.2.圆内接四边形ABCD中,∠A、∠B、∠C的度数的比为2∶3∶6,求四边形各内角的度数.3.如图7—121,AD是△ABC外角∠EAC的平分线,AD与三角形的外接圆交于点D.求证:DB=DC.作业答案或提示:1.∠ABC=∠ADC=90°,∠BCD=109°42′.2.∠A=45°,∠B=67.5°,∠C=135°,∠D=112.5°.3.提示:因为∠DBC=∠DAC,∠EAD=∠DCB,∠EAD=∠DAC,所以∠DBC=∠DCB,因此DB=DC.判定四点共圆的方法引导学生归纳判定四点共圆的方法:(1)如果四个点与一定点距离相等,那么这四个点共圆.(2)如果一个四边形的一组对角互补,那么这个四边形的四个顶点共圆.(3)如果一个四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆.(4)如果两个直角三角形有公共的斜边,那么这两个三角形的四个顶点共圆(因为四个顶点与斜边中点距离相等).3.如图7—124,已知ABCD为平行四边形,过点A和B的圆与 AD、BC分别交于E、F.求证:C、D、E、F四点共圆.提示连结EF.由∠B+∠AEF=180°,∠B+∠C=180°,可得∠AEF=∠C.四点共圆的应用山东宁阳教委教研室栗致根四点共圆在平面几何证明中应用广泛,熟悉这种应用对于开阔证题思路,提高解题能力都是十分有益的.一用于证明两角相等例1 如图1,已知P为⊙O外一点,PA切⊙O于A,PB切⊙O于B,OP交AB 于E.求证:∠APC=∠BPD.证明连结OA,OC,OD.由射影定理,得AE2=PE·EO,又AE=BE,则AE·BE =PE·EO……(1);由相交弦定理,得AE·BE=CE·DE……(2);由(1)、(2)得CE·ED=PE·EO,∴ P、C、O、D四点共圆,则∠1=∠2,∠3=∠4,又∠2=∠4.∴∠1=∠3,易证∠APC=∠BPD(∠4=∠EDO).二用于证明两条线段相筹例2 如图2,从⊙O外一点P引切线PA、PB和割线PDC,从A点作弦AE平行于DC,连结BE交DC于F,求证:FC=FD.证明连结AD、AF、EC、AB.∵PA切⊙O于A,则∠1=∠2.∵AE∥CD,则∠2=∠4.∴∠1=∠4,∴P、A、F、B四点共圆.∴∠5=∠6,而∠5=∠2=∠3,∴∠3=∠6.∵AE∥CD,∴EC=AD,且∠ECF=∠ADF,∴△EFC≌△AFD,∴FC=FD.三用于证明两直线平行例3 如图3,在△ABC中,AB=AC,AD⊥BC,∠B的两条三等分线交AD于E、G,交AC于F、H.求证:EH∥GC.证明连结EC.在△ABE和△ACE中,∵AE=AE,AB=AC,∠BAE=∠CAE,∴△AEB≌AEC,∴∠5=∠1=∠2,∴B、C、H、E四点共圆,∴∠6=∠3.在△GEB 和△GEC中,∵GE=GE,∠BEG=∠CEG,EB=EC,∴△GEB≌△GEC,∴∠4=∠2=∠3,∴∠4=∠6.∴EH∥GC.四用于证明两直线垂直证明在△ABD和△BCE中,∵AB=BC,∠ABD=∠BCE,BD=CE,则△ABD≌△BCE,∴∠ADB=∠BEC,∴P、D、C、E四点共圆.设DC的中点为O连结OE、DE.易证∠OEC=60°,∠DEO=30°∴∠DEC=90°,于是∠DPC=90°,∴ CP⊥AD.五用于判定切线例5 如图5,AB为半圆直径,P为半圆上一点,PC⊥AB于C,以AC为直径的圆交PA于D,以BC为直径的圆交PB于E,求证:DE是这两圆的公切线.证明连结DC、CE,易知∠PDC=∠PEC=90°,∴ P、D、C、E四点共圆,于是∠1=∠3,而∠3+∠2=90°,∠A+∠2=90°,则∠1=∠A,∴DE是圆ACD 的切线.同理,DE是圆BCE的切线.因而DE为两圆的公切线六用于证明比例式例6 AB、CD为⊙O中两条平行的弦,过B点的切线交CD的延长线于G,弦PA、PB分别交CD于E、F.证明如图6.连结BE、PG.∵BG切⊙O于B,则∠1=∠A.∵AB∥CD,则∠A=∠2.于是∠1=∠2,∴P、G、B、E四点共圆.由相交弦定理,得EF·FG=PF·FB.在⊙O中,由相交弦定理,得CF·FD=FP·FB.七用于证明平方式例7 ABCD为圆内接四边形,一组对边AB和DC延长交于P点,另一组对边AD和BC延长交于Q点,从P、Q引这圆的两条切线,切点分别是E、F,(如图 7)求证:PQ2=QF2+PE2.证明作△DCQ的外接圆,交PQ于M,连结MC,∵∠1=∠2=∠3,则P、B、C、M四点共圆.由圆幂定理得PE2=PC·PD=PM·PQ,QF2=QC·QB=QM·QP,两式相加得PE2+QF2=PM·PQ+ QM·QP=PQ(PM+QM)=PQ·PQ=PQ2∴PQ2=PE2+QF2.八用于解计算题例8如图8,△ABC的高AD的延长线交外接圆于H,以AD为直径作圆和AB、AC分别交于E、F点,EF交 AD于 G,若 AG=16cm,AH=25cm,求 AD的长.解连结DE、DF、BH.∵∠1=∠2=∠C=∠H,∴B、E、G、H四点共圆.由圆幂定理,得AE·AB=AG·AN.在△ABD中,∵∠ADB=90°,DE⊥AB,由射影定理,得AD2=AE·AB,∴AD2=AG·AH=16×25=400,∴AD=20cm.九用于证明三点共线例9如图9,D为△ABC外接圆上任意一点,E、F、G为D点到三边垂线的垂足,求证:E、F、G三点在一条直线上.证明连结EF、FG、BD、CD.∵∠BED=∠BFD=90°,则B、E、F、D四点共圆,∴∠1=∠2,同理∠3=∠4.在△DBE和△DCG中,∵∠DEB=∠DGC,∠DBE=∠DCG,故∠1=∠4,易得∠2=∠3,∴ E、F、G三点在一条直线上.十用于证明多点共圆例10如图10,H为△ABC的垂心,H1、H2、H3为H点关于各边的对称点,求证:A、B、C、H1、H2、H3六点共圆.证明连结AH2,∵H与H2关于AF对称,则∠1=∠2.∵A、F、D、C四点共圆,则∠2=∠3,于是∠1=∠3,∴A、H2、B、c四点共圆,即H2在△ABC的外接圆上.同理可证,H1、H3也在△ABC的外接圆上.∴A、B、C、H1、H2、H3六点共圆.托勒密定理的数形转换功能山东临沂市四中姜开传临沂市第一技校刘久松圆内接四边形两组对边乘积的和等于其对角线的乘积,即在四边形 ABCD 中,有AB·CD+AD·BC=AC·BD,这就是著名的托勒密定理.本刊1996年第2期给出了它的几种证法,作为续篇,本文就其数形转换功能举例说明如下:1 “形”转换为“数”对于某些几何问题,特别是圆内接多边形问题,如果能根据题设中隐含的数量关系,利用托勒密定理可将“形”转换为“数”,从而达到用代数运算来代替几何推理的目的.例1已知正七边形A1A2 (7)(第21届全俄数学奥林匹克竞赛题)对于这道竞赛题,原证较繁,但通过深挖隐含条件,利用托勒密定理可改变整个解题局面,使证题步骤简缩到最少.如图1,连 A1A5、A3A5,则A1A5=A1A4、A3A5=A1A3.在四边形A1A3A4A5中,由托勒密定理,得A3A4·A1A5+A4A5·A1A3=A1A4·A3A5,即A1A2·A1A4+A1A2·A1A3=A1A3·A1A4,两边同除以A1A2·A1A3·A1A4即得结论式.例2 如图2,A、B、C、D四点在同一圆周上,且BC=CD=4,AE=6,线段BE和DE的长都是整数,则BD的长等于多少?(1988年全国初中数学联赛题)此题若用其它方法解,往往使人一筹莫展.若运用托勒密定理,可使问题化难为易.由△CDE∽△BAE和△CBE∽△DAE,得由托勒密定理,得BD(AE+CE)=4(AB+AD),亦即 CE(AE+CE)=16.设CE=x,整理上式,得x2+6x-16=0.解得x=2(负值已舍),故BE·DE=CE·AE=12.∵BD<BC+CD=8,例3一个内接于圆的六边形,其五个边的边长都为81,AB是它的第六边,其长为31,求从B出发的三条对角线长的和.(第九届美国数学邀请赛试题)原解答过程冗长.若通过托勒密定理的桥梁作用,把“形”转换为“数”,可使问题化繁为简.如图3,设BD=a, BE=b,BF=c,连AC、CE、AE,则CE=AE=BD=a,AC=BF =c.在四边形BCDE中,由托勒密定理,得81b+812=a2①同理81b+31·81=ac ②31a+81a=bc ③解①、③、③组成的方程组,得a=135,b=144,c=105故 a+b+c=384.2 “数”转换为“形”对于某些代数问题,若结构与托勒密定理相似,通过构造圆内接四边形,可把“数”转换为“形”,然后利用“形”的性质,使问题得到解决.这种解法构思巧妙,方法独特,富于创新,出奇制胜.例4 解方程若按常规方法解这个无理方程,过程繁冗.若由方程的结构特征联想到托勒密定理,则构造直径AC=x(x≥11)的圆及圆内接四边形ABCD,使BC=2,CD=11,如图 4,于是由托勒密定理,得在△BCD中,由余弦定理,得经检验x=14是原方程的根.求证: a2+b2=1.这道名题已有多种证法,而且被视为用三角换无法解代数问题的典范.下面再给出一各几何证法.易知0≤a、b≤1且a、b不全为零.当a、b之一为零时,结论显然成立.当a、b全不为零时,由已知等式联想到托勒密定理,作直径AC=1的圆及圆内接四与已知等式比较,得BD=1,即BD也为圆的直径,故a2+b2=1例6设a>c,b>c,c>0,此题若用常规方法证明也不轻松.下面利用托勒密定理给出它的一个巧证.由托勒密定理,得巧用托勒密定理证题河北晋州市数学论文研究协会张东海王素改在解证某些数学题时,如能巧用托勒密定理,可使解证过程简洁清新,兹举例说明.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.一、构造“圆”,运用定理【例1】设a,b,x,y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证作直径AB=1的圆,在AB的两侧任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x, AD=y.(图1)由勾股定理知a,b,x,y满足条件.根据托勒密定理,有AC·BD+BC·AD=AB·CD.∵ CD≤1,∴ax+by≤1.二、利用无形圆,运用定理【例2】等腰梯形一条对角线的平方,等于一腰的平方加上两底之积.已知:梯形 ABCD中,AD=BC,AB∥CD.求证:BD2=BC2+AB·CD.证∵等腰梯形内接于圆,由托勒密定理,有AC·BD=AD·BC+AB·CD.∵AD=BC,AC=BD,∴BD2=BC2+AB·CD.(图略)【例 3】已知:边长为 1的正七边形ABCDEFG中,对角线 AD=a,BG=b(a≠b).求证:(a+b)2(a-b)=ab2.证连结BD,GE,BE,DG,则 BD=EG=GB=b,DG=BE=DA=a, DE=AB=AG=1.(如图2)在四边形ABDG中,由托勒密定理,有AD·BG=AB·DG+BD·AG,即ab=a+b (1)同理在四边形BDEG中,得BE·DG=DE·BG+BD·EG,即a2=b+b2 (2)将(2)变形为b=a2-b2 (3)(1)×(3),得ab2=(a+b)(a2-b2).故ab2=(a+b)2(a-b).三、构造圆内接四边形,运用定理【例4】在△ABC中,∠A的内角平分线AD交外接圆于D.连结BD.求证:AD·BC=BD·(AB+AC).证(如图3) 连结DC.由托勒密定理.有AD·BC=AB·CD+AC·BD.又∵∠1=∠2,∴BD=DC.∴AD·BC=AB·CD+AC·BD=BD(AB+AC).即AD·BC=BD·(AB+AC).圆内接四边形的面积公式黑龙江绥化五中任天民设圆内接四边形ABCD中各边为a,b,c,d.连结 BD.由∠A+∠C=180°,可以推出sinA=sinC,cosA=-cosC.并且S四边形ABCD=S△ABD+S△BCD所以这样我们得出了圆内接四边形面积的计算公式.在上面的公式中,如果设某一边为零,(不仿设d=0)此时四边形变成三角形,该公式恰是计算三角形面积的海伦公式.圆内接四边形面积公式的得出是受三角形面积公式的启发,通过联想探索出来的,而且两者在形式上又是那么的相近.这种现象在数学中不胜枚举,如果同学们都能从特殊规律去探索一般规律,再从一般规律去认识特殊规律.那么对数学能力的培养将大有裨益.四条边定长四边形面积的最大值上海市育群中学李甲鼎四条边为定长的四边形不具稳定性,但在某种特定的位置下,它能内接于圆,成为圆内接四边形.并且此时达到变化过程中面积最大值.下文证明这个事实.已知:四边形ABCD中:AB=a,BC=b,CD=c,DA=d求证:四边形ABCD中有唯一四边形能内接于圆,且此时面积达到最大值.证明:(1)先证四边形四边定长,有唯一的四边形内接于圆,设∠ABC=α,∠ADC=β,AC=x.令α+β=π,即cosα+cosβ=0x的解唯一确定,代入(1)(2)后cosα、cosβ也随之唯一确,在α,β∈(0,π)的条件下α、β也同时唯一确定.∴四边形四边定长,对角互补,四边形是唯一的.即所得到的四边形为圆内接四边形.(2)当四边定长的四边形内接于圆时,此四边形面积最大.∵四边形ABCD的面积由余弦定理得a2+b2-2abcosα=x2=c2+d2-2cdcosβ显然当α+β=π时(即为圆内接四边形时)S2达到最大值,即S最大.一个几何定理的应用江苏省徐州矿务局庞庄职校张怀林定理:如图1,在圆接四边形ABCD中弦AD平分∠BAC,则2ADcosα=AB+AC.证明连接BD、DC、BC,设已知圆半径为R,则由正弦定理有:BD=DC=2Rsinα,BC=2Rsin2α.由托勒密定理有AB·CD+AC·BD=AD·DC.∴(AB+AC)·2Rsinα=AD·2Rsin2α.则 2AD·cosα=AB+AC.下面举例说明它的应用.例1如图2,已知锐角△ABC的∠A平分线交BC于L,交外接圆于N,过L 分别作LK⊥AB,LM⊥AC,垂足分别为K、M.求证:四边形AKNM的面积等于△ABC 的面积.(第28届IMO)证明由已知得∠BAN=∠CAN,由定理有 2ANcosα=AB+AC,=AN·AL·cosα·sinα=AN·AK·sinα=AN·AM·sinα=2S△AKN=2S△AMN.∴S△ABC=S四边形AKNM.(第21届全苏奥数)证明作正七边形外接圆,如图3所示.由定理有2c·cosα=b+c,又在等腰△A1A2A3中有2a·cosα=b.例3在△ABC中,∠C=3∠A,a=27,c=48,则b的值是____.(第36届AHSME试题) 解如图4.作△ABC的外接圆,在取三等分点D、E,连CD、CE.由已知得:∠ACD=∠DCE=∠ECB=∠A,CD=AB=48,由定理有 2CE·cosA=CB+CD ①2CD·cosA=CE+AC ②又2CB·cosA=CE ③由②、③得:b=AC=CE·(CD-CB)/CB=35.托勒密定理及其应用河北省晋州市数学论文研究协会刘同林托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.证明:如图1,过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.①+②得 AC(BP+DP)=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.这就是著名的托勒密定理,在通用教材中习题的面目出现,不被重视.笔者认为,既然是定理就可作为推理论证的依据.有些问题若根据它来论证,显然格外简洁清新.兹分类说明如下,以供探究.一、直接应用托勒密定理例1如图2,P是正△ABC外接圆的劣弧上任一点(不与B、C重合),求证:PA=PB+PC.分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗.若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB,∵AB=BC=AC.∴PA=PB+PC.二、完善图形借助托勒密定理例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2证明:如图3,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD 是圆内接四边形.由托勒密定理,有AC·BD=AB·CD+AD·BC.①又∵ABCD是矩形,∴AB=CD,AD=BC,AC=BD.②把②代人①,得AC2=AB2+BC2.例3如图4,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB+AC).证明:连结CD,依托勒密定理,有AD·BC=AB·CD+AC·BD.∵∠1=∠2,∴ BD=CD.故 AD·BC=AB·BD+AC·BD=BD(AB+AC).三、利用“无形圆”借助托勒密定理例4等腰梯形一条对角线的平方等于一腰的平方加上两底之积.如图5,ABCD中,AB∥CD,AD=BC,求证:BD2=BC2+AB·CD.证明:∵等腰梯形内接于圆,依托密定理,则有AC·BD=AD·BC+AB·CD.又∵ AD=BC,AC=BD,∴BD2=BC2+AB·CD.四、构造图形借助托勒密定理例5若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证明:如图6,作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x,AD=y.由勾股定理知a、b、x、y是满足题设条件的.据托勒密定理,有AC·BD+BC·AD=AB·CD.∵CD≤AB=1,∴ax+by≤1.五、巧变原式妙构图形,借助托勒密定理例6已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B.分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c.证明:如图 7,作△ABC的外接圆,以 A为圆心,BC为半径作弧交圆于D,连结BD、DC、DA.∵AD=BC,∴∠ABD=∠BAC.又∵∠BDA=∠ACB(对同弧),∴∠1=∠2.依托勒密定理,有BC·AD=AB·CD+BD·AC.①而已知a2=b(b+c),即a·a=b·c+b2.②∴∠BAC=2∠ABC.六、巧变形妙引线借肋托勒密定理例7在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4,析证:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆联系起来,可联想到托勒密定理,进而构造圆内接四边形.如图8,作△ABC的外接圆,作弦BD=BC,边结AD、CD.在圆内接四边形ADBC中,由托勒密定理,有AC·BD+BC·AD=AB·CD易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC,关于圆内接四边形的若干共点性质浙江绍兴县鲁迅中学范培养设四边形ABCD内接于圆O,其边AB与DC的延长线交于P,AD与BC的延长线交于Q,由P作圆的两切线PM、PN,切点分别为M、N;由Q作圆的两切线QE、QF,切点分别为E、F(如图1).则有以下一些共点性质:性质1 AC、BD、EF三直线共点.证明:如图1,设AC交EF于K1,则K1分EF所成的比为设BD交EF于K2,同理可得K2分EF所成的比为由(5)、(6)可得(1)=(2),故K1、K2分EF所成的比相等.∴K1、K2重合,从而AC、BD、EF三直线共点.类似地 AC、BD、MN三直线共点,因此有以下推论 AC、BD、EF、MN四直线共点.性质2 AB、DC、EF三直线共点于P.(此性质等同于1997年中国数学奥林匹克第二试第四题)这里用上述证明性质1的方法证之.证明:如图2.设DC与EF的延长线交于P1,则P1分EF所成的比为设AB与EF的延长线交于P2,则P2分EF所成的比为由(5)、(6)可得(7)=(8),故P1、P2分EF所成的比相等.∴P1、P2重合,从而AB、DC、EF三直线共点于P.推论 AD、BC、NM三直线共点于Q.性质 3 EM、NF、PQ三直线共点.证明:如图3,设EM的延长线交PQ于G1,妨上证法,G1分PQ所成的比为设NF的延长线交PQ于G2,则G2分PQ所成的比为(这里E、F、P三点共线及N、M、Q三点共线在性质2及推论中已证).由△PME∽△PFM得由(11)、(12)及QE=QF、PN=PM可得(9)=(10),故G1、G2分PQ所成的比相等.∴G1、G2重合,从而EM、NF、PQ三直线共点.性质4如果直线EN和MF相交,那么交点在直线PQ上,即 EN、MF、PQ三直线共点.证明从略,妨性质3的证法可得.性质5 EM、NF、AC三直线共点.证明:如图4,类似于性质1的证明,设EM与AC的延长线交于G3,则G3分AC所成的比为设NF与AC的延长线交于G4,则G4分AC所成的比为由(15)、(18)、(19)可得(13)=(14),故G3、G4分AC所成的比相等.∴G3、G4重合,从而 EM、NF、AC 三直线共点.推论EM、NF、AC、PQ四直线共点.限于篇幅,仅列以上五条共点性质.有兴趣的读者不妨再探索其它共点性质例3在边长为a的正七边形ABCDEFG中,两条不相等的对角线长分别为t,m.证明如图4,连结AD、CE,令AE=t,AC=m,在圆内接四边形ACDE中,据托勒密定理,有AD·CE=AE·CD+AC·DE,即tm=ta+ma.托勒密定理及其应用河北省晋州市数学论文研究协会康美娈彭立欣托勒密定理圆内接四边形的两条对角线的乘积(两条对角线所包矩形的面积),等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形面积之和).证明如图1,过C作CP使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.∴AC·BP=AD·BC ①又∠ACB=∠DCP,∠5=∠6,∴AC·DP=AB·CD.②①+②得AC(BP+PD)=AD·BC+AB·CD.故AC·BD=AD·BC+AB·CD.托勒密定理在教材中仅以习题的形式出现,若以此定理为根据,可使许多问题解证过程别具一格.例1已知P是正△ABC的外接圆劣弧上任意一点.求证:PA=BP+PC.证明如图2,ABPC是圆内接四边形,根据托勒密定理,有PA·BC=PB·AC+PC·AB.∵AB=BC=AC,∴PA=PB+PC.例2证明等腰梯形一条对角线的平方,等于一腰的平方加上两底之积.证明如图3,设在梯形ABCD中,AD=BC,AB∥CD.∵等腰梯形内接于圆,∴AC·BD=AD·BC+AB·CD.又AD=BC,AC=BD,∴BD2=BC2+AB·CD.例3在边长为a的正七边形ABCDEFG中,两条不相等的对角线长分别为t,m.证明如图4,连结AD、CE,令AE=t,AC=m,在圆内接四边形ACDE中,据托勒密定理,有AD·CE=AE·CD+AC·DE,即tm=ta+ma.例4已知 a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证明作直径AB=1的圆,在AB两侧作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x,DA=y(如图5).依勾股定理知a、b、x、y是满足题设条件的.依托勒密定理有AC·BD+BC·AD=AB·CD.又∵CD≤AB=1,∴ax+by≤1.例5△ABC的三个内角 A、 B、 C的对边分别为a、b、c,且a2=b(b+c).求证:A=2B.分析将a2=b(b+c)变形为a·a=b·b+b·c,可联想到托勒密定理,进而构造一个圆内接等腰梯形,使两腰为b,两对角线为a,一底边为c.证明如图6,作△ABC的外接圆.以A为圆心,以BC为半径画弧交圆于D,连结BD、DA、DC.。

四点共圆测验

四点共圆测验

四点共圆判定定理1:若两个直角三角形共斜边,则四个顶点共圆,且直角三角形的斜边为圆的直径.判定定理2:共底边的两个三角形顶角相等,且在底边的同侧,则四个顶点共圆.判定定理3:对于凸四边形ABCD,若对角互补,则A、B、C、D四点共圆.判定定理4:相交弦定理的逆定理:对于凸四边形ABCD其对角线AC、BD交于P,若PA·PC=PB·PD,则A、B、C、D四点共圆。

判定定理5:割线定理的逆定理:对于凸四边形ABCD两边AB、DC的延长线相交于P,若PB·PA=PC·PD,则A、B、C、D四点共圆。

1:A=60°2:如图,正方形E、F求AP的长3:如图,四边形CB=CD=4,4:如图,OQ⊥AB,O为△ABC外接圆的圆心,A、C、Q三点共线,求证:OA2=OP·OQ5:如图,P是⊙O外一点,PA与⊙O切于点A,求证:PB:BD=PC:CD6:如图,直线AB、AC与⊙O分别相切于B、C6cm、4cm,求P到BC的距离7:在半⊙O中,AB为直径,直线CD交半圆于),设K是△AOC与△DOB的外接圆除点O8:如图,在圆内接四边形ABCD中,AB=AD,∠a表示)一、选择题1、设ABCD(3)cosB+cosD=0;(4)cosB=cosDA、一个;B、两个;C2、下面的四边形有外接圆的一定是( )A、平行四边形;B、梯形;C3、四边形ABCD内接于圆,∠A:∠BA、36º;B、72º;C、144º;D、54º;4、如图1,在四边形ABCD中,AB=BC=AC=AD,AH⊥CD于H,CP⊥BC交AH于P,若,AP=1,则BD等于( )A、;B、2;C、3;D;5、对于命题:①内角相等的圆内接五边形是正五边形;②内角相等的圆内接四边形是正四边形。

以下四个结论中正确的是( )A、①,②都对;B、①对,②错;C、①错,②对;D、①,②都错;二、填空题AB图16、如图2,△ABC 中,∠B=60º,AC=3cm ,则△ABC 的外接圆半径为。

专题9 四点共圆巧解中考题28页文档

专题9 四点共圆巧解中考题28页文档

专题—英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特

中考压轴题-四点共圆精讲精练

中考压轴题-四点共圆精讲精练

中考压轴题之四点共圆问题精讲精练一.选择题1.如图,圆内接四边形ABCD 的外角ABE ∠为80︒,则ADC ∠度数为( )A .80︒B .40︒C .100︒D .160︒(第1题图) (第2题图) (第3题图)2.如图,在ABC ∆中,90ABC ∠=︒,4BC =,8AB =,P 为AC 边上的一个动点,D 为PB 上的一个动点,连接AD ,当CBP BAD ∠=∠时,线段CD 的最小值是( )A B .2 C .1 D .43.如图,在矩形ABCD 中,8AB =,6BC =,点P 在矩形的内部,连接PA ,PB ,PC ,若PBC PAB ∠=∠,则PC 的最小值是( )A .6B 3C .4D .44.如图,在矩形ABCD 中,5AD =,AB =E 在AB 上,12AE EB =,在矩形内找一点P ,使得60BPE ∠=︒,则线段PD 的最小值为( )A .2B .4-C .4D .5.如图,6AB AD ==,60A ∠=︒,点C 在DAB ∠内部且120C ∠=︒,则CB CD +的最大值( )A .B .8C .10D .二.填空题6.在ABC ∆中,4AB =,45C ∠=︒,则2AC BC +的最大值为 .7.如图,P 是矩形ABCD 内一点,4AB =,2AD =,AP BP ⊥,则当线段DP 最短时,CP = .8.如图,AB BC ⊥,5AB =,点E 、F 分别是线段AB 、射线BC 上的动点,以EF 为斜边向上作等腰Rt DEF ∆,90D ∠=︒,连接AD ,则AD 的最小值为 .9.在Rt ABC ∆中,AB AC =,90BAC ∠=︒,点E 是线段AC 上一点,过E 作EG BC ⊥,交BC 于G ,连接BE ,点D 是BE 的中点,连接AD 交BC 于点F .若25AD =,3BF =,则FG = .10.如图,ABC ∆和BCD ∆均为直角三角形,90BAC BDC ∠=∠=︒,2AB =,连接AD .若30ADB ∠=︒,则AC 的长为 .11.如图,在四边形ABCD 中,6BD =,90BAD BCD ∠=∠=︒,则四边形ABCD 面积的最大值为 .12.如图,在ABC ∆和ACD ∆中,45ABC ADC ∠=∠=︒,6AC =,则AD 的最大值为 .13.如图,ABC ∆中,AB AC =,90BAC ∠=︒,点D 是BC 的中点,点E ,F 分别为AB ,AC 边上的点,且90EDF ∠=︒,连接EF ,则DEF ∠的度数为 .14.如图,以C 为公共顶点的Rt ABC ∆和Rt CED ∆中,90ACB CDE ∠=∠=︒,30A DCE ∠=∠=︒,且点D 在线段AB 上,则ABE ∠= ,若10AC =,9CD =,则BE = . 三.解答题 15.【问题原型】如图①,在O 中,弦BC 所对的圆心角90BOC ∠=︒,点A 在优弧BC 上运动(点A 不与点B 、C 重合),连结AB 、AC .(1)在点A 运动过程中,A ∠的度数是否发生变化?请通过计算说明理由.(2)若2BC =,求弦AC 的最大值.【问题拓展】如图②,在ABC ∆中,4BC =,60A ∠=︒.若M 、N 分别是AB 、BC 的中点,则线段MN 的最大值为 .16.【问题提出】九年级(上册)教材在探究圆内接四边形对角的数量关系时提出了两个问题:1.如图(1),在O 的内接四边形ABCD 中,BD 是O 的直径.A ∠与C ∠、ABC ∠与ADC ∠有怎样的数量关系?2.如图(2),若圆心O 不在O 的内接四边形ABCD 的对角线上,问题(1)中发现的结论是否仍然成立?(1)小明发现问题1中的A ∠与C ∠、ABC ∠与ADC ∠都满足互补关系,请帮助他完善问题1的证明:BD是O的直径,∴,180∴∠+∠=︒,四边形内角和等于360︒,∴.A C(2)请回答问题2,并说明理由;【深入探究】如图(3),O的内接四边形ABCD恰有一个内切圆I,切点分别是点E、F、G、H,连接GH,EF.(3)直接写出四边形ABCD边满足的数量关系;(4)探究EF、GH满足的位置关系;(5)如图(4),若90CD=,请直接写出图中阴影部分的面积.BC=,2∠=︒,3C17.综合与实践:“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC同侧有两点B,D,连接AD,AB,BC,CD,如果B D∠=∠,那么A,B,C,D四点在同一个圆上.探究展示:如图2,作经过点A,C,D的O,在劣弧AC上取一点E(不与A,C重合),连接AE,CE,则180∠+∠=︒(依据1)AEC D∠=∠180B DAEC B∴∠+∠=︒∴点A,B,C,E四点在同一个圆上(对角互补的四边形四个顶点共圆)∴点B,D在点A,C,E所确定的O上(依据2)∴点A,B,C,D四点在同一个圆上反思归纳:(1)上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:;依据2:.(2)如图3,在四边形ABCD中,12∠的度数为.∠=∠,345∠=︒,则4拓展探究:(3)如图4,已知ABC=,点D在BC上(不与BC的∆是等腰三角形,AB AC中点重合),连接AD.作点C关于AD的对称点E,连接EB并延长交AD的延长线于F,连接AE ,DE .①求证:A ,D ,B ,E 四点共圆;②若22AB =,AD AF ⋅的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.18.如图,在矩形ABCD 中,点E 为边AD 的中点,点F 为AB 上的一个动点,连接FE 并延长,交CD 的延长线于点G ,以FG 为底边在FG 下方作等腰Rt FHG ∆,且90FHG ∠=︒.(1)如图①,若点H 恰好落在BC 上,连接BE ,EH .①求证:2AD AB =;②若tan 2BEH ∠=,1GD =,求FHG ∆的面积;(2)如图②,点H 落在矩形ABCD 内,连接CH ,若4AD =,3AB =,求四边形FHCB 面积的最大值.19.如图,ABC ∆是等边三角形,以AC 为腰在AC 右侧作等腰()ADE AD AE ∆=,点D 与点C 重合,连接BE .(1)如图①,过点C 作CG EB ⊥于点G ,若90CAE ∠=︒.①求证:BG CG =;②已知22BC =,求BCE ∆的周长;(2)如图②,若60DAE ∠=︒,将DAE ∆绕点A 逆时针旋转,使点E 落在BA 的延长线上.现DAB ∠内有一点M ,连接DM ,EM ,BM ,作DM 的垂直平分线交BM 的延长线于点N ,交EM 于点H ,直线NH 恰好过点A .若2AE =,当EH 取得最大值时,求AN 的长.20.如图,在ABC ∆中,以AB 为直径作O 交AC 于点D ,交BC 于点E ,CE BE =,过点E 作EF AC ⊥于点F ,FE 的延长线交AB 的延长线于点G ,连接DE .(1)求证:FG 是O 的切线;(2)求证:2EG AG BG =⋅;(3)若1BG =,2EG =,求sin CDE ∠的值.参考答案一.选择题1.解:四边形ABCD 为圆内接四边形,180ADC ABC ∴∠+∠=︒,180ABE ABC ∠+∠=︒,80ADC ABE ∴∠=∠=︒,故选:A .2.解:90ABC ∠=︒,90ABP CBP ∴∠+∠=︒,CBP BAD ∠=∠,90ABD BAD ∴∠+∠=︒,90ADB ∴∠=︒,取AB 的中点E ,连接DE ,CE ,142DE AB ∴==, 242EC EB ∴==,CD CE DE -, CD ∴的最小值为424-,故选:D .3.解:四边形ABCD 是矩形,90ABC ∴∠=︒,90ABP PBC ∴∠+∠=︒,PBC PAB ∠=∠,90PAB PBA ∴∠+∠=︒,90APB ∴∠=︒,∴点P 在以AB 为直径的圆上运动,设圆心为O ,连接OC 交O 于P ,此时PC 最小,222246213OC OB BC =+=+=,PC ∴的最小值为2134-,故选:C .4.解:如图,在BE 的上方,作OEB ∆,使得OE OB =,120EOB ∠=︒,连接OD ,过点O 作OQ BE ⊥于Q ,OJ AD ⊥于J .12BPE EOB ∠=∠,∴点P 的运动轨迹是以O 为圆心,OE 为半径的O ,∴当点P 落在线段OD 上时,DP 的值最小,四边形ABCD 是矩形,90A ∴∠=︒,33AB =,:1:2AE EB =,23BE ∴=,OE OB =,120EOB ∠=︒,OQ EB ⊥,3EQ BQ ∴==,60EOQ BOQ ∠=∠=︒,1OQ ∴=,2OE =,OJ AD ⊥,OQ AB ⊥,90A AJO AQO ∴∠=∠=∠=︒,∴四边形AQOJ 是矩形,1AJ OQ ∴==,23JO AQ ==,5AD =,4DJ AD AJ ∴=-=,22224(23)27OD JD OJ ∴=+=+=,PD ∴的最小值272OD OP =-=-,故选:A . 5.解:如图,连接AC ,BD ,在AC 上取点M 使DM DC =,60DAB ∠=︒,120DCB ∠=︒,180DAB DCB ∴∠+∠=︒,A ∴,B ,C ,D ,四点共圆,AD AB =,60DAB ∠=︒,ADB ∴∆是等边三角形,60ABD ACD ∴∠=∠=︒,DM DC =,DMC ∴∆是等边三角形,60ADB ACD ∴∠=∠=︒,ADM BDC ∴∠=∠,AD BD =,()ADM BDC SAS ∴∆≅∆,AM BC ∴=,AC AM MC BC CD ∴=+=+, 四边形ABCD 的周长为AD AB CD BC AD AB AC +++=++,且6AD AB ==,∴当AC 最大时,四边形ABCD 的周长最大,则CB CD +最大,此时C 点在BD 的中点处,30CAB ∴∠=︒,AC ∴的最大值cos3043AB =⨯︒=,CB CD ∴+最大值为43AC =,故选:A .二.填空题(共9小题)6.解:过点B 作BD AC ⊥于点D ,45C ∠=︒,BCD ∴∆为等腰直角三角形,BD CD ∴=,设BD CD a ==,延长AC 至点F ,使得CF a =, 1tan 22a AFB a ∠==,作ABF ∆的外接圆O ,过点O 作OE AB ⊥于点E ,则122AE AB ==,AOE AFB ∠=∠, 1tan 2AOE ∴∠=,4OE ∴=,222425OA =+=, ∴222()2()22()2AC BC AC BC AC CF AF OA OF +=+=+=+,∴2AC BC +的最大值为245410⨯=.故答案为:410.7.解:以AB 为直径作半圆O ,连接OD ,与半圆O 交于点P ',当点P 与P '重合时,DP 最短, 122AO OP OB AB ='===,2AD =,90BAD ∠=︒,22OD ∴=,45ADO AOD ODC ∠=∠=∠=︒,222DP OD OP ∴'=-'=-,过P '作P E CD '⊥于点E ,则2222P E DE DP '=='=-,22CE CD DE ∴=-=+,2223CP P E CE ∴'='+=. 故答案为:23.8.解:连接BD 并延长,如图,AB BC ⊥,90ABC ∴∠=︒,90EDF ∠=︒,180ABC EDF ∴∠+∠=︒,B ∴,E ,D ,F 四点共圆,DEF ∆为等腰直角三角形,45DEF DFE ∴∠=∠=︒,45DBF DEF ∴∠=∠=︒,45DBF DBE ∴∠=∠=︒,∴点D 的轨迹为ABC ∠的平分线上,垂线段最短,∴当AD BD ⊥时,AD 取最小值,AD ∴的最小值为25222AB =,故答案为:522. 9.解:连接AG ,将ACG ∆绕点A 逆时针旋转90︒得到ABM ∆,连接MG ,MF ,EG BC ⊥,90BAC ∠=︒,180BAC BGE ∴∠+∠=︒,∴点A 、B 、G 、E 四点共圆,GBE GAE ∴∠=∠,又点D 是BE 的中点,且AB AC =,90BAC ∠=︒,AD BD ∴=,ABE BAD ∴∠=∠,45BAD GAE ABE GBE ∴∠+∠=∠+∠=︒,45FAG ∴∠=︒,由旋转性质可得:90MAG ∠=︒,AM AG =,MB CG =,45MBA C ∠=∠=︒,45MAF FAG ∴∠=∠=︒,90MBF ∠=︒,在MAF ∆和GAF ∆中,AM AG MAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()MAF GAF SAS ∴∆≅∆,MF FG ∴=,EG BC ⊥,45C ∠=︒,EG GC MB ∴==,在MBG ∆和EGB ∆中,MB EG MBG EGB BG GB =⎧⎪∠=∠⎨⎪=⎩,()MBG EGB SAS ∴∆≅∆,245MG BE AD ∴===,设CG x =,FG y =,则MB x =,FM y =,在Rt MBG ∆中,222(3)(45)x y ++=①,在Rt MBF ∆中,2223x y +=②,联立①②,解得1145x y =⎧⎨=⎩,22558x y ⎧=⎪⎨=-⎪⎩(不合题意,舍去),33558x y ⎧=-⎪⎨=-⎪⎩(不合题意,舍去),4445x y =-⎧⎨=⎩(不合题意,舍去),综上,5FG =, 解法二:如图,延长AD 到H ,使得DH AD =,连接BH ,则ADE HDB ∆≅∆设AB AC x ==,AE BH y ==,则有228023x y y x x ⎧+=⎪⎨=⎪-⎩,解得622x y ⎧=⎪⎨=⎪⎩, 12345FG ∴=--=.故答案为:5.10.解:90BAC BDC ∠=∠=︒,A ∴,B ,C ,D 四点共圆,30ADB ∠=︒,2AB =,30ACB ADB ∴∠=∠=︒,24BC AB ∴==,22224223AC BC AB ∴--2311.解:90BAD BCD ∠=∠=︒,A ∴,C 两点在以BD 为直径的圆上,∴当AB AD =,CB CD =时,四边形ABCD 面积最大,6BD =,32AB AD CB CD ∴====,∴四边形BCD 的面积为132322182⨯⨯⨯=.故答案为:18. 12.解:45ABC ADC ∠=∠=︒,A ∴,C ,D ,B 四点共圆,如图,作O 经过A ,C ,D ,B 四点,当()AD D '为直径时,AD 有最大值,45ADC ∠=︒,90AOC ∴∠=︒,OA OC =,AOC ∴∆是等腰直角三角形,6AC =,26322AO ∴=⨯=, 262AD AO ∴'==,即AD 的最大值为62.故答案为:62.13.解:如图,连接AD ,ABC ∆中,AB AC =,90BAC ∠=︒,点D 是BC 的中点,90ADC ∴∠=︒,AD CD =,45BAD C ∠=∠=︒,而90EDF ∠=︒,ADE CDF ∴∠=∠,在ADE ∆和CDF ∆中,BAD C AD CDADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ADE CDF ASA ∴∆≅∆,DE DF ∴=, 而90EDF ∠=︒,45DEF DFE ∴∠=∠=︒.故答案为:45︒.14.解:90ACB CDE ∠=∠=︒,30A DCE ∠=∠=︒,60DBC DEC ∴∠=∠=︒,B ∴、C 、D 、E 四点共圆,30DBE DCE ∴∠=∠=︒,30ABE ∴∠=︒,设BC x =,则2AB x =,在Rt ABC ∆中,由勾股定理得222AB AC BC =+,10AC =,222(2)10x x ∴=+,解得:1033x =,1033BC ∴=, 设DE a =,则2CE a =,在Rt CED ∆中,由勾股定理得222CE DE CD =+,9CD =,222(2)9a a ∴=+,解得:33a =,33DE ∴=,63CE =,60ABC ∠=︒,30ABE ∠=︒,90CBE ABC ABE ∴∠=∠+∠=︒,在Rt CBE ∆中,由勾股定理得2222103442(63)()33BE CE BC =--=. 三.解答题(共9小题)15.解:【问题原型】(1)A ∠的度数不发生变化,理由如下:12A BOC ∠=∠,90BOC ∠=︒,∴190452A ∠=⨯︒=︒; (2)当AC 为O 的直径时,AC 最大,在Rt BOC ∆中,90BOC ∠=︒,根据勾股定理,得222OB OC BC +=,OB OC =,∴222222OC BC ==⨯=, ∴222AC OC ==,即AC 的最大值为22;【问题拓展】如图,画ABC ∆的外接圆O ,连接OB ,OC ,ON ,则ON BC ⊥,60BON ∠=︒,122BN BC ==,sin60BNOB∴===︒M、N分别是AB、BC的中点,MN∴是ABC∆的中位线,12MN AC∴=,AC∴为直径时,AC最大,此时2AC OB==,MN∴16.解:【问题提出】(1)BD是O的直径,90A C∴∠=∠=︒,180A C∴∠+∠=︒,四边形内角和等于360︒,180ABC ADC∴∠+∠=︒;故答案为:90A C∠=∠=︒,180ABC ADC∠+∠=︒;(2)成立,理由如下:连接AC、BD,DAC CBD∠=∠,ACD ABD∠=∠,DAC ACD DBC ABD ABC∴∠+∠=∠+∠=∠,180DAC ACD ADC∠+∠+∠=︒,180ABC ADC∴∠+∠=︒;同理,180BAD BCD∠+∠=︒;【深入探究】(3)AD BC AB CD+=+,理由如下:连接AI、BI、CI、DI ,圆I是四边形ABCD的内切圆,AG AE∴=,DE DH=,CH CF=,BF BG=,AD BC AE ED BF CF AG DH BG CH AB CD∴+=+++=+++=+,即AD BC AB CD+=+,故答案为:AD BC AB CD+=+;(4)EF GH⊥,理由如下:连接EH、IH、IG、IF、GF ,四边形ABCD是圆O的内接四边形,180B D∴∠+∠=︒,BG IG⊥,IF BF⊥,90BGI IFB∴∠=∠=︒,180B GIF∴∠+∠=︒,GIF D∴∠=∠,GI IF=,1902GFI GIF∴∠=︒-∠,ED DH=,1902DEH D∴∠=︒-∠,GFI DEH∴∠=∠,GE GE=,GFE GHE∴∠=∠,GHE GFI IFE∴∠=∠+∠,IF IE=,IFE IEF∴∠=∠,90FEH EHG FEH IEF DEH EID∴∠+∠=∠+∠+∠=∠=︒,EF GH∴⊥;(5)连接BD ,90C ∠=︒,90A ∴∠=︒,ABCD 是圆O 的内接圆,BD ∴是圆O 的直径,连接IF 、IH ,I 是四边形ABCD 的内切圆圆心,ADI IDH ∴∠=∠,ABI FBI ∠=∠,IH CD ⊥,IF BC ⊥,90BIF IBF ∴∠=︒-∠,90DIH IDH ∠=︒-∠, 1180()180()2BIF DIH IBF IDH ADC ABC ∴∠+∠=︒-∠+∠=︒-∠+∠, 180ABC ADC ∠+∠=︒,90BIF DIH ∴∠+∠=︒,IF FC ⊥,IH CD ⊥,90C ∠=︒,IH IF =,∴四边形IHCF 是正方形, 90HIF ∴∠=︒,I ∴点在BD 上,3BC =,2CD =,326ABCD S ∴=⨯=四边形,90DIH IDH ∠+∠=︒,90IBF IDH ∠+∠=︒,DIH IBF ∴∠=∠,90IHD IFB ∠=∠=︒,DHI IFB ∴∆∆∽,∴IH DH BF IF =,即23IH IH IH IH-=-, 解得65IH =,3625I S π∴=,∴阴影部分的面积36625π=-.17.(1)解:依据1:圆内接四边形对角互补;依据2:过不在同一直线上的三个点有且只有一个圆,故答案为:圆内接四边形对角互补;过不在同一直线上的三个点有且只有一个圆;(2)解:12∠=∠,∴点A ,B ,C ,D 四点在同一个圆上,34∴∠=∠,345∠=︒,445∴∠=︒,故答案为:45︒;(3)①证明:AB AC =,ABC ACB ∴∠=∠,点E 与点C 关于AD 的对称,AE AC ∴=,DE DC =,AEC ACE ∴∠=∠,DEC DCE ∠=∠,AED ACB ∴∠=∠,AED ABC ∴∠=∠,A ∴,D ,B ,E 四点共圆;②解:AD AF ⋅的值不会发生变化,理由如下:如图4,连接CF ,点E 与点C 关于AD 的对称, FE FC ∴=,FEC FCE ∴∠=∠,FED FCD ∴∠=∠, A ,D ,B ,E 四点共圆,FED BAF ∴∠=∠,BAF FCD ∴∠=∠, A ∴,B ,F ,C 四点共圆,BAD FAB ∠=∠,ABD AFB ∴∆∆∽, ∴AD AB AB AF=,28AD AF AB ∴⋅==.18.(1)①证明:如图①中,过点E 作ET BC ⊥于点T .四边形ABCD 是矩形,90A ADC EDG ∴∠=∠=∠=︒,在AEF ∆和DEG ∆中, 90A EDG AE EDAEF DEG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,()AEF DEG ASA ∴∆≅∆,EF EG ∴=, FGH ∆是等腰直角三角形,HE EF EG ∴==,HE FG ⊥, 90A ABT ETB ∠=∠=∠=︒,∴四边形ABTE 是矩形,90AET FEH ∴∠=∠=︒,AEF TEH ∴∠=∠,在EAF ∆和ETH ∆中,90A ETH AEF TEH EF EH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()EAF ETH AAS ∴∆≅∆,EA ET ∴=,∴四边形ABTE 是正方形,AE AB ∴=,2AD AE =,2AD AB ∴=;②解:如图①1-中,时FH 交BE 于点J .FJB EJH ∠=∠,45FBJ EHJ ∠=∠=︒,BFH BEH ∴∠=∠, tan tan 2BFH BEH ∴∠=∠=,∴2BH FB =,EAF ETH EDG ∆≅∆≅∆, 1AF DG TH ∴===,设AB BT x ==,则121x x +=-,3x ∴=,2BF ∴=,4BH =, 在Rt BFH ∆中,22222425FH BF BH =+=+=,12525102DGH S ∆∴=⨯⨯=; (2)解:如图②中,过点H 作HQ AB ⊥于点Q ,过点E 作ER QH ⊥于点R ,连接BH .同法可证,EAF ERH ∆≅∆,EA ER ∴=,AF RH =,2AE ED ==,2ER AE ∴==,四边形AQRE 是正方形,2AQ AE ∴==,1BQ ∴=,14122BCH S ∆∴=⨯⨯=,设AF RH y ==, 211125(3)(2)()2228BFH S y y y ∆∴=-⋅+=--+,102-<, 12y ∴=时,BFH ∆的面积最大,最大值为258, ∴四边形BCHF 的面积的最大值2541288=+=. 19.(1)①证明:如图①中,连接AG ,延长CG 交AB 于点J ,过点A 作AM CJ ⊥交CJ 的延长线于点M ,AN BE ⊥于点N .CG BE ⊥,90OAE OGC ∴∠=∠=︒,AOE GOC ∠=∠,AOE GOC ∴∆∆∽,∴AO EO GO CO =,∴AO GO EO CO=, AOG EOC ∠=∠,AOG EOC ∴∆∆∽,45AGO ACE ∴∠=∠=︒,90OGJ ∠=︒,45AGN AGM ∴∠=∠=︒, AM GM ⊥,AN GN ⊥,AM AN ∴=,90ANB AMC ∠=∠=︒,AC AB =, Rt AMC Rt ANB(HL)∴∆≅∆,ACM ABN ∴∠=∠,AB AC =, ABC ACB ∴∠=∠,GBC GCB ∴∠=∠,GB GC ∴=;②解:GB GC =,90BGC ∠=︒,22BC =,2GB GC ∴==, AB AC =,GB GC =,AG ∴垂直平分线线段BC ,30CAG ∴∠=︒,AOG EOC ∆∆∽,30OEC OAG ∴∠=∠=︒, 24EC CG ∴==,23EG =,223BE ∴=+,BCE ∴∆的周长22223422236BC BE EC =++=+++=++;(2)解:如图②中,以A 为圆心,AE 为半径作A ,设AN 交DM 于点J .AD AE =,60DAE ∠=︒,ADE ∴∆是等边三角形,点D ,M 关于AN 对称,AD AM ∴=,∴点M 在A 上, 1302EMD EAD ∴∠=∠=︒,AN DM ⊥,90MJH ∴∠=︒,60AHE MHJ ∠=∠=︒,60AHE ADE ∴∠=∠=︒,A ∴,E ,D ,H 四点共圆, 60EHD EAD ∴∠=∠=︒,120AHD ∴∠=︒,∴当EH 是四边形AEDH 的外接圆的直径时,EH 的值最大,此时点C 与点M 重合,B ,C ,N 共线,且EM AD ⊥(如图②1-中),30AEM DEM ∴∠=∠=︒,90AEN ∴∠=︒,90BAN ∴∠=︒, 2AB AE ==,60B ∠=︒,tan 6023AN AB ∴=⋅︒=20.(1)证明:连接OE ,CE BE =,OA BO =,OE ∴是ABC ∆的中位线, //OE AC ∴,EF AC ⊥,OE EF ∴⊥,E 点在圆O 上,FG ∴是O 的切线;(2)证明:OE GF ⊥,90OEG ∴∠=︒,222OG OE EG ∴=+, 222()()EG OG OE OG OE OG OE =-=+-,EO BO OA ==, 2()()EG OG OA OG OB AG BG ∴=+-=⋅; (3)解:连接AE ,过E 点作EM AB ⊥交于点M ,2EG AG BG =⋅,1BG =,2EG 2AG ∴=,1AB ∴=,AB 是直径,90AEB ∴∠=︒,90OEG ∠=︒,AEO BEB ∴∠=∠,AO OE =,EAO OEA ∴∠=∠, BEG EAO ∴∠=∠,AEG EBG ∴∆∆∽,∴2EG EB AG AE =,设EB x =,则2AE x , 在Rt ABE ∆中,2212x x =+,解得3x =,3BE ∴=,6AE =,AE BE AB EM ⋅=⋅,23EM ∴=,A 、B 、E 、D 四点共圆,CDE ABE ∴∠=∠,263sin sin 333EM CDE EBM EB ∴∠=∠===.。

四点共圆例题及答案

四点共圆例题及答案

四点共圆的应用例1 如图1,已知P 为⊙O 外一点,PA 切⊙O 于A ,PB 切⊙O 于B ,OP 交AB 于E . 求证:∠APC =∠BPD .例2 如图2,从⊙O 外一点P 引切线PA 、PB 和割线PDC ,从A 点作弦AE 平行于DC ,连结BE 交DC 于F ,求证:FC =FD .例3 如图3,在△ABC 中,AB=AC ,AD ⊥BC ,∠B 的两条三等分线交AD 于E 、G ,交AC 于F 、H .求证:EH ∥GC .PP例4 如图4,⊿ABC 为等边三角形,D 、E 分别为BC 、AC 边上的点,且BD=31BC,CE=31AC,AD 与BE 相交于P 点。

求证:CP ⊥AD例5 如图5,AB 为半圆直径,P 为半圆上一点,PC ⊥AB 于C ,以AC 为直径的圆交PA 于D ,以BC 为直径的圆交PB 于E ,求证:DE 是这两圆的公切线.例6 AB 、CD 为⊙O 中两条平行的弦,过B 点的切线交CD 的延长线于G ,弦PA 、PB 分别交CD于E 、F .求证:FGFDCF EF例7 ABCD 为圆内接四边形,一组对边AB 和DC 延长交于P 点,另一组对边AD 和BC 延长交于Q点,从P 、Q 引这圆的两条切线,切点分别是E 、F ,(如图 7)求证:PQ 2=QF 2+PE 2.例8 如图8,△ABC 的高AD 的延长线交外接圆于H ,以AD为直径作圆和AB 、AC 分别交于E 、F 点,EF 交 AD 于 G ,若 AG=16cm ,AH=25cm ,求 AD 的长.例9 如图9,D 为△ABC 外接圆上任意一点,E 、F 、G 为D 点到三边垂线的垂足,求证:E 、F 、G 三点在一条直线上.例10 如图10,H 为△ABC 的垂心,H 1、H 2、 H 3为H 点关于各边的对称点,求证:A 、B 、 C 、H 1、H 2、H 3六点共圆.11、已知PQRS 是圆内接四边形,∠PSR =90°,过点2BQ 作PR 、PS 的垂线,垂足分别为点H 、K.求证:HK 平分QS.12.AB 为⊙O 的直径,点C 在⊙O 上且OC ⊥AB,P 为⊙O 上一点,位于点B 、C 之间,直线CP 与AB 的延长线交于点Q,过Q 作直线与AB 垂直,交直线AP 于点R. 求证:BQ =QR.13.如图10,在△ABC 中,AD ⊥BC,BE ⊥CA,AD 与BE 交于点H,P 为 边AB 的中点,过点C 作CQ ⊥PH,垂足为Q.求证:2PE =PH ·PQ.R。

四点共圆(专项练习)

四点共圆(专项练习)

四点共圆(专项练习)一、单选题1.如图①,若BC 是Rt △ABC 和Rt △DBC 的公共斜边,则A 、B 、C 、D 在以BC 为直径的圆上,则叫它们“四点共圆”.如图①,△ABC 的三条高AD 、BE 、CF 相交于点H ,则图①中“四点共圆”的组数为( )A .2B .3C .4D .62.如图,已知AB=AC=AD ,①CAD=20°,则①CBD 的度数是( )A .10°B .15°C .20°D .25°3.如图,圆上有A 、B 、C 、D 四点,其中80BAD ∠=︒,若弧ABC 、弧ADC 的长度分别为7π、11π,则弧BAD 的长度为( )A .4πB .8πC .10πD .15π4.如图,四边形ABCD 内接于O ,AB CD =,A 为BD 中点,60BDC ∠=︒,则ADB ∠等于( )A .40︒B .50︒C .60︒D .70︒5.如图,在ABC ∆中,90BAC ∠=︒,AB =AC =5,点D 在AC 上,且2AD =,点E 是AB 上的动点,连结DE ,点F ,G 分别是BC ,DE 的中点,连接AG ,FG ,当AG =FG 时,线段DE 长为( )A 13B 52C 41D .46.如图,在四边形ABCD 中,AC 、BD 为对角线,点M 、E 、N 、F 分别为AD 、AB 、BC 、CD 边的中点,下列说法:①当AC BD =时,M 、E 、N 、F 四点共圆.①当AC BD ⊥时,M 、E 、N 、F 四点共圆.①当AC BD =且AC BD ⊥时,M 、E 、N 、F 四点共圆.其中正确的是( )A .①①B .①①C .①①D .①①①7.锐角ABC 的三条高AD 、BE 、CF 交于H ,在A 、B 、C 、D 、E 、F 、H 七个点中.能组成四点共圆的组数是( )A .4组B .5组C .6组D .7组二、填空题 8.如图,正五边形ABCDE 内接于①O ,则①ADE 的度数是 _____.9.如图,四边形ABCD 是①O 的内接四边形,若①O 半径为4,且①C =2①A ,则BD 的长为__.10.如图,将ABC 绕点A 顺时针旋转25°得到AEF ,EF 交BC 于点N ,连接AN ,若57C ∠=︒,则 ANB ∠=__________.11.如图,AB 是Rt ABC 和Rt ABD △的公共斜边,AC=BC ,32BAD ∠=,E 是AB 的中点,联结DE 、CE 、CD ,那么ECD ∠=___________________.三、解答题12.如图所示,AB AC AD ==,60BAC ∠=︒,求BDC ∠.13.如图所示,正方形ABCD中,BD为对角线,点E为BD上一点,过E作EF AE⊥,=.交DC于F,求证:AE FE∠=∠.14.如图,四边形ABED是圆的内接四边形,延长AD、BE相交于点C,已知C EDC=;(1)求证:AB AC(2)若AB是四边形ABED外接圆的直径,求证:BE ED=.15.如图,AB=AC,AE=AF,①BAC=①EAF=90°,BE、CF交于M,连AM.①求证:BE=CF;①求证:BE①CF;①求①AMC的度数.16.如图,①ABC中,BE①AC,CF①AB,垂足分别为E、F,M为BC的中点.(1)求证:ME=MF.(2)若①A=50°,求①FME的度数.17.如图所示,在平行四边形ABCD中,点E为AB,BC的垂直平分线的交点,若∠=︒,求AECD60∠.18.定义:有一个角是其对角一半的圆的内接四边形叫做圆美四边形,其中这个角叫做美角.已知四边形ABCD是圆美四边形.(1)求美角A∠的度数;(2)如图1,若O 的半径为5,求BD 的长;(3)如图2,若CA 平分BCD ∠,求证:BC CD AC +=.19.如图1,在正方形ABCD 中,点F 在边BC 上,过点F 作EF BC ⊥,且()FE FC CE CB =<,连接CE 、AE ,点G 是AE 的中点,连接FG .(1)用等式表示线段BF 与FG 的数量关系:______;(2)将图1中的CEF △绕点C 按逆时针旋转,使CEF △的顶点F 恰好在正方形ABCD 的对角线AC 上,点G 仍是AE 的中点,连接FG 、DF .①在图2中,依据题意补全图形;①用等式表示线段DF 与FG 的数量关系并证明.20.如图所示,在①ABC 中,AB=AC ,任意延长CA 到P ,再延长AB 到Q ,使AP=BQ , 求证:①ABC 的外心O 与点A 、P 、Q 四点共圆.21.如图,已知A,B,C,D四点共圆,且AC=BC.求证:DC平分①BDE.22.如图,已知矩形ABCD.求证:A、B、C、D四点共圆.23.在正方形ABCD中,M是BC边上一点,点P在射线AM上,将线段AP绕点A顺时针旋转90︒得到线段AQ,连接BP,DQ.=;(1)如图1,求证:BP DQ(2)如图2,若点P,B,D三点共线,求证:A,Q,P,D四点共圆;AD ,求BP的长.(3)若点P,Q,C三点共线,且324.如图,在Rt ABC中,①BAC=90°,①ABC=40°,将ABC绕A点顺时针旋转得到ADE,使D点落在BC边上.(1)求①BAD的度数;(2)求证:A、D、B、E四点共圆.25.如图1,ABC中,AC=BC=4,①ACB=90°,过点C任作一条直线CD,将线段BC沿直线CD翻折得线段CE,直线AE交直线CD于点F.直线BE交直线CD于G点.(1)小智同学通过思考推得当点E在AB上方时,①AEB的角度是不变的,请按小智的思路帮助小智完成以下推理过程:①AC=BC=EC,①A、B、E三点在以C为圆心以AC为半径的圆上,①①AEB=①ACB,(填写数量关系)①①AEB=°.(2)如图2,连接BF,求证A、B、F、C四点共圆;(3)线段AE最大值为,若取BC的中点M,则线段MF的最小值为.26.阅读以下材料,并完成相应的任务:西姆松定理是一个平面几何定理,其表述为:过三角形外接圆上异于三角形顶点的任意一点作三边或其延长线的垂线,则三垂足共线(此线常称为西姆松线).数学兴趣小组的同学们尝试证明该定理.如图1,已知ABC内接于①O,点P在①O上(不与点A、B、C重合),过点P分别作AB,BC,AC的垂线,垂足分别为D,E,F求证:点D,E,F在同一条直线上以下是他们的证明过程:如图1,连接PB ,PC ,DE ,EF ,取PC 的中点Q ,连接QE ,QF , 则12PQ CQ PC EQ FQ ====(依据1), ①E ,F ,P ,C 四点共圆.①180FCP FEP ∠+∠=︒(依据2).又①180ACP ABP ∠+∠=︒,①FEP ABP ∠=∠.①90BDP BEP ∠=∠=︒,①B ,D ,P ,E 四点共圆.①DBP DEP ∠=∠(依据3).①180ABP DBP ∠+∠=︒,①180FEP DEP ∠+∠=︒(依据4).①点D ,E ,F 在同一条直线上.任务:(1)填空:①依据1指的的是中点的定义及______;①依据2指的是______;①依据3指的是______;①依据4指的是______.(2)善于思考的小英发现当点P 是BC 的中点时,BD CF =.请你利用图2证明该结论的正确性.27.[发现]如图①ACB=①ADB=90°,那么点D在经过A,B,C三点的圆上(如图①)[思考]如图①,如果①ACB=①ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆上吗?我们知道,如果点D不在经过A,B,C三点的圆上,那么点D要么在圆O外,要么在圆O内,以下该同学的想法说明了点D不在圆O外.请结合图①证明点D也不在①O内.[结论]综上可得结论:如图①,如果①ACB=①ADB=a(点C,D在AB的同侧),那么点D在经过A,B,C三点的圆上,即:点A、B、C、D四点共圆.[应用]利用上述结论解决问题:如图①,已知△ABC中,①C=90°,将△ACB绕点A顺时针旋转一个角度得△ADE,连接BE CD,延长CD交BE于点F,(1)求证:点B、C、A、F四点共圆;(2)求证:BF=EF.图①28.定义:如果同一平面内的四个点在同一个圆上,那么我们把这称为四点共圆.(1)下列几何图形的四个顶点构成四点共圆的有.(填序号)①平行四边形;①菱形;①矩形;①正方形;①等腰梯形.(2)已知①ABC中,①A=40°,如图1,平面上一点D,使得A、B、C、D四点共圆,试求①BDC的度数.(3)若△ABC的外接圆为⊙O,半径为r,平面上有两点E、F,分别与△ABC的三个顶点构成四点共圆(E在AB的左侧,F点在AC的右侧),如图2.①试判断∠E+∠F﹣∠BAC 的值是否为定值?如果是,请求出这个值;如果不是,请说明理由;②若BC弦的长度与⊙O的半径r2:1,并且边AB经过圆心O,如图3,试求五边形AEBCF的最大面积(用含r的式子表示).参考答案1.D【分析】根据两个直角三角形公共斜边时,四个顶点共圆,结合图形求解可得. 解:如图,以AH 为斜边的两个直角三角形,四个顶点共圆(A 、F 、H 、E ), 以BH 为斜边的两个直角三角形,四个顶点共圆(B 、F 、H 、D ), 以CH 为斜边的两个直角三角形,四个顶点共圆(C 、D 、H 、E ), 以AB 为斜边的两个直角三角形,四个顶点共圆(A 、E 、D 、B ), 以BC 为斜边的两个直角三角形,四个顶点共圆(B 、F 、E 、C ), 以AC 为斜边的两个直角三角形,四个顶点共圆(A 、F 、D 、C ), 共6组. 故选D .【点拨】本题考查四点共圆的判断方法.解题的关键是明确有公共斜边的两个直角三角形的四个顶点共圆.2.A解:如图,AB=AC=AD ①20CAD ∠=︒11201022CBD CAD ∴∠=∠=⨯︒=︒,故选A . 3.C 【分析】先求出圆的周长,再根据圆内接四边形的性质可得100C ∠=︒,然后根据圆周角定理可得弧BAD所对圆心角的度数,最后根据弧长的定义即可得.解:弧ABC、弧ADC的长度分别为7π、11π∴圆的周长为71118πππ+=80BAD∠=︒100C∴∠=︒(圆内接四边形的对角互补)∴弧BAD所对圆心角的度数为2200C∠=︒则弧BAD的长度为200 1810360ππ⨯=故选:C.【点拨】本题考查了圆周角定理、弧长的定义、圆内接四边形的性质,熟记圆的相关定理与性质是解题关键.4.A【分析】根据AB CD=,A为BD中点求出①CBD=①ADB=①ABD,再根据圆内接四边形的性质得到①ABC+①ADC=180°,即可求出答案.解:①A为BD中点,①AB AD=,①①ADB=①ABD,AB=AD,①AB CD=,①①CBD=①ADB=①ABD,①四边形ABCD内接于O,①①ABC+①ADC=180°,①3①ADB+60°=180°,①ADB∠=40°,故选:A.【点拨】此题考查圆周角定理:在同圆中等弧所对的圆周角相等、相等的弦所对的圆周角相等,圆内接四边形的性质:对角互补.5.A【分析】连接DF,EF,过点F作FN①AC,FM①AB,结合直角三角形斜边中线等于斜边的一半求得点A,D,F,E四点共圆,①DFE=90°,然后根据勾股定理及正方形的判定和性质求得AE 的长度,从而求解.解:连接DF ,EF ,过点F 作FN ①AC ,FM ①AB①在ABC ∆中,90BAC ∠=︒,点G 是DE 的中点, ①AG =DG =EG 又①AG =FG①点A ,D ,F ,E 四点共圆,且DE 是圆的直径 ①①DFE =90°①在Rt ①ABC 中,AB =AC =5,点F 是BC 的中点, ①CF =BF =1522BC =FN =FM =52又①FN ①AC ,FM ①AB ,90BAC ∠=︒ ①四边形NAMF 是正方形 ①AN =AM =FN =52又①90NFD DFM ∠+∠=︒,90DFM MFE ∠+∠=︒ ①NFD MFE ∠=∠ ①①NFD ①①MFE ①ME =DN =AN -AD =12①AE =AM +ME =3①在Rt ①DAE 中,DE 2213AD AE +故选:A .【点拨】本题考查直径所对的圆周角是90°,四点共圆及正方形的判定和性质和用勾股定理解直角三角形,掌握相关性质定理正确推理计算是解题关键.6.C 【分析】连接EM、MF、FN、NE,连接EF、MN,交于点O,利用三角形中位线定理可证到四边形ENFM是平行四边形;然后根据条件判定四边形ENFM的形状,就可知道M、E、N、F四点是否共圆.解:连接EM、MF、FN、NE,连接EF、MN,交于点O,如图所示.①点M、E、N、F分别为AD、AB、BC、CD边的中点,①EM①BD①NF,EN①AC①MF,EM=NF=12BD,EN=MF=12AC.①四边形ENFM是平行四边形.①当AC=BD时,则有EM=EN,所以平行四边形ENFM是菱形.而菱形的四个顶点不一定共圆,故①不一定正确.①当AC①BD时,由EM①BD,EN①AC可得:EM①EN,即①MEN=90°.所以平行四边形ENFM是矩形.则有OE=ON=OF=OM.所以M、E、N、F四点共圆,故①正确.①当AC=BD且AC①BD时,同理可得:四边形ENFM是正方形.则有OE=ON=OF=OM所以M、E、N、F四点共圆,故①正确.故选C.【点拨】本题考查了四点共圆、三角形的中位线定理、平行四边形的判定与性质、矩形的判定与性质、菱形的判定与性质、正方形的判定与性质等知识.熟练掌握平行四边形、矩形、菱形、正方形的判定定理是解题关键.7.C【分析】根据两个直角三角形公共斜边时,四个顶点共圆,完整选择.解:如图,以AH为斜边的两个直角三角形,四个顶点共圆(A、F、H、E),以BH为斜边的两个直角三角形,四个顶点共圆(B、F、H、D),以CH为斜边的两个直角三角形,四个顶点共圆(C、D、H、E),以AB为斜边的两个直角三角形,四个顶点共圆(A、E、D、B),以BC为斜边的两个直角三角形,四个顶点共圆(B、F、E、C),以AC为斜边的两个直角三角形,四个顶点共圆(A、F、D、C),共6组.故选C.【点拨】本题考查四点共圆的判断方法.解题关键是明确有公共斜边的两个直角三角形的四个顶点共圆.8.36°##36度【分析】先利用正多边形的性质求出①AED度数、再利用等腰三角形的性质以及三角形内角和定理求解即可.解:①正五边形ABCDE内接于①O,①AE=ED,①AED=()5-21805⨯︒=108°,①①ADE =①EAD =12(180°-108°)=36°,故答案为:36°.【点拨】本题考查正多边形与圆,等腰三角形的性质,三角形内角和定理等知识,解题的关键是记住正多边形的内角和公式.9.3【分析】连接OB ,OD ,利用内接四边形的性质得出①A=60°,进而得出①BOD=120°,利用含30°的直角三角形的性质解答即可.解:连接OB ,OD ,过O 作OE①BD ,①四边形ABCD 是①O 的内接四边形,①C=2①A , ①①C+①A=3①A=180°, 解得:①A=60°, ①①BOD=120°, 在Rt △BEO 中,OB=4, 3 3 故答案为:3【点拨】此题考查内接四边形的性质,关键是利用内接四边形的性质得出①A=60°. 10.102.5° 【分析】先根据旋转的性质得到25CAF ∠=︒,25CNF ENB ∠=∠=︒,得到点A 、N 、F 、C 共圆,再利用77.5ANC AFC ∠=∠=︒,根据平角的性质即可得到答案;解:如图,AF 与CB 相交于点O ,连接CF ,根据旋转的性质得到:AC=AF ,57F C ∠=∠=︒,25CAF ∠=︒,25CNF ENB ∠=∠=︒, ①点A 、N 、F 、C 共圆, ①1802577.52ACF AFC ︒-︒∠=∠==︒, 又①点A 、N 、F 、C 共圆, ①77.5ANC AFC ∠=∠=︒,①18077.5102.5ANB ∠=︒-︒=︒(平角的性质), 故答案为:102.5°【点拨】本题主要考查了旋转的性质、平角的性质、点共圆的判定,掌握平移的性质是解题的关键;11.13 【分析】先证明A 、C 、B 、D 四点共圆,得到①DCB 与①BAD 的是同弧所对的圆周角的关系,得到①DCB 的度数,再证①ECB=45°,得出结论.解:①AB 是Rt①ABC 和Rt①ABD 的公共斜边,E 是AB 中点,①AE=EB=EC=ED ,①A 、C 、B 、D 在以E 为圆心的圆上, ①①BAD=32°, ①①DCB=①BAD=32°,又①AC=BC ,E 是Rt①ABC 的中点, ①①ECB=45°,①①ECD=①ECB -①DCB=13°. 故答案为:13.【点拨】本题考查直角三角形的性质、等腰三角形性质、圆周角定理和四点共圆问题,综合性较强.12.30°. 【分析】由AB=AC=AD ,可得B ,C ,D 在以A 为圆心,AB 为半径的圆上,然后由圆周角定理,证得①CAD=2①CBD ,①BAC=2①BDC ,继而可得①CAD=2①BAC .解:①AB=AC=AD ,①B ,C ,D 在以A 为圆心,AB 为半径的圆上, ①①CAD=2①CBD ,①BAC=2①BDC , ①①CBD=2①BDC ,①BAC=60°, ①①CAD=2①BAC=120°. ①①BDC=30°.【点拨】此题考查了圆周角定理.注意得到B ,C ,D 在以A 为圆心,AB 为半径的圆上是解此题的关键.13.见分析. 【分析】先根据正方形的性质可得①CDA=90°,再根据EF AE ⊥得到①AEF=90°,从而得证A ,E ,F ,D 共圆,45EAF BDC ∠=∠=︒,继而得出AE=FE.解:在正方形ABCD 中,90ADC ∠=︒,①BDC=45°①EF AE ⊥ ①90AEF ∠=︒ ①①ADC+①AEF=180° ①A ,E ,F ,D 共圆, ①45EAF BDC ∠=∠=︒, ①45EAF EFA ∠=∠=︒ ①AE FE =.【点拨】本题考查了正方形的性质,四点共圆,以及等腰三角形的判定,熟练掌握相关知识是解题的关键14.(1)见分析;(2)见分析. 【分析】(1)根据圆内接四边形对角互补证得①B =①C ,从而利用等角对等边证得AB =AC ; (2)连接AE ,将证明弧相等转化为弧相对的圆周角相等来实现. 解:(1)①四边形ABED 是圆内接四边形,①①B+①ADE=180° 又①①EDC+①ADE=180° ①①EDC=①B 又①①EDC=①C①①B=①C①AB=AC(2)连接AE①AB是圆的直径①①AEB=90°又①AB=AC①AE平分①BAC①①BAE=①EAD①BE DE【点拨】本题考查圆内接四边形及圆的有关性质,解题的关键是知道圆内接四边形及圆的有关性质.15.(1)见分析;(2)见分析;(3)135°解:试题分析:①证①BEA①①CFA.①①ABE=①ACF,①①CMB=①CAB=90°.①作AG①BE于G,AH①CF于H,证①AGB①①AHC,AG=AH,①AMG=45°,可得①AMC=135°试题解析:(1)①①BAC=①EAF=90°①①BAE=①CAF①AE=AF,AB=AC,①三角形BAE 全等于三角形CAF,① BE=CF(2)①①AEB=①AFC设CF与AE相交于点H 则①MHE = ①AHF①三角形EMH与三角形HAF的内角和都为180°① ①EMF = ①EAF即BE①CF(3)①①ABE=①ACF① A ,B ,C ,M 四点共圆① ①AMC+①ABC=180°①AB=AC ,①BAC=90°,①ABC=45°① ①AMC=180°--①ABC=135°也可以作AG①BE 于G ,AH①CF 于H ,证①AGB①①AHC ,AG =AH ,①AMG =45°,可得①AMC =135.16.(1)证明见分析(2)80°.试题分析:(1)根据直角三角形斜边上的中线等于斜边的一半得到ME=12BC ,MF=12BC ,得到答案;(2)根据四点共圆的判定得到B 、C 、E 、F 四点共圆,根据圆周角定理得到答案. (1)证明:①BE①AC ,CF①AB ,M 为BC 的中点,①ME=12BC ,MF=12BC ,①ME=MF ;(2)解:①CF①AB ,①A=50°,①①ACF=40°,①BE①AC ,CF①AB ,①B 、C 、E 、F 四点共圆,①①FME=2①ACF=80°.【点拨】1.直角三角形斜边上的中线;2.等腰三角形的判定与性质.17.120AEC ∠=︒【分析】由点E 为AB ,BC 的垂直平分线的交点知,EA EB EC ==,所以A ,B ,C 在以E 为圆心,EA 为半径的圆上,由圆的性质知2AEC ABC ∠=∠,再由平行四边形的性质,问题得解.解:连结EB ,①点E 为AB ,BC 的垂直平分线的交点①EA EB EC ==,①A ,B ,C 在以E 为圆心,EA 为半径的圆上,作出辅助圆,由圆的性质知2AEC ABC ∠=∠,又平行四边形ABCD 中,60ABC D ∠=∠=︒①2120AEC ABC ∠=∠=︒【点拨】作辅助圆,可以将直线型问题转化为曲线型问题,为我们解决问题时提供更开阔思路,更简捷的方法.18.(1)60°;(2)53(3)见分析【分析】(1)根据美角的定义可得12A C ∠=∠,然后根据圆内接四边形的性质即可求出结论; (2)连接DO 并延长,交O 与点E ,连接BE ,根据同弧所对的圆周角相等可得①E=①A=60°,然后根据直径所对的圆周角是直角可得①DBE=90°,最后利用锐角三角函数即可求出结论;(3)延长CB 至F ,使BF=DC ,连接AF 、BD ,先证出①ABD 为等边三角形,然后利用SAS 证出①ABF①①ADC ,从而得出AF=AC ,①F=①DCA=60°,再证出①ACF 为等边三角形,利用等边三角形的性质和等量代换即可得出结论.解:(1)根据题意可得:12A C ∠=∠,而①A +①C=180° ①①A=60°(2)连接DO 并延长,交O 与点E ,连接BE①①E=①A=60°①DE 为O 的直径,O 的半径为5,①①DBE=90°,DE=10在Rt①DBE 中,353 (3)延长CB 至F ,使BF=DC ,连接AF 、BD由(1)可知:①BAD=60°,①BCD=2①BAD=120° ①CA 平分BCD ∠,①①BCA=①DCA=12BCD ∠=60° ①①ABD=①DCA=60°①①ADB=180°-①ABD -①BAD=60°①①ABD 为等边三角形①AB=AD根据圆内接四边形的性质可得①ABF=①ADC在①ABF 和①ADC 中BF DC ABF ADC AB AD =⎧⎪∠=∠⎨⎪=⎩①①ABF①①ADC①AF=AC ,①F=①DCA=60°①①FAC=180°-①F -①ACF=60°①①ACF 为等边三角形①CF=AC①BC +BF=AC①BC +CD=AC【点拨】此题考查的是新定义类问题、圆内接四边形的性质、圆周角定理及推论、锐角三角函数、等边三角形的判定及性质和全等三角形的判定及性质,掌握新定义、圆内接四边形的性质、圆周角定理及推论、锐角三角函数、等边三角形的判定及性质和全等三角形的判定及性质是解决此题的关键.19.(1)2BF FG=;(2)①画图见分析;①2DF FG,证明见分析【分析】(1)先判断出①AGB①①CGB,得到①GBF=45°,再判断出①EFG①①CFG,得到①GFB =45°,从而得到①BGF为等腰直角三角形,即可.(2)①画图2即可;①如图2,连接BF、BG,证明①ADF①①ABF得DF=BF,根据直角三角形斜边中线的性质得:AG=EG=BG=FG,由圆的定义可知:点A、F、E、B在以点G为圆心,AG长为半径的圆上,①BGF=2①BAC=90°,所以①BGF是等腰直角三角形,可得结论.解:(1)BF2FG,理由是:如图1,连接BG,CG,①四边形ABCD为正方形,①①ABC=90°,①ACB=45°,AB=BC,①EF①BC,FE=FC,①①CFE=90°,①ECF=45°,①①ACE=90°,①点G是AE的中点,①EG=CG=AG,①BG=BG,①①AGB①①CGB(SSS),①①ABG=①CBG=12①ABC=45°,①EG=CG,EF=CF,FG=FG,①①EFG①①CFG(SSS),①①EFG=①CFG=12(360°﹣①BFE)=12(360°﹣90°)=135°,①①BFE=90°,①①BFG=45°,①①BGF为等腰直角三角形,①BF2FG.故答案为:BF2;(2)①如图2所示,①2=;理由如下:DF FG如图2,连接BF、BG,①四边形ABCD是正方形,①AD=AB,①ABC=①BAD=90°,AC平分①BAD,①①BAC=①DAC=45°,①AF=AF,①①ADF①①ABF(SAS),①DF=BF,①EF①AC,①ABC=90°,点G是AE的中点,①AG=EG=BG=FG,①点A、F、E、B在以点G为圆心,AG长为半径的圆上,①BF BF=,①BAC=45°,①①BGF=2①BAC=90°,①①BGF是等腰直角三角形,①BF2FG,①DF2FG.【点拨】本题是四边形综合题,主要考查了正方形的性质,直角三角形斜边中线的性质,全等三角形的判定和性质,圆的性质,判断①BGF为等腰直角三角形是解本题的关键,作出辅助线是解本题的难点.20.见分析解:试题分析:先作①ABC的外接圆①O,并作OE①AB于E,OF①AC于F,连接OP、OQ、OB、OA,证出BE=AF,OE=OF,再证Rt①OPF①Rt①OQE,得到①P=①Q即可得到答案.证明:作①ABC的外接圆①O,并作OE①AB于E,OF①AC于F,连接OP、OQ、OB、OA,①O是①ABC的外心,①OE=OF,OB=OA,由勾股定理得:BE2=OB2﹣OE2,AF2=OA2﹣OF2,①BE=AF,①AP=BQ,①PF=QE,①OE①AB,OF①AC①①OFP=①OEQ=90°,①Rt①OPF①Rt①OQE,①①P=①Q,①O、A、P、Q四点共圆.即:①ABC的外心O与点A、P、Q四点共圆.【点拨】本题主要考查了四点共圆,勾股定理,全等三角形的性质和判定,确定圆的条件等知识点,作辅助线构造全等三角形证①P=①Q是解此题的关键.21.证明见分析.【分析】根据圆周角定理和圆内接四边形的性质得到①2=①1,①3=①ABC,由等腰三角形的性质得到①1=①ABC ,等量代换得到①2=①3,于是得到结论.证明:①A ,B ,C ,D 四点共圆,①①2=①1,①3=①ABC ,①AC=BC ,①①1=①ABC ,①①2=①3,①DC 平分①BDE .【点拨】本题考查了圆周角定理,圆内接四边形的性质,角平分线的判定,熟练掌握圆周角定理是解题的关键.22.见分析【分析】连接AC 、BD ,根据矩形的性质可得OA=OB=OC=OD ,即可得结论.解:连接AC 、BD 交于O 点,①四边形ABCD 为矩形,①AC BD =.①OA OB OC OD ===.①A 、B 、C 、D 到点O 的距离相等,①A 、B 、C 、D 在以O 为圆心,OA 为半径的圆上.即A 、B 、C 、D 四点共圆.【点拨】本题考查了矩形的性质及圆的认识,熟练掌握矩形的性质,理解四点共圆的意义是解题关键.23.(1)见分析;(2)见分析;(3)3BP =【分析】(1)证明AQD APB ≌即可得出答案;(2)根据全等三角形的性质以及圆内接四边形对角和为180︒即可得出结论; (3)证明PAQ △为等腰直角三角形,得出45APC ∠=︒,然后得出2ABC APC ∠=∠,根据圆周角定理可得点P 在圆B 上,结论可得.解:(1)根据旋转的性质可得AP AQ =,90PAQ ∠=︒,①90BAD ∠=︒,①DAQ BAP ∠=∠,①AB AD =,①()AQD APB SAS ≌,①BP DQ =;(2)①AQD APB ≌,①Q APB ∠=∠,①点P ,B ,D 三点共线,①180APD APB ∠+∠=︒,①180Q APD ∠+∠=︒,①A ,Q ,P ,D 四点共圆;(3)①AP AQ =,90PAQ ∠=︒,①PAQ △为等腰直角三角形,①45APC ∠=︒,以点B 为圆心,BA 为半径作B ,①90ABC ∠=︒,45APC ∠=︒,①2ABC APC ∠=∠,①点P 在圆B 上,①3BP BC ==.【点拨】本题考查了全等三角形的判定与性质,四点共圆,圆周角定理等知识,熟练掌握基础知识是解本题的关键.24.(1)10°;(2)见分析【分析】(1)由三角形内角和定理和已知条件求得①C的度数,由旋转的性质得出AC=AD,即可得出①ADC=①C,最后由外角定理求得①BAD的度数;(2)由旋转的性质得到①ABC=①AED,由四点共圆的判定得出结论.解:(1)①在Rt ABC中,①BAC=90°,①ABC=40°,①①C=50°,①将ABC绕A点顺时针旋转得到ADE,使D点落在BC边上,①AC=AD,①①ADC=①C=50°,①①ADC=①ABC+①BAD=50°,①①BAD=50°-40°=10°证明(2)①将ABC绕A点顺时针旋转得到ADE,①①ABC=①AED,①A、D、B、E四点共圆.【点拨】本题考查了旋转的性质、等腰三角形的性质、外角定理以及四点共圆的判定,解题的关键是理解旋转后的图形与原图形对应边相等,对应角相等.25.(1)1,45;(2)见分析;(3)8,2222【分析】(1)根据同弧所对的圆周角等于圆心角的一半解答;(2)由题意知,CD垂直平分BE,连接BF,则BF=EF,求得①EBF=①AEB=45°,利用外角的性质得到①AFB=①EBF+①AEB=90°,即可得到结论;(3)当点A、C、E在一条直线上时,线段AE最大,最大值为4+4=8,当MF①BC时线段MF最小,根据BC的中点M,得到CF=BF,设BG=FG=x,则2x,CG2 +1)x,由勾股定理得222+=,求出2842CG BG BCx=-222+=,即可求BM MF BF出222MF=.(1)解:①AC=BC=EC,①A、B、E三点在以C为圆心以AC为半径的圆上,①ACB,①①AEB=12①①AEB=45°.,45;故答案为:12(2)解:由题意知,CD 垂直平分BE ,连接BF ,则BF=EF ,①①EBF =①AEB =45°.①①AFB =①EBF +①AEB =90°.①①ACB =90°,①A 、B 、F 、C 在以AB 为直径的圆上,即A 、B 、F 、C 四点共圆;(3)解:当点A 、C 、E 在一条直线上时,线段AE 最大,最大值为4+4=8,当MF ①BC 时线段MF 最小,①BC 的中点M ,①CF=BF , 设BG=FG=x ,则2,CG 2x ,①222CG BG BC +=,①222(21)4x x ⎡⎤+=⎣⎦, 得2842x =-①222BM MF BF +=,①2222(2)MF x +=,得222MF =,故答案为:8,222 . .【点拨】此题考查了圆周角定理,四点共圆的判定及性质,线段垂直平分线的性质,勾股定理,等腰直角三角形的性质,熟记各知识点并熟练应用解决问题是解题的关键.26.(1)①直角三角形斜边上的中线等于斜边的一半;①圆内接四边形对角互补;①同弧或等弧所对的圆周角相等;①等量代换(2)见分析【分析】(1)根据直角三角形斜边上的中线的性质,圆内接四边形的性质,同弧或等弧所对的圆周角相等进行求解即可;(2)如图,连接P A,PB,PC,只需要证明Rt Rt△≌△即可证明结论.PBD PCF(1)解:①直角三角形斜边上的中线等于斜边的一半;①圆内接四边形对角互补;①同弧或等弧所对的圆周角相等;①等量代换;(2)证明:如图,连接P A,PB,PC.①点P是BC的中点,①BP PC=.①BP PC∠=∠.=,PAD PAC又①PD AD⊥,PF AC⊥,①PD PF=.①Rt Rt△≌△(HL).PBD PCF=.①BD CF【点拨】本题主要考查了圆内接四边形的性质,直角三角形斜边上的中线的性质,全等三角形的性质与判定,弧,弦,圆周角的关系,同弧或等弧所对的圆周角相等等等,正确作出辅助线和熟知相关知识是解题的关键.27.【思考】证明见分析;【应用】(1证明见分析;(2)证明见分析试题分析:【思考】假设点D在①O内,利用圆周角定理及三角形外角的性质,可证得与条件相矛盾的结论,从而证得点D不在①O内;[应用](1)由旋转的性质可得①ACD=①ABE,故B、C、A、F四点共圆,(2)由圆内接四边形的性质得①BCA+①BF A=180°即可证明.【思考】【证】如图,假设点D 在①O 内,延长AD 交①O 于点E ,连接BE ;则①AEB =①ACB①①ADB 是△DBE 的一个外角①①ADB >①AEB①①ADB >①ACB这与条件①ACB =①ADB 矛盾①点D 不在①O 内【证】(1)①AC =AD ,AB =AE ,①①ACD =①ADC ,①ABE =①AEB ,①①CAB =①DAE ,①①CAD =①BAE ,①2①ACD +①CAD =180°,2①ABE +①BAE =180°,①①ACD =①ABE ,①B 、C 、A 、F 四点共圆,(2)①B 、C 、A 、F 四点共圆,①①BF A +①BCA =180°,①①ACB =90°,①①BF A =90°,①AF ①BE ,①AB =AE ,①BF =EF .【点拨】本题综合考查了圆周角定理、反证法、三角形外角的性质、点和圆的位置关系等知识,熟练掌握性质定理是解题的关键.28.(1)①①①;(2)①BDC 的度数为140°或 40°;232 【分析】 (1)由“对角互补的四边形是圆的内接四边形”,即可得出答案;(2)分点D在BC上和点D在AB、AC上两种情况讨论,即可求出①BDC的度数;(3)①由圆内接四边形的性质可得①E+①AFB=180°,由①BAC=①BFC,可得①E+①AFC =①E+①AFB+①BFC=①E+①AFB+①BAC=180°+①BAC,进而可得①E+①AFC﹣①BAC=180°;①由AB经过圆心O,BC弦的长度与①O的半径r21,可得①ABC为等腰直角三角形,S五边形AEBCF=S△ABE+S△ABC+S△ACF,当①ABE及①ACF面积最大时,五边形AEBCF的最大面积,E为AB中点时,①ABE面积最大,F为AC中点时,①ACF面积最大,求出①ABE及①ACF面积最大值,最后把三个三角形的面积相加,即可求出五边形AEBCF的最大面积.(1)解:①矩形、正方形、等腰梯形的对角互补,①矩形、正方形、等腰梯形的四个顶点构成四点共圆,故答案为:①①①;(2)解:如图4,当点D在BC上时,①A、B、D、C四点共圆,①①A+①D=180°,①①BAC=40°,①①BDC=180°﹣40°=140°,如图5和图6,当点D在AB或AC上时,①①BAC=40°,①①BDC=①BAC=40°,综上所述,①BDC的度数为140°或40°;(3)解:①如图7,连接BF,①四边形AEBF是圆内接四边形,①①E+①AFB=180°,又①①BAC=①BFC,①①E+①AFC=①E+①AFB+①BFC=①E+①AFB+①BAC=180°+①BAC,①①E+①AFC﹣①BAC=180°,即①E+①F﹣①BAC=180°;①①AB经过圆心,①AB是①O的直径,①①ACB=90°,①BC:OB2:1,OB=r,①BC2r,①AB=2r,①AC222r,AB BC①BC=AC,①①ABC是等腰直角三角形,①S五边形AEBCF=S△ABE+S△ABC+S△ACF,①当①ABE及①ACF面积最大时,五边形AEBCF的最大面积,此时,E为AB中点时,①ABE面积最大,F为AC中点时,①ACF面积最大,如图8,连接OE,连接OF交AC于H,①OE①AB,OF①AC,①AH=CH,①OH=12BC2r,①S△ABE的最大值为:12•AB•OE=12×2r×r=r2,S△ACF的最大值为:12•AC•FH=122r×(r22r2﹣12×r2,①S五边形AEBCF的最大值为:r2+r222﹣12×r223+2.【点拨】本题考查了四点共圆,掌握四点共圆及圆周角的性质是解决问题的关键.。

四点共圆例题及答案

四点共圆例题及答案

四点共圆例题及答案四点共圆是一个基本的几何概念,指的是在同一平面上有四个点,可以在一个圆上找到这四个点构成的圆周。

这个概念在几何学中非常重要,因为它可以用来解决许多几何问题。

在本文中,我们将展示一些常见的四点共圆例题及答案,希望对几何学爱好者有所帮助。

题目1:如图,ABCD为一矩形,O为AC的中点,P、Q分别为AB、CD上一点,连OP、OQ。

证明O、P、Q、D四点共圆。

答案1:首先,连接BD,可以得到三角形BOD。

因为ABCD是一个矩形,所以BD是矩形的对角线,即BD=AC。

由于O是AC的中点,所以OD=1/2AC=1/2BD。

因此,OD是矩形的中线,而且OD平分角BOD。

所以,∠BOD=2∠POQ。

另一方面,因为PO、QD分别是∠BOD的平分线,所以∠POD=1/2∠BOD、∠QOD=1/2∠BOD。

这样,我们可以得到:∠POQ=∠POD+∠QOD=1/2∠BOD+1/2∠BOD=∠BOD所以,O、P、Q、D四点共圆,且这个圆的圆心是OD的中点。

题目2:如图,在平面上有四个点ABCD,能否用尺规作出过这四点的圆?答案2:可以,下面是具体的做法:1.连接AB、BC、CD和DA,得到一个矩形ABCD。

2.以AB为直径作圆,得到圆O1。

3.以BC为直径作圆,得到圆O2。

4.在线段AC上取一点E,使得AE=AB,连BE,作线段BE的中垂线,交O1于点F,交O2于点G。

5.以FG为直径作圆,得到过四点ABCD的圆。

题目3:如图,在平面上有一圆O,点A、B、C在这个圆上,点D在圆内,且以AD、BD、CD为边的三角形相似。

证明:四点A、B、C、D共圆。

答案3:设AB与CD的交点为E,BC与AD的交点为F。

因为三角形ABC在圆O上,所以∠AEB=∠ACB,又因为三角形CBD在圆O上,所以∠CEB=∠CDB,而∠AEB+∠CEB=180,所以∠ACB+∠CDB=180。

同理可得∠AFC+∠BFD=180。

因为三角形ABC和三角形AFB相似,所以∠AEB=∠AFC,同理∠BFD=∠CDB。

四点共圆问题

四点共圆问题

四点共圆1.定点定长,四点共圆从同一点出发的几条线段长度相等.若OA =OB =OC =OD ,则A 、C 、B 、D 四点共圆,且圆心为四条线公共的端点.2.对角互补,四点共圆特殊情况:共斜边的两个直角.若∠ADB =∠ACB =90°,则A 、C 、B 、D 四点共圆,且圆心为斜边AB 的中点.3.线段同侧张角相等,四点共圆 特殊情况:共斜边的两个直角.如图所示,已知∠BAC =∠BDC ,求证:A 、B 、C 、D 四点共圆.证明:连接AD ,∵∠EAC =∠EDB ,∠AEC =∠DEB ,∴△AEC ∽△DEB ,∴AE DE=CEBE ,又∵∠AED =∠CEB ,∴△AED ∽△CEB ,∴∠DAE =∠BCE ,∵∠EDB +∠ECB +∠DBC =180°,∴∠EAC +∠DAE +∠DBC =180°,即∠DAC +∠DBC =180°,∴A 、B 、C 、D 四点共圆.BEDCBA类型1:定点定长,四点共圆【例题1】如图,四边形OABC 中,OA =OB =OC =2,∠ACB =45°,则AB 的长为___________.【答案】.(提示:∵OA =OB =OC ,∴A 、B 、C 三点在都在以O 为圆心,OA 为半径的圆上,则由圆周角定理可知∠AOB =2∠ACB =90°)【例题2】如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC =BC =DC .若∠ACD =60°,则∠ABE 的度数为_____________.【答案】30°.(提示:以C 为圆心,BC 为半径作圆,则∠EBD =12∠ECD =30°)类型2:对角互补,四点共圆【例题3】如图,在四边形ABCD 中,∠B =∠D =90°,∠BCA =18°,∠ACD =27°,AC =30,则BD =___________.【答案】.(提示:对角互补,四点共圆,∵∠B =∠D =90°,∴A 、B 、C 、D 四点共圆,圆心为AC 的中点O ,∴OB =OD =15,∠BOD =2∠BCD =90°,∴BD =OCBADCBAABCDO【例题4】如图,正方形ABCD 的边长为1,点E 、F 分别为BC 、CD 边的中点,连接AE 、BF 交于点P ,连接PD ,则tan ∠APD =___________.【答案】2.(提示:对角互补,四点共圆,易证△ABE ≌△BCF ,∴∠APF =90°,又∵∠ADF =90°,∴A 、P 、F 、D 四点共圆,∴∠APD =∠AFD )【例题5】如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过点O 作OE ⊥AC 交AB 于E ,若BC =4,△AOE 的面积为5,则sin ∠BOE 的值为____________.【答案】35.(提示:∵∠EBC =∠EOC =90°,∴E 、B 、C 、O 四点共圆,圆心为EC 的中点M ,过点O 作OF ⊥AB 于F2,∴AE =5×2÷2=5,又∵AO =OC ,OE ⊥AC ,∴EC =5,∴EB=3,∴sin ∠BOE【例题6】如图,在矩形ABCD 中,点E 是边AD 上的点,EF ⊥BE ,交边CD 于点F ,连接CE 、BF ,如果tan ∠ABE =34,那么CE ∶BF =___________.【答案】4∶5.(提示:对角互补,四点共圆,设AB =4k ,则AE =3k ,BE =5k ,∵∠BEF =∠BCF =90°,∴B 、E 、F 、C 四点共圆,∴∠EBF =∠DCE ,∴△EBF =∠DCE ,∴CE ∶BF=CE ∶BF =4∶5)EFP D CBAABCDOE AB CD FE【例题7】如图,在△ABC 中,∠A =60°,∠B =45°,AB =10,D 是BC 边上的动点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,连接EF ,则EF 的最小值为___________.(提示:∵∠AED =∠AFD =90°,∴A 、E 、D 、F 四点共圆,且AD 为直径,EF 为⊙O 中60°角所对的弦,∴当AD 最小时,EF 最小,∵AD 最小值为,∴EF【例题8】如图,在边长为6的等边△ABC 中,BD =CE ,当AD ⊥CF ,垂足为点F 时,则CD 的长为__________.【答案】4.(提示:易证△ADB ≌△BEC ,∴∠ADB =∠BEC ,又∵∠CDF +∠ADB =180°,∴∠BEC +∠CDF =180°,∴C 、D 、F 、E 四点共圆,∵AD ⊥CF ,∴∠CFD =90°,∴CD 为圆的直径,CD 的中点即为圆心O ,∴∠CED =90°,又∵∠ACB =60°,∴CD =2CE ,又∵CE +CD =BD +CD =6,∴CD =4)类型3:张角相等,四点共圆【例题9】如图,在等腰Rt △ABC 中,∠ABC =90°,AB =BC =4,D 是BC 的中点,∠CAD =∠CBE ,则AE =___________.【答案】2.(提示:法1,易证△ADC ∽△BEC ,∴AC BC =CDECEC ;法2,张角相等,四点共圆,连接DE ,∵∠CAD =∠CBE ,∴A 、B 、D 、E 四点共圆,∴∠AED =180°-∠ABD =90°,∴DE =ECABCDEF FEDCBACABCDE【例题10】如图,在△ABC 中,AD ⊥BC 于D ,BF ⊥AC 于F ,E 为AB 边的中点,连接DE 、DF 、EF ,若AB =2,∠CBF =22.5°,则△DEF 的面积为___________..(提示:张角相等,四点共圆,∵∠AFB =∠ADB =90°,∴A 、B 、D 、F 四点共圆,∴∠FED =45°,EF =ED =1,过点F 作FG ⊥ED 于G ,∴FG)【例题11】如图,点E 是正方形ABCD 边AB 上的一点,已知∠DEF =45°,EF 分别交边AC 、CD 于点G 、F ,且满足AG ·DF=,则EG 的长为___________.(提示:法1,一线三直角,AG MG ,∴MG ·DF =3,△EGD 是等腰Rt △,∠EGD =90°,∴∠DGF=90°,又∵∠MEG =∠GFD ,∴△EMG ∽△FGD ,∴EG ·DG =MG ·DF =3,∴EG 2,四点共圆,∵∠DAG =∠DEF =45°,∴A 、E 、G 、D 四点共圆,∴∠EDG =∠EAG =45°,∴∠EGD =90°,∴△ADG ∽△EFD )ABCDEFGFEDCBAA BCD EF GN MGF E DCBA。

(完整版)四点共圆例题及答案

(完整版)四点共圆例题及答案

例1 如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H四点共圆.证明菱形ABCD的对角线AC和BD相交于点O,连接OE、OF、OG、OH.∵AC和BD 互相垂直,∴在Rt△AOB、Rt△BOC、Rt△COD、Rt△DOA中,E、F、G、H,分别是AB、BC、CD、DA的中点,即E、F、G、H四点共圆.(2)若四边形的两个对角互补(或一个外角等于它的内对角),则四点共圆.例2 如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.证明∵DE⊥AB,DF⊥AC,∴∠AED+∠AFD=180°,即A、E、D、F四点共圆,∠AEF=∠ADF.又∵AD⊥BC,∠ADF+∠CDF=90°,∠CDF+∠FCD=90°,∠ADF=∠FCD.∴∠AEF=∠FCD,∠BEF+∠FCB=180°,即B、E、F、C四点共圆.(3)若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,那么这两个三角形有公共的外接圆.证明在△ABC中,BD、CE是AC、AB边上的高.∴∠BEC=∠BDC=90°,且E、D在BC的同侧,∴E、B、C、D四点共圆.∠AED=∠ACB,∠A=∠A,∴△AED∽△ACB.上述三种方法是证“四点共圆”的基本方法,至于证第四点在前三点(不在同一直线上)所确定的圆上就不叙述了.【例1】在圆内接四边形ABCD中,∠A-∠C=12°,且∠A∶∠B=2∶3.求∠A、∠B、∠C、∠D的度数.解∵四边形ABCD内接于圆,∴∠A+∠C=180°.∵∠A-∠C=12°,∴∠A=96°,∠C=84°.∵∠A∶∠B=2∶3,∠D=180°-144°=36°.利用圆内接四边形对角互补可以解决圆中有关角的计算问题.【例2】已知:如图1所示,四边形ABCD内接于圆,CE∥BD交AB的延长线于E.求证:AD·BE=BC·DC.证明:连结AC.∵CE∥BD,∴∠1=∠E.∵∠1和∠2都是所对的圆周角,∴∠1=∠2.∠1=∠E.∵四边形ABCD内接于圆,∴∠EBC=∠CDA.∴△ADC∽△CBE.AD∶BC=DC∶BE.AD·BE=BC· DC.本例利用圆内接四边形的一个外角等于内对角及平行线的同位角、圆中同弧所对的圆周角得到两个相似三角形的条件,进而得到结论.关于圆内接四边形的性质,还有一个重要定理.现在中学课本一般都不列入,现介绍如下:定理:圆内接四边形两条对角线的乘积等于两组对边乘积的和.已知:如图2所示,四边形ABCD内接于圆.求证:AC·BD=AB·CD+AD·BC.证明:作∠BAE=∠CAD,AE交 BD于 E.∵∠ABD=∠ACD,即 AB·CD=AC·BE.①∵∠BAE+∠CAE=∠CAD+∠CAE,∴∠BAC=∠EAD.又∠ACB=∠ADE,AD·BC=AC·DE.②由①,②得AC·BE+AC·DE=AB·CE+AD·BCAC·BD=AB·CD+AD·BC这个定理叫托勒密(ptolemy)定理,是圆内接四边形的一个重要性质.这个证明的关键是构造△ABE∽△ACD,充分利用相似理论,这在几何中是具有代表性的.在数学竞赛中经常看到它的影子,希望能引起我们注意.命题“菱形都内接于圆”对吗?命题“菱形都内接于圆”是不正确的.所以是假命题.理由是:根据圆的内接四边形的判定方法之一,如果一个四边形的一组对角互补,那么这个四边形内接于圆.这个判定的前提是一组对角互补,而菱形的性质是一组对角相等.而一组相等的角,它们的内角和不一定是180°.如果内角和是180°,而且又相等,那么只可能是每个内角等于90°,既具有菱形的性质,且每个内角等于90°,那末这个四边形一定是正方形.而正方形显然是菱形中的特例,不能说明一般情形.判定四边形内接于圆的方法之二,是圆心到四边形四个顶点的距离相等.圆既是中心对称图形,又是轴对称图形,它的对称中心是圆心.菱形同样既是中心对称图形,又是轴对称图形,它的对称中心是两条对角线的交点.但菱形的对称中心到菱形各个顶点的距离不一定相等.所以,也无法确定菱形一定内接于圆;如果菱形的对称中心到菱形各边顶点的距离相等,再加上菱形的对角线互相垂直平分这些性质,那么这个四边形又必是正方形.综上所述,“菱形都内接于圆”这个命题是错误的.5圆的内接四边形例1 已知:如图7-90,ABCD是对角线互相垂直的圆内接四边形,通过对角线的交点E与AB垂直于点H的直线交CD于点M.求证:CM=MD.证明∠MEC与∠HEB互余,∠ABE与∠HEB互余,所以∠MEC=∠ABE.又∠ABE=∠ECM,所以∠MEC=∠ECM.从而CM=EM.同理MD=EM.所以CM=MD.点评本例的逆命题也成立(即图中若M平分CD,则MH⊥AB).这两个命题在某些问题中有时有用.本例叫做婆罗摩笈多定理.例2 已知:如图7-91,ABCD是⊙O的内接四边形,AC⊥BD,分析一如图7-91(a),由于E是AB的中点,从A引⊙O的需证明GB=CD.但这在第七章ξ1.4圆周角中的例3已经证明了.证明读者自己完成.*分析二如图7-91(b),设AC,BD垂直于点F.取CD的有OE∥MF.从而四边形OEFM应该是平行四边形.证明了四边形OEFM是平行四边形,问题也就解决了.而证明四边形OEFM是平行四边形已经没有什么困难了.*分析三如图7-91(b),通过AC,BD的交点F作AB的垂线交CD于点M.连结线段EF,MO.由于OE⊥AB,FM⊥AB,所以OE∥FM.又由于EF⊥CD(见例1的点评),MO⊥CD,所以EF∥MO.所以四边形OEFM为平行四边形.从而OE=MF,而由例3 求证:圆内接四边形对边乘积的和等于对角线的乘积,即图中AB·CD+BC·AD=AC·BD.分析在AB·CD+BC·AD=AC·BD中,等号左端是两个乘积的和,要证明这种等式成立,常需把左端拆成两个单项式来证明,即先考虑AB·CD和BC·AD各等于什么,然后再考虑AB·CD+BC·AD是否等于AC·BD.而要考虑AB·CD和BC·AD各等于什么,要用到相似三角形.为此,如图7-92,作AE,令∠BAE=∠CAD,并且与对角线BD相交于点E,这就得到△ABE∽△ACD.由此求得AB·CD=AC·BE.在圆中又出现了△ABC∽△AED,由此又求得BC·AD=AC·ED.把以上两个等式左右各相加,问题就解决了.证明读者自己完成.点评本例叫做托勒玫定理.它在计算与证明中都很有用.意一点.求证:PA=PB+PC.分析一本例是线段和差问题,因此可用截取或延长的方法证明.如图7-93(a),在PA上取点M,使PM=PB,剩下的问题是证明MA=PC,这只要证明△ABM≌△CBP就可以了.证明读者自己完成.分析二如图7-93(a),在PA上取点M,使MA=PC,剩下的问题是证明PM=PB,这只要证明△BPM是等边三角形就可以了.证明读者自己完成.分析三如图7-93(b),延长CP到M,使PM=PB,剩下的问题是证明PA=MC,这只要证明△PAB≌△CMB就可以了.证明读者自己完成.读者可仿以上的方法拟出本例的其他证明.*本例最简单的证明是利用托勒玫定理(例3).证明由托勒玫定理得PA·BC=PB·AC+PC·AB,由于BC=AC=AB,所以有PA=PB+PC.例2 如图7—116,⊙O1和⊙O2都经过A、B两点,经过点A的直线CD与⊙O1交于点C,与⊙O2交于点D.经过点B的直线EF与⊙O1交于点E,与⊙O2交于点F.求证:CE∥DF.分析:要证明CE∥DF.考虑证明同位角(或内错角)相等或同旁内角互补.由于CE、DF分别在两个圆中,不易找到角的关系,若连结AB,则可构成圆内接四边形,利用圆内接四边形的性质定理可沟通两圆中有关角的关系.证明:连结AB.∵ABEC是圆内接四边形,∵ADFB是圆内接四边形,∴∠BAD+∠F=180°,∴∠E+∠F=180°.∴CE∥CF.说明:(1)本题也可以利用同位角相等或内错角相等,两直线平行证明.如延长EF至G,因为∠DFG=∠BAD,而∠BAD=∠E,所以∠DFG=∠E.(2)应强调本题的辅助线是为了构成圆内接四边形,以利用它的性质,导出角之间的关系.(3)对于程度较好的学生,还可让他们进一步思考,若本题不变,但不给出图形,是否还有其他情况?问题提出后可让学生自己画图思考,通过讨论明确本题还应有如图7—117的情况并给予证明.例3 如图7—118,已知在△ABC中,AB=AC,BD平分∠B,△ABD的外接圆和BC 交于E.求证:AD=EC.分析:要证AD=EC,不能直接建立它们的联系,考虑已知条件可知∠ABD=∠DBE,容易看出.若连结DE,则有AD=DE.因此只要证DE=EC.由于DE和EC为△DEC的两边,所以只要证∠EDC=∠C.由已知条件可知∠C=∠ABC.因此只要证∠EDC=∠ABC.因为△EDC是圆内接四边形ABED的一个外角,所以可证∠EDC=∠ABC.问题可解决.证明:连结DE.∵BD平分∠ABC,∴,AD=DE.∵ABED是圆内接四边形,∵AB=AC,∴∠ABC=∠C,∴∠EDC=∠C.于是有DE=EC.因此AD=EC.四、作业1.如图7—120,在圆内接四边形ABCD中,AC平分BD,并且AC⊥BD,∠BAD=70°18′,求四边形其余各角.2.圆内接四边形ABCD中,∠A、∠B、∠C的度数的比为2∶3∶6,求四边形各内角的度数.3.如图7—121,AD是△ABC外角∠EAC的平分线,AD与三角形的外接圆交于点D.求证:DB=DC.作业答案或提示:1.∠ABC=∠ADC=90°,∠BCD=109°42′.2.∠A=45°,∠B=67.5°,∠C=135°,∠D=112.5°.3.提示:因为∠DBC=∠DAC,∠EAD=∠DCB,∠EAD=∠DAC,所以∠DBC=∠DCB,因此DB=DC.判定四点共圆的方法引导学生归纳判定四点共圆的方法:(1)如果四个点与一定点距离相等,那么这四个点共圆.(2)如果一个四边形的一组对角互补,那么这个四边形的四个顶点共圆.(3)如果一个四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆.(4)如果两个直角三角形有公共的斜边,那么这两个三角形的四个顶点共圆(因为四个顶点与斜边中点距离相等).3.如图7—124,已知ABCD为平行四边形,过点A和B的圆与 AD、BC分别交于E、F.求证:C、D、E、F四点共圆.提示连结EF.由∠B+∠AEF=180°,∠B+∠C=180°,可得∠AEF=∠C.四点共圆的应用山东宁阳教委教研室栗致根四点共圆在平面几何证明中应用广泛,熟悉这种应用对于开阔证题思路,提高解题能力都是十分有益的.一用于证明两角相等例1 如图1,已知P为⊙O外一点,PA切⊙O于A,PB切⊙O于B,OP交AB 于E.求证:∠APC=∠BPD.证明连结OA,OC,OD.由射影定理,得AE2=PE·EO,又AE=BE,则AE·BE =PE·EO……(1);由相交弦定理,得AE·BE=CE·DE……(2);由(1)、(2)得CE·ED=PE·EO,∴ P、C、O、D四点共圆,则∠1=∠2,∠3=∠4,又∠2=∠4.∴∠1=∠3,易证∠APC=∠BPD(∠4=∠EDO).二用于证明两条线段相筹例2 如图2,从⊙O外一点P引切线PA、PB和割线PDC,从A点作弦AE平行于DC,连结BE交DC于F,求证:FC=FD.证明连结AD、AF、EC、AB.∵PA切⊙O于A,则∠1=∠2.∵AE∥CD,则∠2=∠4.∴∠1=∠4,∴P、A、F、B四点共圆.∴∠5=∠6,而∠5=∠2=∠3,∴∠3=∠6.∵AE∥CD,∴EC=AD,且∠ECF=∠ADF,∴△EFC≌△AFD,∴FC=FD.三用于证明两直线平行例3 如图3,在△ABC中,AB=AC,AD⊥BC,∠B的两条三等分线交AD于E、G,交AC于F、H.求证:EH∥GC.证明连结EC.在△ABE和△ACE中,∵AE=AE,AB=AC,∠BAE=∠CAE,∴△AEB≌AEC,∴∠5=∠1=∠2,∴B、C、H、E四点共圆,∴∠6=∠3.在△GEB 和△GEC中,∵GE=GE,∠BEG=∠CEG,EB=EC,∴△GEB≌△GEC,∴∠4=∠2=∠3,∴∠4=∠6.∴EH∥GC.四用于证明两直线垂直证明在△ABD和△BCE中,∵AB=BC,∠ABD=∠BCE,BD=CE,则△ABD≌△BCE,∴∠ADB=∠BEC,∴P、D、C、E四点共圆.设DC的中点为O连结OE、DE.易证∠OEC=60°,∠DEO=30°∴∠DEC=90°,于是∠DPC=90°,∴ CP⊥AD.五用于判定切线例5 如图5,AB为半圆直径,P为半圆上一点,PC⊥AB于C,以AC为直径的圆交PA于D,以BC为直径的圆交PB于E,求证:DE是这两圆的公切线.证明连结DC、CE,易知∠PDC=∠PEC=90°,∴ P、D、C、E四点共圆,于是∠1=∠3,而∠3+∠2=90°,∠A+∠2=90°,则∠1=∠A,∴DE是圆ACD 的切线.同理,DE是圆BCE的切线.因而DE为两圆的公切线六用于证明比例式例6 AB、CD为⊙O中两条平行的弦,过B点的切线交CD的延长线于G,弦PA、PB分别交CD于E、F.证明如图6.连结BE、PG.∵BG切⊙O于B,则∠1=∠A.∵AB∥CD,则∠A=∠2.于是∠1=∠2,∴P、G、B、E四点共圆.由相交弦定理,得EF·FG=PF·FB.在⊙O中,由相交弦定理,得CF·FD=FP·FB.七用于证明平方式例7 ABCD为圆内接四边形,一组对边AB和DC延长交于P点,另一组对边AD和BC延长交于Q点,从P、Q引这圆的两条切线,切点分别是E、F,(如图 7)求证:PQ2=QF2+PE2.证明作△DCQ的外接圆,交PQ于M,连结MC,∵∠1=∠2=∠3,则P、B、C、M四点共圆.由圆幂定理得PE2=PC·PD=PM·PQ,QF2=QC·QB=QM·QP,两式相加得PE2+QF2=PM·PQ+ QM·QP=PQ(PM+QM)=PQ·PQ=PQ2∴PQ2=PE2+QF2.八用于解计算题例8如图8,△ABC的高AD的延长线交外接圆于H,以AD为直径作圆和AB、AC分别交于E、F点,EF交 AD于 G,若 AG=16cm,AH=25cm,求 AD的长.解连结DE、DF、BH.∵∠1=∠2=∠C=∠H,∴B、E、G、H四点共圆.由圆幂定理,得AE·AB=AG·AN.在△ABD中,∵∠ADB=90°,DE⊥AB,由射影定理,得AD2=AE·AB,∴AD2=AG·AH=16×25=400,∴AD=20cm.九用于证明三点共线例9如图9,D为△ABC外接圆上任意一点,E、F、G为D点到三边垂线的垂足,求证:E、F、G三点在一条直线上.证明连结EF、FG、BD、CD.∵∠BED=∠BFD=90°,则B、E、F、D四点共圆,∴∠1=∠2,同理∠3=∠4.在△DBE和△DCG中,∵∠DEB=∠DGC,∠DBE=∠DCG,故∠1=∠4,易得∠2=∠3,∴ E、F、G三点在一条直线上.十用于证明多点共圆例10如图10,H为△ABC的垂心,H1、H2、H3为H点关于各边的对称点,求证:A、B、C、H1、H2、H3六点共圆.证明连结AH2,∵H与H2关于AF对称,则∠1=∠2.∵A、F、D、C四点共圆,则∠2=∠3,于是∠1=∠3,∴A、H2、B、c四点共圆,即H2在△ABC的外接圆上.同理可证,H1、H3也在△ABC的外接圆上.∴A、B、C、H1、H2、H3六点共圆.相关资源加到收藏夹添加相关资源托勒密定理的数形转换功能山东临沂市四中姜开传临沂市第一技校刘久松圆内接四边形两组对边乘积的和等于其对角线的乘积,即在四边形 ABCD 中,有AB·CD+AD·BC=AC·BD,这就是著名的托勒密定理.本刊1996年第2期给出了它的几种证法,作为续篇,本文就其数形转换功能举例说明如下:1 “形”转换为“数”对于某些几何问题,特别是圆内接多边形问题,如果能根据题设中隐含的数量关系,利用托勒密定理可将“形”转换为“数”,从而达到用代数运算来代替几何推理的目的.例1已知正七边形A1A2 (7)(第21届全俄数学奥林匹克竞赛题)对于这道竞赛题,原证较繁,但通过深挖隐含条件,利用托勒密定理可改变整个解题局面,使证题步骤简缩到最少.如图1,连 A1A5、A3A5,则A1A5=A1A4、A3A5=A1A3.在四边形A1A3A4A5中,由托勒密定理,得A3A4·A1A5+A4A5·A1A3=A1A4·A3A5,即A1A2·A1A4+A1A2·A1A3=A1A3·A1A4,两边同除以A1A2·A1A3·A1A4即得结论式.例2 如图2,A、B、C、D四点在同一圆周上,且BC=CD=4,AE=6,线段BE和DE的长都是整数,则BD的长等于多少?(1988年全国初中数学联赛题)此题若用其它方法解,往往使人一筹莫展.若运用托勒密定理,可使问题化难为易.由△CDE∽△BAE和△CBE∽△DAE,得由托勒密定理,得BD(AE+CE)=4(AB+AD),亦即 CE(AE+CE)=16.设CE=x,整理上式,得x2+6x-16=0.解得x=2(负值已舍),故BE·DE=CE·AE=12.∵BD<BC+CD=8,例3一个内接于圆的六边形,其五个边的边长都为81,AB是它的第六边,其长为31,求从B出发的三条对角线长的和.(第九届美国数学邀请赛试题)原解答过程冗长.若通过托勒密定理的桥梁作用,把“形”转换为“数”,可使问题化繁为简.如图3,设BD=a, BE=b,BF=c,连AC、CE、AE,则CE=AE=BD=a,AC=BF =c.在四边形BCDE中,由托勒密定理,得81b+812=a2①同理81b+31·81=ac ②31a+81a=bc ③解①、③、③组成的方程组,得a=135,b=144,c=105故 a+b+c=384.2 “数”转换为“形”对于某些代数问题,若结构与托勒密定理相似,通过构造圆内接四边形,可把“数”转换为“形”,然后利用“形”的性质,使问题得到解决.这种解法构思巧妙,方法独特,富于创新,出奇制胜.例4 解方程若按常规方法解这个无理方程,过程繁冗.若由方程的结构特征联想到托勒密定理,则构造直径AC=x(x≥11)的圆及圆内接四边形ABCD,使BC=2,CD=11,如图 4,于是由托勒密定理,得在△BCD中,由余弦定理,得经检验x=14是原方程的根.求证: a2+b2=1.这道名题已有多种证法,而且被视为用三角换无法解代数问题的典范.下面再给出一各几何证法.易知0≤a、b≤1且a、b不全为零.当a、b之一为零时,结论显然成立.当a、b全不为零时,由已知等式联想到托勒密定理,作直径AC=1的圆及圆内接四与已知等式比较,得BD=1,即BD也为圆的直径,故a2+b2=1例6设a>c,b>c,c>0,此题若用常规方法证明也不轻松.下面利用托勒密定理给出它的一个巧证.由托勒密定理,得巧用托勒密定理证题河北晋州市数学论文研究协会张东海王素改在解证某些数学题时,如能巧用托勒密定理,可使解证过程简洁清新,兹举例说明.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.一、构造“圆”,运用定理【例1】设a,b,x,y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证作直径AB=1的圆,在AB的两侧任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x, AD=y.(图1)由勾股定理知a,b,x,y满足条件.根据托勒密定理,有AC·BD+BC·AD=AB·CD.∵ CD≤1,∴ax+by≤1.二、利用无形圆,运用定理【例2】等腰梯形一条对角线的平方,等于一腰的平方加上两底之积.已知:梯形 ABCD中,AD=BC,AB∥CD.求证:BD2=BC2+AB·CD.证∵等腰梯形内接于圆,由托勒密定理,有AC·BD=AD·BC+AB·CD.∵AD=BC,AC=BD,∴BD2=BC2+AB·CD.(图略)【例 3】已知:边长为 1的正七边形ABCDEFG中,对角线 AD=a,BG=b(a≠b).求证:(a+b)2(a-b)=ab2.证连结BD,GE,BE,DG,则 BD=EG=GB=b,DG=BE=DA=a, DE=AB=AG=1.(如图2)在四边形ABDG中,由托勒密定理,有AD·BG=AB·DG+BD·AG,即ab=a+b (1)同理在四边形BDEG中,得BE·DG=DE·BG+BD·EG,即a2=b+b2 (2)将(2)变形为b=a2-b2 (3)(1)×(3),得ab2=(a+b)(a2-b2).故ab2=(a+b)2(a-b).三、构造圆内接四边形,运用定理【例4】在△ABC中,∠A的内角平分线AD交外接圆于D.连结BD.求证:AD·BC=BD·(AB+AC).证(如图3) 连结DC.由托勒密定理.有AD·BC=AB·CD+AC·BD.又∵∠1=∠2,∴BD=DC.∴AD·BC=AB·CD+AC·BD=BD(AB+AC).即AD·BC=BD·(AB+AC).圆内接四边形的面积公式黑龙江绥化五中任天民设圆内接四边形ABCD中各边为a,b,c,d.连结 BD.由∠A+∠C=180°,可以推出sinA=sinC,cosA=-cosC.并且S四边形ABCD=S△ABD+S△BCD所以这样我们得出了圆内接四边形面积的计算公式.在上面的公式中,如果设某一边为零,(不仿设d=0)此时四边形变成三角形,该公式恰是计算三角形面积的海伦公式.圆内接四边形面积公式的得出是受三角形面积公式的启发,通过联想探索出来的,而且两者在形式上又是那么的相近.这种现象在数学中不胜枚举,如果同学们都能从特殊规律去探索一般规律,再从一般规律去认识特殊规律.那么对数学能力的培养将大有裨益.四条边定长四边形面积的最大值上海市育群中学李甲鼎四条边为定长的四边形不具稳定性,但在某种特定的位置下,它能内接于圆,成为圆内接四边形.并且此时达到变化过程中面积最大值.下文证明这个事实.已知:四边形ABCD中:AB=a,BC=b,CD=c,DA=d求证:四边形ABCD中有唯一四边形能内接于圆,且此时面积达到最大值.证明:(1)先证四边形四边定长,有唯一的四边形内接于圆,设∠ABC=α,∠ADC=β,AC=x.令α+β=π,即cosα+cosβ=0x的解唯一确定,代入(1)(2)后cosα、cosβ也随之唯一确,在α,β∈(0,π)的条件下α、β也同时唯一确定.∴四边形四边定长,对角互补,四边形是唯一的.即所得到的四边形为圆内接四边形.(2)当四边定长的四边形内接于圆时,此四边形面积最大.∵四边形ABCD的面积由余弦定理得a2+b2-2abcosα=x2=c2+d2-2cdcosβ显然当α+β=π时(即为圆内接四边形时)S2达到最大值,即S最大.一个几何定理的应用江苏省徐州矿务局庞庄职校张怀林定理:如图1,在圆接四边形ABCD中弦AD平分∠BAC,则2ADcosα=AB +AC.证明连接BD、DC、BC,设已知圆半径为R,则由正弦定理有:BD=DC=2Rsinα,BC=2Rsin2α.由托勒密定理有AB·CD+AC·BD=AD·DC.∴(AB+AC)·2Rsinα=AD·2Rsin2α.则2AD·cosα=AB+AC.下面举例说明它的应用.例1如图2,已知锐角△ABC的∠A平分线交BC于L,交外接圆于N,过L分别作LK⊥AB,LM⊥AC,垂足分别为K、M.求证:四边形AKNM的面积等于△ABC的面积.(第28届IMO)证明由已知得∠BAN=∠CAN,由定理有2ANcosα=AB+AC,=AN·AL·cosα·sinα=AN·AK·sinα=AN·AM·sinα=2S△AKN=2S△AMN.∴S△ABC=S四边形AKNM.(第21届全苏奥数)证明作正七边形外接圆,如图3所示.由定理有2c·cosα=b+c,又在等腰△A1A2A3中有2a·cosα=b.例3在△ABC中,∠C=3∠A,a=27,c=48,则b的值是____.(第36届AHSME试题)解如图4.作△ABC的外接圆,在取三等分点D、E,连CD、CE.由已知得:∠ACD=∠DCE=∠ECB=∠A,CD=AB=48,由定理有2CE·cosA=CB+CD ①2CD·cosA=CE+AC ②又2CB·cosA=CE ③由②、③得:b=AC=CE·(CD-CB)/CB=35.托勒密定理及其应用河北省晋州市数学论文研究协会刘同林托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.证明:如图1,过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD ∽△BCP.又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.①+②得AC(BP+DP)=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.这就是著名的托勒密定理,在通用教材中习题的面目出现,不被重视.笔者认为,既然是定理就可作为推理论证的依据.有些问题若根据它来论证,显然格外简洁清新.兹分类说明如下,以供探究.一、直接应用托勒密定理例1如图2,P是正△ABC外接圆的劣弧上任一点(不与B、C重合),求证:PA=PB+PC.分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗.若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB,∵AB=BC=AC.∴PA=PB+PC.二、完善图形借助托勒密定理例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2证明:如图3,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是圆内接四边形.由托勒密定理,有AC·BD=AB·CD+AD·BC.①又∵ABCD是矩形,∴AB=CD,AD=BC,AC=BD.②把②代人①,得AC2=AB2+BC2.例3如图4,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB+AC).证明:连结CD,依托勒密定理,有AD·BC=AB·CD+AC·BD.∵∠1=∠2,∴BD=CD.故AD·BC=AB·BD+AC·BD=BD(AB+AC).三、利用“无形圆”借助托勒密定理例4等腰梯形一条对角线的平方等于一腰的平方加上两底之积.如图5,ABCD中,AB∥CD,AD=BC,求证:BD2=BC2+AB·CD.证明:∵等腰梯形内接于圆,依托密定理,则有AC·BD=AD·BC+AB·CD.又∵AD=BC,AC=BD,∴BD2=BC2+AB·CD.四、构造图形借助托勒密定理例5若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证明:如图6,作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x,AD=y.由勾股定理知a、b、x、y是满足题设条件的.据托勒密定理,有AC·BD+BC·AD=AB·CD.∵CD≤AB=1,∴ax+by≤1.五、巧变原式妙构图形,借助托勒密定理例6已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B.分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c.证明:如图7,作△ABC的外接圆,以A为圆心,BC为半径作弧交圆于D,连结BD、DC、DA.∵AD=BC,∴∠ABD=∠BAC.又∵∠BDA=∠ACB(对同弧),∴∠1=∠2.依托勒密定理,有BC·AD=AB·CD+BD·AC.①而已知a2=b(b+c),即a·a=b·c+b2.②∴∠BAC=2∠ABC.六、巧变形妙引线借肋托勒密定理例7在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4,析证:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆联系起来,可联想到托勒密定理,进而构造圆内接四边形.如图8,作△ABC的外接圆,作弦BD=BC,边结AD、CD.在圆内接四边形ADBC中,由托勒密定理,有AC·BD+BC·AD=AB·CD易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC,关于圆内接四边形的若干共点性质浙江绍兴县鲁迅中学范培养设四边形ABCD内接于圆O,其边AB与DC的延长线交于P,AD与BC 的延长线交于Q,由P作圆的两切线PM、PN,切点分别为M、N;由Q作圆的两切线QE、QF,切点分别为E、F(如图1).则有以下一些共点性质:性质1 AC、BD、EF三直线共点.证明:如图1,设AC交EF于K1,则K1分EF所成的比为设BD交EF于K2,同理可得K2分EF所成的比为由(5)、(6)可得(1)=(2),故K1、K2分EF所成的比相等.∴K1、K2重合,从而AC、BD、EF三直线共点.类似地AC、BD、MN三直线共点,因此有以下推论AC、BD、EF、MN四直线共点.性质2 AB、DC、EF三直线共点于P.(此性质等同于1997年中国数学奥林匹克第二试第四题)这里用上述证明性质1的方法证之.证明:如图2.设DC与EF的延长线交于P1,则P1分EF所成的比为设AB与EF的延长线交于P2,则P2分EF所成的比为由(5)、(6)可得(7)=(8),故P1、P2分EF所成的比相等.∴P1、P2重合,从而AB、DC、EF三直线共点于P.推论AD、BC、NM三直线共点于Q.性质 3 EM、NF、PQ三直线共点.证明:如图3,设EM的延长线交PQ于G1,妨上证法,G1分PQ所成的比为设NF的延长线交PQ于G2,则G2分PQ所成的比为(这里E、F、P三点共线及N、M、Q三点共线在性质2及推论中已证).由△PME∽△PFM得由(11)、(12)及QE=QF、PN=PM可得(9)=(10),故G1、G2分PQ所成的比相等.∴G1、G2重合,从而EM、NF、PQ三直线共点.性质4如果直线EN和MF相交,那么交点在直线PQ上,即EN、MF、PQ三直线共点.证明从略,妨性质3的证法可得.性质5 EM、NF、AC三直线共点.证明:如图4,类似于性质1的证明,设EM与AC的延长线交于G3,则G3分AC所成的比为设NF与AC的延长线交于G4,则G4分AC所成的比为由(15)、(18)、(19)可得(13)=(14),故G3、G4分AC所成的比相等.∴G3、G4重合,从而EM、NF、AC 三直线共点.推论EM、NF、AC、PQ四直线共点.限于篇幅,仅列以上五条共点性质.有兴趣的读者不妨再探索其它共点性质例3在边长为a的正七边形ABCDEFG中,两条不相等的对角线长分别为t,m.证明如图4,连结AD、CE,令AE=t,AC=m,在圆内接四边形ACDE 中,据托勒密定理,有AD·CE=AE·CD+AC·DE,即tm=ta+ma.托勒密定理及其应用河北省晋州市数学论文研究协会康美娈彭立欣托勒密定理圆内接四边形的两条对角线的乘积(两条对角线所包矩形的面积),等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形面积之和).证明如图1,过C作CP使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.∴AC·BP=AD·BC ①又∠ACB=∠DCP,∠5=∠6,∴AC·DP=AB·CD.②①+②得AC(BP+PD)=AD·BC+AB·CD.故AC·BD=AD·BC+AB·CD.托勒密定理在教材中仅以习题的形式出现,若以此定理为根据,可使许多问题解证过程别具一格.例1已知P是正△ABC的外接圆劣弧上任意一点.求证:PA=BP+PC.证明如图2,ABPC是圆内接四边形,根据托勒密定理,有PA·BC=PB·AC+PC·AB.∵AB=BC=AC,∴PA=PB+PC.例2证明等腰梯形一条对角线的平方,等于一腰的平方加上两底之积.证明如图3,设在梯形ABCD中,AD=BC,AB∥CD.∵等腰梯形内接于圆,∴AC·BD=AD·BC+AB·CD.又AD=BC,AC=BD,∴BD2=BC2+AB·CD.例3在边长为a的正七边形ABCDEFG中,两条不相等的对角线长分别为t,m.证明如图4,连结AD、CE,令AE=t,AC=m,在圆内接四边形ACDE 中,据托勒密定理,有AD·CE=AE·CD+AC·DE,即tm=ta+ma.例4已知a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证明作直径AB=1的圆,在AB两侧作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x,DA=y(如图5).依勾股定理知a、b、x、y是满足题设条件的.依托勒密定理有AC·BD+BC·AD=AB·CD.又∵CD≤AB=1,∴ax+by≤1.例5△ABC的三个内角A、B、C的对边分别为a、b、c,且a2=b(b+c).求证:A=2B.分析将a2=b(b+c)变形为a·a=b·b+b·c,可联想到托勒密定理,进而构造一个圆内接等腰梯形,使两腰为b,两对角线为a,一底边为c.证明如图6,作△ABC的外接圆.以A为圆心,以BC为半径画弧交圆于D,连结BD、DA、DC.。

四点共圆例题及答案.

四点共圆例题及答案.

例1 如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H四点共圆.证明菱形ABCD的对角线AC和BD相交于点O,连接OE、OF、OG、OH.∵AC和BD 互相垂直,∴在Rt△AOB、Rt△BOC、Rt△COD、Rt△DOA中,E、F、G、H,分别是AB、BC、CD、DA的中点,即E、F、G、H四点共圆.(2)若四边形的两个对角互补(或一个外角等于它的内对角),则四点共圆.例2 如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.证明∵DE⊥AB,DF⊥AC,∴∠AED+∠AFD=180°,即A、E、D、F四点共圆,∠AEF=∠ADF.又∵AD⊥BC,∠ADF+∠CDF=90°,∠CDF+∠FCD=90°,∠ADF=∠FCD.∴∠AEF=∠FCD,∠BEF+∠FCB=180°,即B、E、F、C四点共圆.(3)若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,那么这两个三角形有公共的外接圆.证明在△ABC中,BD、CE是AC、AB边上的高.∴∠BEC=∠BDC=90°,且E、D在BC的同侧,∴E、B、C、D四点共圆.∠AED=∠ACB,∠A=∠A,∴△AED∽△ACB.上述三种方法是证“四点共圆”的基本方法,至于证第四点在前三点(不在同一直线上)所确定的圆上就不叙述了.【例1】在圆内接四边形ABCD中,∠A-∠C=12°,且∠A∶∠B=2∶3.求∠A、∠B、∠C、∠D的度数.解∵四边形ABCD内接于圆,∴∠A+∠C=180°.∵∠A-∠C=12°,∴∠A=96°,∠C=84°.∵∠A∶∠B=2∶3,∠D=180°-144°=36°.利用圆内接四边形对角互补可以解决圆中有关角的计算问题.【例2】已知:如图1所示,四边形ABCD内接于圆,CE∥BD交AB的延长线于E.求证:AD·BE=BC·DC.证明:连结AC.∵CE∥BD,∴∠1=∠E.∵∠1和∠2都是所对的圆周角,∴∠1=∠2.∠1=∠E.∵四边形ABCD内接于圆,∴∠EBC=∠CDA.∴△ADC∽△CBE.AD∶BC=DC∶BE.AD·BE=BC· DC.本例利用圆内接四边形的一个外角等于内对角及平行线的同位角、圆中同弧所对的圆周角得到两个相似三角形的条件,进而得到结论.关于圆内接四边形的性质,还有一个重要定理.现在中学课本一般都不列入,现介绍如下:定理:圆内接四边形两条对角线的乘积等于两组对边乘积的和.已知:如图2所示,四边形ABCD内接于圆.求证:AC·BD=AB·CD+AD·BC.证明:作∠BAE=∠CAD,AE交 BD于 E.∵∠ABD=∠ACD,即 AB·CD=AC·BE.①∵∠BAE+∠CAE=∠CAD+∠CAE,∴∠BAC=∠EAD.又∠ACB=∠ADE,AD·BC=AC·DE.②由①,②得AC·BE+AC·DE=AB·CE+AD·BCAC·BD=AB·CD+AD·BC这个定理叫托勒密(ptolemy)定理,是圆内接四边形的一个重要性质.这个证明的关键是构造△ABE∽△ACD,充分利用相似理论,这在几何中是具有代表性的.在数学竞赛中经常看到它的影子,希望能引起我们注意.命题“菱形都内接于圆”对吗?命题“菱形都内接于圆”是不正确的.所以是假命题.理由是:根据圆的内接四边形的判定方法之一,如果一个四边形的一组对角互补,那么这个四边形内接于圆.这个判定的前提是一组对角互补,而菱形的性质是一组对角相等.而一组相等的角,它们的内角和不一定是180°.如果内角和是180°,而且又相等,那么只可能是每个内角等于90°,既具有菱形的性质,且每个内角等于90°,那末这个四边形一定是正方形.而正方形显然是菱形中的特例,不能说明一般情形.判定四边形内接于圆的方法之二,是圆心到四边形四个顶点的距离相等.圆既是中心对称图形,又是轴对称图形,它的对称中心是圆心.菱形同样既是中心对称图形,又是轴对称图形,它的对称中心是两条对角线的交点.但菱形的对称中心到菱形各个顶点的距离不一定相等.所以,也无法确定菱形一定内接于圆;如果菱形的对称中心到菱形各边顶点的距离相等,再加上菱形的对角线互相垂直平分这些性质,那么这个四边形又必是正方形.综上所述,“菱形都内接于圆”这个命题是错误的.5圆的内接四边形例1 已知:如图7-90,ABCD是对角线互相垂直的圆内接四边形,通过对角线的交点E与AB垂直于点H的直线交CD于点M.求证:CM=MD.证明∠MEC与∠HEB互余,∠ABE与∠HEB互余,所以∠MEC=∠ABE.又∠ABE=∠ECM,所以∠MEC=∠ECM.从而CM=EM.同理MD=EM.所以CM=MD.点评本例的逆命题也成立(即图中若M平分CD,则MH⊥AB).这两个命题在某些问题中有时有用.本例叫做婆罗摩笈多定理.例2 已知:如图7-91,ABCD是⊙O的内接四边形,AC⊥BD,分析一如图7-91(a),由于E是AB的中点,从A引⊙O的需证明GB=CD.但这在第七章ξ 1.4圆周角中的例3已经证明了.证明读者自己完成.*分析二如图7-91(b),设AC,BD垂直于点F.取CD的有OE∥MF.从而四边形OEFM应该是平行四边形.证明了四边形OEFM是平行四边形,问题也就解决了.而证明四边形OEFM是平行四边形已经没有什么困难了.*分析三如图7-91(b),通过AC,BD的交点F作AB的垂线交CD于点M.连结线段EF,MO.由于OE⊥AB,FM⊥AB,所以OE∥FM.又由于EF⊥CD(见例1的点评),MO⊥CD,所以EF∥MO.所以四边形OEFM为平行四边形.从而OE=MF,而由例3 求证:圆内接四边形对边乘积的和等于对角线的乘积,即图中AB·CD+BC·AD=AC·BD.分析在AB·CD+BC·AD=AC·BD中,等号左端是两个乘积的和,要证明这种等式成立,常需把左端拆成两个单项式来证明,即先考虑AB·CD和BC·AD各等于什么,然后再考虑AB·CD+BC·AD是否等于AC·BD.而要考虑AB·CD和BC·AD各等于什么,要用到相似三角形.为此,如图7-92,作AE,令∠BAE=∠CAD,并且与对角线BD相交于点E,这就得到△ABE∽△ACD.由此求得AB·CD=AC·BE.在圆中又出现了△ABC∽△AED,由此又求得BC·AD=AC·ED.把以上两个等式左右各相加,问题就解决了.证明读者自己完成.点评本例叫做托勒玫定理.它在计算与证明中都很有用.意一点.求证:PA=PB+PC.分析一本例是线段和差问题,因此可用截取或延长的方法证明.如图7-93(a),在PA上取点M,使PM=PB,剩下的问题是证明MA=PC,这只要证明△ABM≌△CBP就可以了.证明读者自己完成.分析二如图7-93(a),在PA上取点M,使MA=PC,剩下的问题是证明PM=PB,这只要证明△BPM是等边三角形就可以了.证明读者自己完成.分析三如图7-93(b),延长CP到M,使PM=PB,剩下的问题是证明PA=MC,这只要证明△PAB≌△CMB就可以了.证明读者自己完成.读者可仿以上的方法拟出本例的其他证明.*本例最简单的证明是利用托勒玫定理(例3).证明由托勒玫定理得PA·BC=PB·AC+PC·AB,由于BC=AC=AB,所以有PA=PB+PC.例2 如图7—116,⊙O1和⊙O2都经过A、B两点,经过点A的直线CD与⊙O1交于点C,与⊙O2交于点D.经过点B的直线EF与⊙O1交于点E,与⊙O2交于点F.求证:CE∥DF.分析:要证明CE∥DF.考虑证明同位角(或内错角)相等或同旁内角互补.由于CE、DF分别在两个圆中,不易找到角的关系,若连结AB,则可构成圆内接四边形,利用圆内接四边形的性质定理可沟通两圆中有关角的关系.证明:连结AB.∵ABEC是圆内接四边形,∵ADFB是圆内接四边形,∴∠BAD+∠F=180°,∴∠E+∠F=180°.∴CE∥CF.说明:(1)本题也可以利用同位角相等或内错角相等,两直线平行证明.如延长EF至G,因为∠DFG=∠BAD,而∠BAD=∠E,所以∠DFG=∠E.(2)应强调本题的辅助线是为了构成圆内接四边形,以利用它的性质,导出角之间的关系.(3)对于程度较好的学生,还可让他们进一步思考,若本题不变,但不给出图形,是否还有其他情况?问题提出后可让学生自己画图思考,通过讨论明确本题还应有如图7—117的情况并给予证明.例3 如图7—118,已知在△ABC中,AB=AC,BD平分∠B,△ABD的外接圆和BC 交于E.求证:AD=EC.分析:要证AD=EC,不能直接建立它们的联系,考虑已知条件可知∠ABD=∠DBE,容易看出.若连结DE,则有AD=DE.因此只要证DE=EC.由于DE和EC为△DEC的两边,所以只要证∠EDC=∠C.由已知条件可知∠C=∠ABC.因此只要证∠EDC=∠ABC.因为△EDC是圆内接四边形ABED的一个外角,所以可证∠EDC=∠ABC.问题可解决.证明:连结DE.∵BD平分∠ABC,∴,AD=DE.∵ABED是圆内接四边形,∵AB=AC,∴∠ABC=∠C,∴∠EDC=∠C.于是有DE=EC.因此AD=EC.四、作业1.如图7—120,在圆内接四边形ABCD中,AC平分BD,并且AC⊥BD,∠BAD=70°18′,求四边形其余各角.2.圆内接四边形ABCD中,∠A、∠B、∠C的度数的比为2∶3∶6,求四边形各内角的度数.3.如图7—121,AD是△ABC外角∠EAC的平分线,AD与三角形的外接圆交于点D.求证:DB=DC.作业答案或提示:1.∠ABC=∠ADC=90°,∠BCD=109°42′.2.∠A=45°,∠B=67.5°,∠C=135°,∠D=112.5°.3.提示:因为∠DBC=∠DAC,∠EAD=∠DCB,∠EAD=∠DAC,所以∠DBC=∠DCB,因此DB=DC.判定四点共圆的方法引导学生归纳判定四点共圆的方法:(1)如果四个点与一定点距离相等,那么这四个点共圆.(2)如果一个四边形的一组对角互补,那么这个四边形的四个顶点共圆.(3)如果一个四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆.(4)如果两个直角三角形有公共的斜边,那么这两个三角形的四个顶点共圆(因为四个顶点与斜边中点距离相等).3.如图7—124,已知ABCD为平行四边形,过点A和B的圆与 AD、BC分别交于E、F.求证:C、D、E、F四点共圆.提示连结EF.由∠B+∠AEF=180°,∠B+∠C=180°,可得∠AEF=∠C.四点共圆的应用山东宁阳教委教研室栗致根四点共圆在平面几何证明中应用广泛,熟悉这种应用对于开阔证题思路,提高解题能力都是十分有益的.一用于证明两角相等例1 如图1,已知P为⊙O外一点,PA切⊙O于A,PB切⊙O于B,OP交AB 于E.求证:∠APC=∠BPD.证明连结OA,OC,OD.由射影定理,得AE2=PE·EO,又AE=BE,则AE·BE =PE·EO……(1);由相交弦定理,得AE·BE=CE·DE……(2);由(1)、(2)得CE·ED=PE·EO,∴ P、C、O、D四点共圆,则∠1=∠2,∠3=∠4,又∠2=∠4.∴∠1=∠3,易证∠APC=∠BPD(∠4=∠EDO).二用于证明两条线段相筹例2 如图2,从⊙O外一点P引切线PA、PB和割线PDC,从A点作弦AE平行于DC,连结BE交DC于F,求证:FC=FD.证明连结AD、AF、EC、AB.∵PA切⊙O于A,则∠1=∠2.∵AE∥CD,则∠2=∠4.∴∠1=∠4,∴P、A、F、B四点共圆.∴∠5=∠6,而∠5=∠2=∠3,∴∠3=∠6.∵AE∥CD,∴EC=AD,且∠ECF=∠ADF,∴△EFC≌△AFD,∴FC=FD.三用于证明两直线平行例3 如图3,在△ABC中,AB=AC,AD⊥BC,∠B的两条三等分线交AD于E、G,交AC于F、H.求证:EH∥GC.证明连结EC.在△ABE和△ACE中,∵AE=AE,AB=AC,∠BAE=∠CAE,∴△AEB≌AEC,∴∠5=∠1=∠2,∴B、C、H、E四点共圆,∴∠6=∠3.在△GEB 和△GEC中,∵GE=GE,∠BEG=∠CEG,EB=EC,∴△GEB≌△GEC,∴∠4=∠2=∠3,∴∠4=∠6.∴EH∥GC.四用于证明两直线垂直证明在△ABD和△BCE中,∵AB=BC,∠ABD=∠BCE,BD=CE,则△ABD≌△BCE,∴∠ADB=∠BEC,∴P、D、C、E四点共圆.设DC的中点为O连结OE、DE.易证∠OEC=60°,∠DEO=30°∴∠DEC=90°,于是∠DPC=90°,∴ CP⊥AD.五用于判定切线例5 如图5,AB为半圆直径,P为半圆上一点,PC⊥AB于C,以AC为直径的圆交PA于D,以BC为直径的圆交PB于E,求证:DE是这两圆的公切线.证明连结DC、CE,易知∠PDC=∠PEC=90°,∴ P、D、C、E四点共圆,于是∠1=∠3,而∠3+∠2=90°,∠A+∠2=90°,则∠1=∠A,∴DE是圆ACD 的切线.同理,DE是圆BCE的切线.因而DE为两圆的公切线六用于证明比例式例6 AB、CD为⊙O中两条平行的弦,过B点的切线交CD的延长线于G,弦PA、PB分别交CD于E、F.证明如图6.连结BE、PG.∵BG切⊙O于B,则∠1=∠A.∵AB∥CD,则∠A=∠2.于是∠1=∠2,∴P、G、B、E四点共圆.由相交弦定理,得EF·FG=PF·FB.在⊙O中,由相交弦定理,得CF·FD=FP·FB.七用于证明平方式例7 ABCD为圆内接四边形,一组对边AB和DC延长交于P点,另一组对边AD和BC延长交于Q点,从P、Q引这圆的两条切线,切点分别是E、F,(如图 7)求证:PQ2=QF2+PE2.证明作△DCQ的外接圆,交PQ于M,连结MC,∵∠1=∠2=∠3,则P、B、C、M四点共圆.由圆幂定理得PE2=PC·PD=PM·PQ,QF2=QC·QB=QM·QP,两式相加得PE2+QF2=PM·PQ+ QM·QP=PQ(PM+QM)=PQ·PQ=PQ2∴PQ2=PE2+QF2.八用于解计算题例8如图8,△ABC的高AD的延长线交外接圆于H,以AD为直径作圆和AB、AC分别交于E、F点,EF交 AD于 G,若 AG=16cm,AH=25cm,求 AD的长.解连结DE、DF、BH.∵∠1=∠2=∠C=∠H,∴B、E、G、H四点共圆.由圆幂定理,得AE·AB=AG·AN.在△ABD中,∵∠ADB=90°,DE⊥AB,由射影定理,得AD2=AE·AB,∴AD2=AG·AH=16×25=400,∴AD=20cm.九用于证明三点共线例9如图9,D为△ABC外接圆上任意一点,E、F、G为D点到三边垂线的垂足,求证:E、F、G三点在一条直线上.证明连结EF、FG、BD、CD.∵∠BED=∠BFD=90°,则B、E、F、D四点共圆,∴∠1=∠2,同理∠3=∠4.在△DBE和△DCG中,∵∠DEB=∠DGC,∠DBE=∠DCG,故∠1=∠4,易得∠2=∠3,∴ E、F、G三点在一条直线上.十用于证明多点共圆例10如图10,H为△ABC的垂心,H1、H2、H3为H点关于各边的对称点,求证:A、B、C、H1、H2、H3六点共圆.证明连结AH2,∵H与H2关于AF对称,则∠1=∠2.∵A、F、D、C四点共圆,则∠2=∠3,于是∠1=∠3,∴A、H2、B、c四点共圆,即H2在△ABC的外接圆上.同理可证,H1、H3也在△ABC的外接圆上.∴A、B、C、H1、H2、H3六点共圆.相关资源托勒密定理的数形转换功能山东临沂市四中姜开传临沂市第一技校刘久松圆内接四边形两组对边乘积的和等于其对角线的乘积,即在四边形 ABCD 中,有AB·CD+AD·BC=AC·BD,这就是著名的托勒密定理.本刊1996年第2期给出了它的几种证法,作为续篇,本文就其数形转换功能举例说明如下:1 “形”转换为“数”对于某些几何问题,特别是圆内接多边形问题,如果能根据题设中隐含的数量关系,利用托勒密定理可将“形”转换为“数”,从而达到用代数运算来代替几何推理的目的.例1已知正七边形A1A2 (7)(第21届全俄数学奥林匹克竞赛题)对于这道竞赛题,原证较繁,但通过深挖隐含条件,利用托勒密定理可改变整个解题局面,使证题步骤简缩到最少.如图1,连 A1A5、A3A5,则A1A5=A1A4、A3A5=A1A3.在四边形A1A3A4A5中,由托勒密定理,得A3A4·A1A5+A4A5·A1A3=A1A4·A3A5,即A1A2·A1A4+A1A2·A1A3=A1A3·A1A4,两边同除以A1A2·A1A3·A1A4即得结论式.例2 如图2,A、B、C、D四点在同一圆周上,且BC=CD=4,AE=6,线段BE和DE的长都是整数,则BD的长等于多少?(1988年全国初中数学联赛题)此题若用其它方法解,往往使人一筹莫展.若运用托勒密定理,可使问题化难为易.由△CDE∽△BAE和△CBE∽△DAE,得由托勒密定理,得BD(AE+CE)=4(AB+AD),亦即 CE(AE+CE)=16.设CE=x,整理上式,得x2+6x-16=0.解得x=2(负值已舍),故BE·DE=CE·AE=12.∵BD<BC+CD=8,例3一个内接于圆的六边形,其五个边的边长都为81,AB是它的第六边,其长为31,求从B出发的三条对角线长的和.(第九届美国数学邀请赛试题)原解答过程冗长.若通过托勒密定理的桥梁作用,把“形”转换为“数”,可使问题化繁为简.如图3,设BD=a, BE=b,BF=c,连AC、CE、AE,则CE=AE=BD=a,AC=BF =c.在四边形BCDE中,由托勒密定理,得81b+812=a2①同理81b+31·81=ac ②31a+81a=bc ③解①、③、③组成的方程组,得a=135,b=144,c=105故 a+b+c=384.2 “数”转换为“形”对于某些代数问题,若结构与托勒密定理相似,通过构造圆内接四边形,可把“数”转换为“形”,然后利用“形”的性质,使问题得到解决.这种解法构思巧妙,方法独特,富于创新,出奇制胜.例4 解方程若按常规方法解这个无理方程,过程繁冗.若由方程的结构特征联想到托勒密定理,则构造直径AC=x(x≥11)的圆及圆内接四边形ABCD,使BC=2,CD=11,如图 4,于是由托勒密定理,得在△BCD中,由余弦定理,得经检验x=14是原方程的根.求证: a2+b2=1.这道名题已有多种证法,而且被视为用三角换无法解代数问题的典范.下面再给出一各几何证法.易知0≤a、b≤1且a、b不全为零.当a、b之一为零时,结论显然成立.当a、b全不为零时,由已知等式联想到托勒密定理,作直径AC=1的圆及圆内接四与已知等式比较,得BD=1,即BD也为圆的直径,故a2+b2=1例6设a>c,b>c,c>0,此题若用常规方法证明也不轻松.下面利用托勒密定理给出它的一个巧证.由托勒密定理,得巧用托勒密定理证题河北晋州市数学论文研究协会张东海王素改在解证某些数学题时,如能巧用托勒密定理,可使解证过程简洁清新,兹举例说明.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.一、构造“圆”,运用定理【例1】设a,b,x,y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证作直径AB=1的圆,在AB的两侧任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x, AD=y.(图1)由勾股定理知a,b,x,y满足条件.根据托勒密定理,有AC·BD+BC·AD=AB·CD.∵ CD≤1,∴ax+by≤1.二、利用无形圆,运用定理【例2】等腰梯形一条对角线的平方,等于一腰的平方加上两底之积.已知:梯形 ABCD中,AD=BC,AB∥CD.求证:BD2=BC2+AB·CD.证∵等腰梯形内接于圆,由托勒密定理,有AC·BD=AD·BC+AB·CD.∵AD=BC,AC=BD,∴BD2=BC2+AB·CD.(图略)【例 3】已知:边长为 1的正七边形ABCDEFG中,对角线 AD=a,BG=b(a≠b).求证:(a+b)2(a-b)=ab2.证连结BD,GE,BE,DG,则 BD=EG=GB=b,DG=BE=DA=a, DE=AB=AG=1.(如图2)在四边形ABDG中,由托勒密定理,有AD·BG=AB·DG+BD·AG,即ab=a+b (1)同理在四边形BDEG中,得BE·DG=DE·BG+BD·EG,即a2=b+b2 (2)将(2)变形为b=a2-b2 (3)(1)×(3),得ab2=(a+b)(a2-b2).故ab2=(a+b)2(a-b).三、构造圆内接四边形,运用定理【例4】在△ABC中,∠A的内角平分线AD交外接圆于D.连结BD.求证:AD·BC=BD·(AB+AC).证(如图3) 连结DC.由托勒密定理.有AD·BC=AB·CD+AC·BD.又∵∠1=∠2,∴BD=DC.∴AD·BC=AB·CD+AC·BD=BD(AB+AC).即AD·BC=BD·(AB+AC).圆内接四边形的面积公式黑龙江绥化五中任天民设圆内接四边形ABCD中各边为a,b,c,d.连结 BD.由∠A+∠C=180°,可以推出sinA=sinC,cosA=-cosC.并且S四边形ABCD=S△ABD+S△BCD所以这样我们得出了圆内接四边形面积的计算公式.在上面的公式中,如果设某一边为零,(不仿设d=0)此时四边形变成三角形,该公式恰是计算三角形面积的海伦公式.圆内接四边形面积公式的得出是受三角形面积公式的启发,通过联想探索出来的,而且两者在形式上又是那么的相近.这种现象在数学中不胜枚举,如果同学们都能从特殊规律去探索一般规律,再从一般规律去认识特殊规律.那么对数学能力的培养将大有裨益.四条边定长四边形面积的最大值上海市育群中学李甲鼎四条边为定长的四边形不具稳定性,但在某种特定的位置下,它能内接于圆,成为圆内接四边形.并且此时达到变化过程中面积最大值.下文证明这个事实.已知:四边形ABCD中:AB=a,BC=b,CD=c,DA=d求证:四边形ABCD中有唯一四边形能内接于圆,且此时面积达到最大值.证明:(1)先证四边形四边定长,有唯一的四边形内接于圆,设∠ABC=α,∠ADC=β,AC=x.令α+β=π,即cosα+cosβ=0x的解唯一确定,代入(1)(2)后cosα、cosβ也随之唯一确,在α,β∈(0,π)的条件下α、β也同时唯一确定.∴四边形四边定长,对角互补,四边形是唯一的.即所得到的四边形为圆内接四边形.(2)当四边定长的四边形内接于圆时,此四边形面积最大.∵四边形ABCD的面积由余弦定理得a2+b2-2abcosα=x2=c2+d2-2cdcosβ显然当α+β=π时(即为圆内接四边形时)S2达到最大值,即S最大.一个几何定理的应用江苏省徐州矿务局庞庄职校张怀林定理:如图1,在圆接四边形ABCD中弦AD平分∠BAC,则2ADcosα=AB +AC.证明连接BD、DC、BC,设已知圆半径为R,则由正弦定理有:BD=DC=2Rsinα,BC=2Rsin2α.由托勒密定理有AB·CD+AC·BD=AD·DC.∴(AB+AC)·2Rsinα=AD·2Rsin2α.则2AD·cosα=AB+AC.下面举例说明它的应用.例1如图2,已知锐角△ABC的∠A平分线交BC于L,交外接圆于N,过L分别作LK⊥AB,LM⊥AC,垂足分别为K、M.求证:四边形AKNM的面积等于△ABC的面积.(第28届IMO)证明由已知得∠BAN=∠CAN,由定理有2ANcosα=AB+AC,=AN·AL·cosα·sinα=AN·AK·sinα=AN·AM·sinα=2S△AKN=2S△AMN.∴S△ABC=S四边形AKNM.(第21届全苏奥数)证明作正七边形外接圆,如图3所示.由定理有2c·cosα=b+c,又在等腰△A1A2A3中有2a·cosα=b.例3在△ABC中,∠C=3∠A,a=27,c=48,则b的值是____.(第36届AHSME试题)解如图4.作△ABC的外接圆,在取三等分点D、E,连CD、CE.由已知得:∠ACD=∠DCE=∠ECB=∠A,CD=AB=48,由定理有2CE·cosA=CB+CD ①2CD·cosA=CE+AC ②又2CB·cosA=CE ③由②、③得:b=AC=CE·(CD-CB)/CB=35.托勒密定理及其应用河北省晋州市数学论文研究协会刘同林托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.证明:如图1,过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD ∽△BCP.又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.①+②得AC(BP+DP)=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.这就是著名的托勒密定理,在通用教材中习题的面目出现,不被重视.笔者认为,既然是定理就可作为推理论证的依据.有些问题若根据它来论证,显然格外简洁清新.兹分类说明如下,以供探究.一、直接应用托勒密定理例1如图2,P是正△ABC外接圆的劣弧上任一点(不与B、C重合),求证:PA=PB+PC.分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗.若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB,∵AB=BC=AC.∴PA=PB+PC.二、完善图形借助托勒密定理例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2证明:如图3,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是圆内接四边形.由托勒密定理,有AC·BD=AB·CD+AD·BC.①又∵ABCD是矩形,∴AB=CD,AD=BC,AC=BD.②把②代人①,得AC2=AB2+BC2.例3如图4,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB+AC).证明:连结CD,依托勒密定理,有AD·BC=AB·CD+AC·BD.∵∠1=∠2,∴BD=CD.故AD·BC=AB·BD+AC·BD=BD(AB+AC).三、利用“无形圆”借助托勒密定理例4等腰梯形一条对角线的平方等于一腰的平方加上两底之积.如图5,ABCD中,AB∥CD,AD=BC,求证:BD2=BC2+AB·CD.证明:∵等腰梯形内接于圆,依托密定理,则有AC·BD=AD·BC+AB·CD.又∵AD=BC,AC=BD,∴BD2=BC2+AB·CD.四、构造图形借助托勒密定理例5若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证明:如图6,作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x,AD=y.由勾股定理知a、b、x、y是满足题设条件的.据托勒密定理,有AC·BD+BC·AD=AB·CD.∵CD≤AB=1,∴ax+by≤1.五、巧变原式妙构图形,借助托勒密定理例6已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B.分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c.证明:如图7,作△ABC的外接圆,以A为圆心,BC为半径作弧交圆于D,连结BD、DC、DA.∵AD=BC,∴∠ABD=∠BAC.又∵∠BDA=∠ACB(对同弧),∴∠1=∠2.依托勒密定理,有BC·AD=AB·CD+BD·AC.①而已知a2=b(b+c),即a·a=b·c+b2.②∴∠BAC=2∠ABC.六、巧变形妙引线借肋托勒密定理例7在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4,析证:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆联系起来,可联想到托勒密定理,进而构造圆内接四边形.如图8,作△ABC的外接圆,作弦BD=BC,边结AD、CD.在圆内接四边形ADBC中,由托勒密定理,有AC·BD+BC·AD=AB·CD易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC,关于圆内接四边形的若干共点性质浙江绍兴县鲁迅中学范培养设四边形ABCD内接于圆O,其边AB与DC的延长线交于P,AD与BC 的延长线交于Q,由P作圆的两切线PM、PN,切点分别为M、N;由Q作圆的两切线QE、QF,切点分别为E、F(如图1).则有以下一些共点性质:性质1 AC、BD、EF三直线共点.证明:如图1,设AC交EF于K1,则K1分EF所成的比为设BD交EF于K2,同理可得K2分EF所成的比为由(5)、(6)可得(1)=(2),故K1、K2分EF所成的比相等.∴K1、K2重合,从而AC、BD、EF三直线共点.类似地AC、BD、MN三直线共点,因此有以下推论AC、BD、EF、MN四直线共点.性质2 AB、DC、EF三直线共点于P.(此性质等同于1997年中国数学奥林匹克第二试第四题)这里用上述证明性质1的方法证之.证明:如图2.设DC与EF的延长线交于P1,则P1分EF所成的比为设AB与EF的延长线交于P2,则P2分EF所成的比为由(5)、(6)可得(7)=(8),故P1、P2分EF所成的比相等.∴P1、P2重合,从而AB、DC、EF三直线共点于P.推论AD、BC、NM三直线共点于Q.性质 3 EM、NF、PQ三直线共点.证明:如图3,设EM的延长线交PQ于G1,妨上证法,G1分PQ所成的比为设NF的延长线交PQ于G2,则G2分PQ所成的比为(这里E、F、P三点共线及N、M、Q三点共线在性质2及推论中已证).由△PME∽△PFM得由(11)、(12)及QE=QF、PN=PM可得(9)=(10),故G1、G2分PQ所成的比相等.∴G1、G2重合,从而EM、NF、PQ三直线共点.性质4如果直线EN和MF相交,那么交点在直线PQ上,即EN、MF、PQ三直线共点.证明从略,妨性质3的证法可得.性质5 EM、NF、AC三直线共点.证明:如图4,类似于性质1的证明,设EM与AC的延长线交于G3,则G3分AC所成的比为设NF 与AC 的延长线交于G 4,则G 4分AC 所成的比为由(15)、(18)、(19)可得(13)=(14),故G 3、G 4分AC 所成的比相等.∴G 3、G 4重合,从而 EM 、NF 、AC 三直线共点.推论 EM 、NF 、AC 、PQ 四直线共点.限于篇幅,仅列以上五条共点性质.有兴趣的读者不妨再探索其它共点性质例3 在边长为a 的正七边形ABCDEFG 中,两条不相等的对角线长分别为t ,m .证明如图4,连结AD、CE,令AE=t,AC=m,在圆内接四边形ACDE 中,据托勒密定理,有AD·CE=AE·CD+AC·DE,即tm=ta+ma.托勒密定理及其应用河北省晋州市数学论文研究协会康美娈彭立欣托勒密定理圆内接四边形的两条对角线的乘积(两条对角线所包矩形的面积),等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形面积之和).证明如图1,过C作CP使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.∴AC·BP=AD·BC ①又∠ACB=∠DCP,∠5=∠6,∴AC·DP=AB·CD.②①+②得AC(BP+PD)=AD·BC+AB·CD.故AC·BD=AD·BC+AB·CD.托勒密定理在教材中仅以习题的形式出现,若以此定理为根据,可使许多问题解证过程别具一格.例1已知P是正△ABC的外接圆劣弧上任意一点.求证:PA=BP+PC.证明如图2,ABPC是圆内接四边形,根据托勒密定理,有PA·BC=PB·AC+PC·AB.∵AB=BC=AC,∴PA=PB+PC.例2证明等腰梯形一条对角线的平方,等于一腰的平方加上两底之积.证明如图3,设在梯形ABCD中,AD=BC,AB∥CD.∵等腰梯形内接于圆,∴AC·BD=AD·BC+AB·CD.又AD=BC,AC=BD,∴BD2=BC2+AB·CD.例3在边长为a的正七边形ABCDEFG中,两条不相等的对角线长分别为t,m.证明如图4,连结AD、CE,令AE=t,AC=m,在圆内接四边形ACDE 中,据托勒密定理,有AD·CE=AE·CD+AC·DE,即tm=ta+ma.例4已知a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证明作直径AB=1的圆,在AB两侧作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x,DA=y(如图5).依勾股定理知a、b、x、y是满足题设条件的.依托勒密定理有AC·BD+BC·AD=AB·CD.又∵CD≤AB=1,∴ax+by≤1.例5△ABC的三个内角A、B、C的对边分别为a、b、c,且a2=b(b+c).求证:A=2B.分析将a2=b(b+c)变形为a·a=b·b+b·c,可联想到托勒密定理,进而构造一个圆内接等腰梯形,使两腰为b,两对角线为a,一底边为c.证明如图6,作△ABC的外接圆.以A为圆心,以BC为半径画弧交圆于D,连结BD、DA、DC.。

专题06四点共圆(专项训练)(原卷版)

专题06四点共圆(专项训练)(原卷版)

专题06 四点共圆(专项训练)1.(2021秋•渝北区期末)如图,圆内接四边形ABCD的外角∠ABE为80°,则∠ADC度数为()A.80°B.40°C.100°D.160°2.(2021秋•滨湖区期中)如图,AB=AD=6,∠A=60°,点C在∠DAB内部且∠C=120°,则CB+CD的最大值()A.4B.8C.10D.6 3.(2022•靖江市二模)如图,AB⊥BC,AB=5,点E、F分别是线段AB、射线BC上的动点,以EF为斜边向上作等腰Rt△DEF,∠D=90°,连接AD,则AD的最小值为.4.如图,△ABC和△BCD均为直角三角形,∠BAC=∠BDC=90°,AB=2,连接AD.若∠ADB=30°,则AC的长为.5.如图,在四边形ABCD中,BD=6,∠BAD=∠BCD=90°,则四边形ABCD 面积的最大值为.6.如图,在△ABC和△ACD中,∠ABC=∠ADC=45°,AC=6,则AD的最大值为.7.如图,△ABC中,AB=AC,∠BAC=90°,点D是BC的中点,点E,F分别为AB,AC边上的点,且∠EDF=90°,连接EF,则∠DEF的度数为.8.(2022秋•萧山区月考)如图,以C为公共顶点的Rt△ABC和Rt△CED中,∠ACB=∠CDE=90°,∠A=∠DCE=30°,且点D在线段AB上,则∠ABE =30°,若AC=10,CD=9,则BE=.9.(2021秋•宽城区期末)【问题原型】如图①,在⊙O中,弦BC所对的圆心角∠BOC=90°,点A在优弧BC上运动(点A不与点B、C重合),连结AB、AC.(1)在点A运动过程中,∠A的度数是否发生变化?请通过计算说明理由.(2)若BC=2,求弦AC的最大值.【问题拓展】如图②,在△ABC中,BC=4,∠A=60°.若M、N分别是AB、BC的中点,则线段MN的最大值为.10.(2022秋•仪征市期中)【问题提出】苏科版九年级(上册)教材在探究圆内接四边形对角的数量关系时提出了两个问题:1.如图(1),在⊙O的内接四边形ABCD中,BD是⊙O的直径.∠A与∠C、∠ABC与∠ADC有怎样的数量关系?2.如图(2),若圆心O不在⊙O的内接四边形ABCD的对角线上,问题(1)中发现的结论是否仍然成立?(1)小明发现问题1中的∠A与∠C、∠ABC与∠ADC都满足互补关系,请帮助他完善问题1的证明:∵BD是⊙O的直径,∴,∴∠A+∠C=180°,∵四边形内角和等于360°,∴.(2)请回答问题2,并说明理由;【深入探究】如图(3),⊙O的内接四边形ABCD恰有一个内切圆⊙I,切点分别是点E、F、G、H,连接GH,EF.(3)直接写出四边形ABCD边满足的数量关系;(4)探究EF、GH满足的位置关系;(5)如图(4),若∠C=90°,BC=3,CD=2,请直接写出图中阴影部分的面积.10.(2022•遵义)综合与实践“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC同侧有两点B,D,连接AD,AB,BC,CD,如果∠B=∠D,那么A,B,C,D四点在同一个圆上.探究展示:如图2,作经过点A,C,D的⊙O,在劣弧AC上取一点E(不与A,C重合),连接AE,CE,则∠AEC+∠D=180°(依据1)∵∠B=∠D∴∠AEC+∠B=180°∴点A,B,C,E四点在同一个圆上(对角互补的四边形四个顶点共圆)∴点B,D在点A,C,E所确定的⊙O上(依据2)∴点A,B,C,D四点在同一个圆上反思归纳:(1)上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:;依据2:.(2)如图3,在四边形ABCD中,∠1=∠2,∠3=45°,则∠4的度数为.拓展探究:(3)如图4,已知△ABC是等腰三角形,AB=AC,点D在BC上(不与BC 的中点重合),连接AD.作点C关于AD的对称点E,连接EB并延长交AD 的延长线于F,连接AE,DE.①求证:A,D,B,E四点共圆;②若AB=2,AD•AF的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.11.如图,在△ABC中,以AB为直径作⊙O交AC于点D,交BC于点E,CE =BE,过点E作EF⊥AC于点F,FE的延长线交AB的延长线于点G,连接DE.(1)求证:FG是⊙O的切线;(2)求证:EG2=AG•BG;(3)若BG=1,EG=,求sin∠CDE的值.。

新高考数学-圆锥曲线中的四点共圆20题解析

新高考数学-圆锥曲线中的四点共圆20题解析

一、解答题1.(2024·广西来宾·一模)已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为),渐近线方程为2y x =±.(1)求C 的方程;(2)记C 的左顶点为A ,直线2:3l x =与x 轴交于点B ,过B 的直线与C 的右支于P ,Q 两点,直线AP ,AQ 分别交直线l 于点M ,N ,证明O ,A ,M ,N 四点共圆.【详解】(1)设直线PQ 的方程为23x my =+,代入C 的方程整理可得:(92m-220m -≠,且()21249m =--⨯ ()122432m y y m +=-,(1292y y ⋅=因为P ,Q 在C 的右支上,1y y ∴C 的左顶点为()2,0A -,故直线()1122y y x x =++,(222y y x x =++要证O ,A ,M ,N 四点共圆只需证即证AMN BON ∠=∠,即证MAB ∠即只需证1AP ON k k ⋅=,因为1212422AP ON y y k k x x my ⋅=⋅=++⎛ ⎝()()()222232492328439232m m m m m m -=⎛++ --⎝所以O ,A ,M ,N 四点共圆.【点睛】方法点睛:该问题最终要证明四点共圆,转化为证明四边形的对角互补,即πAMN AON ∠+∠=,进一步转化为AMN BON ∠=∠,即证MAB ∠与BON ∠互余,即只需证1AP ON k k ⋅=,再用坐标表示就可以了.2.(23-24高三下·重庆·阶段练习)设A 、B 是椭圆223x y λ+=上的两点,点()1,3N 是线段AB 的中点,线段AB 的中垂线与椭圆交于C ,D 两点;存在,请说明原因.【详解】(1)依题意0λ>,可设直线AB 的方程为(1)3y k x =-+,代入223x y λ+=,整理得222(3)2(3)(3)0k x k k x k λ+--+--=①,设11(,)A x y ,22(,)B x y ,则1x ,2x 是方程①的两个不同的根,∴224[(3)3(3)]0k k λ∆=+-->②,且1222(3)3k k x x k -+=+.由(1,3)N 是线段AB 的中点,得122x x +=,2(3)3k k k ∴-=+解得1k =-,代入②得12λ>,即λ的取值范围是(12,)+∞.于是直线AB 的方程为3(1)y x -=--,即40x y +-=.(2)24440x x λ++-=③.又设33(,)C x y ,44(,)D x y ,CD 的中点为00(,)M x y ,则3x ,4x 是方程③的两根,341x x ∴+=-,3444x x λ-⋅=,且340122x x x +==-,00322y x =+=,即13,22M⎛⎫- ⎪⎝⎭,于是由弦长公式可得34CD x x =-=.④将直线AB 的方程40x y +-=代入椭圆方程得248160x x λ-+-=⑤.所以122x x +=,12164x x λ-=,同理可得12||||AB x x =-⑥.当12λ>>AB CD ∴<.假设存在12λ>,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB的距离为2d ==⑦.于是,由④⑥⑦式及勾股定理可得222229123||22222AB CDMA MB d λλ--==+=+==.故当12λ>时,A 、B 、C 、D 四点均在以M 为圆心,2CD为半径的圆上.此时圆的方程为22133222x y λ-⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭()12λ>.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.3.(23-24高三下·河南郑州·阶段练习)已知抛物线21:4C x y =,()4,4M .(1)直线()4y x t t =-+<交抛物线1C 于A,B 两点,求MAB △面积的最大值;线22:8C x y =于1S ,1T ,2S ,2T 四点,求证:1S ,1T ,2S ,2T 四点共圆.)()22,x y ,2440x x t ⇒+-=,0t >,则14t -<<,124x x t =-,()()22121212x x x x +--=⋅+-到直线y x t =-+的距离为4d +=(814212122t AB d t -=⨯+⨯=)()28,14t t --<<,则()(8f t ='则22343433434444PQx x y y x x kx x x x --+===--故233434344444MPMQx y y kk x x x --+=+=--设,MP MQ k k k k ==-,()111,,S x y T ''则直线11S T 的方程为(4y k x -=-直线22S T 的方程为(44y k x -=-故1122,,,S T S T 满足方程(4kx y -+又1122,,,S T S T 都在抛物线28x y =也满足()()22180k x y +-=(**)(**)-(*)得:()(2218k x y +-()22228821616x y k x k y ++-++-四点1122,,,S T S T 的坐标都满足此方程,由()(22288241616k k k ⎡⎤+-+--⎣⎦故1S ,1T ,2S ,2T 四点共圆.右顶点为A ,设点O 为坐标原点,点B 为椭圆E 上异于左右顶点的动点,OAB 的面积最大值为1.(1)求椭圆E 的标准方程;(2)设直线:l x m =交x 轴于P ,其中m a >,直线PB 交椭圆E 于另一点C ,直线BA CA 和分别交直线l 于点M 和N ,是否存在实数m 使得,,,O A M N 四点共圆,若存在,求出m【点睛】思路点睛:涉及动直线与圆锥曲线相交满足某个条件问题,可设直线方程为y kx m =+,再与圆锥曲线方程联立结合已知条件探求5.(23-24高三上·江苏·期末)已知双曲线C :221a b-=(0a >,0b >)的两个焦点是1F ,2F ,顶点()0,2A -,点M 是双曲线C 上一个动点,且2212MF MF -的最小值是85.(1)求双曲线C 的方程;(2)设点P 是y 轴上异于C 的顶点和坐标原点O 的一个定点,直线l 过点P 且平行于x 轴,直线m 过点P 且与双曲线C 交于B ,D 两点,直线AB ,AD 分别与直线l 交于G ,H 两点.若O ,A ,G ,H 四点共圆,求点P 的坐标.【答案】(1)2214y x -=(2)20,5P ⎛⎫ ⎪⎝⎭【分析】(1)法一:由顶点(0,A 221248MF MF ac c -≥=解得c =根据双曲线定义分析可得21MF -22a b 由顶点()0,2A -得2a =,所以22214y x b -=,设点(),M x y ,()10,F c -,()20,F c ,0c >,所以()()22222212448MF MF x y c x y c c y ac c ⎡⎤⎡⎤-=++-+-=≥=⎣⎦⎣⎦,当且仅当y a =±时取等号,故2212MF MF -的最小值为885c =,所以5c =,所以25c =,222541b c a =-=-=,故双曲线C :2214y x -=.(法二)()()221212121212224MF MF MF MF MF MF a MF MF a F F ac -=+-=+≥=.当且仅当y a =±时取等号,故2212MF MF -的最小值为885c =,所以5c =,所以25c =,222541b c a =-=-=,故双曲线C :2214y x -=.(2)(法一)设点()0,P t ,0t ≠,2t ≠±,则直线l :y t =,设直线BD 的方程为y kx t =+,2k ≠±,设点()11,B x y ,()22,D x y ,联立22,1,4y kx t y x =+⎧⎪⎨-=⎪⎩,消去y 得()2224240k x ktx t -++-=,其中,0∆>,12224kt x x k -+=-,212244t x x k -=-(*),设直线AB 的倾斜角为α,直线OH 的倾斜角为β,所以π2αβ+=或3π2αβ+=,故直线AB 的斜率AB k 与直线OH 的斜率OH k 满足1AB OH k k =.因为直线AD 的方程是2222y y x x +=-,所以()222,2t x H t y ⎛⎫+ ⎪+⎝⎭,所以()()222222222222222OH t y y kx t t t tt k k t x t x t x t x +⎛⎫++++==⋅=⋅=+ ⎪++++⎝⎭,且11122AB y t k k x x ++==+,所以()()22211212222112122OH ABt t t t t k k k k k t t x x t x x x x ⎡⎤+⎛⎫⎛⎫⎛⎫++=++=++++=⎢⎥ ⎪⎪ ⎪++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,222⎛⎫【点睛】方法点睛:与端点相关问题的解法解决与弦端点有关的向量关系、标关系,再根据联立消元后的一元二次方程根与系数的大小关系,6.(2024·全国·模拟预测)已知抛物线C :()20y ax a =¹的准线方程为18y =-.(1)求抛物线C 的方程;(2)若斜率为1的直线l 交抛物线C 于A ,B 两点,点P ,Q 在C 上且关于直线l 对称,求证:A ,B ,P ,Q 四点共圆.【答案】(1)22y x =(2)证明见解析将y x m =+代入22y x =,得则180m ∆=+>,1212x x +=连接PQ ,由点P ,Q 关于直线所以24343434322PQy y x x k x x x x --==--因为线段PQ 的中点在直线所以343422y y x x m ++=+,得即()234343422x x x x x x ++-=故34142m x x =-,把4312x x =--代入上式,得即233110224m x x +-+=,连接PA ,PB ,所以()(132PA PB x x x ⋅=--27.(23-24高三上·江苏·阶段练习)已知A,B是双曲线E:21x-=上的两点,点2()P-是线段AB的中点.1,2(1)求直线AB的方程;(2)若线段AB的垂直平分线与E相交于C,D两点,证明:A,B,C,D四点共圆.)证明:由221,21yxy x⎧-=⎪⎨⎪=-+⎩得22x x+1x=或3x=-,所以(3,4A-AB中垂线的方程为CD:)33,x y,()44,D x y21,23yx-==+得26110x x--=346x x+=,3411x x=-的中点()3,6M,所以CD()()223160MB==-+-A,B,C,D在以M为圆心,A,B,C,D四点共圆.8.(2023·四川成都·一模)在平面直角坐标系xOy中,O为坐标原点,动点(),D x y与定点)3,0F的距离和D到定直线3x=的距离的比是常数2,设动点D的轨迹为曲线C.(1)求曲线C的方程;(2)已知定点(),0P t,20t-<<,过点P作垂直于x轴的直线l,过点P作斜率大于0的直线l'与曲线C交于点G、H,其中点G在x轴上方,点H在x轴下方.曲线C与x轴负半轴交于点A,直线AG、AH与直线l分别交于点M、N,若A、O、M、N四点共圆,求t的值.【答案】(1)2214x y+=2-14k +由条件,直线AG 的方程为1y y x =于是可得()1122M y t y x +=+,2N y y =因为A 、O 、M 、N 四点共圆,由相交弦定理可得则()()()2M N y y t t -=-+,化简得又()11y k x t =-,()22y k x t =-,代入整理得:9.(23-24高二上·河北邯郸·期中)已知双曲线2222:1(0,0)x y C a b a b -=>>的左顶点为(2,0)A -,不与x 轴平行的直线l 过C 的右焦点F 且与C 交于M ,N 两点.当直线l 垂直于x 轴时,12MN =.(1)求双曲线C 的方程;(2)若直线AM ,AN 分别交直线1x =于P ,Q 两点,求证:A ,P ,F ,Q 四点共圆.当直线l 斜率不存在时,不妨设||||||||GA GF GP GQ ⋅=⋅,所以A ,P ,F ,Q 四点共圆10.(23-24高三上·浙江·阶段练习)在平面直角坐标系xOy 中,O 为坐标原点,动点(),D x y 与定点()2,0F 的距离和D 到定直线12x =的距离的比是常数2,设动点D 的轨迹为曲线C .(1)求曲线C 的方程;(2)已知定点(),0P t ,01t <<,过点P 作垂直于x 轴的直线l ,过点P 作斜率大于0的直线l '与曲线C 交于点G ,H ,其中点G 在x 轴上方,点H 在x 轴下方.曲线C 与x)()11,G x y ,()22,H x y .()():0GH y k x t k =->与双曲线y 得()(22232kxk tx -+-由韦达定理:212223k tx x k -+=-由条件,直线AG 的方程为y 于是可得()1111M y y t x =++,A ,O ,M ,N 四点共圆,所以ANP MOP ∠=∠,于是tan即1MN t y y t +=,化简得又()11y k x t =-,y 将韦达定理代入化简得:【点睛】关键点点睛:从而建立M ,N 的坐标关系,引进韦达定理11.(23-24高三上·湖北·阶段练习)已知双曲线22:1C a b-=的离心率为2,过C 上的动点M 作曲线C 的两渐近线的垂线,垂足分别为A 和,B ABM .(1)求曲线C 的方程;(2)如图,曲线C 的左顶点为D ,点N 位于原点与右顶点之间,过点N 的直线与曲线C 交于,G R 两点,直线l 过N 且垂直于x 轴,直线DG ,DR 分别与l 交于,P Q 两点,若,,,O D P Q 四点共圆,求点N 的坐标.【答案】(1)223y x -(2)3,04N ⎛⎫ ⎪⎝⎭.【分析】(1)由题设有公式、,,,M A O B 共圆、三角形面积公式列方程求参数,即可得双曲线方程;(2)由,,,O D P Q 共圆得ABM 的面积1sin 2S MA MB =222113y a x ⇒=⇒-=,∴曲线C 的方程为:223y x -=(2)如图,,,O D P Q 四点共圆,DPQ DOQ DPQ NOQ DOQ ππ∠+∠=⎧⇒∠⎨∠+∠=⎩1tan tan NOQ k ODP∠∠⇒=⇒设()()()1122,,,,,0,G x y R x y N t t 易得()22:11DR y l y x x =++,令xP. 12.(21-22高二上·吉林通化·阶段练习)已知双曲线22C x y-=与点(1,2):22(1)求过点P的弦AB,使得AB的中点为P;(2)在(1)的前提下,如果线段AB的垂直平分线与双曲线交于C、D两点,证明:A、B、C、D四点共圆.13.(22-23高三下·河南·阶段练习)已知椭圆22:1Ca b+=()0a b>>的左、右焦点分别为1F,2F,点D在C上,132DF=,252DF=,212DF F F>,且12DF F△的面积为32.(1)求C的方程;(2)设C的左顶点为A,直线:6l x=-与x轴交于点P,过P作直线交C于G,H两点直线AG,AH分别与l交于M,N两点,O为坐标原点,证明:O,A,N,M四点共圆.)由椭圆定义可知1224DF DF a +==,121232sin DF D F F DF =可得12F ,如图1可知10F DF <∠中,由余弦定理可得212F F =35324225-⨯⨯⨯=,,即C 的焦距为22c =,23c =,的方程为22143x y +=.)2,不妨取G 点在H 点的左侧,要证O ,14.(22-23高二下·上海黄浦·期中)已知直线:1l x my =-,圆22:40C x y x ++=.(1)证明:直线l 与圆C 相交;(2)设直线l 与C 的两个交点分别为A 、B ,弦AB 的中点为M ,求点M 的轨迹方程;(3)在(2)的条件下,设圆C 在点A 处的切线为1l ,在点B 处的切线为2l ,1l 与2l 的交点为Q .证明:Q ,A ,B ,C 四点共圆,并探究当m 变化时,点Q 是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.【详解】(1)证明:如图所示,圆22:40C x y x ++=,化成标准方程为()2224x y ++=,圆心()2,0C -,半径为2,直线:1l x my =-过定点()1,0P -,定点到圆心距离为1,即()1,0P -在圆内,故直线l 与圆C 相交;(2)l 与C 的两个交点分别为A 、B ,弦AB 的中点为M ,设点(),M x y ,由垂径定理得CM PM ⊥,即()()2,1,0x y x y +⋅+=,整理得22320x y x +++=,直线l 不过圆心C ,则2x ≠-,所以点M 的轨迹方程为()223202x y x x +++=≠-;(3)15.(17-18高三·北京·强基计划)如图,已知抛物线22y x=及点(1,1)P,过点P的不重合的直线1l,2l与此抛物线分别交于点A,B,C,D.证明:A,B,C,D四点共圆的充要条件是直线1l与2l的倾斜角互补.过右焦点F的直线与C交于P,Q两点.当PQ x⊥轴时,PA PAQ的面积为3.(1)求双曲线C的方程;(2)过点(),0(11)T t t-<<的直线l与曲线C交于点,M N(异于点A),直线,MA NA与直线x t=分别交于点,G H.若点,,,F AG H四点共圆,求实数t的值.17.(2023·重庆·模拟预测)已知双曲线()22:1,0C a ba b-=>的左、右焦点分别为1F,2F,左顶点为()2,0A-,点M为双曲线上一动点,且2212MF MF+的最小值为18,O 为坐标原点.(1)求双曲线C的标准方程;(2)如图,已知直线:l x m=与x轴的正半轴交于点T,过点T的直线交双曲线C右支于点B,D,直线AB,AD分别交直线l于点P,Q,若O,A,P,Q四点共圆,求实数m4(2)25【分析】(1)根据双曲线的方程可得2MF c a ≥-,根据题意结合双曲线的定义124MF MF -=,运算求解即可得结果;(2)设直线()()1122:,,,,BT x ty m B x y D x y =+,根据题意求,P Q 的坐标,由圆的性质可得TA TO TP TQ ⋅=⋅,结合韦达定理运算求解.【详解】(1)设()()002,,,0,M x y F c c a >,不妨设M 为双曲线右支上一动点,则0x a ≥,则2200221x y a b -=,即2220021x y b a ⎛⎫=- ⎪⎝⎭,可得()()222222222020000000220212x c c MF x c y x cx c b x cx a x a a a a⎛⎫=-+-=-++-=-+=- ⎪⎝⎭,注意到0x a ≥,则20cMF x a c a a=-≥-,由题意可得:122,24a MF MF a =-==,即1224,20MF MF MF c =+≥->,则()2222212222242816MF MF MF MFMF MF +=++=++,∵22816y x x =++的对称轴为2x =-,则22816y x x =++在()2,c ∞-+上单调递增,故()()22221222281622821618MF MF MF MF c c +=++≥-+-+=,则25c =,解得5c =或5c =-(舍去),可得2221b c a =-=,故双曲线C 的标准方程为2214x y -=.(2)由题意可得(),0T m ,设直线()()1122:,,,,BT x ty m B x y D x y =+,联立方程2214x ty m x y =+⎧⎪⎨-=⎪⎩,消去y 得()2224240t y tmy m -++-=,则221212222440,0,,44tm m t y y y y t t --≠∆>+=-=--,直线()1:2y BA y x =++,令x m =,则()12yy m =++,18.(22-23高三上·江苏南通·期末)在平面直角坐标系xOy 中,已知圆E :()2224x y ++=和定点()2,0F ,P 为圆E 上的动点,线段PF 的垂直平分线与直线PE 交于点Q ,设动点Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)设曲线C 与x 轴正半轴交于点A ,过点()(),011T t t -<<的直线l 与曲线C 交于点M ,N (异于点A ),直线MA ,NA 与直线x t =分别交于点G ,H .若点F ,A ,G ,H 四点共圆,求实数t 的值.【分析】(1)根据线段PF 的垂直平分线上的点到两端点的距离相等,则动点Q 到两定点的距离之差为定值,故点Q 的轨迹为双曲线.(2)设直线方程为x my t =+,联立直线与双曲线方程,韦达定理求出两根之和,两根之积,因为F ,A ,G ,H 四点共圆,所以πHAF HGF ∠+∠=,即TAH TGF ∠=∠,可判断出Rt Rt TAH TGF ,即TH TF TATG=,列等量关系可以解得.【详解】(1)因为Q 在线段PF 的中垂线上,所以QP QF =,故224QE QF QF EP QF EF -=±-=±=<=,所以点Q 的轨迹是以E ,F 为焦点的双曲线,其焦距24c =,2c =,且22a =,1a =,故2223b c a =-=,所以曲线C 的方程为2213y x -=.(2)设直线l :x my t =+,()11,M x y ,()22,N x y ,联立方程组2213x my t y x =+⎧⎪⎨-=⎪⎩,整理得()222316330m y mty t -++-=,则()()22222310Δ36431330m m t m t ⎧-≠⎪⎨=--->⎪⎩,且12221226313331mt y y m t y y m ⎧+=-⎪⎪-⎨-⎪=⎪-⎩.因为F ,A ,G ,H 四点共圆,所以πHAF HGF ∠+∠=,又πHAF TAH ∠+∠=,所以TAH TGF ∠=∠,故Rt Rt TAH TGF ,所以TH TF TATG=,即TA TF TH TG ⋅=⋅,所以(1)(2)G H t t y y --=⋅.又直线AM :11(1)1y y x x =--,令x t =,得11(1)1G t y y x -=-,同理22(1)1H t y y x -=-,故()()()()2212121212(1)(1)1111G H y y y y y y t t x x my t my t =-⋅=-⋅--+-+-222222223331(1)336(1)(1)3131t m t t mt m m t t m m --=-⋅--⋅+-⋅+---19.(2020高三·江苏·专题练习)如图,在平面直角坐标系xOy中,已知椭圆()222210x y a ba b+=>>的右焦点为F P,为2axc=上一点,点Q在椭圆上,且FQ FP⊥.(1)若椭圆的离心率为12,短轴长为(2)若在x轴上方存在,P Q两点,使,,,O F P Q四点共圆,求椭圆离心率的取值范围.则FPQ △的外接圆即为以PQ 为直径的圆的方程为:()2222220000224a a x y t x c t y c x y ⎛⎫⎛⎫-+- ⎪+ ⎪+⎛⎫⎝⎭-+-= ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭,整理得:()()()2000a x x x y t y y c ⎛⎫--+--= ⎪⎝⎭,由题意,焦点F ,原点O 均在该圆上,∴()20020000a c c x ty c a x ty c⎧⎛⎫--+=⎪ ⎪⎪⎝⎭⎨⎪+=⎪⎩,消去0ty 可得()22000a a c c x x c c ⎛⎫---= ⎪⎝⎭,∴20a x c c=-,∵点P ,Q 均在x 轴上方,∴2a a c c c -<-<即220c ac a +->,∴210e e +->,∵01e <<,∴5112e -<<,方法二:∵O ,F ,P ,Q 四点共圆且FP FQ ⊥,∴PQ 为圆的直径∴圆心必为PQ 中点M ,又圆心在弦OF 的中垂线2x c =上,∴圆心M 的横坐标为2M c x =,∴点Q 的横坐标为222Q M a a x x c c c=-=-,∵点P ,Q 均在x 轴上方,∴2a a c c c -<-<即220c ac a +->,20.(2022高三·浙江丽水·竞赛)如图,已知抛物线24x y =的焦点为F ,直线:l y m =与抛物线交于,D E 两点,过,D E 分别作抛物线的切线12,l l ,12,l l 交于点A .过抛物线上一点M (在l 下方)作切线3l ,交12,l l 于点,B C .(1)当=1m 时,求ABC 面积的最大值;(2)证明A B F C 、、、四点共圆.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四点共圆
【知识要点】
四点共圆的判定方法:
1、若四个点到一定点的距离相等,则这四个点在同一个圆上(即这四点共圆)。

2、若一个四边形的一组对角的和等于180度,则这个四边形的四个顶点共圆。

3、若一个四边形的一个外角等于它的内对角,则这个四边形的四个顶点共圆。

4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。

5、若AB 、CD 两线段相交于P 点,且PD PC PB PA ⋅=⋅,则A 、B 、C 、D 四点共圆。

6、若AB 、CD 两线段延长后相交于P 点,且PD PC PB PA ⋅=⋅,则A 、B 、C 、D 四点共圆。

7、若四边形两组对边乘积的和等于对角线的乘积,则四边形的四个顶点共圆。

二、直角边相交的“双直角”类
说明:我说的“双直角”特指如下两种情况;相对“双直角”(如图1);同侧“双直角”(如图2).
其特点是:A 连公共斜边,作斜边上的中线,得5个等腰三角形;B 四点共圆,据同弧上圆周角相等得到很多等角.
1.如图5–2–3,∠ABC =∠ADC =90°,M 、N 分别是线段AC 、BD 的中点. 求证:MN ⊥BD .
2.如图5–2–7,在锐角△ABC 中,∠BAC =60°,BD 、CE 为高,F 是BC 的中点,连接DE 、EF 、FD .则在:①EF =FD ;②AD ︰AB =AE ︰AC ;③△DEF 是等边三角形;④BE +CD =BC ;⑤当∠ABC =45°是,BE =2DE .这五个结论中一定A
B C D
O
A B C D O 图
1 图
2 图5–2–
3 B C D
A
N
M
正确的个数是( )
A .2
B .3
C .4
D .5
3.已知ABC ∆中,D 为AB 边上的任意一点,AC DF //交BC 于点F ,α=∠=∠=∠ACB ABC CDE BC AE ,//,
(1)如图1,当是等边三角形。

时,求证:ABC 60∆=
α
(2)如图2,当()()DE CE DE
⊥==2;2CD 145时,求证: α
(3)如图3,当α为锐角时,请直接写出线段CE 与DE 的数量关系是:=DE CE
A
B C E F D
图5–2–7。

相关文档
最新文档