牵引电机速度传感器失效分析

牵引电机速度传感器失效分析
牵引电机速度传感器失效分析

V o l.24, No.3,2017牵引电机速度传感器失效分析

钟艳,陈真容

(中车株洲电机有限公司,湖南株洲412000)

摘要:速度传感器是机车、动车及整个轨道交通安全控制系统中不可或缺的部件,速度传感器的性能指标直接影响车 辆运行监控装置的工作,是整个轨道交通系统速度监控系统的关键。然而由于其工作环境的复杂及恶劣,速度传感器已 成为轨道交通控制系统中的薄弱环节。以动车组牵引电机所配用的磁阻式速度传感器为研究对象,对其进行失效分析。

关键词:速度传感器;故障分析;牵引电机

d o i:10. 3969/j.is s n.1006 -8554. 2017. 03.021

技术研发TECHNOLOGYANDMARKET

"速度传感器结构及原理

1.1速度传感器结构

速度传感器由外壳、电路板、感应探头、电缆等组成,如图 1所示,其中核心部件为电路板和感应探头。

1.电缆

2.外壳

3.电路板

4.感应探头

图1速度传感器结构

1.2速度传感器工作原理

当齿轮旋转至图2(a)位置,通过磁阻元件的磁通最大,磁 阻元件电阻最大,输出高电平;当齿轮旋转到至图2(b)位置,通过磁阻元件的磁通最小,磁阻元件电阻最小,输出低电平。齿轮连续旋转时磁阻元件的输出电压信号如图2(c),此信号 经后续电路整形后得到如图2(d)。

2速度传感器失效及分析

速度传感器是机车、动车及整个轨道交通安全控制系统中 不可或缺的部件,速度传感器的性能指标直接影响车辆运行监 控装置的工作,是整个轨道交通系统速度监控系统的关键。然 而由于其工作环境复杂、恶劣,速度传感器已成为轨道交通控 制系统中的薄弱环节,因而对速度传感器的常见故障进行分析 并提出相应预防措施显得十分重要。2.1 失效模式

根据速度传感器的结构和工作原理,针对速度传感器失效 的模式,建立失效故障树[2]。

图3速度传感器失效故障树

2.2故障分析

2.2.1磁阻元件损坏

速度传感器磁阻元件损坏主要是磁阻元件的固定角与器 件的封装体断裂导致磁阻元件与探头正中心的相对位置发生 变化,产生的主要原因:磁阻元件等器件封装材质本身较脆,运 行过程中恶劣的环境以及检修时拆卸安装等条件的影响下,使 速度传感器内磁阻元件等器件固定脚材质形变,经过一段时间 的使用固定角与器件的封装体发生断裂。

2.2.2连接器接触不良

在动车运行过程中,有信号时断时续的现象发生,这有可 能是速度传感器与车体的连接部分连接器接触不良引起的。因为在一定气候环境和振动条件作用下,长期而往速度传感器 在运行中连接器插针松动而存在接触不良。

2.2.3速度传感器及测速齿轮安装位置偏差

测速齿轮齿顶与速度传感器探头间隙有严格要求,间隙过 大或过小都会影响信号的接收和输出。同时测速齿轮齿顶的 中心位置要正对速度传感器探头的中心[],这样可使磁场最大 限度地通过磁阻元件的表面,使触发精度提高。

2.2.4两信号通道占空比差异较大

占空比是指高电平在一个波形周期之内所占的时间比率。有报故障速度传感器在进行实验时发现高低电平以及相位差

(下转第4页)

46

无速度传感器变频调速系统转速辨识方法研究

作者简介:张敬恩(1983- ),女,硕士研究生,研究方向为机电传动与控制。 随着电力电子技术、计算机技术和变频调速控制技术的发展,高性能的变频调速系统得到了广泛的应用,其一般离不开速度的闭环控制,这样必须实时获取电机转速。通常人们是利用电机同轴安装高精度的速度或位置传感元件,如光电编码盘和测速发电机等。但速度传感器的存在不仅阻碍了电机向高速化、小型化的方向发展,同时其安装也给系统带来了一些缺陷:(1)系统成本大大增加,精度越高的码盘价格也就越贵;(2)存在同心度问题,安装不当将影响转速的检测;(3)使电机轴向上体积增大,而且给其维护带来一定困难,降低了系统的机械鲁棒性;(4)在高温、高湿的恶劣环境下无法工作,而且码盘工作 精度易受环境条件的影响。 由于以上缺陷,使得人们改为研究无需速度传感器的电机转速辨识方法。20世纪70年代,有学者提出利用电流、电压等易于测量的物理量对电机转速进行辨识的无速度传感器技术,它解决了因安装速度传感器给传动系统造成的上述问题。目前,国外已有实用的无速度传感器通用变频器产品,而国内在无速度传感器变频调速方面的研究起步较晚,与国外有很大的差距。因此开发具有完全自主知识产权的无速度传感器变频产品已成为当务之急。 1 转速辨识方法分类 从电机模型理想化程度的角度可将无速度传感 无速度传感器变频调速系统转速辨识方法研究 张敬恩 (大连交通大学,辽宁 大连 116028) Abstract: From the angle of ideal perspective of motor models, the speed sensor-less control strategy is divided into two categories of ideal model and non-ideal characteristics to identify rotation speed. Introduction and analysis were made to theoretical key points and advan-tages and disadvantages of several relatively typical speed identi ? cation methods. On basis of direct rotation torque control, speed sensor-less frequency control system model was designed and carried out simulation, test parameters and simulation diagram given. Also the future research direction is to raise dynamic and static characteristics of the control system further; to improve performance under low speed; to strengthen robustness of the system to motor parameters change, so as to reduce complexity of the system and to make study results more practical. Key words: speed sensor-less; frequency control; speed identi ? cation ZHANG Jing-en (Dalian Jiaotong University, Dalian 116028, China ) Study on Speed Identi ? cation Methods for Speed Sensor-Less Frequency Control System 摘 要:从电机模型理想化程度的角度将无速度传感器控制策略分为基于理想模型的转速辨识方法和基于非理想特性的转速辨识方法两大类。介绍和分析了几种比较典型的转速辨识方法的理论要点和优缺点,在直接转矩控制基础上设计了无速度传感器变频调速系统模型并进行仿真,给出了试验参数及仿真图形,并提出了今后的主要研究方向是:进一步提高控制系统的动静态特性,改善低速下的性能;增强系统对电机参数变化的鲁棒性;降低系统的复杂性,使得研究成果更为实用化。 关键词:无速度传感器;变频调速;转速辨识 中图分类号:TM921.51;TP212 文献标识码:A 文章编号:1007-3175(2010)02-0018-05

直流电机转速控制

直流电机转速控制公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

直流电机转速控制 课程设计 姓名: 学号: 班级:

目录 1.直流电机转速控制方案设计 (2) 设计要求 (2) 设计框图 (2) 2.直流电机转速控制硬件设计 (3) 主要器件功能 (3) 硬件原理图 (6) 3.直流电机转速控制软件设计 (7) 4.调试 (8) 硬件测试 (8) 软件调试……………………………………………………………(11

1.直流电机转速控制方案设计 设计要求 通过设计了解如何运用电子技术来实现直流电机转速控制,完成直流电机转向和转速的控制,提高分析电路设计、调试方面问题和解决问题的能力。 1、用按键1控制旋转方向,实现正转和反转。 2、电机的设定转速与电机的实际转速在数码管上显示。 3、旋转速度可实时改变。 设计框图 本课题中测量控制电路组成框图如下所示:

图1 2.直流电机转速控制硬件设计 主要器件功能 1、L298N 是专用驱动集成电路,属于H 桥集成电路,与L293D 的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。此外可能通过使能端的高低电平的变换,从而使电机通断,来控制电机的转速。 图2 板上的EN1 与EN2 为高电平时有效,这里的电平指的是TTL 电平。EN1 为IN1 和IN2 的使能端,EN2为IN3 和IN4 的使能端。POWER 接直流电源,注意正负,电源正端为VCC,电源地为GND。 2、ZLG7290的核心是一块ZLG7290B芯片,它采用I2C接口,能直接驱动8位共阴式数码管,同时可扫描管理多达64只按键,实现人机对话的功能资源十分丰富。除具有自动消除抖动功能外,它还具有段闪烁、段点亮、段熄灭、功

异步电动机无速度传感器矢量控制系统设计

肖金凤 1971年1月 生,1994年毕业于湖南大学电气与信息工程学院电机专业,学士学位,2004年毕业于湖南大学电气与信息工程学院控制工程专业,硕士学位,讲师。主要研究方向为电机智能控制、工业过程控制及综合自动化。 异步电动机无速度传感 器矢量控制系统设计 * 肖金凤1 , 黄守道2 , 李劲松 1 (1.南华大学,湖南 衡阳 421001;2.湖南大学,湖南 长沙 410082) 摘要 文章提出一种基于模糊神经网络的模型参考自适应电机转速辨识方法,将其与SVP WM 调制技术控制的变频器系统结合起来,组成了一种基于DSP 的异步电机无速度传感器矢量控制系统。具体介绍了其结构及软硬件的设计。仿真结果表明此系统动态性能好,能准确跟踪电机转速的变化。 关键词 异步电动机 无速度传感器 SVP WM 矢量控制 数字信号处理器 Fiel d Oriented Control Syste m of Speed Sensorless Based on DSP X iao Jinfeng ,Huang Shoudao ,L i Jingsong (1.N anhua Un iversity ;2.H unan Un i v ersity ) Abstract :This paper presents a ne w m et h od of i n ducti o n m otor speed identifica -ti o n .It is the co m binati o n o f f u zzy neural net w ork (FNN )w ith m odel reference adap -ti v e syste m (MRAS).W e co m bi n e this m ethod w it h the i n verter contro lled by space vector pulse w idth m odu lati o n (SVP WM )to for m a field oriented con tro l syste m o f speed senso rless based on DSP . Its struct u re and soft w are and hardw are are ana -l y zed .The S i m u lation results sho w that the contro l syste m has better dyna m ic per -f o r m ance and can accurately track the variati o n of the m otor speed . K ey w ords :I nducti o n m oto r Speed sensorless SVP WM F ield oriented con -tro l (FOC) DSP *湖南省自然科学基金资助项目(编号:02JJ Y 2089) 1 引言 异步电动机的数学模型由电压方程、磁链方 程、转矩方程和运动方程组成,是一个高阶、非线性、强耦合的多变量系统。采用传统的控制策略对其进行控制时,动态控制效果较差。目前异步电动机控制研究工作正围绕几个方面展开:采用新型电力电子器件和脉宽调制控制技术;应用矢量控制技术及现代控制理论、智能控制技术;广泛应用数字控制系统及计算机技术;无速度传感器控制技术。本文以电机控制专用芯片 T M S320F240为核心,采用磁通、转速闭环的矢量控制策略,利用SVP WM 脉宽调制技术、无速度传感器及智能控制技术,设计了一电机控制系统。仿真结果表明该控制系统抗干扰能力强,动态性能好。 2 速度估计策略 模型参考自适应方法(MRAS)是应用较广的速度估计方法。本文设计的模型参考自适应速度估计系统为减少定子电阻的影响选择瞬时无功功率模型,同时为有效解决瞬时无功功率模型参考 40 异步电动机无速度传感器矢量控制系统设计《中小型电机》2005,32(2)

CRH2型动车组牵引电机速度传感器故障的分析正式样本

文件编号:TP-AR-L7005 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ CRH2型动车组牵引电机速度传感器故障的分析正 式样本

CRH2型动车组牵引电机速度传感器故障的分析正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 动车组高级检修中的牵引电机传感器故障往往时 在动态调试时才发现,如果发现和处理不当,会对动 车组正常修竣造成较大影响。本文通过对上海动车检 修基地试修以来的牵引电机速度传感器四起故障的分 析,提出该类故障的处理方法及质量卡控措施。 故障概况 自20xx年上海高级修基地试修以来,目前已完 成100多组(标准列)CRH2型动车组的三级检修。 其中牵引电机传感器故障共四起,由于该类故障属于 动态故障,静态试验时无法发现,须动态试验中才会

出现且对动车组时速有一定要求(大于10km/h)。一旦发生此类故障动态调试大部分试验都将无法进行,直接影响正常的修竣交验及车辆安全。因此梳理出此类故障的现象、原因,并提出针对性的故障处理方案和预防措施就十分必要了。 原因查找及分析 2.1.故障情况 自试修以来,共发生四起,下面对四起故障情况做简要介绍。 2.1.1. 20xx年9月在对2095C做三级检修通电前测量时,发现06车01轴8~3针(线号481B~481)约为0Ω(参考值40±10KΩ)。拆下01轴SS速度传感器后测量3~4针发现阻值为0Ω,其余针间阻值良好。更换该速度传感器后,重新测量BCU处电气插头针间电阻,阻值良好,已达标,故障

无速度传感器矢量控制

无速度传感器矢量控制技术的行业现状与展望 The Comprehensive Status Analysis and Future Development Tendency of Sensor-less Vector Control (SVC) Technology 1 引言 交流传动在高性能场合的应用始于矢量控制概念的引入,包括直接磁场定向与间接磁场定向控制。尽管这一概念早在60年代就已出现,并由Siemens 的Blaschke博士于1972年正式提出,但是真正应用还是在微电子技术发展的二十年后。矢量控制从基本原理上讲能够获得优异的动静态特性,但是对电机参数的敏感性却成为实际应用中必须解决的问题。驱动器通过启动前的自整定以及运行过程中的在线整定,适应电机参数变化,保持矢量控制的动静态性能,这些复杂的自适应控制算法都必须通过强大的信号处理器才能完成。 近年来随着半导体技术的发展及数字控制的普及,矢量控制的应用已经从高性能领域扩展至通用驱动及专用驱动场合,乃至家用电器。交流驱动器已在工业机器人、自动化出版设备、加工工具、传输设备、电梯、压缩机、轧钢、风机泵类、电动汽车、起重设备及其它领域中得到广泛应用。随着半导体技术的飞速发展,功率器件在不断优化,开关速度在提高而损耗在下降,功率模块的功率密度在不断增加;数字信号处理器的处理能力愈加强大,处理速度不断提升,交流驱动器完全有能力处理复杂的任务,实现复杂的观测、控制算法,现代交流传动的性能也因此达到前所未有的高度。以代表交流驱动控制最高水平的交流伺服为例,其需求随着新的生产技术与新型加工原料的出现而迅速增长。据相关统计,高性能交流伺服驱动器数量的年增长率超过12%。伺服驱动中应用最多的电机是异步电机及同步电机,额定功率从50W到200kW,位置环、速度环以及转矩环路的典型带宽分别为60Hz、200Hz 以及1000Hz。 交流电机驱动中的大部分问题应当说在当今的驱动器中已经得到解决,相关的成熟技术提供了被业界广泛接受的解决方案,并在许多领域中得到成功应用,因此从基本结构上来讲,交流驱动器的现有设计方案在未来的几年中不会有大的变化。现在,交流驱动器开发的一个重点是如何将驱动器与电机有机地结合在一起,开发出更低成本、高可靠性、高性能“驱动模块”。基于这一思路,为进一步减小成本、提高可靠性,开发人员在如何省去轴侧传感器以及电机相电流传感器进行了深入的研究,特别是高性能无速度传感器矢量控制(SVC)的实现吸引了各国研发人员的广泛关注,并已成为近年来驱动控制研究的热点。随着具有强大处理能力的数字信号处理器的推出,实现该控制方式所需要的高鲁棒性、自适应的参数估计以及非线性状态观测成为可能,新的无速度传感控制方案不断推出。Siemens、Yaskawa、Toshiba GE、Rockwell、Mistubishi、Fuji等知名公司纷纷推出自己的SVC控制产品(本文所指SVC均针对异步电机),控制特性也在不断提高。SVC目前已在印刷、印染、纺机、钢铁生产线、起重、电动汽车等领域中广泛应用,在高性能交流驱动中占有愈来愈重要的地位。 2 无速度传感器矢量控制的优势 概括来说,无速度传感器矢量控制可以获得接近闭环控制的性能,同时省去了速度传感器,具有较低的维护成本。与传统V/Hz控制比较,无速度传感器矢量控制可以获得改进的低速运行特性,变负载下的速度调节能力亦得到改善,同时还可获得高的起动转矩,这在高摩擦与惯性负载的起动中有明显的优势。正是由于这些驱动特性,该控制技术已逐渐成为通用恒转矩驱动应用的选择。事实上,基本上所有的AC驱动厂家都提供该控制模式。 Schneider公司的驱动市场经理Susan Bowler认为,该控制模式的吸引人之处在于利用最小的附加费用获得大大增强的性能,包括低速特性、转矩响应及定位能力等。由于其性能接近伺服驱动,公司在拓展需要更精确负载定位控制的场合。该公司的第三代Altivar无速度传感器驱动产品具有自调谐特性,确保驱动器在电机运行参数随时间发生变化的情况下

无速度传感器永磁同步电机发展与控制策略评述

无速度传感器永磁同步电机发展与控制策略评述潘萍付子义 中图分类号:TM351TM344.4文献标识码:A文章编号:1001-6848(2007)06-0091-02无速度传感器永磁同步电机发展与控制策略评述 潘萍,付子义 (河南理工大学,焦作454003) 摘要:介绍了永磁同步电机无速度传感器控制策略,分析了无速度传感器技术研究现状,指出状态观测器法及谐波注入法是目前无速度传感器技术的研究热点。 关键词:永磁同步电机;无速度传感器;评述;控制策略;状态观测器;谐波注入法 DevelopmentRenewandStrategyofPermanentM_agnetSynchronousMoOrSpeedSensorless PANPing,FUZi—yi (HenanPolytechnicUniversity,Jiaozuo454003,China) ABSTRACT:Thispapersummarizesthestrategyofpermanentmagnetsynchronousmotor.Itanalyzesthepresentofspeedsensorlesstechonologyofpermanentmagnetsynchronousmotor,indicatesthatthestateobserverandharmonicinjectionprocessarecurrentresearchfocus. KEYWORDS:Permanentmagnetsynchronousmotor;Speedsensorless;Review;Controlstrategy;Stateobserver;Harmonicinjectionmethod O引言 永磁同步电机控制系统离不开高精度的位置和速度传感器,但在实际的系统中,传感器的存在不仅增加了系统成本,还易受工作环境影响,同时也降低了系统的可靠性,因此,无速度传感器交流调速系统成为近年研究热点¨j。 1无速度传感器永磁同步电机研究及发展 无速度传感器永磁同步电机是在电机转子和机座不安装电磁或光电传感器的情况下,利用直接计算、参数辨识、状态估计、间接测量等手段,从定子边较易测量的量,如定子电压、定子电流中提取出与速度有关的量,从而得出转子速度,并应用到速度反馈控制系统中。 国际上对永磁同步电机无速度传感器的研究始于20世纪70年代旧J。1975年,A.Abbondanti等人推导出了基于稳态方程的转差频率估计方法, 收稿日期:2006—09-26 基金项目:河南省杰出青年科学基金(0211060500);河南省重要攻关项目(9911020429)在无速度传感器控制领域作出首次尝试,调速比可达10:l。但由于其出发点是稳态方程,动态性能和调速精度难以保证。1979年,M.Ishida等学者利用转子齿谐波来检测转速,限于当时的检测技术和控制芯片的实时控制能力,仅在大于300r/rain的转速范围取得较好的结果。1983年R.Joetten首次将无速度传感器技术应用于永磁同步电机矢量控制。近年来,德国亚探工大(RWTHAachen)电机研究所的学者又先后开展了采用推广卡尔曼滤波器的永磁同步电机和感应电机无机械传感器调速系统的研究。美国麻省理工学院(MIT)电机工程系的学者在1992年发表了采用全阶状态观测器的无传感器永磁同步电机调速系统的论文。由于状态观测器受电机参数变化的影响较大,还需要另外一个状态观测器来估计电机的参数,这样使无传感器永磁同步调速系统的估计算法变得比较复杂,同时系统还存在对负载变化比较敏感等问题。国内自90年代中开始,也开始对永磁电机无速度传感器控制技术进行研究,但主要局限于各高等院校,研究主要还是着重于理论和仿真方面。 一91—   万方数据

多电机速度同步控制

多电机速度同步控制 在传统的传动系统中,要保证多个执行元件间速度的一定关系,其中包括保证其间的速度同步或具有一定的速比,常采用机械传动刚性联接装置来实现。但有时若多个执行元件间的机械传动装置较大,执行元件间的距离较远时,就只得考虑采用独立控制的非刚性联接传动方法。下面以两个例子分别介绍利用PLC和变频器实现两个电机间速度同步和保持速度间一定速比的控制方法。 薄膜吹塑及印刷机组的主要功能是,利用挤出吹塑的方法进行塑料薄膜的加工,然后经过凹版印刷机实现对薄膜的印刷,印刷工艺根据要求不同可以采用单面单色、单面多色、双面单色或双面多色等方法。在整个机组中,有多个电机的速度需要进行控制,如挤出主驱动电机、薄膜拉伸牵引电机、印刷电机以及成品卷绕电机等。电机间的速度有一定的关系,如:挤出主电机的速度由生产量要求确定,但该速度确定之后,根据薄膜厚度,相应的牵引速度也就确定,因此挤出速度和牵引速度之间有一确定的关系;同时,多组印刷胶辘必须保证同步,印刷电机和牵引电机速度也必须保持同步,否则,将影响薄膜的质量、印刷效果以及生产的连续性;卷绕电机的速度受印刷速度的限制,作相应变化,以保证经过印刷的薄膜能以恒定的张力进行卷绕。 在上述机组的传动系统中,多组印刷胶辘的同步驱动可利用刚性的机械轴联接,整个印刷胶辘的驱动由一台电机驱动,这样就保证了它们之间的同步。印刷电机的速度必须保证与牵引电机的速度同步,否则,在此两道工艺之间薄膜会出现过紧或过松的现象,影响印刷质量和生产的连续性。但是印刷生置与牵引装置相距甚远,无法采用机械刚性联接的方法。为实现牵引与印刷间的同步控制,牵引电机和印刷电机各采用变频器进行调速,再用PLC对两台变频器直接控制。 牵引电机和印刷电机采用变频调速,其控制框图如图1所示。在这个闭环控制中,以牵引辘的速度为目标,由印刷电机变频器调节印刷辘速度来跟踪牵引辘的速度。利用旋转编码器1和旋转编码器2分别采集上述两个电机的脉冲信号(编码器位置参见图3),并送到PLC的高速计数口或接在CPU的IR00000~IR00003。以这两个速度信号数据为输入量,进行比例积分(PI)控制算法,运算结果作为输出信号送PLC的模拟量模块,以控制印刷电机的变频器。这样,就可以保证印刷速度跟踪牵引速度的变化而发生变化,使两个速度保持同步。

无速度传感器的矢量控制系统仿真

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位:武汉理工大学 题目: 无速度传感器的矢量控制系统仿真 初始条件: 电机参数为:额定电压U=380V、频率50 =、定子电阻s R=0.252Ω、 f Hz 额定功率P=2.2KW、定子自感 L=0.0016H、转子电阻r R=0.332Ω、额定转速 s n=1420rpm、转子自感r L=0.0016H、级对数p n=2、互感m L=0.08H、转动惯量J=0.6Kgm2 要求完成的主要任务: (1)设计系统原理图; (2)用MATLAB设计系统仿真模型; (3)能够正常运行得到仿真结果,包括转速、转矩等曲线,并将推算转速与实际转速进行比较 参考文献: [1] 洪乃刚.《电力电子和电力拖动控制系统的MATLAB仿真》.北京:机械 工业出版社,2005:212-215 时间安排: 2011年12月5日至2011年12月14日,历时一周半,具体进度安排见下表 具体时间设计内容 12.5 指导老师就课程设计内容、设计要求、进度安排、评分标准等做具体介 绍;学生确定选题,明确设计要求 12.6-12.9 开始查阅资料,完成方案的初步设计 12.10—12.11 由指导老师审核设计方案,学生修改、完善并对其进行分析 12.12-12.13 撰写课程设计说明书 12.14 上交课程设计说明书,并进行答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 异步电动机具有非线性、强耦合、多变量的性质,要获得高动态调速性能,必须从动态模型出发,分析异步电动机的转矩和磁链控制规律,研究高性能异步电机的调速方案。矢量控制是目前交流电动机较先进的一种动态模型,它又有基于转差频率控制的、无速度传感器和有速度传感器等多种矢量控制方式。无速度传感器控制的高性能通用变频器是当前全世界自动化技术和节能应用中受到普遍关心的产品和开发课题。本文介绍无速度传感器的矢量控制系统的原理和Matlab仿真。 关键词:矢量控制、无速度传感器、Matlab

无速度传感器的高性能异步电动机调速系统

无速度传感器的高性能异步电动机调速系统 范钦德杜耀武 范钦德先生,上海电器科学研究所(集团)有限公司研究员级高级工程师; 杜耀武先生,上海格立特电力电子有限公司工学博士。 关键词:无速度传感器 矢量控制磁链观测 目前广泛使用的通用变频器多为VVVF控制的开环系统,明显地存在转矩小、低速性能差、稳态精确度低、动态性能(加减速性能和负载抗干扰性能)不理想等缺点。特别是低速时由于定子压降和死区电压误差的存在,使系统性能受到严重影响,甚至发生不稳定现象。而在高性能的交流电机矢量控制系统中,转速的闭环控制环节一般是必不可少的。通常,采用光电码盘等速度传感器来进行转速检测,并反馈转速信号。这样,由于速度传感器的安装会给系统带来一些问题:如安装的精确度将影响测速的精确度,并给电机的维护带来一定困难,同时破坏了异步电机的简单坚固的特点,在恶劣环境下,速度传感器工作的精确度易受环境的影响。另外,因必须安装速度传感器,对推广应用也将造成一定的影响。 作为高性能通用变频器发展方向的无速度传感器矢量控制通用变频器就是解决上述缺点而提出的现实问题。其根本目的是在保持通用变频器方便、可靠等优点的前提下,不增加硬件成本,无需速度传感器,其性能却接近带速度反馈的矢量控制系统。 无速度传感器矢量控制的核心问题是对电机磁链的观测和转子的速度进行估计,控制系统性能好坏将取决于合理的控制方案与速度辨识环节的恰当结合。上世纪70年代末国外就已经开展了此项的研究。目前较典型的估计算法有:利用电机方程式直接计算法;模型参考自适应法;扩展卡尔曼滤波法;定子侧电量FFT分析法;非线性方法。但这些方法大多从理想条件下的电机数学模型出发,在不同程度上依赖于电机的参数和运行状态。当电机参数变化时,系统控制性能变差而且有些方法过于复杂,给具体方案的实现带来了很大的困难。基于电机磁链观测的转子速度估计方法计算简便,工程上易于实现,许多高性能无速度传感器矢量控制均采用该方法。 本调速系统基于一种电机磁链混合观测模型,设计了一种无速度传感器的控制方案,实现速度闭环控制。该方法简单实用,在整个速度范围内达到了良好的性能。 一控制原理 矢量控制技术得以有效实现的基础在于异步电机磁链信息的准确获取。为进行磁场定向和磁场反

关于牵引电机速度传感器分析报告

关于牵引电机速度传感器分析报告 为加强对牵引电机速度传感器的维护,本文以牵引电机速度传感器的工作原理、故障影响等方面,对牵引电机速度传感器进行浅析。 一、牵引电机速度传感器工作原理 牵引电机速度传感器为非接触性装配,与传感器探头配合的是装在齿轮箱内的牙轮,牙轮模数(轮径/牙数)为2,如图1所示。根据磁感应原理,牙轮随车轴转动,速度传感器通过监控来自非接触式磁性材料的出现和消失,探测牙数形成脉冲信号,并将信号通过一个内置的放大器放大,用两个单独的方波脉冲串传输。 速度传感器传送两个信道,一个主要信道,一个是辅助信道,后一个相位滞后90°。此特点用于车辆中以确定车辆的方向。也就是说,脉冲频率与车轮的速度成比例。速度传感器将脉冲信号发送到牵引逆变模块的DCU板,DCU基于脉冲信号计算出该轴的速度,此信号DCU也会传送到VTCU。 图1 传感器装配示意图 二、牵引电机速度传感器的作用 速度传感器的直接作用是监控车轮轴速度。测量每个轴的轴速,并且计算平均轴速和所有轴的线速,计算基于车轮直径和齿轮速比。DCU/M 通过MVB 向列车控制单元提供轴速,列车控制单元计算列车实际速度。列车实际速度回传给所有的DCU/M,并且进一步用于空转和滑动控制和车轮直径校准。 列车速度是基于主控端3辆车EBCU的速度、主控端B车的4个牵引电机速度传感器采集的速度和主控端C车的4个牵引电机速度传感器采集的速度计算出一个列车速度作为列车的最终速度。在牵引期间,VTCU将采集这些信号中最慢的速度,在制动或打滑期间,VTCU 将采取这些信号中最快的速度(即使车轮打滑时也可以获得正确的速度信号)。VTCU计算出的速度信号将作为DCU和AUX的参考信号。 根据试车线测试及试验数据分析,如下表所示: 图2 牵引情况下速度选取 图3 制动状态下速度选取 根据实际测试数据表明,EBCU提供的速度相对于牵引电机速度传感器具有滞后性,在VTCU设定的最终速度计算公式下,VTCU计算出的最终速度往往更接近与EBCU提供的速度数据。 三、牵引电机速度传感器故障的影响 为进一步确认牵引电机速度传感器故障的影响,我们在试车线进行了试验: 首先将试验列车主控端B车轴1的牵引电机速度传感器连接插拆下,静止情况下列车不会报故障,在列车启动时,MMI上报该轴速度传感器故障,但不影响列车功能。列车运行几个来回无异常后,再拆下B车3轴的速度传感器,列车启动时报了一次空转滑行。

直流电机转速控制

. 直流电机转速控制 课程设计

姓名: 学号: 班级: 目录 1.直流电机转速控制方案设计 (2) 1.1设计要求 (2) 1.2设计框图 (2) 2.直流电机转速控制硬件设计 (3) 2.1主要器件功能 (3) 2.2硬件原理图 (6)

3.直流电机转速控制软件设计 (7) 4.调试 (8) 4.1硬件测试 (8) 4.2软件调试……………………………………………………………(11 1.直流电机转速控制方案设计 1.1设计要求 通过设计了解如何运用电子技术来实现直流电机转速控制,完成直流电机转向和转速的控制,提高分析电路设计、调试方面问题和解决问题的能力。

1、用按键1控制旋转方向,实现正转和反转。 2、电机的设定转速与电机的实际转速在数码管上显示。 3、旋转速度可实时改变。 1.2设计框图 本课题中测量控制电路组成框图如下所示: 图1

2.直流电机转速控制硬件设计 2.1主要器件功能 1、L298N 是专用驱动集成电路,属于H 桥集成电路,与L293D 的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。此外可能通过使能端的高低电平的变换,从而使电机通断,来控制电机的转速。 图2 板上的EN1 与EN2 为高电平时有效,这里的电平指的是TTL 电平。EN1 为IN1 和IN2 的使能端,EN2为IN3 和IN4 的使能端。POWER 接直流电源,注意正负,电

浅谈交流电机无速度传感器控制策略

龙源期刊网 https://www.360docs.net/doc/712767138.html, 浅谈交流电机无速度传感器控制策略 作者:吴宏宇吴兴宇史运涛 来源:《科技风》2016年第24期 摘要:目前,随着工业自动化的不断发展,交流电机将会被广泛使用。同时由于无速度 传感器技术具有低成本与高可靠性等优点,所以发展交流电机无速度传感器技术,对于提高科技生产力以及工业自动化具有极其重要的意义。本文将简要介绍高性能无速度传感器交流电机控制策略,一种是异步电机与速度自适应全阶观测器相结合,另一种永磁同步电机与滑模观测器相结合的控制方法,旨在进一步促进高性能无速度传感器交流电机控制策略的发展。 关键词:交流电机;无速度传感器;全阶观测器;滑模观测器 随着电力电子技术、微电子技术、现代电机控制理论的迅速发展,交流电机获得快速的推广与应用[ 1 ]。目前,在高性能交流电机控制领域中矢量控制[ 2 ]已经被广泛应用。在实际应用中,为了进一步提高交流电机在不同环境下运行的可靠性,交流电机无速度传感器控制技术被提出。无速度传感器控制方法主要分为两大类,一种为外部信号注入,这种方法只适应于极低速的工况运行,同时额外的信号注入会带来高损耗、噪声等问题。另一种为基于交流电机模型的方法,如:模型参考自适应[ 3 ]、卡尔曼滤波[ 4 ]、滑模观测器[ 5 ]、自适应全阶观测器[ 6 ]等方法,这些方法具有很高的控制精度以及鲁棒性。 本文将重点介绍自适应全阶观测器、滑模观测器与矢量控制在交流电机无速度传感器技术中的应用。 1 速度自适应全阶观测器 对于异步电机来说,定子磁链和电磁转矩通常无法直接得到,一般是采用实时测量的电压电流信息和电机参数,并根据电机数学模型构造观测器来对内部的状态变量进行估计。全阶观测器在较宽范围内都有很高的观测精度[ 7 ],通过引入速度自适应环节后可以在观测定子磁链的同时估计电机转速,实现无速度传感器控制。 在全阶观测器的设计中,反馈增益矩阵与自适应率系数的设计直接关系到系统的稳定性、鲁棒性以及收敛速度[ 7 ]。为了保证系统的稳定性与收敛性,本文将介绍一种采用极点左移的方法来设计增益矩阵并对其进行简化,最终得到一个常数增益矩阵。引入速度自适应环节,可以利用李雅普诺夫函数推导出转速估计的自适应率[ 7 ],在实际应用中为了保证估计转速的收敛速度一般采用PI调节器来代替纯积分环节。 2 滑模观测器 在无速度传感器永磁同步电机控制策略中,滑模观测器被广泛应用,因为其具有结构简单、鲁棒性强以及快速的动态响应[ 8 ]。滑模观测器的主要思想是通过选取滑模面与滑模增益

电机无位置、无速度传感器的设计

J I A N G S U U N I V E R S I T Y 现代交流电动机的智能控制 --电机无位置、无速度传感器的设计 班级:电气 姓名: 学号: 完成日期: 2015年1月3日

电机无位置、无速度传感器的设计 【摘要】近年来,随着现代电力电子技术以及现代控制理论的飞速发展,促进了永磁同步电机无位置传感器控制技术的不断进步。无位置传感器永磁同步电机调速系统不仅具有结构简单、易维护、运行效率高、调速性能好等优点,还具有体积小、成本低、可靠性高以及能应用于一些特殊场合的特点。本文以正弦波驱动的永磁同步电动机为研究对象,采用滑模观测器的方法,研究并实现了永磁同步电机驱动控制系统的无位置传感器技术。 【关键词】永磁同步电机,无位置传感器,矢量控制

一、永磁同步电机数学模型 永磁同步电机(PMSM)的定子结构与普通感应电动机的定子一样,均为三相对称绕组结构,转子的磁路结构是它区别于其它类型电机的主要因素。为了更好的分析和控制,需要建立简便可行的永磁同步电机数学模型。 永磁同步电动机是一个多输入、强耦合、非线性系统,因此其电磁关系十分复杂。为了简化分析,作出如下假设: (1)忽略磁路饱和、涡流和磁滞损耗; (2)转子上没有阻尼绕组,永磁体没有阻尼作用; (3)电机的反电势正弦,定子电流在气隙中只产生正弦分布磁势,忽略磁场高次谐波。 图1为表装式永磁同步电机的结构图,为了简化,这里转子设为一对磁极结构。从图1中可知,永磁同步电机的定子绕组结构与感应电机相同,三个电枢绕组空间分布,轴线互差 120°电角度。这里以 A 相绕组轴线作为定子静止参考轴,定义转子永磁极产生的磁场方向为直轴(d 轴),则沿着旋转方向超前直轴 90°电角度的位置为交轴(q 轴),并且以转子直轴相对于定子 A 相绕组轴线作为转子位置角θ。 ???? ??????+????????????????????=??????????c b a c b a c b a c b a i i i R R R u u u ???000000 三相定子电流主要作用是产生一个旋转的磁场,从这个角度来说,可以用两相系统来等效,这里就引入了旋转两相dq 坐标,于是得到 PMSM 在dq 轴系的电压方程:

直流电机转速控制(DOC)

直流电机转速控制 课程设计 姓名: 学号: 班级:

目录 1.直流电机转速控制方案设计 (2) 1.1设计要求 (2) 1.2设计框图 (2) 2.直流电机转速控制硬件设计 (3) 2.1主要器件功能 (3) 2.2硬件原理图 (6) 3.直流电机转速控制软件设计 (7) 4.调试 (8) 4.1硬件测试 (8) 4.2软件调试……………………………………………………………(11

1.直流电机转速控制方案设计 1.1设计要求 通过设计了解如何运用电子技术来实现直流电机转速控制,完成直流电机转向和转速的控制,提高分析电路设计、调试方面问题和解决问题的能力。 1、用按键1控制旋转方向,实现正转和反转。 2、电机的设定转速与电机的实际转速在数码管上显示。 3、旋转速度可实时改变。 1.2设计框图 本课题中测量控制电路组成框图如下所示: 图1

2.直流电机转速控制硬件设计 2.1主要器件功能 1、L298N 是专用驱动集成电路,属于H 桥集成电路,与L293D 的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。此外可能通过使能端的高低电平的变换,从而使电机通断,来控制电机的转速。 图2 板上的EN1 与EN2 为高电平时有效,这里的电平指的是TTL 电平。EN1 为IN1 和IN2 的使能端,EN2为IN3 和IN4 的使能端。POWER 接直流电源,注意正负,电源正端为VCC,电源地为GND。 2、ZLG7290的核心是一块ZLG7290B芯片,它采用I2C接口,能直接驱动8位共阴式数码管,同时可扫描管理多达64只按键,实现人机对话的功能资源十分丰富。除具有自动消除抖动功能外,它还具有段闪烁、段点亮、段熄灭、

交流感应电动机无速度传感器的高动态性能控制方法综述

交流感应电动机无速度传感器的 高动态性能控制方法综述 清华大学 杨耕 上海大学 陈伯时 摘要:文章分析了交流感应电机无速度传感器的高动态性能控制方案的控制要点。在介绍国内外产业界已实用化的、以及正在研发中的几种代表性的控制策略的同时,讨论了各种方法理论要点和实际应用中的特点。最后,介绍了当前的几个研究热点问题并就发展方向提出了一点设想。 关键词:异步电动机控制 无速度传感器 转矩控制 磁链观测 速度辨识 Rev iew the M ethods for the Speed Sen sor-less Con trol of I nduction M otor Yang Geng Chen Bo sh i Abstract:T h is paper analyzes theo retical po ints of the i m p lem entati on fo r h igh perfo r m ance contro l of in2 ducti on mo to r w ithout speed senso r.A fter that,typ ical app roaches of the contro l strategy,w h ich are used in p ractical p roducts o r are being developed recently,are p resented and the characteristic of each app roach is dis2 cussed.F inally,som e unso lved p roblem s being researched as w ell as the develop ing po tentials are introduced. Keywords:contro l of inducti on mo to r speed senso r2less to rque contro l flux observer speed identifica2 ti on 1 前言 交流感应电机的无速度传感器高动态性能控制,是为了实现与有速度传感器的矢量控制(或直接转矩控制)相当的转矩和速度性能的方案,被用于无法设置速度传感器的设备或新一代高性能通用变频器之中[1,2]。相关的理论与技术也成为近10年来交流传动领域的热门研发内容之一。 本文主要综述在无速度传感器的前提下,具有速度反馈控制环的矢量控制方案(V C)和直接转矩控制方案(D TC),而不讨论诸如“V F控制+为补偿负载变动的滑差补偿”等只考虑静态的方法。本文在介绍各种方法的同时,综述其理论要点和实际应用中的特点、介绍所应用的厂家,从中总结出实现高动态性能控制的要点及主要成果。最后,介绍当前几个研究热点问题。 2 控制方法 211 方法分类的出发点 一般地,由转矩控制环及速度控制环构成的无速度传感器矢量控制(或直接转矩控制)系统由图1所示的3个环节构成。即:①速度调节器;②磁链和转矩控制器;③速度推算或辨识器(含磁链计算或观测) 。 图1 无速度传感器控制系统构成 对于环节②,需要控制转矩和磁链。由此可以分为:a以转子磁链定向控制为基础的矢量控制策略。目前常用的有计算滑差频率的被称为间接法(I V C)和把状态观测器观测到的转子磁链进行反馈控制的直接法(DV C)。b以控制定子磁链为特点的,被称之为直接转矩控制策略(D TC)。 环节③的结构依存于环节②的结构。实际上在计算或推定速度值时,常常也要获得(计算或观测)磁链(转子的或是定子的)值。因此,按其理论上的特点,可以把获得转速和磁链的方法大致分 3 电气传动 2001年 第3期

PID调节控制做电机速度控制

PID调节控制做电机速度控制 V1.1 – Jan 23, 2006 中文版 19, Innovation First Road ? Science Park ? Hsin-Chu ? Taiwan 300 ? R.O.C. Tel: 886-3-578-6005 Fax: 886-3-578-4418 E-mail: mcu@https://www.360docs.net/doc/712767138.html,

版权声明 凌阳科技股份有限公司保留对此文件修改之权利且不另行通知。凌阳科技股份有限公司所提供之信息相信为正确且可靠之信息,但并不保证本文件中绝无错误。请于向凌阳科技股份有限公司提出订单前,自行确定所使用之相关技术文件及规格为最新之版本。若因贵公司使用本公司之文件或产品,而涉及第三人之专利或著作权等智能财产权之应用及配合时,则应由贵公司负责取得同意及授权,本公司仅单纯贩售产品,上述关于同意及授权,非属本公司应为保证之责任。又未经凌阳科技股份有限公司之正式书面许可,本公司之所有产品不得使用于医疗器材,维持生命系统及飞航等相关设备。

目录 页 1模拟PID控制 (1) 1.1 模拟PID控制原理 (1) 2数字PID控制 (3) 2.1 位置式PID算法 (3) 2.2 增量式PID算法 (4) 2.3 控制器参数整定 (4) 2.3.1 凑试法 (5) 2.3.2 临界比例法 (5) 2.3.3 经验法 (5) 2.3.4 采样周期的选择 (6) 2.4 参数调整规则的探索 (6) 2.5 自校正PID控制器 (7) 3软件说明 (8) 3.1 软件说明 (8) 3.2 档案构成 (8) 3.3 DMC界面 (8) 3.4 子程序说明 (9) 4程序范例 (16) 4.1 DEMO程序 (16) 4.2 程序流程与说明 (19) 4.3 中断子流程与说明 (20) 5MCU使用资源 (21) 5.1 MCU硬件使用资源说明 (21) 6实验测试 (22) 6.1 响应曲线 (22) 7参考文献 (26)

相关文档
最新文档