理论力学静力学第四章习题答案

合集下载

理论力学第四章习题答案

理论力学第四章习题答案

理论力学第四章习题答案理论力学第四章习题答案在理论力学的学习过程中,习题是非常重要的一部分。

通过解答习题,我们可以巩固理论知识,加深对概念和原理的理解,并培养解决实际问题的能力。

本文将为大家提供理论力学第四章习题的详细答案,希望能够对大家的学习有所帮助。

1. 一个质点在力F作用下做直线运动,已知力的大小与时间的关系为F = kt,其中k为常数。

求质点的速度与时间的关系。

解答:根据牛顿第二定律F = ma,将力的大小与时间的关系代入,得到ma = kt。

由于质点做直线运动,所以速度的变化率等于加速度,即v = ∫a dt。

将上式代入,得到v = ∫(kt/m) dt = (k/m)∫t dt = (k/m)(t^2/2) + C。

其中C为积分常数。

因此,质点的速度与时间的关系为v = (k/m)(t^2/2) + C。

2. 一个质点在力F作用下做直线运动,已知力的大小与位置的关系为F = -kx,其中k为常数。

求质点的加速度与位置的关系。

解答:根据牛顿第二定律F = ma,将力的大小与位置的关系代入,得到ma = -kx。

由于质点做直线运动,所以加速度的变化率等于速度的变化率,即a =dv/dt。

将上式代入,得到dv/dt = -kx/m。

将变量分离,得到dv = (-kx/m) dt。

对两边同时积分,得到∫dv = ∫(-kx/m) dt。

积分后得到v = (-kx^2/2m) + C1,其中C1为积分常数。

再次对上式积分,得到∫v dx = ∫((-kx^2/2m) + C1) dx。

积分后得到x = (-kx^3/6m) + C1x + C2,其中C2为积分常数。

因此,质点的加速度与位置的关系为a = (-kx/m)。

3. 一个质点在势能函数U(x) = kx^2/2下做直线运动,已知质点的质量为m。

求质点的速度与位置的关系。

解答:根据势能函数U(x) = kx^2/2,可以求得力的大小与位置的关系为F = -dU(x)/dx = -kx。

理论力学习题答案

理论力学习题答案
2.3.11图示桁架系统上,已知:F=1500kN,L1=4m, L2=3m。试求桁架中各杆(1,2,3,4,5,6,7)的内力。
第三章 空间力系
一、是非题判断题
3.1.1对一空间任意力系,若其力多边形自行封闭,则该力系的主矢为零。 (∨)
平面力系中,若其力多边形自行闭合,则力系平衡。(×)
3.1.2只要是空间力系就可以列出6 个独立的平衡方程。 (×)
2.3.4悬臂式吊车的结构简图如图所示,由DE、AC二杆组成,A、B、C为铰链连接。已知P1=5kN,P2=1kN,不计杆重,试求杆AC杆所受的力和B点的支反力。
(答案:FBx=3.33kN,FBy=0.25kN,FAC=6.65kN)
2.3.5由AC和CD构成的组合粱通过铰链C连接,它的支承和受力如图所示,已知均布载荷强度q=10kN/m,力偶矩M=40kN.m,不计梁重,求支座A、B、D的约束反力和铰链C处所受的力。
3.1.3若由三个力偶组成的空间力偶系平衡,则三个力偶矩矢首尾相连必构成自行封闭的三角形。(∨)
3.1.4空间汇交力系平衡的充分和必要条件是力系的合力为零;空间力偶系平衡的充分和必要条件是力偶系的合力偶矩为零。(∨)
二、填空题
3.2.1若一空间力系中各力的作用线平行于某一固定平面,则此力系有5个独立的平衡方程。
3.3.3如图所示,三圆盘A、B、C的半径分别为15cm、10cm、5cm,三根轴OA、OB、OC在同一平面内,∠AOB为直角,三个圆盘上分别受三个力偶作用,求使物体平衡所需的力F和α角。
3.3.4某传动轴由A、B两轴承支承。圆柱直齿轮的节圆直径d=17.3cm,压力角 =20º,在法兰盘上作用一力偶矩为M=1030N.m的力偶,如轮轴的自重和摩擦不计,求传动轴匀速转动时A、B两轴承的约束反力。(答案:FAx=4.2kN,FAz=1.54kN,FBz=7.7kN,FBz.=2.79kN)

【最新试题库含答案】清华理论力学课后答案4

【最新试题库含答案】清华理论力学课后答案4

清华理论力学课后答案4篇一:理论力学课后习题答案第4章运动分析基础第4章运动分析基础4-1 小环A套在光滑的钢丝圈上运动,钢丝圈半径为R(如图所示)。

已知小环的初速度为v0,并且在运动过程中小环的速度和加速度成定角θ,且 0 <θ<?,试确定小环2A的运动规律。

22解:asin??a?v,a?v nRsin?R2vdvt1a?dv?acos??v,?dt t2??v00vdtRtan?Rtan?v?ds?v0Rtan?dtRtan??v0tstv0Rtan?ds??0?0Rtan??v0tdtAs?Rtan?lnRtan?Rtan??v0t习题4-1图2??x?3sint?x?4t?2t1.?, 2.?2y?2cos2t?y?3t?1.5t??4-2 已知运动方程如下,试画出轨迹曲线、不同瞬时点的解:1.由已知得 3x = 4y ? v?5?5t?y?3?3t? ?a??5 ??y??3????4x????4?4t?x(1)为匀减速直线运动,轨迹如图(a),其v、a图像从略。

2.由已知,得arcsinx3?12arccosy242(b)习题4-2图化简得轨迹方程:y?2?x9(2)轨迹如图(b),其v、a图像从略。

4-3 点作圆周运动,孤坐标的原点在O点,顺钟向为孤坐标的正方向,运动方程为s?12?Rt2,式中s以厘米计,t以秒计。

轨迹图形和直角坐标的关系如右图所示。

当点第一次到达y坐标值最大的位置时,求点的加速度在x和y轴上的投影。

解:v?s???Rt,at?v???R,an?v??2Rt2y坐标值最大的位置时:?s? ax?at??R,ay???R22R12?Rt2??22R,?t?1习题4-3图4-4 滑块A,用绳索牵引沿水平导轨滑动,绳的另一端绕在半径为r 的鼓轮上,鼓轮以匀角速度ω转动,如图所示。

试求滑块的速度随距离x 的变化规律。

解:设t = 0时AB长度为l0,则t时刻有:r (?t?arcta?arctan)r?l?x2?r2l0x2?r2对时间求导:?r??r2x22xx?r?rx ???xx2?r2???xxx?r224-5 凸轮顶板机构中,偏心凸轮的半径为R,偏心距OC = e,绕轴O以等角速转动,从而带动顶板A作平移。

华南理工网络教育理论力学(静力学)随堂练习

华南理工网络教育理论力学(静力学)随堂练习

参考答案:D5.(单选题) 图示系统受力F作用而平衡。

欲使A支座约束力的作用线与AB成60º角,则斜面的倾角应为()。

(A)0º(B)30º(C)45º(D)60º参考答案:B6.(单选题) 力的可传性原理()。

7.(单选题) 如图所示的两个楔块A、B在m-m处光滑接触,现在其两端沿轴线各加一个大小相等、方向相反的力,则两个楔块的状态为()。

(A)A、B都不平衡(B)A平衡、B不平衡(C)A不平衡、B平衡(D)A、B都平衡参考答案:A8.(单选题) 三力平衡定理是()。

1.(单选题) 如图所示,带有不平行的两条矩形导槽的三角形平板上作用一个力偶M,在槽内各有一个固连于地面、可沿槽滑动的销钉E和H,不计摩擦,则()。

(A)平板保持平衡状态(B)在力偶矩较小时,平板才能平衡(C)平板不可能保持平衡(D)条件不够,无法判断平衡与否参考答案:C2.(单选题) 如图所示,均质杆AB的重为P,D处用绳索悬挂,A端与光滑墙壁接触,现在B端作用一水平力F,则杆AB()。

(A)在力P 很大时才能平衡(B)当力P 大于零时就能平衡(C)当力P为任何值时都能平衡(D)力P为任何值时都不能平衡参考答案:D3.(单选题) 如图所示,带有不平行的两个导槽的矩形平板上作用一力偶,今在槽内插入两个固连于地面的销钉,若不计摩擦,则()。

(A)板必保持平衡状态(B)板不可能保持平衡状态(C)在矩M较小时,板可保持平衡(D)条件不够,无法判断板平衡与否参考答案:B4.(单选题) 均质杆AB长为L,重为P,用一绳索悬吊于光滑槽内,则杆在A、B处受到的约束力的关系为()。

(A)(B)(C)(D)5.(单选题) 已知杆AB和CD的自重不计,且在C处光滑接触,若作用在AB杆上的力偶的矩为m1,则欲使系统保持平衡,作用在CD杆上的力偶的矩m2的转向如图示,其矩值应为()。

(A)m2 = m1 (B)m2 = 4 m1 / 3 (C)m2 = 2 m1 (D)m2 = m1 / 2参考答案:A6.(单选题) 如图结构由O1A、O2B、CD和EF四根杆铰接而成。

《理论力学》第四章作业答案

《理论力学》第四章作业答案

[习题4-4] 一力系由四个力组成,如图4-17所示。

已知F 1=60N,F 2=400N,F 3=500N,F 4=200N,试将该力系向A点简化(图中长度单位为mm)。

解:方向余弦:4696.0877.638300cos ===∑RxF Fα8553.0877.63841.546cos ===∑RyF F β2191.0877.638140cos -=-==∑RzF Fγ主矢量计算表主矩计算表方向余弦:6790.0831.162564.110cos 0-=-==∑M M xα7370.0831.162120cos 0===∑M Myβ0831.1620cos 0===∑M M zγ[习题4-6] 起重机如图4-19所示。

已知AD =DB =1m,CD =1.5m,CM =1m;机身与平衡锤E 共重kN W 1001=,重力作用线在平面LMN ,到机身轴线的距离为0.5m;起重量kN W 302=。

求当平面LMN 平行于AB 时,车轮对轨道的压力。

BN CN A NByR BzR BxR AyR AT WD解:因为起重机平衡,所以:0)(=∑i ABF M05.05.05.121=⨯+⨯+⨯-W W N CkN kN N C 3.43)(333.435.1/)5.0305.0100(≈=⨯+⨯=0)(=∑i CDF M045.01121=⨯-⨯+⨯-⨯W W N N A B 70=-A B N N (1)0=∑izF021=--++W W N N N C B A 030100333.43=--++B A N N 667.86=+B A N N ………………(2) (1)+(2)得:667.1562=A NkN kN N A 3.78)(334.78≈=kN kN N N A B 3.8)(333.8334.78667.86667.86≈=-=-=[习题4-11] 均质杆AB ,重W ,长l ,A 端靠在光滑墙面上并用一绳AC 系住,AC 平行于x轴, B 端用球铰连于水平面上。

静力学第四章习题答案

静力学第四章习题答案

4-1解:1.选定由杆OA ,O 1C ,DE 组成的系统为研究对象,该系统具有理想约束。

作用在系统上的主动力为M F F ,。

2.该系统的位置可通过杆OA 与水平方向的夹角θ完全确定,有一个自由度。

选参数θ为广义坐标。

3.在图示位置,不破坏约束的前提下,假定杆OA 有一个微小的转角δθ,相应的各点的虚位移如下: δθδ⋅=A O r A ,δθδ⋅=B O r B ,δθδ⋅=C O r C 1δθδ⋅=D O r D 1,C B r r δδ=,E D r r δδ=代入可得:E Ar r δδ30=4.由虚位移原理0)(=∑i F W δ有:0)30(=⋅-=⋅-⋅E M E M A r F F r F r F δδδ对任意0≠E r δ有:F F M 30=,物体所受的挤压力的方向竖直向下。

4-4解:4a1.选杆AB 为研究对象,该系统具有理想约束。

设杆重为P,作用在杆上的主动力为重力。

2.该系统的位置可通过杆AB 与z 轴的夹角θ完全确定,有一个自由度。

选参数θ为广义坐标。

由几何关系可知:θtan a h =杆的质心坐标可表示为:θθcos 2tan ⋅-=la z C3.在平衡位置,不破坏约束的前提下,假定杆AB 逆时针旋转一个微小的角度 δθ,则质心C 的虚位移:δθθδθθδ⋅+-=si n 2si n 2la z C 4.由虚位移原理0)(=∑i F W δ有:0)si n 2si n (2=+-⋅-=⋅-δθθθδla P z P C 对任意0≠δθ有:0si n 2si n 2=+-θθl a 即杆AB 平衡时:31)2arcsin(la =θ。

解:4b1.选杆AB 为研究对象,该系统具有理想约束。

设杆重为P,作用在杆上的主动力为重力。

2.该系统的位置可通过杆AB 与z 轴的夹角θ完全确定,有一个自由度。

选参数θ为广义坐标。

由几何关系可知:θsi n R z A=杆的质心坐标可表示为:θθcos 2si n ⋅-=lR z C3.在平衡位置,不破坏约束的前提下,假定杆AB 顺时针旋转一个微小的角度 δθ,则质心C 的虚位移:δθθδθθθδ⋅+⋅-=si n 2cos si n 2lR z C 4.由虚位移原理0)(=∑i F W δ有:0)si n 2cos si n (2=+-⋅-=⋅-δθθθθδlR P z P C 对任意0≠δθ有:0si n 2cos si n 2=+-θθθl R 即平衡时θ角满足:0si n cos 23=-θθl R 。

《理论力学》第四章 静力学应用专题习题解

《理论力学》第四章 静力学应用专题习题解

第四章 力系的简化习题解[习题4-1] 试用节点法计算图示杵桁架各杆的内力。

解:(1)以整体为研究对象,其受力图如图所示。

由结构的对称性可知, kN R R B A 4==(2)以节点A 为研究对象,其受力图如图所示。

因为节点A 平衡,所以0=∑iyF0460sin 0=+AD N)(62.4866.0/4kN N AD -=-=0=∑ixF060cos 0=+AD AC N N)(31.25.062.460cos 0kN N N AD AC =⨯=-= (3)以节点D 为研究对象,其受力图如图所示。

因为节点D 平衡,所以 0=∑iyF0430cos 30cos 0'0=---AD D C N N 0866.0/4=++AD D C N N 0866.0/4866.0/4=+-D C N0=DC N0=∑ixF030sin 30sin 0'0=-+AD D C D E N N N 05.062.4=⨯+DE NkN4)(akN4AB RkN 2AC23N A )(31.2kN N DE -=(4)根据对称性可写出其它杆件的内力如图所示。

[习题4-2] 用截面法求图示桁架指定杆件 的内力。

解:(a)(1)求支座反力以整体为研究对象,其受力图如图所示。

由对称性可知,kN R R B A 12==(2)截取左半部分为研究对象,其受力图 如图所示。

因为左半部分平衡,所以0)(=∑i CF M0612422843=⨯-⨯+⨯+⨯N 063243=⨯-++N )(123kN N =kN2AC23N A0=∑ixF0cos cos 321=++N N N αθ01252252421=+⋅+⋅N N012515221=+⋅+⋅N N0512221=++N N ……..(1) 0=∑iyF02812sin sin 21=--++αθN N025*******=+⋅+⋅N N02525121=+⋅+⋅N N052221=++N N0544221=++N N ……..(2) 05832=-N)(963.53/582kN N ==)(399.1652963.5252221kN N N -=-⨯-=--=解:(b )截取上半部分为研究对象,其受力图如图所示。

哈尔滨工业大学 第7版 理论力学 第4章 课后习题答案

哈尔滨工业大学 第7版 理论力学 第4章 课后习题答案

解 (1)方法 1,如图 4-6b 所示,由已知得
Fxy = F cos 60° , Fz = F cos 30°
F = F cos 60°cos 30°i − F cos 60°sin 30° j − F sin 60°k = 3 i − 1 Fj − 3 Fk 44 2
41
理论力学(第七版)课后题答案 哈工大.高等教育出版社
A
F
β
MA
C
MB
F
10 N
β M θ − 90° C
MB
(a)
(b)
(c)
图 4-11
解 画出 3 个力偶的力偶矩矢如图 4-11b 所示,由力偶矩矢三角形图 4-11c 可见
MC =
M
2 A
+
M
2 B
=
3 0002 + 4 0002 = 5 000 N ⋅ mm
由图 4-11a、图 4-11b 可得
3 = 250 N 13
FRz = 100 − 200 ×
1 = 10.6 N 5
M x = −300 ×
3 × 0.1 − 200 × 1 × 0.3 = −51.8 N ⋅ m
13
5
M y = −100 × 0.20 + 200 ×
2 × 0.1 = −36.6 N ⋅ m 13
M z = 300 ×
z
F45° F3 F3′ B
F2A
E
F1
C
F5
F6
F F4 45°
D
y
K x
M
(a)
(b)
图 4-9
解 (1) 节点 A 为研究对象,受力及坐标如图 4-9b 所示

理论力学习题及答案(全)

理论力学习题及答案(全)

第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。

()2.在理论力学中只研究力的外效应。

()3.两端用光滑铰链连接的构件是二力构件。

()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。

()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。

()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。

()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。

()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。

()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。

则其合力可以表示为。

①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。

①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。

③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。

3.三力平衡定理是。

①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。

4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。

①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。

5.在下述原理、法则、定理中,只适用于刚体的有。

①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。

三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。

2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。

工程力学--静力学(北京科大、东北大学版)第4版第四章习题集答案解析精选全文完整版

工程力学--静力学(北京科大、东北大学版)第4版第四章习题集答案解析精选全文完整版

可编辑修改精选全文完整版第四章习题4-1 已知F1=60N,F2=80N,F3=150N,m=100N.m,转向为逆时针,θ=30°图中距离单位为m。

试求图中力系向O点简化结果及最终结果。

4-2 已知物体所受力系如图所示,F=10Kn,m=20kN.m,转向如图。

(a)若选择x轴上B点为简化中心,其主矩L B=10kN.m,转向为顺时针,试求B点的位置及主矢R’。

(b)若选择CD线上E点为简化中心,其主矩L E=30kN.m,转向为顺时针,α=45°,试求位于CD直线上的E点的位置及主矢R’。

4-3 试求下列各梁或刚架的支座反力。

解:(a)受力如图由∑M A=0 F RB•3a-Psin30°•2a-Q•a=0 ∴FRB=(P+Q)/3由∑x=0 F Ax-Pcos30°=0∴F Ax=32P由∑Y=0 F Ay+F RB-Q-Psin30°=0∴F Ay=(4Q+P)/64-4 高炉上料的斜桥,其支承情况可简化为如图所示,设A 和B为固定铰,D为中间铰,料车对斜桥的总压力为Q,斜桥(连同轨道)重为W,立柱BD质量不计,几何尺寸如图示,试求A 和B的支座反力。

4-5 齿轮减速箱重W=500N,输入轴受一力偶作用,其力偶矩m1=600N.m,输出轴受另一力偶作用,其力偶矩m2=900N.m,转向如图所示。

试计算齿轮减速箱A和B两端螺栓和地面所受的力。

4-6 试求下列各梁的支座反力。

(a) (b)4-7 各刚架的载荷和尺寸如图所示,图c中m2>m1,试求刚架的各支座反力。

4-8 图示热风炉高h=40m,重W=4000kN,所受风压力可以简化为梯形分布力,如图所示,q1=500kN/m,q2=2.5kN/m。

可将地基抽象化为固顶端约束,试求地基对热风炉的反力。

4-9 起重机简图如图所示,已知P、Q、a、b及c,求向心轴承A及向心推力轴承B的反力。

4-10 构架几何尺寸如图所示,R=0.2m,P=1kN。

理论力学(静力学)·随堂练习2019秋华南理工大学网络教育答案

理论力学(静力学)·随堂练习2019秋华南理工大学网络教育答案

理论力学(静力学)第一篇静力学第一章绪论1.(单选题) 下列说法正确的是:()。

(A)处于平衡状态的物体可视为刚体。

(B)变形微小的物体可视为刚体。

(C)在研究物体机械运动时,物体的变形对所研究问题没有影响,或影响甚微,此时物体可视为刚体。

(D)在任何情况下,任意两点的距离保持不变的物体为刚体。

答题: A. B. C. D. (已提交)参考答案:C问题解析:2.(单选题) 平衡是指()。

(A)物体相对任何参考体静止不动。

(B)物体相对任何参考体匀速直线运动。

(C)物体只相对地球作匀速直线运动。

(D)物体相对地球静止不动或作匀速直线运动。

答题: A. B. C. D. (已提交)参考答案:D问题解析:3.(单选题) 一个物体是否被看作刚体,取决于()。

(A)变形是否微小(B)变形不起决定因素(C)物体是否坚硬(D)是否研究物体的变形答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题) 作用和反作用定律的适用范围是()。

(A)只适用于刚体(B)只适用于变形体(C)只适用于处于平衡状态的物体(D)适用于任何物体答题: A. B. C. D. (已提交)参考答案:D问题解析:5.(单选题) 图示系统受力F作用而平衡。

欲使A支座约束力的作用线与AB成60º角,则斜面的倾角应为()。

(A)0º(B)30º(C)45º(D)60º答题: A. B. C. D. (已提交)参考答案:B问题解析:6.(单选题) 力的可传性原理()。

(A)适用于刚体(B)适用于刚体和弹性体(C)适用于所有物体(D)只适用于平衡的刚体答题: A. B. C. D. (已提交)参考答案:A问题解析:7.(单选题) 如图所示的两个楔块A、B在m-m处光滑接触,现在其两端沿轴线各加一个大小相等、方向相反的力,则两个楔块的状态为()。

(A)A、B都不平衡(B)A平衡、B不平衡(C)A不平衡、B平衡(D)A、B都平衡答题: A. B. C. D. (已提交)参考答案:A问题解析:8.(单选题) 三力平衡定理是()。

大学理论力学第四章思考题及答案

大学理论力学第四章思考题及答案

第四章思考题4.1为什么在以角速度ω转动的参照系中,一个矢量G 的绝对变化率应当写作G ωG G ⨯+=*dtd dt d ?在什么情况下0=*dtd G ?在什么情况下0=⨯G ω?又在什么情况下0=dt d G ? 4.2式(4.1.2)和式(4.2.3)都是求单位矢量i 、j 、k 对时间t 的微商,它们有何区别?你能否由式(4.2.3)推出式(4.1.2)?4.3在卫星式宇宙飞船中,宇航员发现自己身轻如燕,这是什么缘故?4.4惯性离心力和离心力有哪些不同的地方?4.5圆盘以匀角速度ω绕竖直轴转动。

离盘心为r 的地方安装着一根竖直管,管中有一物体沿管下落,问此物体受到哪些惯性力的作用?4.6对于单线铁路来讲,两条铁轨磨损的程度有无不同?为什么?4.7自赤道沿水平方向朝北或朝南射出的炮弹,落地是否发生东西偏差?如以仰角 40朝北射出,或垂直向上射出,则又如何?4.8在南半球,傅科摆的振动面,沿什么方向旋转?如把它安装在赤道上某处,它旋转的周期是多大?4.9在上一章刚体运动学中,我们也常采用动坐标系,但为什么不出现科里奥利加速度?第四章思考题解答4.1.答:矢量G 的绝对变化率即为相对于静止参考系的变化率。

从静止参考系观察变矢量G 随转动系以角速度ω相对与静止系转动的同时G 本身又相对于动系运动,所以矢量G 的绝对变化率应当写作G ωG G ⨯+=*dt d dt d 。

其中dtd G *是G 相对于转动参考系的变化率即相对变化率;G ω⨯是G 随动系转动引起G 的变化率即牵连变化率。

若G 相对于参考系不变化,则有0=*dtd G ,此时牵连运动就是绝对运动,G ωG ⨯=dtd ;若0=ω即动系作动平动或瞬时平动,则有0=⨯G ω此时相对运动即为绝对运动 dtd dt d G G *=;另外,当某瞬时G ω//,则0=⨯G ω,此时瞬时转轴与G 平行,此时动系的转动不引起G 的改变。

当动系作平动或瞬时平动且G 相对动系瞬时静止时,则有0=dtd G ;若G 随动系转动引起的变化G ω⨯与相对动系运动的变化dt d G *等值反向时,也有0=dt d G 。

《理论力学》第四章 力系的简化习题解

《理论力学》第四章 力系的简化习题解
解:
(1)确定悬索的形状
根据对称性,建立如图所示的坐标系。
由公式(4-6)得:
悬索的边界条件为: , , , 。
所以悬索线方程为:
悬索线的斜率:
边界条件:
故悬索线方程为:
(2)求
(3)求最大拉力
由公式 得:
(出现在A、B两点处)。
[习题4-12]输电线之两塔相距 ,塔顶高差 ,垂度 ,电线每米重 ,并假定沿水平跨度均匀分布,求最低点水平拉力及最大拉力。
最大静摩擦力,那 么圆轮水平向右滑动,不
发生滚动。在这种情况下,杆OC的受力图如
图(a)所示。
由OC的平衡条件得:
圆轮的力图如图(b)所示。
由圆轮的平衡条件得:
(2)如果A先达到最大静摩擦力,那么圆轮将
沿地面滚动。此时,
由圆轮的平衡条件得:
(3)如果B先达到最大静摩擦力,那么圆轮将沿OC滚动。此时,
所示。由AB的平衡条件得:
………(1)
………(2)
………(3)
(1)/(2)得:
当物块M靠近B端时,板AB的受力如图(b)
所示。由AB的平衡条件得:
………(a)
………(b)
………(c )
(a)/(b)得:
综合考虑图(a)、(b)两种情况下的 值可知, 的范围是 。
[习题4-22] 攀登电线杆的脚套钩如图所示。设电线杆直径 ,A、B间的铅垂距离为 。若套钩与电线杆之间摩擦因为 ,求工人操作时,为了安全,站在套钩上的最小距离 应为多大?
故悬索线方程为:
…………(3)
(3) 代入(2)得:
当 时, ,即:
。故悬索线方程为:
(2)确定水平力
当 时, ,即:

理论力学习题答案

理论力学习题答案

静力学第一章习题答案1-3 试画出图示各结构中构件AB 的受力图1-4 试画出两结构中构件ABCD 的受力图1-5 试画出图a 和b 所示刚体系整体合格构件的受力图1-5a 1-5b1- 8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。

试求二力F 1和F 2之间的关系。

解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。

解法1(解析法)假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示:由共点力系平衡方程,对B 点有:对C 点有:解以上二个方程可得:22163.1362F F F ==F 2F BC F ABB45oyxF BCF CDC 60oF 130oxy解法2(几何法)分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和C 点上的力对B 2BC F F =对C 点由几何关系可知: 0130cos F F BC =解以上两式可得:2163.1F F =静力学第二章习题答案2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。

试求A 和C 点处的约束力。

解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。

曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。

AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):其中:31tan =θ。

对BC 杆有:aM F F F A B C 354.0=== A ,C 两点约束力的方向如图所示。

2-4解:机构中AB 杆为二力杆,点A,B 出的约束力方向即可确定。

由力偶系作用下刚体的平衡条件,点O,C 处的约束力方向也可确定,各杆的受力如图所示。

对BC 杆有: 0=∑MF CD F AB030sin 20=-⋅⋅M C B F B对AB 杆有: A B F F = 对OA 杆有: 0=∑M01=⋅-A O F M A求解以上三式可得:m N M ⋅=31, N F F F C O AB 5===,方向如图所示。

理论力学 第4章 静力学应用问题

理论力学 第4章   静力学应用问题
返回首页
第4章 静力学应用问题
4.1 主要内容
4.1.2 滑 动 摩 擦 (1)两个相互接触的物体产生相对运动或具有相对运动的趋
势时,彼此在接触部位会产生一种阻碍对方相对运动的作用。
这种现象称为摩擦,这种阻碍作用,称为摩擦阻力。 (2)阻碍彼此间沿接触面公切线方向的滑动或滑动趋势的作 用的摩擦,称为滑动摩擦,相应的摩擦阻力称为滑动摩擦力, 简称摩擦力。
F f FN
f 称为动滑动摩擦因数,简称动摩擦因数。
Theoretical Mechanics
返回首页
第4章 静力学应用问题
4.1.3 滚 动 摩 擦
4.1 主要内容
(1)阻碍两物体在接触部位相对滚动或相对滚动趋势的作用
的摩擦称为滚动摩擦,相应的摩擦阻力实际上是一种力偶,称 之为滚动摩擦阻力偶,简称滚阻力偶。 (2)接触面之间产生的这种阻碍滚动趋势的阻力偶称为静滚 动摩擦阻力偶,简称静滚阻力偶。
F y 0, F7 F8 sin F4 sin 10 0
F8= –22.4 kN (压),F7= 10 kN (拉)
Theoretical Mechanics 返回首页
第4章 静力学应用问题
4.4 例 题 分 析
由于结构和载荷都对称,所以左右两边对称位置的杆件
内力相同,故计算半个屋架即可。现将各杆的内力标在各杆
Theoretical Mechanics
返回首页
第4章 静力学应用问题
例4-3 已知图所示桁架 中∠CAB=∠DBA=60º , ∠CBA = ∠DAB= 30º。 DA、DE、CB、CF均各为 一杆,中间无节点,求桁 架中1、2两杆的内力。
4.4 例 题 分 析
解:先求FNB,以整体为研究对象,画受力图,列方程

理论力学静力学第四章习题答案

理论力学静力学第四章习题答案

a tan
zC
3.在平衡位置,不破坏约束的前提下,假定杆 AB 逆时针旋转一个微小的角度 ,则质心 C 的虚位移:
a l cos tan 2

zC
4.由虚位移原理
a sin
2

l sin 2
W ( Fi ) 0 有:
a sin
2
W ( Fi ) 0 有:
(1)
FB rB cos 450 M F2 y2 cos 1500 F3 y3 0
各点的虚位移如下:
rB 6 2
代入(1)式整理可得:
y2 9
y3 3
(6 FB M
9 3 F2 3F3 ) 0 2
δθ δ rA δ rD δ rE δ rB δ rC
rA O A , rB O B , rC O1C
rD O1D , rB rC , rD rE
代入可得: rA 30rE 4.由虚位移原理
W ( Fi ) 0 有:
3.在不破坏约束的前提下给定一组虚位移 x A 0, y A 0, 0 ,如上图所示。 由虚位移原理
W ( Fi ) 0 有:
(2)
M A F 1 y1 F2 y2 F3 y3 M 0
有几何关系可得各点的虚位移如下:
R sin R l cos 杆的质心坐标可表示为: zC sin 2
坐标。由几何关系可知: z A 3.在平衡位置,不破坏约束的前提下,假定杆 AB 顺时针旋转一个微小的角度 ,则质心 C 的虚位移:
zC
4.由虚位移原理

哈尔滨工业大学第7版理论力学第4章课后习题答案_图文(精)

哈尔滨工业大学第7版理论力学第4章课后习题答案_图文(精)
−=z F m N 8.513.05
12001.013
3300⋅−=××
−××
−=x M
m N 6.361.013
220020.0100⋅−=××+×−=y M m
N 6.1033.05
22002.013
3300⋅=××
+××=z M主矢N 4262R 2R 2R R =++=x y z F F F F ,N
z B
β
A
C
θ
β
F
1
F
2
F
(a(b
图4-5
解将力F分解为F1,F2,F1垂直于AB而与CE平行,F2平行于AB,如图4-5b所示,这2个分力分别为:
α
sin
1
F
F=,α
cos
2
F
F=
(
(
(
2
1
F
M
F
M
F
M
AB
AB
AB
+
=0
sin
1
+


a

αsin
sin
Fa
=
4-6水平圆盘的半径为r,外缘C处作用有已知力F。力F位于铅垂平面内,且与C处圆盘切线夹角为60°,其他尺寸如图4-6a所示。求力F对x,y,z轴之矩。
350×
×
+
×
×

×
×

×
×
×
=
z
M
m
N
4.
19
mm
N
400
19⋅

=

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.在不破坏约束的前提下给定一组虚位移 x A 0, y A 0, 0 ,如上图所示。 由虚位移原理
W ( Fi ) 0 有:
(2)
M A F 1 y1 F2 y2 F3 y3 M 0
有几何关系可得各点的虚位移如下:
各点的虚位移如下:
x1 x2 x A
代入(2)式整理可得:
( FAx F 1 0.5F2 ) x A 0
对任意 x A 0 可得: FAx 2(kN ) ,方向如图所示。 2b.求 FAy
在不破坏约束的前提下给定一组虚位移 x A 0, y A 0, 0 ,此时梁 AC 向上 平移,梁 CDB 绕 D 点转动,如上图所示。由虚位移原理
rD a , rK 3a
滑动支座 B 处只允许水平方向的位移,而杆 BK 上 K 点虚位移沿铅垂方向,故 B 点不动。 三角形 BEK 绕 B 点旋转 rE B E ,且:
rE rD a
对刚性杆 CD 和杆 CE,由于 rD C D , rE C E ,因此 rC 0 。由虚位移原理
1 3 1 F3 F2 M ) y A 0 2 4 6
FAy 3.8(kN) ,方向如图所示。
对任意 y A 0 可得:
2c.求 M A 在不破坏约束的前提下给定一组虚位移 x A 0, y A 0, 0 ,此时梁 AC 绕 A 点 转动,梁 CDB 平移,如上图所示。由虚位移原理
o
1.求支座 B 处的约束力 解除 B 点处的约束, 代之以力 FB , 并将其视为主动力, 系统还受到主动力 F 1, F2 , F3 , M 的作用,如图所示。在不破坏约束的前提下,杆 AC 不动,梁 CDB 只能绕 C 点转动。系统有 一个自由度,选转角 为广义坐标。给定虚位移 ,由虚位移原理
P zC P (
对任意 0 有:

l sin ) 0 2
a sin 2

l sin 0 2
1
2a 3 即杆 AB 平衡时: arcsin( ) 。 l
解:4b 1.选杆 AB 为研究对象,该系统具有理想约束。设杆重为 P,作用在杆上的主动力为重力。 2.该系统的位置可通过杆 AB 与 z 轴的夹角 完全确定,有一个自由度。选参数 为广义
W ( Fi ) 0 有:
FAx x A 0
对任意 x A 0 可得:
FAx 0
2.在不破坏约束的前提下给定一组虚位移 x A 0, y A 0, 0 ,如下图所示。 由虚位移原理
W ( Fi ) 0 有:
(1)
FAy y A F1 y1 F2 y2 F3 y3 M 0
l sin 2
W ( Fi ) 0 有:
R sin
2
P zC P (
对任意 0 有:
cos
l sin ) 0 2

R sin
2
cos
l sin 0 2
即平衡时 角满足: 2R cos l sin 3 0 。
4-5 被抬起的简化台式打字机如图所示。 打字机和搁板重 P, 弹簧原长为 保持平衡时的弹簧刚度系数值。
a , 试求系统在 角 2
解: 1.选整个系统为研究对象,此系统包含弹簧。设弹簧力 F 1, F2 ,且 F 1 F2 ,将弹簧力 视为主动力。此时作用在系统上的主动力有 F 1, F2 ,以及重力 P 。 2. 该系统只有一个自由度,选定 为广义坐标。由几何关系可知:
a tan
zC
3.在平衡位置,不破坏约束的前提下,假定杆 AB 逆时针旋转一个微小的角度 ,则质心 C 的虚位移:
a l cos tan 2
zC
4.由虚位移原理
a sin
2

l sin 2
W ( Fi ) 0 有:
a sin
2
4-8 设桁架有水平力 F1 及铅垂力 F2 作用其上,且 AD DC CE BE DK KE ,
30 o 。试求杆 1,2 和 3 所受的力。
解:
假设各杆受拉,杆长均为 a。
1.求杆 1 受力 去掉杆 1,代之以力 P 1 ,系统有一个自由度,选 AK 与水平方向的夹角 为广义坐标,如 上图所示。在不破坏约束的条件下给定一组虚位移,此时三角形 ADK 形状不变,绕 A 点转 动,因此有 rD A D , rK A K ,且:
R sin R l cos 杆的质心坐标可表示为: zC sin 2
坐标。由几何关系可知: z A 3.在平衡位置,不破坏约束的前提下,假定杆 AB 顺时针旋转一个微小的角度 ,则质心 C 的虚位移:
zC
4.由虚位移原理
R sin
2
cos
静力学第四章部分习题解答
4-1 力铅垂地作用于杆 AO 上, AO 6BO, CO1 5DO1 。 在图示位置上杠杆水平, 杆 DC 与 DE 垂直。试求物体 M 所受的挤压力 FM 的大小。 解: 1.选定由杆 OA,O1C,DE 组成的系统为研 究对象,该系统具有理想约束。作用在系 统上的主动力为 F , FM 。 2.该系统的位置可通过杆 OA 与水平方向 的夹角 完全确定,有一个自由度。选参 数 为广义坐标。 3.在图示位置,不破坏约束的前提下,假 定杆 OA 有一个微小的转角 ,相应的 各点的虚位移如下:
由几何关系可得各点的虚位移如下:
y1 yC y3 y A
y2
1 1 yC y A 3 3

代入(1)式:
1 1 yC y A 3 3 1 1 F2 F3 M ) y A 0 3 3
( FAy F 1
对任意 x A 0 可得: FAy 4(kN ) ,方向如图所示。
W ( Fi ) 0 有:
(4)
0 M A F 1 x1 F2 x2 cos 120 0
各点的虚位移如下:
x1 3
代入(4)式整理可得:
x2 xC 6
(M A 3F1 3F2 ) 0
对任意 0 可得: M A 24(kN m) ,顺时针方向。
δθ δ rA δ rD δ rE δ rB δ rC
rA O A , rB O B , rC O1C
rD O1D , rB rC , rD rE
代入可得: rA 30rE 4.由虚位移原理
W ( Fi ) 0 有:
解: 解除 A 端的约束,代之以 FAx , FAy , M A ,并将其视为主动力,此外系统还受到主动力
F 系统有三个自由度, 选定 A 点的位移 x A , y A 和梁 AC 的转角 1, F2 , F3 , M 的作用。
为广义坐标。 1.在不破坏约束的前提下给定一组虚位移 x A 0, y A 0, 0 ,如图所示。 由虚位移原理
F rA FM rE (30F FM ) rE 0
对任意 rE 0 有: FM 30F ,物体所受的挤压力的方向竖直向下。 4-4 如图所示长为 l 的均质杆 AB,其 A 端连有套筒,又可沿铅垂杆滑动。忽略摩擦及套筒重 量,试求图示两种情况平衡时的角度 。 解:4a 1.选杆 AB 为研究对象,该系统具有理想约束。设杆重为 P,作用在杆上的主动力为重力。 2.该系统的位置可通过杆 AB 与 z 轴的夹角 完全确定,有一个自由度。选参数 为广义 坐标。由几何关系可知: h 杆的质心坐标可表示为:

k
2 P cos a (2 sin cos

2
)
4-6 复合梁 AD 的一端砌入墙内, B 点为活动铰链支座, C 点为铰链,作用于梁上的力
F1 5kN, F2 4kN, F3 3kN ,以及力偶矩为 M 2kN m 的力偶,如图所示。试求固定
端 A 处的约束力。
y1 2
y3 yC 3
y2

代入(2)式:
( M A 2 F 1 F2 3F 3 M ) 0
对任意 0 可得:
M A 7(kN m) ,逆时针方向。
4-7 图示结构上的载荷如下: q 2kN m ;力 F1 4kN ;力 F2 12kN ,其方向与水平 成 60 角;以及力偶,其力偶矩为 M 18kN m 。试求支座处的约束力。 解: 将均布载荷简化为作用在 CD 中点的集中载荷 F3 ,大小为 6q 。
W ( Fi ) 0 有:
0 0 (F 1P 1) rD cos 60 P 1 rE cos 60 0
代入各点的虚位移整理可得:
(F 1 2P 1) a 0
F 1 (受压) 对任意 0 可得: P 。 1 2
2.求杆 2 受力 去掉杆 2,代之以力 P 2 ,系统有一个自由度,选 BK 与水平方向的夹角 为广义坐标,如 上 图所 示。 在不 破坏 约束 的条 件下 给定 一组 虚位 移, 杆 AK 绕 A 点转 动, 因此 有
W ( Fi ) 0 有:
(1)
FB rB cos 450 M F2 y2 cos 1500 F3 y3 0
各点的虚位移如下:
rB 6 2
代入(1)式整理可得:
y2 9
y3 3
(6 FB M
9 3 F2 3F3 ) 0 2
W ( Fi ) 0 有:
FAy y A F3 y3 F2 y2 cos 300 M 0
相关文档
最新文档