细胞间的信息传递和跨膜信号转导
细胞生理
![细胞生理](https://img.taocdn.com/s3/m/bb1deddd240c844769eaee82.png)
四)细胞的兴奋性与生物电现象
1、细胞的生物电现象及其产生机制:
一个活的细胞无论是它处于安静状态还是活动状态都是存在电活动, 这种电活动称为生物电现象。其中包括静息电位和动作电位。
(1)细胞的静息电位 (2)细胞的动作电位 (3)兴奋的引起与传导
产生生物电的生理基础
细胞的电现象主要是跨膜离子流动造成的
1)离子通道受体:不具有酶活性,接受信号后构象发生变化,开放通道:
2)G蛋白(三聚体GTP结合调节蛋白)偶联的受体:不具有酶活性, 接受信号后构象发生变化,能够与下游信号分子结合,传递信号: 配体-受体复合物要通过与G蛋白的相互作用,才能将胞外信号跨膜 传递到胞内
没有信号时,G蛋白与GDP结合 处于非活性状态
②通道蛋白:根据溶质大小和电荷进行 辩别,形成跨膜亲水性离子通道;
Na+通道、K+通道、Ca2+通道、Cl-通道等; 化学门控通道(膜两侧出现某化学信号才开放) 电压门控通道(膜两侧电位差的改变决定开闭)
主动转运
在细胞膜上载体的帮助下, 通过消耗ATP,将某种物质逆浓度 梯度进行转运的过程。
特
点:
二)细胞间的信息传递(细胞间的跨膜信号转导功能)
动物体各器官之间的相互协调以维持整体统一性,是靠信息 传递来完成。主要的信号转导系统有三条: 环腺苷酸信号转导系统 肌醇信号转导系统 酪氨酸激酶相连的信号转导系统
1、步骤:
产生信号的细胞合成并释放信号分子 →运送信号分子至靶细胞 →信号分子与靶细胞受体特异性结合并导致受体激活 →活化受体启动胞内一种或多种信号转导途径 →引发细胞功能、代谢或发育的改变 →信号的解除并导致细胞反应终止
2、信号分子的类型 •物理信号:声,光, 电和温度变化 •化学信号:激素、局 部介质、神经递质 3、受体: 能够识别和选择性结合配体(信号分子)的大分子。多数为蛋白 (糖蛋白),少数为糖脂或二者复合物。可位于细胞膜上,细胞质 内或细胞核内。 1)不具有酶活性,接受信号后构象发生变化,开放通道:离子通道 受体 2)不具有酶活性,接受信号后构象发生变化,能够与下游信号分子 结合,传递信号:G蛋白偶联受体 3)具有酶活性,接受信号后通过催化自身或下游信号分子发生化学 变化(如磷酸化)传递信号:酶联受体
细胞的信号转导
![细胞的信号转导](https://img.taocdn.com/s3/m/f1fe0d57f7ec4afe04a1df53.png)
• 由膜上的腺苷酸环化酶(AC)环化胞浆内 • ATP形成cAMP。 • cAMP是最早确定的第二信使。 正常情况下,cAMP的生成与分解保持平衡,使 胞浆内cAMP浓度保持在10-7M以下。当配体与受体 结合后,1个AC可生成许多cAMP,使cAMP的水平 在几秒钟内增高20倍以上。
• • • • • • •
3. PLA 2 –AA信号转导系统 花生四烯酸( AA)是通过磷脂酶水解膜磷脂释放的不饱
和脂肪酸。 1)PLA2的激活机制 :
许多细胞外信号(如肾上腺素能激动剂、缓激肽、凝血
酶等)都可激活PLA2,有些PLA2通过G蛋白激活;有些 PLA2被PLC激活,PLC通过增加胞内Ca2+、或激活PKC间 接激活PLA2。细胞外信号刺激PLA2途径直接在sn-2位置 脱酯释放AA,是生成AA的重要途径,也是细胞调控AA生
期使用激动剂和拮抗剂的药理或病理情况下,将之除去后受体 数量和反应性均可恢复。
(2)根据调节的种类,分为
1)受体的数目与结合容量:促使受体数目或结合
容量增加的调节称为上调。反之称为下调。
2)反应性:在内环境影响下,受体反应性会产生增
敏、失敏等现象。 增敏:细胞在某种因素的作用下,受体与配体结合的
敏感性增加。如甲状腺素可增加细胞对儿茶酚胺、TSH、
第二节 细胞的跨膜信号转导功能
• 跨膜信号转导 • (transmembrane signal transduction)
(一)细胞信号转导
1. 细胞信号转导的概念
不同形式的外界信号作用于细胞时,通常并不进入细胞或 直接影响细胞内过程,而是作用于细胞膜表面(少数类固 醇激素和甲状腺激素除外)通过引起膜结构中一种或数种 特殊蛋白质分子的变构作用,将外界环境变化的信息以新
3.3 细胞的跨膜信号转导
![3.3 细胞的跨膜信号转导](https://img.taocdn.com/s3/m/6463fcb1c1c708a1284a4469.png)
真核细胞内主要的跨膜信息传导途径: u G-蛋白耦联受体介导的跨膜信号传导 u 离子通道型受体介导 u 酶耦联受体介导
一、 Signal trnsduction mediated by G-ptotein-
linked receptor
(一) G蛋白耦联受体 receptor:一类Mw:290kD,α2βγδ 五聚体,形成中间一个 孔道样结构。有4个跨膜螺旋/亚单位,孔道的内 壁由5个亚单位的M2螺旋构成。 孔道:Na+, K+均可通过
u Ach 与2个α亚单位结合,通道开放, Na+内流, 少量K+外流,产生终板电位。
u 分布:肌细胞终板膜、神经细胞的突触后膜等, →终板电位、突触后电位及感受器电位。
2、分布:神经轴突和骨骼肌、心肌细胞的质膜中 →动作电位。
钠通道的α亚单位
S5,S6之间 的胞外环构 成孔道内壁
᭗ ى᭲҅ᄶތၚྋғኪӨរSᔜ4࿕ํ ᯢᩢ࿕ᯢ
失活:与结 构域Ⅲ和Ⅳ 之间胞内环 有关
(三)机械门控通道
Mechanically-gated channel: 存在于对机械刺 激敏感的细胞如内耳毛细胞、下丘脑的渗透压 敏感神经元。
4-5ӻԵ֖ܔ ҁᙞ᱾҂ᕟ ౮҅॔ݍ4ེ ᑯᬦᕡᙱᛂ
֛ݑၚ۸
ᐶৼ᭗᭲න
ᛂ݄ຄ۸
ᕣኪ֖
(二)电压门控通道
1、开放与关闭:由膜电位决定,即通道存在一些对 膜电位改变敏感的结构域或基团,后者诱发通道分 子功能状态改变,改变相应的离子跨膜扩散→细胞 生物电活动改变。 电压门控钠通道:α、β1、β2三个亚单位组成,α亚单 位是形成孔道的亚单位。
ᯈ֛Өᕡᙱक़ྦྷᕮݳ
ࣳදݒ ᯗ࿕ᯢᄶᯠၚ۸
细胞通讯和细胞信号转导
![细胞通讯和细胞信号转导](https://img.taocdn.com/s3/m/0f87ef70284ac850ac024217.png)
名称
合成部位 化学特性
主要作用
肾上腺素 肾上腺 酪氨酸衍生物 提高血压、心率、增强代谢
皮质醇
肾上腺 类固醇
在大多数组织中影响蛋白、糖、脂肪的代谢
雌二醇
卵巢
类固醇
诱导和保持雌性副性征
胰高血糖素 胰α细胞 肽
胰岛素
胰β细胞 蛋白质
睾酮
睾丸
类固醇
在肝、脂肪细胞刺激葡萄糖合成、糖原断裂、 脂断裂
刺激肝细胞等葡萄糖吸收、蛋白质及脂的合 成
亚基与催化亚基分开,被
激活的催化亚基可使底物
cAMP激活蛋白激酶A
➢ 蛋白激酶A的细胞质功能和细胞核功能
PKA既可直接修 饰细胞质中的底物蛋白, 使之磷酸化后立即起作 用,也可以进入细胞核 作用于基因表达的调控 蛋白,启动基因的表达。
cAMP与蛋白激酶对细胞活性的影响
蛋白激酶A的细胞质功能:
糖原分解:在脊椎动物中,糖原的分解受一些激素的控制,如肾上 腺素和胰高血糖素中的任何一种激素同细胞膜受体结合,都会激活磷酸 化酶,使糖原分解成1-磷酸葡萄糖,然后进一步分解为6-磷酸葡萄糖、 葡萄糖后进入血液 。
PKC系统的信号转导
由于该系统中的第二信使是磷脂肌醇,故此这一系统又称为磷脂 肌醇信号途径(phosphatidylinositol signal pathway)。
在这一信号转导途径中,膜受体与其相应的第一信使分子结合后, 激活膜上的Gq蛋白(一种G蛋白),然后由Gq蛋白激活磷酸脂酶Cβ (phos pholipase Cβ, PLC), 将膜上的脂酰肌醇4,5-二磷酸(phosphatidylinos itol biphosphate, PIP2)分解为两个细胞内的第二信使:二酰甘油( dia cylglycerol, DAG)和1,4,5-三磷酸肌醇(IP3)。IP3动员细胞内钙库释放 Ca2+到细胞质中与钙调蛋白结合,随后参与一系列的反应;而DAG在 Ca2+的协同下激活蛋白激酶C,然后通过蛋白激酶C引起级联反应,进 行细胞的应答, 故此将该系统称为PKC系统,或称为IP3、DAG、Ca2+信 号通路。
细胞生物学第11章-细胞通讯与信号转导
![细胞生物学第11章-细胞通讯与信号转导](https://img.taocdn.com/s3/m/03e46807eef9aef8941ea76e58fafab069dc4485.png)
(3)不同的细胞通过各自的受体,对胞外信号应答, 产生相同的效应。如:肝细胞肾上腺素受体和胰 高血糖素受体结合各自的配体激活以后,都能促 进血糖的升高。
(4)一种细胞具有一套多种类型的受体,应答多种 不同的胞外信号,从而启动细胞的不同生物学效 应。
(3)自分泌(autocrine):
细胞对自身分泌物产生反应,常见于病理 条件下。如:肿瘤细胞合成释放生长因子刺 激自身。
(4)化学突触传递神经信号:
神经细胞兴奋后,动作电位的传递,引起突 触前突起终末分泌化学信号,扩散至突触后细 胞,实现电信号和化学信号之间的转换。
2 通过细胞的直接接触(contactdependent signaling):即细胞间接 触性依赖的通讯
(3)气体信号分子: 第一个发现的气体信号分子是NO,可以进入细胞直 接激活效应酶,参与体内众多的生理和病理过程。
2. 受体(receptor)
是一种能够识别和选择性结合某种配体的大分子, 通过和配体的结合,经信号转导作用,最终表现为生 物学效应。
▪ 受体的结构特点:
多为糖蛋白,至少包含配体结合区和效应区2个 功能区域,分别具有结合特异性和效应特异性。
▪ 特异性 ▪ 放大作用 ▪ 信号终止或下调特征 ▪ 整合作用
第二节
细胞内受体介导的信号传递
一、细胞内受体与基因表达
细胞内受体活化的机制:
激活前:受体和抑制性蛋白结合成复合物 激活后:如果甾类激素和受体结合,导致抑制
性蛋白从复合物上解离下来,使受体暴露出 DNA结合位点,激素-受体复合物与基因调 控区(激素应答元件,hormone response element, HRE)结合,影响基因的转录。
生理学学习资料:第三课信号转导
![生理学学习资料:第三课信号转导](https://img.taocdn.com/s3/m/1902655c15791711cc7931b765ce05087632750b.png)
黑色基本掌握划线重点蓝色不要求,选看细胞的跨膜信号转导第一节概念以及一般特性细胞信号转导(ce11u1arsigna1transduction):细胞感受外界环境的刺激并对刺激做出反应反攻卜界环境变化的信息跨越细胞膜进入细胞并引起内部代谢与功能变化的过程刺激来源:1、化学信号一一来自临近细胞(旁分泌、神经递质)或远隔部位(内分泌)穿过细胞膜或者为受体蛋白接收是主要的信号来源2、物理性刺激——温度、机械力、生物电(高等生物主要由膜感受细胞水平生物电,不感受外界电变化)、电磁波由高度特化的感受器接收种类数量不如化学刺激跨膜转导途径的三大特征:(经典放大通路)激活后续一系列信号分子(信号通路),以引起细胞功能变化转导途径具有很大同源性信息放大功能第二节主要途径化学门控离子通道(chemica11y-gatedionchanne1;1igand-gatedionchanne1;ionotropicreceptor)与配体结合开放离子通道,造成去极化或超极化,途径简单,传导速度快N2型ACh受体:位于骨骼肌细胞运动终板膜上与Aeh结合、通道放进Na、K离子,膜去极化产生终板电位,激活周围肌细胞A型Y-氨基丁酸受体:位于神经元细胞膜上与GABA结合,通道放进C1离子,产生抑制性突触后电位IPSP电压门控和机械门控离子通道1型Ca离子通道:心肌细胞T管膜上的电压门控通道动作电位传递,T管膜去极化,Ca内流并作为第二信使释放肌浆膜内的Ca离子此通道在心肌工作细胞中。
期激活,二期复极化提供主要内向电流非选择性阳离子通道以及K选择性通道:血管内皮细胞上血流切应力刺激,两通道开放有助于Ca进入细胞,激活NOS,使精氨酸产生NO,使血管舒张G蛋白耦联受体介导的跨膜传导发现:肾上腺素与肝细胞膜碎片反应,再用反应物(cAMP)与肝细胞质作用可产生效果,说明肾上腺素与膜上某结构反应再引起胞内反应原癌基因oncogen:碱基排列顺序与一些能在动物内引起肿瘤的病毒DNA相同的基因本身为正常基因,转录产物是正常代谢所必须的,但过度表达时成为癌基因G蛋白通路主要构成:G蛋白耦联受体GPCR、G蛋白、效应器、第二信使、蛋白激酶G蛋白耦联受体:最大的细胞膜受体家族,接受儿茶酚胺、Ach、5-HT等多种激动剂7次跨膜、N外C内、外3环内3环G蛋白:异源三聚体、目前分为6个亚族反应过程见图中文书3-3注意α亚基同时具有结合GTP和激活下游蛋白的功能,另两亚基抑制作用GTP 取代GDP与α亚基结合,结合后GTP被水解为GDP和PiG蛋白效应器:1、下游酶催化生成(或分解)第二信使AC、P1C、PDE等2、离子通道第二信使:细胞外信号分子作用于细胞膜后产生的细胞内信号分子CAMP、CGMP、IP3、DG、NO等蛋白激酶:按机制分类:丝氨酸/苏氨酸蛋白激酶(serine/threoninekinase)可将底物蛋白的丝氨酸或苏氨酸P化,占大多数酪氨酸蛋白激酶(tyrosinekinase)可将底物蛋白的酪氨酸P化,数量少,主要在酶耦联受体的信号转导按上游第二信使分类:PKC(Ca离子)、PKA(CAMP)、PKG(cGMP)经典通路:cAMP-PKAB型肾上腺素能受体、促肾上腺皮质激素、胰高血糖素等一一G蛋白激活一AC激活--- cAMP上升 --- PKA ------- 多种作用IP3-CaG蛋白——P1C分解PIP2为IP3和DGIP3——结合肌浆网上的受体,释放Ca离子入细胞质DG ------ 与phosphatidy1serine结合,激活PKC -------- 多种作用第二信使Ca的部分作用回顾:1、在骨骼肌细胞中与troponin结合,使tropomyosin移位,露出actin与myosin的结合位点,开始收缩2、在平滑肌中与一种受体钙调蛋白Camodu1in结合,激活肌球蛋白轻链激酶M1CK,开始收缩3、在血管内皮中与CamOdU1in结合,激活NoS,分解精氨酸生成NO,舒张血管(老师上课说的Viagra的作用机理)G蛋白(及下游第二信使)介导的离子通道举例KaCh通道一一迷走狸经兴奋时释放Ach,通过G蛋白激活此通道,K离子外流,使心肌静息电位增大(超级化),兴奋性降低Kca通道一一高钙(第二信使)时激活,酸思期使心肌超极峪2M⅛Jk≡鱼通道内向电流,使平台期延长酶耦联受体介导的跨膜信号转导包括酪氨酸激酶受体、酪氨酸磷酸酶受体、鸟甘环化酶受体、S/T蛋白激酶受体受体本身具有激酶、环化酶、磷酸酶的作用,不需要与膜耦联的G蛋白和第二信使酪氨酸激酶受体:1、同时具有受体和酪氨酸激酶的功能单肽链蛋白,膜外链与受体结合,膜内链发挥激酶作用与受体结合后P化鹿内链和靶蛋自的酪氨酸通路中RAS为单体G蛋白,不与膜耦联,所以不和定义违背2、受体与激酶分离S/T蛋白激酶受体(RSTK):接受TGF-B超家族(与细胞周期有调节相关)受体结合RSTKII,RSTKII结合并激活RSTKI鸟昔环化酶受体RGC受体结合后不需要G蛋白直接激活GC,合成CGMP,激活PKG,产生多种效应心房钠尿肽、NO(胞质内的可溶性GC)。
细胞膜的跨膜信号转导及其主要方式
![细胞膜的跨膜信号转导及其主要方式](https://img.taocdn.com/s3/m/523f62b7bb0d4a7302768e9951e79b8969026841.png)
细胞膜的跨膜信号转导及其主要方式细胞膜是细胞内外环境之间的重要隔离屏障,同时也是细胞与外界相互作用的关键界面。
细胞膜上存在着许多重要的蛋白质,它们能够感知外界的信号,并将这些信号转导到细胞内部,从而引发一系列细胞内的生理反应,这一过程被称为细胞膜的跨膜信号转导。
细胞膜的跨膜信号转导主要通过以下几种方式进行。
一、离子通道介导的跨膜信号转导细胞膜上存在多种离子通道,如钙离子通道、钠离子通道、钾离子通道等,它们能够感知细胞外环境的信号,例如电位变化、荷电物质浓度变化等,并将这些信号转导到细胞内部。
离子通道的开启或关闭可以导致细胞内离子浓度的变化,从而引发细胞内的生理反应。
比如钙离子通道的开启会导致细胞内钙离子浓度的增加,进而激活一系列钙信号通路,参与细胞的增殖、分化、凋亡等过程。
二、酶-受体介导的跨膜信号转导细胞膜上存在多种酶-受体,如酪氨酸激酶受体、酪氨酸激酶相关受体、酪氨酸激酶受体等,它们能够与细胞外的配体结合,激活其内在的酶活性,从而引发细胞内的生理反应。
这种跨膜信号转导的方式常见于生长因子、激素等信号分子的传递过程。
例如,胰岛素受体是一种酪氨酸激酶受体,当胰岛素结合到胰岛素受体上时,会激活胰岛素受体内在的酪氨酸激酶活性,进而引发细胞内的糖代谢等反应。
三、G蛋白偶联受体介导的跨膜信号转导G蛋白偶联受体是一类跨膜蛋白,它们能够与细胞外的信号分子结合,并通过活性的G蛋白介导信号传递到细胞内部。
当G蛋白偶联受体与配体结合时,G蛋白会从其不活性的GDP结合态转变为活性的GTP结合态,从而激活或抑制下游效应物质的活性。
G蛋白偶联受体介导的跨膜信号转导广泛参与调控细胞的生理过程,如细胞的收缩、分化、增殖等。
举个例子,肌球蛋白收缩过程中,肌纤维收缩由G蛋白偶联受体介导,通过激活蛋白激酶C和磷酸酶等下游效应物质,最终引发肌肉的收缩。
四、穿梭蛋白介导的跨膜信号转导穿梭蛋白是一类能够穿越细胞膜的蛋白质,它们能够感知细胞外的信号,并将这些信号转导到细胞内部。
基因工程考试名词解释
![基因工程考试名词解释](https://img.taocdn.com/s3/m/4698dfc75fbfc77da269b173.png)
30、增强子(Enhancer): 增强子是一段DNA序列,其中含有多个能被反式作用因子识别与结合的顺式作用元件。
31、酶(Enzymes) : 酶是由活细胞合成的,对其特异底物起高效催化作用的蛋白质,是机体内催化各种代谢反应最主要的催化剂。
32、真核细胞(Eukaryote): 单细胞或多细胞生物,具有复杂的细胞结构,可通过内部的细胞结构,多染色体和单个核而鉴定。
92、核糖体(ribosome): rRNA与核蛋白体蛋白共同构成核蛋白体或称为核糖体。
94、RNA酶(RNase): 将RNA降解成更小的RNA片段或核糖核苷酸的一类酶。
95、第二信使(second messenger): 通常将Ca2+、DAG、IP3、Cer、cAMP、cGMP等这类在细胞内传递信息的小分子化合物称为第二信使。
21、感受态细胞(Competent cells): 大肠杆菌悬浮在Cacl2溶液中,并置于低温(0-50℃)环境下一段时间,钙离子使细胞膜的结构发生变化,通透性增加,从而具有摄取外源DNA的能力,这种细胞称为感受态细胞。
26、DNase: 将DNA降解为更小的DNA片段或脱氧核糖核酸的酶。
27、电泳(Electrophoresis): 通过蛋白质在电场中泳动而达到分离各种蛋白质的技术,称为电泳。
29、末端标记(End labeling) 在DNA或RNA的5'-或3'-加上标记性群体(放射性或非放射性)。较典型的有用激酶标记5'-末端,或用DNA聚合酶或末端转移酶标记3'-末端。
8、碱性磷酸酶(Alkaline phosphatase): 能去除DNA/RNA 5'端的磷酸根的一种酶。制备载体时,用碱性磷酸酶处理后,可防止载体自身连接,提高重组效率。
细胞生物学第8章细胞信号传导
![细胞生物学第8章细胞信号传导](https://img.taocdn.com/s3/m/7d5f05030722192e4536f668.png)
息系统的进化。
单细胞生物通过反馈调节,适应环境的变化。 多细胞生物则是由各种细胞组成的细胞社会,除 了反馈调节外,更有赖于细胞间的通讯与信号传 导,以协调不同细胞的行为,如:①调节代谢, 通过对代谢相关酶活性的调节,控制细胞的物质 和能量代谢;②实现细胞功能,如肌肉的收缩和 舒张,腺体分泌物的释放; ③调节细胞周期,使 DNA复制相关的基因表达,细胞进入分裂和增殖 阶段; ④控制细胞分化,使基因有选择性地表达, 细胞不可逆地分化为有特定功能的成熟细胞; ⑤ 影响细胞的存活。
NO在导致血管平滑肌舒张中的作用
(四)配体与受体(Ligand & Receptor) 1、配体(Ligand):在细胞通讯中,由信号传导 细胞送出的信号分子必须被靶细胞接收才能触发 靶细胞的应答,此时的信号分子被称为配体 (ligand),接收信息的分子称为受体。 2、受体(Receptor):广义的受体指任何能够同 激素、神经递质、药物或细胞内的信号分子结合 并能引起细胞功能变化的生物大分子。狭义的受 体指能够识别和选择性结合配体(signal molecule) 的大分子,当与配体结合后,通过信号转导 (Signal Transduction)作用将细胞外信号转换为 细胞内的物理和化学信号,以启动一系列过程, 最终表现为生物学效应。
第八章
细胞信号转导
生命与非生命物质最显著的区别在于生命
是一个完整的自然的信息处理系统。一方面生
物信息系统的存在使有机体得以适应其内外部
环境的变化,维持个体的生存;另一方面信息 物质如核酸和蛋白质信息在不同世代间传递维 持了种族的延续。生命现象是信息在同一或不 同时空传递的现象,生命的进化实质上就是信
在细胞通讯中受体通常是指位于细胞膜表 面或细胞内与信号分子结合的蛋白质,多为糖 蛋白,一般至少包括两个功能区域,与配体结 合的区域和产生效应的区域;当受体与配体结 合后,构象改变而产生活性,启动一系列过程, 最终表现为生物学效应。受体与配体间的作用 具有三个主要特征:①特异性;②饱和性;③ 高度的亲和力。
动物生理学名词解释(2)
![动物生理学名词解释(2)](https://img.taocdn.com/s3/m/3439b77a49d7c1c708a1284ac850ad02de800728.png)
动物生理学名词解释(2)动物生理学名词解释动物生理学名词解释2017-04-09 13:34 | #2楼生理学(physiology):是生物科学的一个分支,是研究生物机体的各种(正常)生命活动现象(机能)和机体个各组成部分的功能及其规律的一门科学。
内环境(internal environment):细胞外液被称为机体的内环境稳态(homeostasis):内环境各种物质在不断转换中达到相对平衡,即动态平衡状态,称稳态。
跨膜信号转导(transmembrane signal transduction):各种能量形式的外界信号作用于细胞时,引起细胞膜上一种或数种特异蛋白质分子的变构作用,将其信息以一种新的信号形式传递到膜内,再引起靶细胞相应功能的改变。
G-蛋白耦联受体(G protein-linked receptor):与化学信号分子(配体)特异结合的独立蛋白质分子,结合后能激活膜内的G-蛋白。
第二信使(second messenger):配体将细胞外信号带到了受体,被称作第一信使(first messenger)。
相对第一信使而言,细胞内能将配体带来的信息传递到细胞内的其它效应器的物质叫第二信使。
极化状态(polarization): (-70mv):静息时细胞膜内负外正的状态。
去极化(depolarization):(-70mv~0mv):极化现象减弱时的状态或过程。
阈电位(threshold potential,TP):膜去极化达到某一临界值时,会诱发AP的发生,这一临界值叫阈电位。
局部电位(local potential):阈下刺激不能引起膜去极化达到阈电位水平,不能形成再生性去极化,只在受刺激部位出现的一个较小去极化电位,称为局部的去极化电位,称局部电位。
突触(synapse):指一个神经元的轴突末梢与另一个神经元的胞体或突起相接触的部位。
神经递质(neurotransmitterNT):由突触前神经元合成并在其末梢释放,经突触间隙扩散到突触后膜,特异性的作用于突触后膜神经元或效应器细胞的受体,导致信息从突触前传递到突触后的一些化学物质。
细胞膜及跨膜信号通讯
![细胞膜及跨膜信号通讯](https://img.taocdn.com/s3/m/5a9ac8b74bfe04a1b0717fd5360cba1aa9118c63.png)
添加标题
02
离子通道介导的信 号转导
添加标题
04
G蛋白偶联受体介 导的信号转导
1、离子通 道介导的信 号转导
化学门控通道:跨膜信号转导系统中的 受体本身就是离子通道。外界物质与膜 蛋白结合,引起蛋白构型变化,使通道 开放。如N型Ach门控通道
电压门控通道:通道开放和关闭的因素 是通道所在膜两侧跨膜电位的变化.如在 神经细胞和肌细胞膜上有Na+、K+、 Ca2+的电压门控通道
3、酪氨酸 激酶受体介 导的信号转 导
01.
受体分子具有酶的活性,即受体与酶是同一 蛋白分子。受体自身发生磷酸化。
02.
大部分生长因子和一些肽类激素,如表皮生 长因子,神经生长因子、胰岛素等。
03.
特点:①信号转导与G蛋白无关;②无第二 信使的产生;③无细胞质中蛋白激酶的激活。
本章要点
被动转运:易化扩散 主动转运:Na-K泵 第二信使
转运对象:①葡萄糖和 氨基酸在小肠粘膜上皮 及肾小管上皮细胞的重 吸收;②神经递质在突 触间隙被神经末梢重吸 收;③肾小管上皮细胞 的Na+-H+交换、 Na+-Ca2+交换等。
Na+- GS 同向转 运载体
GS
GS
3、胞吞和胞吐式转运。
胞吞:当细胞摄取大分子时,首先是大分子附着在 细胞膜表面,这部分细胞膜内陷形成小囊,包围着 大分子。然后小囊从细胞膜上分离下来,形成囊泡, 进入细胞内部,这种现象叫胞吞。
三、跨膜信号转导不同形式的源自界信号作用于细胞时,大多并 不进入细胞或直接影响细胞内过程,而是作 用于细胞膜表面,通过引起膜结构中一种或 数种蛋白质的变构作用,将外环境变化的信 息以新的信号形式传递到膜内,再引发所作 用的细胞出现相应的变化。
第三章-信号转导
![第三章-信号转导](https://img.taocdn.com/s3/m/accdda8102d276a200292efb.png)
原分解-小分子物质是环-磷酸腺苷(cyclic
adenosine monophosphate,cAMP)。
17
许多激素-与膜表面的特异受体结合-膜内
cAMP增加/减少-细胞功能改变。
外来的化学信号(激素)-第一信使(first
messenger)。
cAMP-第二信使(second messenger)。
类途径实现的
6
(三)跨膜信号转导还有信号放大作用
信号的级联放大:一个上游信号分子可激活多
个下游信号分子,并依次类推,于是产生了信
号的级联放大,使少量的细胞外信号分子可以
引发靶细胞的显著反应。
7
受体(膜受体,部分为核受体):离子通道受 体、G蛋白偶联受体、酶偶联受体(或具有内
在酶活性的受体)
一种细胞外化学信号在发挥其生物作用时,可
磷酸肌醇(inositol triphosphate,IP3),二酰甘
油(diacylglycerol,DG),Ca++,NO。
NO气体-第一/第二信使-激活鸟苷酸环化酶 (guanylyl cyclase,GC)-胞内cGMP增加-细 胞功能改变。 NO在心血管、免疫、神经系统活动中具有重要 的调节作用。
C, PLC)、磷酸二酯酶(phosphodiesterase,
PDE)、磷脂酶A2(phospholipase A2)。
(2)离子通道: G蛋白也可直接或简接调控离子 通道的活动,如Ca2+通道。
37
4、第二信使 cAMP、cGMP、IP3、DG、NO、Ca2+等。 第二信使是细胞外信号分子作用于细胞膜后产生
在种类和数量上远没有化学信号多。这些信号大
细胞信号转导
![细胞信号转导](https://img.taocdn.com/s3/m/7f8897c9f7ec4afe04a1dfd7.png)
A、钙信号系统
各种胞外刺激信号可能直接或间接地调 节钙运输系统而引起胞内游离Ca2+浓度的 变化,并导致不同的细胞反应。(静息态细 胞质Ca2+浓度:10-7~10-6mol.L-1,质外体 Ca2+浓度:10-4~10-3mol.L-1,而Ca2+ 库的 Ca2+浓度更高。
高〔Ca2+〕 低〔Ca2+〕 高〔Ca2+〕
• 胞内Ca2+信号通过其受体-钙结合蛋白转 导信号。现在研究得较清楚的植物中的 钙结合蛋白主要有两种:钙调素与钙依 赖型蛋白激酶。
• 钙调素(calmodulin,CaM)是最重要的多功 能Ca2+信号受体,由148个氨基酸组成的单 链的小分子(分子量为17 000~19 000)酸 性蛋白。CaM分子有四个Ca2+结合位点。当 外界信号刺激引起胞内Ca2+浓度上升到一定 阈值后(一般≥10-6mol.L-1), Ca2+ 与 CaM结合,引起CaM构象改变。而活化的CaM 又与靶酶结合,使其活化而引起生理反应。 目前已知有十多种酶受Ca2+-CaM的调控,如 蛋白激酶、NAD激酶、H+-ATPase等。在以光 敏色素为受体的光信号传导过程中Ca2+-CaM 胞内信号起了重要的调节作用。
受体:指位于细胞质膜上能与化学信 号物质特异地结合,并能将胞外信号转换 为胞内信号,发生相应细胞反应的物质。
特点:特异性、高亲和性、可逆性、 饱和性等,多为蛋白质。
细胞间信号传递方式
![细胞间信号传递方式](https://img.taocdn.com/s3/m/822e2916c281e53a5802ff8e.png)
第十一章细胞信号转导引言:单细胞生物直接对外界环境变化作出反应。
高等生物是由成亿个细胞组成的有机体,细胞已分化成具有特殊结构与功能的机体组成单位,且大多数细胞不与外界直接接触,因此多细胞生物对外界的刺激(包括物理、化学因素),需要细胞间复杂的信号传递系统来传递,从而调控机体内每个细胞的新陈代谢和行为,以保证整体生命活动的正常进行。
在人体,如果细胞间不能准确有效地传递信息,机体就可能出现代谢紊乱、疾病甚至死亡。
述:人体细胞之间的信息传递可通过相邻细胞的直接接触来实现,但更重要的则是通过细胞分泌各种化学物质来调节自身和其他细胞的代谢和功能。
这些具有调节细胞生命活动的化学物质称为信息物质。
*细胞信号转导:课本P136述:细胞间的信息传递是跨膜的信号转导。
信号转导包括以下步骤:特定的细胞释放信息物质→信息物质经扩散或血循环到达靶细胞(target cell)→与靶细胞的受体特异性结合→受体对信号进行转换并启动靶细胞内信使系统→靶细胞产生生物学效应。
人体的信息物质和受体种类繁多,细胞内的信息传递形成一个网络系统,故细胞的信息传递极其复杂。
第一节细胞间信号传递方式一、体液传导*概念:细胞信号通过分泌信号分子(如激素),通过体液系统长距离或短距离转运,然后作用于靶器官或靶细胞而产生生物效应的传递方式。
(一)体液传导的特点(课本P136)1.浓度低2.效应广泛3.多功能性和重叠性4.交叉性(二)体液传导过程1.内分泌传导――经典的体液传导过程述:信号分子由细胞合成并分泌进入血液,通过血液循环到全身各组织,可到达较远的靶细胞。
2.旁分泌传导述:有些信号分子通过组织液或细胞间液运输,到达比较近的靶细胞产生效应。
3.自分泌传导述:信号分子经细胞合成和分泌后,作用于自身细胞或邻近的同类细胞,分泌细胞本身可以是靶细胞。
这种传导可产生群体效应,使细胞协同发育生长等。
二、神经传导述:神经传导与体液传导比较,具有以下特点:⒈作用快⒉消失快⒊调节精细。
细胞生物学名词解释
![细胞生物学名词解释](https://img.taocdn.com/s3/m/35dc79f5f121dd36a22d8246.png)
原生质(Protoplasm):指细胞内所含有的生活物质(构成细胞的生活物质),真核细胞包括细胞膜、细胞质和细胞核。
冰冻蚀刻技术(freeze etching):又称冷冻蚀刻,冷冻复型(freeze-replica)、冷冻断裂(freeze-fracture)是一种由冷冻断裂与复型相结合的样品制备技术。
功能:主要用来观察膜断裂面的蛋白质颗粒和膜表面结构,深度蚀刻用于观察细胞质中细胞骨架及其结合蛋白。
步骤:样品固定→冷冻→断裂→蚀刻→复型→剥离→捞膜→观察。
优缺点:①样品不经过化学固定,脱水、包埋等有机试剂的影响,能更好地保持样品的真实结构和天然特性;②由于断面通常是沿生物膜的结构薄弱处(膜的脂质层中间)劈开,故对于显示各类膜结构特别使用;③分辨力强,反差较好;④显示图象富有立体感;⑤样品可长期保存。其缺点是极易产生冰晶损伤,技术难度大,操作必须敏捷,不易掌握。
细胞生物学(cell biology):是研究细胞基本生命活动的科学,应用现代物理学与化学的成就和分子生物学的概念和方法,以细胞作为生命活动的基本单位为出发点,在显微、亚显微和分子水平等不同层次上,研究细胞结构与功能,细胞增殖、分化、衰老与凋亡,细胞信号传导,真核细胞基因表达与调控,细胞起源与进化等主要内容,探索生命活动规律的学科,其核心问题是将遗传与发育在细胞水平上结合起来。
微分干涉显微镜(differential interference contrast microscope, DIC):利用平面偏振光。偏振光经合成后,使样品中厚度上的微小区别转化成明暗区别,增加了样品反差且具有立体感。适于研究活细胞中较大的细胞器和颗粒的运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
细胞间的信息传递
(一)缝隙连接 ( Japjunction )
(二)旁分泌和自分泌(Paracrine and autocrine) (三)长距离信息传递(Long distance communication) (四)细胞因子( Cytokine )
跨膜信号转导
鸟苷酸环化酶(guanylyl cyclase,GC)的受体
一个跨膜α螺旋 膜外侧的N端:配体结合位点 膜内侧的C端:鸟苷酸环化酶
cGMP 作 为 第 二 信 使 激 活 cGMP 依 赖 性 的 蛋 白 激 酶
(cGMP-dependent protein kinase),或称蛋白激酶 G (proten kinase G, PKG)
NO diffusion to nearby cells Smooth muscle cells Cyclic GMP PKG
Guanylate cyclase
GTP
Protein + ATP
Protein-P + ADP
Nitric oxide-guanylate cyclase signaling
Ca2+ entry due to shear stress Endothelial cells Citrulline + NO (瓜氨酸)
Arginine (精氨酸)
Nitric oxide synthase (NO合酶)
能否通过细胞膜,化学信号可分为: 1、脂溶性信使:如类固醇激素 2 、非脂溶性信使 ①第一信使(first messenger) ②第二信使(second messenger): cAMP, IP3,DAG和Ca2+等
③蛋白激酶(protein kinase)
跨膜信号转导途径的分类:
1. G蛋白藕联受体介导的信号转导
酶藕联受体介导的信号转导
1 酪氨酸激酶受体( tyrosine kinase receptor) 是贯穿细胞膜脂质双层的膜蛋白
膜外侧面的受体部分
伸入胞浆内的酪氨酸激酶结构域部分
无需G-蛋白的参与。
Tyrosine kinases: membrane receptor enzyme
e.g., growth factors, insulin
① 受体- G蛋白-AC途径
② 受体- G蛋白-PLC途径2. 离子通道受体介导的信号转导
① 化学门控通道
② 电压门控通道
③ 机械门控通道
3. 酶藕联受体介导的信号转导
cAMP作为第二信使的
信号转导通路示意图
磷脂酶C
三磷酸肌醇(IP3)和二酰甘油(DAG)作为 第二信使的信号转导通路示意图
Ca2+/CaMKⅡ途径