The calculation of low-Reynolds-number phenomena with a two-equation model

合集下载

0112-湍流模型介绍

0112-湍流模型介绍

2
Outline
3
Turbulence models introduction Boussinesq hypothesis Eddy viscosity concept Zero equation model One equation model Two equation models Algebraic stress model Reyolds stress model Comparison Applications Developments Conclusion
ij
T
U i U j ui ' u j ' t x xi j






A new quantity appears: the turbulent viscosity or eddy viscosity (νt ). The second term is added to make it applicable to normal turbulent stress. The turbulent viscosity depends on the flow, i.e. the state of turbulence. The turbulent viscosity is not homogeneous, i.e. it varies in space.
Turbulence Models and Their Applications
Turbulence models
4




A turbulence model is a procedure to close the system of mean flow equations. For most engineering applications it is unnecessary to resolve the details of the turbulent fluctuations. Turbulence models allow the calculation of the mean flow without first calculating the full time-dependent flow field. We only need to know how turbulence affected the mean flow. In particular we need expressions for the Reynolds stresses. For a turbulence model to be useful it:

基于Fluent的低雷诺数突扩圆管流场的数值模拟_许自顺

基于Fluent的低雷诺数突扩圆管流场的数值模拟_许自顺
摘要: 针对突然扩大的管道流动这一流动现象,使用 hypermesh 软件建立了突扩管的物理模型,在低雷诺数条件下应用 Fluent 对水流的管路突扩情况进行了不同雷诺数和不同扩张比下的管内流体的流动形态数值模拟。通过 Ensight 和 Grapher 等后处理软件对计算结果进行了图像和数据的处理,分析了管路突扩回流时速度和压力的分布情况,总结了突扩管的阻力 系数变化规律。模拟结果可以很好地反映突扩管流的基本特征,对生产中相关产品的改善提供理论依据。 关键词:突扩管;数值模拟;流场;水头损失 中图分类号:TK401 文献标识码:A 文章编号:1000 - 6494(2016)01 - 0027 - 04
0 引言
当固体边界形状突然改变时,引起原有水流 内部结构的改变,从而产生漩涡等现象。在边界改 变之后,水流还要重新调整以适应均匀流条件。突 扩回流由于流体的惯性和突然扩大的边界条件,在 管壁拐角与主流束之间成分离和回流区,会引起压 力降低和能量损失 [1]。突然扩张管道在能源、动
基金项目:国家科技支撑计划子课题 (2015BAF07B04 ) 作者简介:许自顺(1990 -), 男,山东菏泽人,硕士 研究生,主要从事动力机械的研究。 收稿日期:2015 - 10 - 14
动,操作压力选用标准大气压,求解压力速度采取 SIMPLE 算法,采取标准 k-ε模型,动量方程用二 维迎风格式离散,亚松弛迭代因子定为压力修正项 取 0.3,动量修正项选 0.7。连续性方程和动量方程 收敛残差标准均为 10-3,从速度入口为计算起始点 展开计算[4]。
3 求解及结果分析
3.1 不同雷诺数下的突扩管模拟 首先计算扩张比一定时管道内流场随 Re 的变 化规律,取 e = 2 的物理模型, D1 = 100 mm,D2 = 200 mm,分 别 取 雷 诺 数 Re = 20,Re = 50,Re = 100,Re = 150 四种入口情况进行计算。以 Re = 20 为例,计算经 183 次收敛。残差监视图见图 2。

流体力学常用名词中英文对照

流体力学常用名词中英文对照

流体力学常用名词流体动力学fluid dynamics连续介质力学mechanics of continuous介质medium流体质点fluid particle无粘性流体nonviscous fluid, inviscid连续介质假设continuous medium hypothesis流体运动学fluid kinematics水静力学hydrostatics液体静力学hydrostatics支配方程governing equation伯努利方程Bernoulli equation伯努利定理Bernonlli theorem毕奥-萨伐尔定律Biot-Savart law欧拉方程Euler equation亥姆霍兹定理Helmholtz theorem开尔文定理Kelvin theorem涡片vortex sheet库塔-茹可夫斯基条件Kutta-Zhoukowski condition 布拉休斯解Blasius solution达朗贝尔佯廖d'Alembert paradox雷诺数Reynolds number施特鲁哈尔数Strouhal number随体导数material derivative不可压缩流体incompressible fluid质量守恒conservation of mass动量守恒conservation of momentum能量守恒conservation of energy动量方程momentum equation能量方程energy equation控制体积control volume液体静压hydrostatic pressure涡量拟能enstrophy压差differential pressure流[动]flow流线stream line流面stream surface流管stream tube迹线path, path line流场flow field流态flow regime流动参量flow parameter流量flow rate, flow discharge涡旋vortex涡量vorticity涡丝vortex filament 涡线vortex line 涡面vortex surface 涡层vortex layer 涡环vortex ring 涡对vortex pair 涡管vortex tube 涡街vortex street 卡门涡街『Karman vortex street 马蹄涡horseshoe vortex 对流涡胞convective cell 卷筒涡胞roll cell 涡eddy 涡粘性eddy viscosity 环流circulation 环量circulation速度环量velocity circulation 偶极子doublet, dipole 驻点stagnation point 总压[力]total pressure 总压头total head 静压头static head 总焓total enthalpy 能量输运energy transport 速度剖面velocity profile 库埃特流Couette flow 单相流single phase flow 单组份流single-component flow 均匀流uniform flow 非均匀流nonuniform flow 二维流two-dimensional flow 三维流three-dimensional flow 准定常流quasi-steady flow 非定常流unsteady flow, non-steady flow 暂态流transient flow 周期流periodic flow 振荡流oscillatory flow 分层流stratified flow 无旋流irrotational flow 有旋流rotational flow 轴对称流axisymmetric flow 不可压缩性incompressibility 不可压缩流[动]incompressible flow浮体floating body 定倾中心metacenter 阻力drag, resistance 减阻drag reduction 表面力surface force 表面张力surface tension 毛细[管]作用capillarity 来流incoming flow 自由流free stream 自由流线free stream line 外流external flow 进口entrance, inlet 出口exit, outlet扰动disturbance, perturbation分布distribution 传播propagation 色散dispersion 弥散dispersion 附力口质量added mass ,associated mass 收缩contraction 镜象法image method无量纲参数dimensionless parameter几何相似geometric similarity 运动相似kinematic similarity 动力相似[性]dynamic similarity 平面流plane flow 势potential 势流potential flow 速度势velocity potential 复势complex potential 复速度complex velocity 流函数stream function 源source 汇sink速度[水]头velocity head拐角流corner flow空泡流cavity flow 超空泡supercavity 超空泡流supercavity flow 空气动力学aerodynamics 低速空气动力学low-speed aerodynamics 高速空气动力学high-speedaerodynamics 气动热力学aerothermodynamics 亚声速流[动]subsonic flow 跨声速流[动]transonic flow超声速流[动]supersonic flow锥形流conical flow楔流wedge flow叶栅流cascade flow非平衡流[动]non-equilibrium flow细长体slender body细长度slenderness钝头体bluff body钝体blunt body翼型airfoil翼弦chord薄翼理论thin-airfoil theory构型configuration后缘trailing edge迎角angle of attack失速stall月兑体激波detached shock wave波阻wave drag诱导阻力induced drag诱导速度induced velocity临界雷诺数critical Reynolds number前缘涡leading edge vortex附着涡bound vortex约束涡confined vortex气动中心aerodynamic center气动力aerodynamic force气动噪声aerodynamic noise气动力口热aerodynamic heating离解dissociation地面效应ground effect气体动力学gas dynamics稀疏波rarefaction wave热状态方程thermal equation of state 喷管Nozzle普朗特-迈耶流Prandtl-Meyer flow瑞利流Rayleigh flow可压缩流[动]compressible flow可压缩流体compressible fluid绝热流adiabatic flow非绝热流diabatic flow未扰动流undisturbed flow等熵流isentropic flow匀熵流homoentropic flow 兰金-于戈尼奥条件Rankine-Hugoniot condition 状态方程equation of state 量热状态方程caloric equation of state 完全气体perfect gas 拉瓦尔喷管Laval nozzle 马赫角Mach angle 马赫锥Mach cone 马赫线Mach line 马赫数Mach number 马赫波Mach wave 当地马赫数local Mach number 冲击波shock wave 激波shock wave 正激波normal shock wave 斜激波oblique shock wave 头波bow wave 附体激波attached shock wave 激波阵面shock front 激波层shock layer 压缩波compression wave 反射reflection 折射refraction 散射scattering 衍射diffraction 绕射diffraction 出口压力exit pressure 超压[强]over pressure 反压back pressure 爆炸explosion 爆轰detonation 缓燃deflagration 水动力学hydrodynamics 液体动力学hydrodynamics 泰勒不稳定性Taylor instability 盖斯特纳波Gerstner wave 斯托克斯波Stokes wave 瑞利数Rayleigh number 自由面free surface波速wave speed, wave velocity波高wave height 波歹U wave train 波群wave group 波能wave energy 表面波surface wave表面张力波capillary wave规则波regular wave不规则波irregular wave浅水波shallow water wave深水波deep water wave重力波gravity wave椭圆余弦波cnoidal wave潮波tidal wave涌波surge wave破碎波breaking wave船波ship wave非线性波nonlinear wave孤立子soliton水动[力]噪声hydrodynamic noise水击water hammer空化cavitation空化数cavitation number空蚀cavitation damage 超空化流supercavitating flow水翼hydrofoil水力学hydraulics洪水波flood wave涟漪ripple消能energy dissipation海洋水动力学marine hydrodynamics谢齐公式Chezy formula欧拉数Euler number弗劳德数Froude number水力半径hydraulic radius水力坡度hvdraulic slope高度水头elevating head水头损失head loss水位water level水跃hydraulic jump含水层aquifer排水drainage排放量discharge壅水曲线back water curve压[强水]头pressure head过水断面flow cross-section明槽流open channel flow孑1流orifice flow无压流free surface flow有压流pressure flow缓流subcritical flow急流supercritical flow渐变流gradually varied flow急变流rapidly varied flow临界流critical flow异重流density current, gravity flow堰流weir flow掺气流aerated flow含沙流sediment-laden stream降水曲线dropdown curve沉积物sediment, deposit沉[降堆]积sedimentation, deposition沉降速度settling velocity流动稳定性flow stability不稳定性instability奥尔-索末菲方程Orr-Sommerfeld equation 涡量方程vorticity equation泊肃叶流Poiseuille flow奥辛流Oseen flow剪切流shear flow粘性流[动]viscous flow层流laminar flow分离流separated flow二次流secondary flow近场流near field flow远场流far field flow滞止流stagnation flow尾流wake [flow]回流back flow反流reverse flow射流jet自由射流free jet管流pipe flow, tube flow内流internal flow拟序结构coherent structure 猝发过程bursting process 表观粘度apparent viscosity 运动粘性kinematic viscosity 动力粘性dynamic viscosity 泊poise厘泊centipoise厘沱centistoke剪切层shear layer次层sublayer流动分离flow separation层流分离laminar separation 湍流分离turbulent separation 分离点separation point 附着点attachment point 再附reattachment再层流化relaminarization 起动涡starting vortex 驻涡standing vortex 涡旋破碎vortex breakdown 涡旋脱落vortex shedding 压[力]降pressure drop 压差阻力pressure drag 压力能pressure energy 型阻profile drag 滑移速度slip velocity 无滑移条件non-slip condition 壁剪应力skin friction, frictional drag 壁剪切速度friction velocity 磨擦损失friction loss磨擦因子friction factor耗散dissipation滞后lag相似性解similar solution局域相似local similarity 气体润滑gas lubrication 液体动力润滑hydrodynamic lubrication 浆体slurry泰勒数Taylor number纳维-斯托克斯方程Navier-Stokes equation 牛顿流体Newtonian fluid边界层理论boundary later theory 边界层方程boundary layer equation 边界层boundary layer 附面层boundary layer层流边界层laminar boundary layer 湍流边界层turbulent boundary layer 温度边界层thermal boundary layer 边界层转捩boundary layer transition 边界层分离boundary layer separation 边界层厚度boundary layer thickness 位移厚度displacement thickness 动量厚度momentum thickness 能量厚度energy thickness 焓厚度enthalpy thickness注入injection吸出suction泰勒涡Taylor vortex速度亏损律velocity defect law形状因子shape factor测速法anemometry粘度测定法visco[si] metry流动显示flow visualization油烟显示oil smoke visualization孔板流量计orifice meter频率响应frequency response油膜显示oil film visualization阴影法shadow method纹影法schlieren method烟丝法smoke wire method丝线法tuft method说明氢泡法nydrogen bubble method相似理论similarity theory相似律similarity law部分相似partial similarity定理pi theorem, Buckingham theorem静[态]校准static calibration动态校准dynamic calibration风洞wind tunnel激波管shock tube激波管风洞shock tube wind tunnel水洞water tunnel拖曳水池towing tank旋臂水池rotating arm basin扩散段diffuser测压孔pressure tap皮托管pitot tube普雷斯顿管preston tube斯坦顿管Stanton tube文丘里管Venturi tubeU 形管U-tube压强计manometer微压计micromanometer多管压强计multiple manometer静压管static [pressure]tube流速计anemometer风速管Pitot- static tube激光多普勒测速计laser Doppler anemometer,laser Doppler velocimeter 热线流速计hot-wire anemometer热膜流速计hot- film anemometer流量计flow meter粘度计visco[si] meter涡量计vorticity meter传感器transducer, sensor压强传感器pressure transducer热敏电阻thermistor示踪物tracer时间线time line脉线streak line尺度效应scale effect壁效应wall effect堵塞blockage堵寒效应blockage effect动态响应dynamic response响应频率response frequency底压base pressure菲克定律Fick law巴塞特力Basset force埃克特数Eckert number格拉斯霍夫数Grashof number努塞特数Nusselt number普朗特数prandtl number雷诺比拟Reynolds analogy施密特数schmidt number斯坦顿数Stanton number对流convection自由对流natural convection, free convec-tion 强迫对流forced convection热对流heat convection质量传递mass transfer传质系数mass transfer coefficient热量传递heat transfer传热系数heat transfer coefficient对流传热convective heat transfer辐射传热radiative heat transfer动量交换momentum transfer能量传递energy transfer传导conduction热传导conductive heat transfer热交换heat exchange临界热通量critical heat flux浓度concentration扩散diffusion扩散性diffusivity扩散率diffusivity扩散速度diffusion velocity分子扩散molecular diffusion沸腾boiling蒸发evaporation气化gasification凝结condensation成核nucleation计算流体力学computational fluid mechanics 多重尺度问题multiple scale problem伯格斯方程Burgers equation对流扩散方程convection diffusion equation KDU 方程KDV equation修正微分方程modified differential equation 拉克斯等价定理Lax equivalence theorem数值模拟numerical simulation大涡模拟large eddy simulation数值粘性numerical viscosity非线性不稳定性nonlinear instability希尔特稳定性分析Hirt stability analysis相容条件consistency conditionCFL 条件Courant- Friedrichs- Lewy condition ,CFL condition 狄里克雷边界条件Dirichlet boundary condition熵条件entropy condition远场边界条件far field boundary condition流入边界条件inflow boundary condition无反射边界条件nonreflecting boundary condition数值边界条件numerical boundary condition流出边界条件outflow boundary condition冯.诺伊曼条件von Neumann condition近似因子分解法approximate factorization method人工压缩artificial compression人工粘性artificial viscosity边界元法boundary element method配置方法collocation method能量法energy method有限体积法finite volume method流体网格法fluid in cell method,FLIC method通量校正传输法flux-corrected transport method通量矢量分解法flux vector splitting method伽辽金法Galerkin method积分方法integral method标记网格法marker and cell method, MAC method特征线法method of characteristics直线法method of lines矩量法moment method多重网格法multi- grid method板块法panel method质点网格法particle in cell method, PIC method质点法particle method预估校正法predictor-corrector method投影法projection method准谱法pseudo-spectral method随机选取法random choice method激波捕捉法shock-capturing method激波拟合法shock-fitting method谱方法spectral method稀疏矩阵分解法split coefficient matrix method不定常法time-dependent method时间分步法time splitting method变分法variational method涡方法vortex method隐格式implicit scheme显格式explicit scheme交替方向隐格式alternating direction implicit scheme, ADI scheme反扩散差分格式anti-diffusion difference scheme紧差分格式compact difference scheme守恒差分格式conservation difference scheme克兰克-尼科尔森格式Crank-Nicolson scheme杜福特-弗兰克尔格式Dufort-Frankel scheme指数格式exponential scheme戈本诺夫格式Godunov scheme高分辨率格式high resolution scheme拉克斯-温德罗夫格式Lax-Wendroff scheme蛙跳格式leap-frog scheme单调差分格式monotone difference scheme保单调差分格式monotonicity preserving diffe-rence scheme穆曼-科尔格式Murman-Cole scheme半隐格式semi-implicit scheme斜迎风格式skew-upstream scheme全变差下降格式total variation decreasing scheme TVD scheme迎风格式upstream scheme , upwind scheme计算区域computational domain物理区域physical domain影响域domain of influence依赖域domain of dependence区域分解domain decomposition 维数分解dimensional split 物理解physical solution 弱解weak solution 黎曼解算子Riemann solver 守恒型conservation form 弱守恒型weak conservation form 强守恒型strong conservation form 散度型divergence form 贴体曲线坐标body- fitted curvilinear coordi-nates [自]适应网格[self-] adaptive mesh 适应网格生成adaptive grid generation 自动网格生成automatic grid generation 数值网格生成numerical grid generation 交错网格staggered mesh 网格雷诺数cell Reynolds number 数植扩散numerical diffusion 数值耗散numerical dissipation 数值色散numerical dispersion 数值通量numerical flux 放大因子amplification factor 放大矩阵amplification matrix 阻尼误差damping error 离散涡discrete vortex 熵通量entropy flux 熵函数entropy function 分步法fractional step method。

scroll pump(涡旋真空泵)介绍

scroll pump(涡旋真空泵)介绍
Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 39, No. 1, p. 101–107 (January 2002)
TECHNICAL REPORT
Analytical Study of Volumetric Scroll Pump for Liquid Hydrogen Circulating System
KEYWORDS: volumetric scroll pump, liquid hydrogen, suction process, circulating systems, pressure distribution, velocity distribution, pressure dependence
where α: Scroll coefficient (mm) β: Discrepancy of starting rolls angle (radian) γ : Radius of basic circle, α(π −β) (radian) θ : Crank angle (radian) λ: Position angle (radian).
In the present study, we mainly concentrate on the solution at the positions close to the end of the suction process. The analytical model has been reconstructed for predicting flow patterns and pressure distributions in the suction process under
Fig. 1 Process inside a scroll pump

OrcaFlex软件操作指引说课材料

OrcaFlex软件操作指引说课材料

精品文档OrcaFlex软件操作指南按照客户要求,本报告以钢悬链立管(SCR)为例,从SCR总体强度分析、运动疲劳分析和安装分析三个方面给出了OrcaFlex软件的主要操作指南,现分别叙述如下。

1总体强度分析在OrcaFlex主界面里,由上到下依次是菜单栏、工具栏和模型显示窗口。

按住Ctrl+鼠标左键可以进行模型的旋转,按住Ctrl+鼠标中键可以进行模型放大和缩小,按住Ctrl+T可以正视整个模型,按住Ctrl+P可以俯视整个模型。

1.1模型树的调用双击打开OrcaFlex软件,点击工具栏中的模型浏览器按钮(Model Browser),显示模型树。

精品文档.精品文档环境参数设置1.2按钮打开环境参数设置界面。

双击EnvironmentSea1.2.1雷诺数计算方海水温度,由上到下可依次设置海平面位置,运动粘性系数其中海平面位置数值是相对于总体坐标系而言;温度为摄氏温度,它的大小直接影响到运动粘性系数。

而雷诺数的计算方法,主要取决于流速和结构特征长度的计算。

软件中三种方法雷诺数最终的计算公式分别为Re = |Vr|D/ν,Re crossnom= |Vr|Dcos(α)/ν,Re = |Vr|D/νcos(α),其中Vr径向速度。

OrcaFlex calculates flow Reynolds number in order to calculate drag and lift coefficients1.2.2Sea Density设置海水密度,可以是变化的,也可以是恒定不变的。

如该海域的海水密度为1025Kg/m3,具体如下图所示。

精品文档.精品文档1.2.3Sea Bed设置海底形状,海水的深度、斜度以及海底土壤的刚度系数,其中海底斜度和海底方向都是相对于总体坐标系而言,具体参数应在立管总体设计参数中给出。

具1.2.4Waves设置波浪的参数,主要包括波浪方向、波高、周期、起始时间,波浪类型等,其中波浪方向是相对于总体坐标系而言,波浪类型的选取取决于分析类型和实际海况,波高和周期根据海况资料给出,具体参数设置如下面表格和图所示。

木质部管胞纹孔结构对植物管胞内径及电阻率的影响

木质部管胞纹孔结构对植物管胞内径及电阻率的影响

湖南农业大学学报(自然科学版)2019, 45(4):425–432. DOI:10.13331/ki.jhau.2019.04.015Journal of Hunan Agricultural University (Natural Sciences)投稿网址:木质部管胞纹孔结构对植物管胞内径及电阻率的影响徐天宇,张立翔*(昆明理工大学建筑工程学院,云南昆明 650500)摘要:运用数学模型和流体建模相结合的方法,建立植物单管胞阻力计算的数学模型,研究纹孔结构与植物管胞内径及电阻率的关系;采用低雷诺数k–ε模型对不同结构的塞–缘具缘纹孔水分流动进行数值模拟。

结果显示纹孔深度、纹孔塞缘孔隙率、纹孔直径、纹孔塞直径是影响管胞电阻率的主要因素。

纹孔深度6 μm的比3 μm的电阻率降低18.57%,管胞内径增加23.43%;纹孔塞缘孔隙率66.7%比16.7%的电阻率降低9.80%,管胞内径增加10.65%;纹孔直径16 μm的比10 μm的电阻率降低9.21%,管胞内径增加10.54%;纹孔塞直径4 μm的比2.5 μm的电阻率提高8.76%,管胞内径减少8.14%;纹孔结构的变化导致其管胞长宽比值出现差异性,管胞长宽比为(95∶1)~ (70∶1)。

在纹孔阻力一定的情况下,纹孔阻力与管胞内流动长度阻力之间的比值随管胞内流动长度的增加而减小;当管胞内流动长度为管胞长度的2/3时,纹孔阻力与管胞内流动长度阻力之间的比值为0.997,其纹孔类型不影响纹孔阻力与管胞内流动长度阻力之间的比值。

关 键 词:植物木质部;单管胞模型;纹孔结构;电阻率;管胞长宽比中图分类号:O351文献标志码:A文章编号:1007−1032(2019)04−0425−08Influence of the tracheid structure in xylem on the inner diameterand the electrical resistivity for Plant tracheidXU Tianyu,ZHANG Lixiang*(Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, Yunnan 650500, China)Abstract: A mathematical model of plant single-tracheid resistance calculation is established to investigate the relationship between the tracheid structure and the inner diameter and electrical resistivity of plant tracheid.The water flow in plant tracheid with different torus-margo bordered pit structure was simulated of different torus-margo bordered pit structure is carried out by using the low Reynolds number k-ε model for the torus-margo bordered pit resistance. The results show that the parameters such as pit diameter, pit depth, diameter of torus, and porosity of margo are the main factors affecting the resistivity and inner diameter of tracheid. It is found that with the increase of the pit depth, the resistivity of the pit depth of 6 μm is reduced by 18.57% compared with the pit depth of 3 μm, and the inner diameter of the tracheid increases by 23.43%. With the increase of the porosity of margo, the resistivity of the porosity of margo of66.7% is reduced by 9.80% compared with the porosity of margo of 16.7%, and the inner diameter of the tracheidincreases by 10.65%. As the pit diameter increases, the resistivity of the pit diameter of 16 μm is reduced by 9.21% compared with the pit diameter of 10 μm, and the inner diameter of the tracheid increases by 10.54%. As the diameter of torus increases, the resistivity of the diameter of torus of 4 μm is increased by 8.76% compared with the diameter of torus of 2.5 μm, and the inner diameter of the tracheid decreases by 8.14%. The change in the pit structure leads to the difference in the aspect ratio of the tracheids, and the calculated ratio is (95∶1)-(70∶1). In the case of a certain resistance of the pit, the proportion between the pit resistance and tracheid flow length resistance decreases as the tracheid flow length increases, when the flow length is two-thirds of the length of the tracheid, the proportion is 0.997, and the type of pit does not affect the ratio between the pit resistance and tracheid flow length resistance.收稿日期:2018–12–25修回日期:2019–03–06基金项目:国家自然科学基金项目(51279071);教育部高等学校博士点基金项目(2013531413002)作者简介:徐天宇(1991—),男,黑龙江齐齐哈尔人,博士研究生,主要从事植物流体力学与数值模拟研究,*****************;*通信作者,张立翔,教授,主要从事数值模拟与流固耦合研究,*******************.cn426湖南农业大学学报(自然科学版) 2019年8月Keywords: plant xylem; single tracheid model; torus-margo bordered pit structure; resistivity; aspect ratio of tracheal植物木质部是连接根系和冠层的主要输水通道。

七氟丙烷气体灭火系统沿程压力损失计算方法

七氟丙烷气体灭火系统沿程压力损失计算方法

第!5卷第1期 机 电工程V)!5 No.12018 年 1月Journal of Mechanical &Electrical Engineering Jan.2018DOI;10. 3969/j.issn.1001 - 4551.2018. 01.004七氟丙烷气体灭火系统沿程压力损失计算方法陈建,李鑫,胡俊康,王建勇(浙江工业大学特种装备制造与先进加工技术教育部/浙江省重点实验室,浙江杭州310014)摘要:针对七氟丙烷气体灭火系统管网设计过程中管网压力损失计算的问题,提出了一种基于修正系数的七氟丙烷气体灭火系统管网沿程压力损失计算方法。

结合热量传递与伯努利方程推导了灭火系统管道压力损失计算公式,依据管网管道参数和设计流量的关系计算了其对应最小雷诺数,并根据雷诺数大小确定了相应管道的沿程压力损失系数计算值;进而修正了沿程压力损失计算公式,并采用CFD方法求解了压力损失修正系数;最后以七氟丙烷气体灭火系统为例进行了实验验证。

研究结果表明;该计算方法对七氟丙烷气体灭火系统管网压力损失计算有效可行。

关键词:七氟丙烷;管网设计;沿程压力损失;修正系数;CFD中图分类号:TH49;X932 文献标志码:A 文章编号:1001 -4551 (2018)01 -0022 -06 Calculation mettiod for pressure loss along pipeline of Hept^fluoropropanegas fire extinguishing systemCHEN Jian,LI Xin,HU Jun-kang,WANG Jian-yong(Key Lab of Special Purpose Equipment and Advanced Manufacturing Technology,Ministry of Education/Zhejiang Province,Zhejiang University of Technology,Hangzhou310014,China)Abstract ;Aiming at calculating the pressure loss along pipeline during the process of pipe network desig tinguishing system,a calculation metliod of pressure loss along pipeline of heptafluoropropane gas fire extinguisliing system tion coefficient was proposed. The calculation formula for pressure loss along pipeline of fire extinguishing system was deduced by combiningheat transfer with Bernoulli equation. According t o the relationship between the pipe network parameters and its desig sponding minimum Reynolds number was calculated,and the coefficient of pressure loss along pipeline was deter of Reynolds number. Further,the calculation formula of pressure loss along pipeline was modified,and the correction coefficient was solvedby using CFD. Finally,the pressure loss calculation formula was tested through an experiment of heptafluoropropane gas fire extinguishing system. The results indicate that the calculation method for pipe network pressure loss of heptafluoropropane gas fire extinguishing system ac­curate and feasible.Key words; Heptafluoropropane; pipe network design; pressure loss along pipeline;correction coefficient;CFD〇引言七氟丙烷气体灭火系统管网设计中管网压力损失计算是制约灭火系统管网设计的瓶颈环节。

fluent湍流管道流动教程

fluent湍流管道流动教程
two-dimensional turbulent uid ow and heat transfer in a mixing junction. The mixing elbow con guration is encountered in piping systems in power plants and process industries. It is often important to predict the ow eld and temperature eld in the neighborhood of the mixing region in order to properly design the location of inlet pipes. In this tutorial you will learn how to:
Preparation
1. Copy the le
fluent_inc fluent5 tut elbow elbow.msh
from the FLUENT tutorial CD to your working directory. 2. Start the 2D version of FLUENT.
Prerequhave little experience
with FLUENT, but that you are generally familiar with the interface. If you are not, please review the sample session in Chapter 1 of the User's Guide.
b Click on Scale to scale the grid. The reported values of the Domain Extents will be reported in the default SI units of meters.

Reynolds_experiment雷诺实验(英文版)

Reynolds_experiment雷诺实验(英文版)

Reynolds experimentAim of the experiment1.Observe the laminar and turbulent flow, and the process of transition from one state to theother.2.Measure the critical Reynolds number and develop the skills on how to distinguish thepipe flow state.3.Study the dimensional analysis method to analyze the experiment, confirming thecriterion number of flow state for a non-circular pipe.Experimental apparatus1. The figure of the apparatusFigure 1 shows the experimental apparatus and the name of each part.Figure 1. 1: Self-circulating water supply, 2: Hydraulic bench, 3: Speed controller, 4: Constant head water tank, 5: Coloured water pipe, 6: Perforated plate, 7: Overflow, 8: Experiment pipe, 9:Flow rate control valve2. The illustration of installation and the method of operation.The water flow rate is controlled by a speed controller 3, making constant pressure water tank 4 keep the state which micro overflow in order to improve the stability of water flow. There are many clapboards to keep water stability in this experimental device, shorten the time spend on stabilize the water to 3-5 min. Colure water flow into pipe 8 through colure water pipe 5, we can distinguish the flow state according to whether the colure water disperse. In order to avoid pollution of water due to the self-circulation, we use the special colure water. The flow rate in the experiment is controlled by valve 9.Theory.In 1883, Osborne Reynolds using the experimental device which is similar with the device shown in Figure 4.2.1, observed the laminar state and turbulent state in fluid flow: The colored filament is straight and smooth for low speeds, this state is laminar flow. However, the colored filament breaks off and disperses almost uniformly for high velocities, and this state is turbulent flow. Reynolds also found that there is a critical velocity v c from laminar to turbulent state. v c depends on the viscosity of the fluid ν and the diameter of pipe d. The value of v c should be known in different situations when we want to know the flow state. The contribution of Reynolds is not only to find the two flow states, but also used dimensional analysis to analyze the experiment and get the Reynolds number which simplifies the problem. The following is dimensional analysis.Since: v ୡ=f(ν,d)According to the dimensional analysis method:v ୡ=k ୡν஑భd ஑మሾLT ିଵሿ=ሾL ଶT ିଵሿ஑భሾLሿ஑మαଵ=1,αଶ= −1v ୡ= k ୡ஝ୢ or k ୡ= ୴ౙୢ஝Reynolds concluded the measurement of the critical value from laminar flow to turbulent flowstate in pipe flow, validating k ୡ is constant. So, ୴ୢ஝ can be used to distinguish between the flowstate in any situation. Because of Reynolds contribution, ୴ୢ஝ is called the Re number. So, there isRe = vd ν= 4q ୚πνd =Kq ୴ V: velocity of flowν: kinematic viscosity of flowd: diameter of tubeq ୚:flow rate in pipe K: calculation constant, K = ସ஠஝ୢ. There is a lower critical Re number when flow transits from turbulent to laminar state. There is an upper critical Re c ’ number when flow transits from laminar to turbulent state. The value of upper critical Re c number is not stable because of external disturbances. However, the value of lower critical number is stable. Hence, generally the lower critical Re c number is used to distinguish between the flow regimes. The value of Re c number is 2300 according to themeasurement from Reynolds. It is laminar state flow when Re < Re c , while the flow is turbulence when Re > Re c .For a non-circular pipe, it can be shown that Re number Re = vR ν R: hydraulic radius, R=A/PA: area of section of surfaceP: wetted perimeterRe number that is using the hydraulic radius to denote the characteristic length.The content and method of experiment1. Qualitative observation of the two flow statesOpen the pump to supply water, making water tank overflow, open the flow control valve after stable. Open the valve to inject the coloured water. It can be seen that the coloured filament is straight and smooth, this is laminar state. The coloured filament breaks off and disperses almost uniformly when turn up the flow control valve, this is turbulent flow.2. Measurement of the lower critical Reynolds number.Make sure that flow state is turbulent, close the flow control valve gradually, Flow state transits from turbulent to laminar state when the coloured filament become straight and smooth. Measure the flow rate by using the gravimetric method and write down temperature of water. Lower Re number can be obtained.3. Measurement of the higher critical Reynolds number.Make sure that flow state is laminar, and open the flow control valve gradually. Flow state transits from laminar state to turbulent when the coloured filament breaks off and disperses almost uniformly. Measure the flow rate by using the gravimetric method and write down temperature of water. Upper Re number can be obtained.4. Analyse and design the experimentDetermine the general Reynolds number for any cross-section shape by using dimensional analysis. Design the experiment to measure lower Reynolds number for an open channel and get the value of lower Reynolds number on the base of the result that comes from the experiment.Data processingThe name of the equipment:Experimenter:Date:Diameter (D): (m)Temperature (T): (o C)Kinematic viscosity, ν = .଴ଵ଻଻ହ×ଵ଴షరଵା଴.଴ଷଷ଻୘ା଴.଴଴଴ଶଶଵ୘మ= (m 2/s)Constant K: (s/m3)2. Record data and result of calculationRun the experiment 5 times for each case. The data that need to be collected are:V olume (10-6 m3), time (s), flow rate (10-6 m3/s), Re, Degree of opening of valve, Remarks.The average value is the critical Reynolds number.3. Results1. Measure the lower critical Reynolds number.2. Measure the upper critical Reynolds number.3. Determine the expression of general Reynolds number and the measured value of lower critical Reynolds number of circular pipe flow.Questions1. Why there is no significance for the upper critical Reynolds number? Why do we use the lower critical Reynolds number to judge the flow state?2. Try to analyze the mechanism from laminar to turbulent flow combining the experiment of turbulent mechanism.。

流式细胞仪的分类

流式细胞仪的分类
• 加入1ml PI/RNAse染液,室温避光孵育30分钟
• 流式检测
磷脂酰丝氨酸的翻转
细胞发生凋亡时会有一系列的形 态学特征性改变,其中,质膜的 改变是早期凋亡的特征之一。细 胞发生凋亡时,胞膜磷脂酰丝氨 酸(PS)从胞膜内侧翻转到外侧, 暴露于细胞外表面。Annexin V 是一个35-36kD的Ca2+依赖性 的磷脂结合蛋白,它与磷脂酰丝 氨酸有高度亲和力,可以与细胞 外暴露的磷脂酰丝氨酸结合。 Annexin V标记上FITC、PE或生 物素,可以在流式细胞仪上灵敏 地检测凋亡细胞。
光学系统-散射光信号
• 前向角散射光(FSC):
和细胞或待测颗粒的大小和表面 积有关
可以用来区分死/活细胞
• 侧向角散射光(SSC):
和细胞结构复杂性和颗粒性有关 可以用来区分粒/非粒细胞
光学系统-散射光信号
• 散射光可以用来区分不同细胞群体的最基本的形态差异
- 常常用散点图“Dot Plots”来显示 - 图上的每一个点代表一个细胞的相应信息
流式细胞术检测细胞凋亡
• 细胞形态的变化 • 细胞质膜内侧的磷脂酰丝氨酸外翻导致的细胞膜
不对称性消失 • 线粒体膜电位的改变 • 蛋白水解酶——Caspase酶 的活化 • 核酸内切酶活化导致的DNA断裂 • 凋亡峰的检测
• 细胞散射光变化
• 在细胞凋亡的初始阶段,细 胞膜发生皱缩,导致FSC减 小,而SSC增加或者维持不 变
• 光电倍增管(PMT):
• 比光电二极管更敏感但太强的光会对其造成破坏 • 有最适的波长检测范围
电子系统-数据的采集和处理
• 对探测器检测到的信号加以处理 • 前置放大
• 在从远处的探测器传到中央电子系统前对信号进行放大

NACA4412翼型低速绕流的定常/非定常计算对比研究

NACA4412翼型低速绕流的定常/非定常计算对比研究

NACA4412翼型低速绕流的定常/非定常计算对比研究闫文辉【摘要】Numerical simulation of NACA4412 airfoil around flow is implemented based on steady and unsteady computationalmethods .Convection terms and diffusion terms are calculated using Roe scheme and center difference scheme respectively .The dual-time stepping method with implicit approximate-factorization employed in time marc-hing.Two equation SST k-ωturbulence model is forfeited forsteady/unsteady computations .Computational results of steady/unsteady numerical simulations are compared with experimental data .Periodic vortex shedding behind airfoil tail is obtained using unsteady numerical simulation .Time-averaged computational results obtained by un-steady method are batter then steady computational results .%对NACA4412翼型低速绕流进行了定常/非定常数值计算。

对流项及扩散项的空间离散分别采用Roe格式和二阶中心格式,时间方向采用了二阶精度的双时间步隐式方法求解,湍流模式采用了两方程SST k-ω模式。

Experimental study of fluid flow and heat transfer characteristics in the square channel with a perf

Experimental study of fluid flow and heat transfer characteristics in the square channel with a perf
Crown Copyright © 2008 Published by Elsevier Ltd. All rights reserved.
1. Introduction
There are usually gaps or steps at the joints of tunnels; thus, the shape of flow changes, and so do the characteristics of the heat transfer inside the channel. That is the reason why the back facing step flow has been paid attention. The back facing step flow has characteristics of backflow and flow reattachment. Flow reattachment will activate the impinging cooling effect that enhances the heat transfer; however, the backflow facing to the step is unfavorable to heat transfer. The adjustment of two of them is what heat transfer researchers feel interested. Moreover, many raised baffles repeated in the channel will cause more complicated flow field, which is also a frequently discussed skill of the enhancement of heat transfer. Therefore, the study of heat transfer in a channel with a step baffle is basic, but important.

Optimal design of multi-channel microreactor for uniform residence time distribution

Optimal design of multi-channel microreactor for uniform residence time distribution

TECHINCAL PAPEROptimal design of multi-channel microreactor for uniform residence time distributionCyril Renault •Ste´phane Colin •Ste ´phane Orieux •Patrick Cognet •The´o Tze ´dakis Received:7April 2011/Accepted:26July 2011/Published online:21August 2011ÓSpringer-Verlag 2011Abstract Multi-channel microreactors can be used for various applications that require chemical or electro-chemical reactions in either liquid,gaseous or multi phase.For an optimal control of the chemical reactions,one key parameter for the design of such microreactors is the res-idence time distribution of the fluid,which should be as uniform as possible in the series of microchannels that make up the core of the reactor.Based on simplifying assumptions,an analytical model is proposed for optimiz-ing the design of the collecting and distributing channels which supply the series of rectangular microchannels of the reactor,in the case of liquid flows.The accuracy of this analytical approach is discussed after comparison with CFD simulations and hybrid analytical-CFD calculations that allow an improved refinement of the meshing in the most complex zones of the flow.The analytical model is then extended to the case of microchannels with othercross-sections (trapezoidal or circular segment)and togaseous flows,in the continuum and slip flow regimes.In the latter case,the model is based on second-order slip flow boundary conditions,and takes into account the com-pressibility as well as the rarefaction of the gas flow.1IntroductionApplications of microfluidic systems are very varied and have been developed for more than two decades (Gravesen et al.1993;Shoji and Esashi 1994).They are now used for example in aerospace,automotive,military,food and also in a number of medical applications.The recent develop-ment of MEMS and microfluidic technologies applied to chemical engineering is due to several advantages amongwhich the increased surface area to volume ratio (Lo¨we and Ehrfeld 1999)which greatly improves the mass or energy transfer.Thanks to their small dimensions,microreactors exhibit fast response times,which is an advantage for the process control and permits the use of highly reactive and dangerous products (Vlachos 1998).In comparison with macroscopic reactors,microreactors allow a better man-agement of effective heat,facilitating isothermal operation or coupling of endothermic and exothermic reactions (Peterson 1999).All these features associated to original designs can allow reducing the number of reaction steps.In addition,miniaturization should help to optimize selectivity,reduce energy consumption and lower produc-tion costs.Thus,the current trend is to develop smaller,cheaper and more efficient devices by optimizing safety and reaction control while minimizing the environmental impact (Commenge et al.2005).There are some counterparts,however,to the use of microreactors.Reduction of dimensions may lead toC.Renault ÁS.Colin (&)ÁS.OrieuxUniversite´de Toulouse;INSA,UPS,Mines Albi,ISAE;ICA (Institut Cle´ment Ader),135,avenue de Rangueil,31077Toulouse,Francee-mail:stephane.colin@insa-toulouse.fr C.Renaulte-mail:renault.cyril@hotmail.fr S.Orieuxe-mail:stephane.orieux@insa-toulouse.frC.Renault ÁP.Cognet ÁT.Tze´dakis Laboratoire de Ge´nie Chimique,Universite ´de Toulouse;INPT,UPS,118Route de Narbonne,F-31062Toulouse,France e-mail:patrick.cognet@ensiacet.fr T.Tze´dakis e-mail:tzedakis@chimie.ups-tlse.frC.Renault ÁP.Cognet ÁT.Tze´dakis Laboratoire de Ge´nie Chimique,CNRS,31062Toulouse,France Microsyst Technol (2012)18:209–223DOI 10.1007/s00542-011-1334-7significant modifications of both flow hydrodynamics and convective heat transfer,especially in the case of gases,for which rarefaction of the flow induces local thermodynamic disequilibrium.Another restriction is due to the small volumes that limit the possibilities of industrial production.To overcome this drawback,the use of several parallel microchannels is necessary but this solution could exhibit a poor uniformity in the fluid distribution between them.Recently,Ziogas et al.(2009)have summarized the advantages and disadvantages of the use of microreac-tors compared with conventional reactors applied to electrochemistry.An example of typical microreactor made of a series of parallel microchannels is shown in Fig.1.The three main parts of this basic cell are the distributing channel,the net-work of parallel reaction microchannels and the collecting channel.The arrows point out the possible locations of the flow inlet and outlet.Applications for such a microreactor design are varied.A simple microreactor can for example be used in synthesis of organic compounds and in catalytic treatment of gaseous effluents contaminated by volatile organic compounds (VOCs).An electrochemical microre-actor can be designed for electro synthesis of ‘‘probes’’molecules devoted to medical imaging for tumor detection,using two similar gold-or platinum-coated units facing each other and separated by an ion-exchanger membrane.In such a microreactor,the control of the residence time of the fluid is crucial for an efficient operation.The objec-tive is to obtain a uniform distribution of the flowrate between all microchannels.A complete CFD simulation of complex microreactor geometries generally requires,how-ever,important computational resources (Commenge et al.2002;Saber et al.2009).Delsman et al.(2004)proposed an optimization of the flow distribution in a microstructured plate composed with 19rectangular microchannels,considering nine plate designs with different distributing and collecting channels and locations of the inlet and outlet sections,under various flowrate conditions.The authors used a three-dimensional CFD model with an artificial viscosity in the channel region which reduced the compu-tational time by a factor 7.The simulations showed that doubling the cross-sectional area of the distributing and collecting channels improved the even distribution of the flow.The same trend was observed by doubling the length of the microchannels.Finally,the best geometry found consisted in inlets and outlets sections parallel to the mi-crochannels cross-sections,with asymmetrical distributing and collecting channels.With this optimal design,the rel-ative standard deviation of the flow distribution was reduced from 19to 3%.Jang et al.(2010)developed an original program combining a simplified conjugate-gradient method called SCGM (Chen and Cheng 2002)with CFD calculation by the CFD-ACE ?commercial code in order to optimize the width of distributing and collecting chan-nels.Their goal was to increase the methanol conversion for hydrogen production in fuel cells.They compared three different geometries with different inlet and outlet locations and found an optimized solution for these three cases which required an increase in the pressure drop.They also showed that this optimization led to an improvement of the meth-anol conversion ratio from 72.7to 99.9%.In order to rapidly optimize the design of multi-channel microreactors,it is necessary to develop calculation meth-ods less expensive in terms of memory and computation menge et al.(2002)proposed an approximate model in order to evaluate the pressure drop and flow dis-tribution through microchannels,focusing on the influence of the length and width of the reaction microchannels and the angle of the tapered distributing and collecting channels.CFD calculations were used to validate this analytical model.Saber et al.(2009)analyzed the hydrodynamics of multi-scale channel networks under isothermal and laminar conditions,using a linear pressure drop model.The main technique used to improve the uniformity of the residence time distribution was to decrease the pressure drop through the distributing and collecting channels in comparison to the pressure drop through the microchannels.This objective was achieved increasing the distributing over microchannel hydraulic diameter ratio and decreasing the distributing over microchannel length ratio.More recently,Saber et al.(2010)investigated the performances of their previous multi-scale channel network,focusing on the selectivity of consecutive catalytic reactions.The authors demonstrated the large influence of the flow maldistribution on the selectivity,which reduces the efficiency of the considered reaction.Cho et al.(2010)studied the thermal and hydro-dynamic behaviour of microchannel heat sinks with a design similar to the one shown in Fig.1.TheyinvestigatedFig.1Example of microreactor based on a network of parallel microchannelsthe effect of non-uniform heatflux for three different non-uniform heatflux conditions,using a tri-diagonal matrix algorithm(TDMA)for the calculation of massflow distri-bution.The influence of the shape of the distributing and collecting channels on the two-phaseflow distribution in the rectangular microchannels was also analysed.It was con-cluded that a more evenflow distribution is achieved when the cross-sectional area of the distributing and collecting channel are larger,compared with the cross-sectional area of the microchannels.Whatever its design,the optimisation of a microreactor requires an accurate modelling of the hydrodynamics in the distributing and collecting channels,as well as in the mi-crochannels,which have the smallest hydraulic diameters of the reactor.Due to the low values of the Reynolds numbers,the analytical modelling of liquidflows in long microchannels is easy.For fully developed laminar and isothermalflows of Newtonian liquids,the Poiseuille number is a constant that only depends on the shape of the channel cross-section.The early experimental studies published twenty years ago,however,showed deviations from the theory and pointed out contradictory results (Morini2004),but the most recent papers have shown that these deviations were mainly due to experimental uncer-tainties,particularly the uncertainties on the dimensions of the channel cross-section.Thus,conventional theory has now proved to be accurate for predicting liquidflowrates in microchannels,as soon as the hydraulic diameter is of the order of one micrometer or higher.On the other hand,reducing dimensions or decreasing pressure leads to rarefaction effects,in addition to com-pressibility effects,forflows of gases in microchannels (Colin2005).These rarefaction effects appear as soon as the mean free path of the molecules is no longer negligible compared with the hydraulic diameter of the microchannel. For such rarefiedflows,the classic Poiseuille model is no longer valid,and other models should be used,according to the rarefaction level,which is quantified by the Knudsen number Kn¼k=L,ratio of the mean free path of the molecules k over a characteristic length L such as the hydraulic diameter.In microsystems,it is frequent that 10À3Kn10À1;in that case,the regime is the so-called slipflow regime and the Navier–Stokes equations remain applicable,provided a velocity slip and a temperature jump at the walls,due to a local thermodynamic disequilibrium, are taken into account.Semi-analytical models are still available in this regime,even when3-D effects should be taken into account,as it is the case for rectangular cross-sections(Aubert and Colin2001).The objective of the present paper is to propose a simple model for the rapid optimisation of a multi-channel mic-roreactor,in terms of uniform residence time distribution.Following the description of a multi-channel microreactor in Sect.2,an analytical model is developed in Sect.3, which allows a rapid calculation of theflow distribution of liquids in the rectangular microchannels as a function of the geometrical parameters.The efficiency of this approximate model is validated by CFD simulations and a hybrid model combining these two approaches is proposed. This intermediate approach allows the utilisation of simple analytical equations in the long straight microchannels, combined with accurate CFD calculations for the other parts of the microreactor which require more complex3D simulations.The analytical model is extended in Sect.4to the case of microchannels with various cross sections.In silicon substrates,rectangular cross-sections can be etched by deep reactive ion etching(DRIE)whereas trapezoidal cross-sections are obtained by wet chemical etching.In metallic substrates,circular segment sections can be obtained by precision micro milling,embossing,isotropic wet chemical etching(Madou2002)or micro electro dis-charge machining(l EDM)techniques.Finally,it is shown that the analytical model can also be extended to the case of gasflows in the continuum and slipflow regimes.From these models,it is demonstrated that the microreactor can exhibit a uniform residence time distribution in the mi-crochannels,by simply modifying one geometrical parameter of the distributing and collecting channels.2Microreactor geometry2.1Overall viewA schematic view of a microreactor,here designed for electrochemical synthesis of molecules,is shown in Fig.2. It is composed of two symmetrical units facing each other.A copper heat exchanger(E)insures the extraction of heat generated by the chemical reaction,the coolantfluid flowing through the cavity with internal zigzag from inlet (E I)to outlet(E O).A thick plate of platinum(P),or a silicon plate with a platinum deposit,is welded to the heat exchanger side.Microchannels are etched in this plate which plays the role of an electrode.The chemical solution flows through these microchannels.Two platinum tubes are inserted through the copper block and the bottom face of the platinum layer allowing the entrance(T I)and exit(T O) of the chemicalfluid.Both electrodes(anode and cathode) are separated by an ion-exchanger membrane(M).2.2ElectrodesFigure3details the initial geometry of the electrodes,with the distributing channel,the reaction microchannels and thecollecting channel.Table 1provides typical values of the various parameters defining non-optimized electrode geometry,in the case of 10parallel microchannels with rectangular cross-sections.These values are used in Sect.3.4for illustrating the calculation of an optimal design.2.3Optimisation strategyThe aim of the optimization is to design the distributing and collecting channels in order to obtain the most possible uniform residence time distribution among all microchan-nels.For simplifying the fabrication process,the depth of the distributing and collecting channels,as well as thedepth of the reactor microchannels is kept uniform and constant (d ¼50l m).It is demonstrated in Sects.3and 4that a uniform residence time distribution can be achieved optimizing a single parameter:the angle h of the tapered distributing and collecting channels,initially equal to zero (see Fig.4).3Optimisation for liquid flows and rectangular microchannels3.1Analytical modelThe following analytical model is very simple to implement and provides flowrate and pressure drop distributions in a few seconds,assuming a laminar regime in the entire mic-roreactor.The distributing and collecting channels are considered as a series of short segments with rectangular cross-sections (Fig.5).The unknowns are the inlet and outlet pressures P in and P out as well as the volume flow ratesQ j —or the mass flowrate _Mj —for each microchannel j .Figure 5illustrates the simplifying assumptions in the case of 10reaction microchannels.The pressures calcu-lated at the downstream section of each segment of the distributing channel are reported to the inlet of the corre-sponding microchannel,while the pressures at the outlet of each microchannel are reported to the upstream sectionofFig.2Schematic view of the electrochemicalmicroreactorFig.3Diagram of the initial electrode before optimizationTable 1Example ofgeometrical parameters of the initial electrode before optimizationReaction microchannelsDistributing/collecting channels Number of channels 101/1Length L c =5mm L d =5mm Depth d =50l m d =50l m Widthw c =250l m w d =1mmWidth of walls between channelsw s =250l mthe corresponding segment in the collecting channel.The pressure drop D P through any segment of the collecting and distributing channels or through the reaction micro-channels is related to the corresponding volume flowrate Qor mass flowrate _M with the Poiseuille number Po ¼SD 2h 2l Q D P L ¼q SD 2h 2l M :D P L;ð1Þwhose value only depends on the aspect ratio of therectangular cross-section.In Eq.1,S is the cross-section area,D h is the hydraulic diameter,l and q are the dynamic viscosity and the density of the fluid,respectively,and L is the length of the considered channel segment or microchannel.The Poiseuille number for a rectangular cross-section can be calculated from the polynomial (Shah and London 1978)Po R ¼241À1:3553r ÃR þ1:9467r Ã2R À1:7012r Ã3Rhþ0:9564r Ã4R À0:2537r Ã5R ið2Þwhere 0\r ÃR 1is the aspect ratio of the rectangularsection defined by r ÃR¼d =w c .In the general case of a microreactor with n microchannels,the problem reduces toa set of 3n ?2equations of type (1),n ?1for the distributing channel,n for the reaction microchannels and n ?1for the collecting channel (see Figs.3and 5).The3n ?2unknowns are P j and P 0j with j 20;n ½ and _Mi with i 21;n ½ .Each quantity R h ;a Àb ¼2l LPo q SD 2hð3Þrepresents the hydraulic resistance of the consideredchannel segment or microchannel,with an inlet pressure P a and an outlet pressure P b ,and it is calculated with Eq.2which gives the value of Po .The system of equations is then written in the matrix form C ¼AB ;ð4Þwhere B contains the unknowns,C is function of the inlet pressure P in and outlet pressure P out of the microreactor and A is function of the various hydraulic resistances (3)previously calculated.For example,in the simple case of a microreactor with only two microchannels,Eq.4reads:Fig.4Initial (a )and optimal (b )geometries of theelectrodeFig.5Diagram of an electrode and its associated network of microchannels (case of 10reaction microchannels)The solution of the problem is given by B ¼A À1C ;ð5Þwhere A À1is the inverse of A ,which can be easily cal-culated using Matlab software.3.2CFD simulationThe accuracy of the analytical model is analyzed bycomparison with numerical simulations obtained with the commercial CFD code Fluent.Different meshes are gen-erated and tested.Only one half of the real domain is meshed,as the plane located at the half-depth of the channels is a plane of symmetry.For the first mesh (A-1),the whole simulated domain (distributing and collecting channels as well as and reaction microchannels)is meshed with a uniform meshing density and 22,400cells in the main plane (Fig.6).The second mesh (A-2)is uniformly refined in both directions of the main plane,leading to a number of cells 4times higher than in the previous case.The third mesh (A-3)is based on the first one with a refinement in the regions of the mi-crochannels inlets and outlets (see Fig.6).For these three meshes,the influence of the number of cells in the direction of the depth is also checked:5,10and 20cells in the half-depth of the microreactor are tested (see Table 2).As an example,the case A-2-10corresponds to the mesh A-2in the main plane with 10cells in the half-depth,and the total number of cells for this case is 896,000.All simulations are performed assuming a laminar incompressible and isothermal flow.A pressure-based solver is used with a second-order discretization scheme.3.3Hybrid approachThe idea is here to combine the two previous analytical and numerical approaches.As the Poiseuille number in long microchannels is accurately modeled in laminar regime by Eq.1,it is possible to make CFD simulations only in the collecting and distributing channels and to use analytical modeling for the flow in the microchannels.Equation 1is implemented via User Defined Functions that allow to link for each microchannel j the inlet pressure P j ,the outlet pressure P 0j and the flowrate Q j .As the microchannels are not meshed,it is possible to increase the number of cells for the meshing of the distributing and collecting channels,with the same computational effort.Three differentmeshesFig.6Detail of the mesh (A-1)in the main plane.The red rectangle shows the region refined in mesh A-3Table 2Total number of cells in all cases simulated by CFD Number of cells in depth 51020Mesh in the main plane A-1112,000224,000448,000A-2448,000896,0001,792,000A-3186,970373,940747,880B-172,000144,000288,000B-284,000168,000336,000B-3336,000672,0001,344,000P in 000000P out¼þ100000R h ;in À0R h ;in À0À1þ10000R h ;0À1R h ;0À10À1þ10000R h ;1À20À10þ100R h ;1À10000À10þ100R h ;2À20000À1þ10R h ;10À2000000À1þ1R h ;20À30R h ;20À3000000þ1ÀR h ;30ÀoutÀR h ;30Àout ÂP 0P 1P 2P 01P 02P 03_M 1_M2:are used for this hybrid approach (Fig.7).In case B-1,only the distributing and collecting channels are meshed and in cases B-2and B-3,the entrance and exit of the micro-channels are also meshed to take into account extremity effects,where the flow is not fully developed.Figure 7shows the mesh in the main plane and Table 2provides the number of cells for each case.For the three cases,the influence of the number of cells in the depth has also been tested.3.4Results and discussion 3.4.1Analytical optimisationThe analytical model is used to optimise the distributing and collecting channels angle h in order to obtain the same flowrate in each microchannel.The solution is illustrated for the case of a microreactor with 10parallel micro-channels,the dimensions of which are given in Table 1.The inlet pressure is 10kPa higher than the outlet pressure.The Reynolds numbers in the microchannels are then in the range 10À1À101.The initial configuration with straight distributing and collecting channels (h =0)leads to high deviations between flowrates in the different microchan-nels:the flowrate in microchannels 1and 10is about 50%higher than in the central microchannels 5and 6(Fig.8).After optimisation,the deviation is found negligible for an angle h R =10.46°.3.4.2CFD simulationsTable 3shows the results of the numerical simulation for meshes A-1,A-2and A-3.The mass flowrate deviation between the data obtained by CFD simulation and the results of the analytical model are provided.The average deviation between analytical and numerical calculations is of the order of 5%,but larger deviations are experienced for side microchannels 1and 10,and lower for central microchannels 3–8.By construction of the model,the analytical solution exhibits symmetry:the flowrate in microchannel j is the same as in microchannel n -j .On the other hand,the local hydrodynamics at the bifurcations is properly taken into account by the CFD simulation and consequently the symmetry is no longer observed for the numerical solution,but the deviation to this symmetry remains moderate.It should also be noted that an increase in mesh refinement leads to a decrease in the deviation between analytical and numerical data.Due to too many cells in the most refined meshes A-2-10,A-2-20and A-3-20,numerical simulations in these cases experienced con-vergence issues.For this reason,the hybrid approach is an interesting alternative:as the microchannels arenotFig.7Meshes of the distributing channel for the hybrid approach;a mesh B-1;b mesh B-2and c meshB-3Fig.8Flowrate distribution in a 10-microchannel microreactor for the initial layout (h =0)and the optimal layout (h =10.46°).Flow of water;analytical calculationsmeshed,it is possible to use more refined meshes in the distributing and collecting channels with the same com-putational effort.3.4.3Hybrid calculationsThe results obtained by the hybrid model are summarised in Table4.Similar deviations are observed between hybrid simu-lation and analytical data,than between CFD and analytical data.It is assumed that the simulations for cases B-2-20 and B-3-10are the most accurate,as they correspond to the most refined meshes.In these cases,the average deviation with the analytical results is less than4%,but as previ-ously,larger deviations,between9and13%,are observed in side microchannels1and10.This phenomenon can be explained by a more detailed analysis of theflow in the distributing and collecting channels.In the analytical model,it is assumed that pressure is uniform in both inlet and outlet sections of each segment of distributing and collecting channels.Moreover,it is also assumed that these pressures are the same as the pressures at the inlet or outlet sections of the corresponding microchannels(see Fig.5).As illustrated in Fig.9,which shows the actual contours of pressure obtained by the hybrid simulation with mesh B-3-5,this simplifying assumption is rather accurate at the inlet of thefirst microchannels and at the outlet of the last microchannels(see for example the zoom on pressure contours P1and P07).On the other hand,it is less accurate when the distributing and collecting channels are more narrow(see the zoom on pressure contours P9and P02). Figure9also underlines the necessity to simulate by CFD the entrance and exit regions of the microchannels,up to a section in which the pressure is uniform.This is necessary for the validity of Eq.1involved in the User Defined Functions.Table3Deviation(%)on massflowrate obtained for each microchannel between CFD simulations and analytical model,for various meshes Channel numberjAnalytical solution Deviation between analytical and hybrid data(%)_M kg sÀ1ÀÁA-1-5A-1-10A-1-20A-2-5A-3-5A-3-101 1.01910–611.849.989.5411.4111.810.22 1.01910–6 6.81 5.01 4.6 6.25 6.73 5.093 1.01910–6 5.03 3.25 2.85 4.36 4.93 3.264 1.01910–6 4.27 2.5 2.11 3.53 4.16 2.475 1.01910–6 4.04 2.26 1.88 3.25 3.91 2.26 1.01910–6 4.17 2.39 2.01 3.37 4.03 2.327 1.01910–6 4.71 2.92 2.53 3.9 4.56 2.848 1.01910–6 5.84 4.03 3.63 5.05 5.67 3.969 1.01910–68.2 6.34 5.937.438 6.2910 1.01910–614.0912.1511.7113.313.8512.14 Average deviation(%) 6.9 5.08 4.68 6.19 6.76 5.08Table4Deviation(%)on massflowrate obtained for each microchannel between hybrid simulations and analytical model,for various meshes Channel numberjAnalytical solution Deviation between analytical and hybrid data(%)_M kg sÀ1ÀÁB-1-5B-1-10B-1-30B-2-5B-2-10B-2-20B-3-5B-3-101 1.01910–611.6210.269.9310.48.988.6310.49.022 1.01910–6 6.05 4.67 4.34 5.62 4.19 3.85 5.43 4.033 1.01910–6 3.99 2.6 2.29 3.92 2.48 2.16 3.61 2.24 1.01910–6 3.11 1.72 1.41 3.2 1.75 1.43 2.82 1.45 1.01910–6 2.82 1.41 1.1 2.97 1.52 1.2 2.55 1.126 1.01910–6 2.94 1.53 1.22 3.11 1.64 1.33 2.66 1.227 1.01910–6 3.5 2.07 1.76 3.54 2.15 1.83 3.11 1.738 1.01910–6 4.69 3.24 2.93 4.64 3.21 2.89 4.23 2.829 1.01910–67.16 5.67 5.35 6.87 5.43 5.09 6.5 5.0910 1.01910–612.6911.6211.312.7711.3210.9712.5611.14 Average deviation(%) 5.86 4.48 4.16 5.7 4.27 3.94 5.39 3.983.5Optimization with respect to the numberof microchannelsThe previous optimization has been done for 10reactionmicrochannels with an aspect ratio r ÃR ¼0:2.In this section,the influence of the number n of microchannels on the value of the optimal angle h is investigated for different aspect ratios ranging from 0.1to 1.The optimization is based on the previous analytical model;the depth d of the etching is kept equal to 50l m and the microchannels width w c is varied in order to analyze various aspect ratios.The length L c of the microchannels is equal to the length L d of the distributing and collecting channels,and the width w s of the walls between two consecutives microchannels is equal to the microchannels width:L c ¼L d ¼2nw s ¼2nw c .Fig-ure 10gives the values of the optimal angle h R as a functionof n for various aspect ratios r ÃR in a logarithmic scale.It is observed that whatever the aspect ratio,h R n ðÞexhibits a quasi linear behavior in a logarithmic scale.These curves can be accurately fitted by the general equationh R ¼A R n ÀB Rð6Þwere coefficients A R and B R can be expressed as:A R ¼6:4309þ575:55r ÃR À258:71r Ã2Rð7ÞFig.9Iso-contours of pressure obtained by the hybridsimulation with meshB-3-5Fig.10Optimal angle h R versus number n of microchannels forvarious aspect ratios r ÃRin the case of microchannels with rectangular cross-section。

水文地质学专业英语单词汇

水文地质学专业英语单词汇

水文地质学专业英语单词汇专业术语中英文对照表傍河水源地 riverside source field包气带 aeration zone饱和度 degree of saturation饱和流 saturated flow饱水带 saturated zone边界井 boundary well边界条件 boundary condition边界元法 boundary element method标准曲线法(配线法) type-curve method补给区 recharge area 补给疏干法 compensation-dewatering method部分排泄型泉 local drainage spring采区充水性图 geologic map of potential flooding in mining area测压高度 piezometric head层流 laminar flow常量元素common element in groundwater (macroelement )沉积水(埋藏水) connate water(buried water)成垢作用 boiler scaling成井工艺 well completion technology承压含水层 confined aquifer承压含水层厚度 thickness of confined aquifer承压水 confined water承压水盆地 confined water basin承压水位(头) confining water level持水度 water-holding capacity/ specific retension充水岩层 flooding layer抽水孔 pumping well抽水孔流量discharge of a pump well抽水孔组 jumping well group抽水量历时曲线图flow-duration curve抽水试验 pumping test初见(始)水位 initial water level初始条件Darcy’s law大肠菌群指initial condition次生盐渍土 secondary salinized soil达西定律数 index of coliform organisms大口井 large-diameter wd1大气降水渗入补给量precipitation infiltration rate单井出水量 yield of single well单孔抽水试验 single well pumping test弹性储存量 elastic storage淡水 fresh groundwater导水系数transmissivity等降深线 equiodrawdown line等势线 equipotential line等水头面equipotential surface低频电磁法 very low frequency electromagnetic method地表疏干surface draining地表水 surface water地表水补给 surface water recharge地方病endemic disease地方性氟中毒 endemic fluorosis地面沉降 subsidence地面开裂 land crack地面塌陷 ground surface collapse地下肥水 nutritive groundwater地下集水建筑物 groundwater collecting structure地下径流underground runoff地下径流模数法modulus method of groundwater runoff地下库容 capacity of groundwater reservoir地下卤水 underground brine地下热水 geothermal water地下疏干underground draining地下水 groundwater地下水补给量 groundwater recharge 地下水补给条件 condition of groundwater recharge地下水超采overdevelopment of groundwater地下水成矿作用 ore-forming process in groundwater地下水储存量(地下水储存资源) groundwater storage地下水的 pH 值 pH Value of groundwater地下水的碱度 alkalinity of groundwater地下水的酸度 acidity of groundwater地下水的总硬度 total hardness of groundwater地下水等水头线图 map of isopiestic level of confined water地下水等水位线图 groundwater level contour map地下水动力学 groundwater dynamics地下水动态 groundwater regime地下水动态成因类型 genetic types of groundwater regime地下水动态曲线 curve of groundwater regime地下水动态要素 element of groundwater regime地下水分水岭 grot1udwater divide地下水赋存条件 groundwater occurrence地下水化学成分 chemical constituents of groundwater地下水化学类型 chemical type of groundwater地下水环境质量评价 groundwater environmental quality assessment 地下水径流量(地下水动储量) groundwater runoff地下水径流流出量 groundwater outflow地下水径流流入量 groundwater inflow地下水均衡 groundwater balance地下水均衡场experimental field of groundwater balance地下水均衡方程 equation of groundwater balance地下水开采量 groundwater withdrawal地下水开采资源exploitable groundwater resources地下水可开采量(地下水允许开采量) allowable withdrawal of groundwater2地下水库 groundwater reservoir地下水埋藏深度 buried depth of groundwater table地下水埋藏深度图 map of buried depth of groundwater地下水模型 groundwater model地下水年龄 age of groundwater地下水年龄测定 dating of groundwater地下水排泄groundwater discharge地下水盆地 groundwater basin地下水侵蚀性Corrosiveness of groundwater地下水人工补给 artificial recharge of groundwater地下水人工补给资源 artificial-recharged groundwater resources地下水设计开采量 designed groundwater withdrawal地下水实际流速actual velocity of groundwater flow地下水实际流速测定 groundwater actual velocity measurement地下水数据库 groundwater database地下水数学模型 mathematical model of groundwater地下水水化学图 hydrogeochemical map of groundwater地下水水量模型groundwater flow model地下水水量评价 evaluation of groundwater quantity 地下水水位动态曲线图 hydrograph of groundwater level地下水水质groundwater quality地下水水质类型 type of groundwater quality地下水水质模型 groundwater quality model地下水天然资源 natural resources of groundwater地下水同位素测定 isotope assaying of groundwater地下水位持续下降 continuously drawndown of groundwater level地下水污染 groundwater pollution地下水污染评价 groundwater pollution assessment地下水污染物groundwater pollutants地下水物理模型 physical model of groundwater地下水物理性质 physical properties of groundwater地下水系统 groundwater system地下水预报模型 groundwater prediction model地下水源地 groundwater source field地下水质评价 evaluation of groundwater quality地下水资源groundwater resources.地下水资源保护 groundwater resources protection地下水资源分布图 map of groundwater resources地下水资源管理区 groundwater resources management地下水资源枯竭groundwater resources depletion地下水资源评价方法 methods of groundwater resourceevaluation地下水总矿化度 total mineralization degree of groundwater地下微咸水 weak mineralized groundwater地下咸水 middle mineralized groundwater地下盐水 salt groundwater地中渗透仪 lysimeter电导率specific conductance电法测井 electric logging电法勘探 electrical prospecting顶板裂隙带 fissure zone of top wall顶板冒落带 caving zone of top wall定降深抽水试验 constant-drawdown pumping test定解条件 definite condition定流量边界 boundary of fixed flow /constant flow定流量抽水试验constant-discharge pumping test定水头边界 boundary of fixed water level 动水位dynamic water level断层泉 fault spring断裂带水压导升高度(潜越高度) height of water pressure in fault zone断面流量 cross-sectional flow对流弥散 convective dispersion多孔抽水试验 multipe wells pumping test多孔介质 porous medium二维流 two-dimensional flow放射性测井 radioactivity logging放射性水文地质图 radio hydrogeological map放射性找水法radioactive method for groundwater search放水试验 dewatering test非饱和流 unsaturated flow非均匀介质 inhomogeneous medium非均匀流 non-uniform flow非完整井 partially penetrating well非稳定流 unsteady flow非稳定流抽水试验 unsteady-flow pumping test分层抽水试验 separate interval pumping test分层止水 interval plugging分子扩散 molecular diffusion .分子扩散系数 coefficient of molecular diffusion福希海默定律 Forchheimer law辐射井 radial well腐蚀作用 corroding process负均衡 negative balance负硬度 negative hardness富水系数 water content coefficient of mine富水性 water yield property干扰抽水试验interference-well pumping test干扰井出水量 yield from Interference wells干扰系数(涌水量减少系数) interference coefficient隔水边界confining boundary隔水层 aquifuge隔水底板 lower confining bed隔水顶板upper confining bed各向同性介质 isotropic medium各向异性介质anisotropic medium给水度 specific yield供水水文地质勘查 hydrogeological investigation for water supply供水水文地质学 water supply hydrogeology拐点法 inflected point method观测孔 observation well管井 tube well灌溉回归系数 irrigation return flow rate灌溉机井 pumping-well forirrigation灌溉系数 irrigation coefficient过水断面 water-carrying section海水入侵 sea-water intrusion3含水层 aquifer含水层储能 energy storage of aquifer含水层弹性释放 elasticity release of aquifers含水层等高线图 contour map of aquifer含水层等厚线图 aquifer impact map含水层等埋深图 isobaths map of aquifer含水层调节能力 regulation capacity of aquifer含水层自净能力 self-purification capability of aquifer含水率moisture content化学需氧量(COD) chemical oxygen demand环境水文地质勘查environmental hydrogeological investigation环境水文地质图 environmental hydyogeologic map环境水文地质学 environmental hydrogeology环境自净作用environmental self-purification恢复水位 recovering water level回灌井injection well回灌量 quantity抽水试验 mixed-layer pumping of water recharge回灌水源 recharge water source混合test混合模拟 mixing analog混合作用 mixing hydrochemical action in groundwater激发补给量 induced recharge of groundwater极硬水 hardest water集中供水水源地 well field for concentrated water supply间歇泉geyser简易抽水试验 simple pumping test降落漏斗 cone of depression降落漏斗法 depression cone method降落曲线 depression curve降水补给precipitation recharge降水入渗试验 test of precipitation infiltration降水入渗系数 infiltration coefficient of precipitation接触泉 contact spring结构水(化合水) constitutional water (chemical water)结合水 bound water结晶水 crystallization water解逆问题(反演计算) solving of inverse problem解析法 analytic method解正问题 (正演计算) solving of direct problem井下供水孔 water supply borehole in mines井中电视(超声成相测井) borehole television(BHTV)径流区 runoff area静止水位(天然水位) static water level (Natural water level)均衡期 balance period均衡区 balance area均匀介质 homogeneous medium均匀流 uniformflow开采模数法 evaluation method of employing groundwater extraction modulus开采强度法 mining intensity method开采试验法 exploitation pumping test method开采性抽水试验trail-exploitation pumping test坎儿井 karez空隙 void孔洞 pore space 孔隙 pore孔隙比 pore ratio孔隙度(孔隙率) porosity(pore rate)孔隙含水层porous aquifer孔隙介质 pore medium孔隙水 pore water库尔洛夫式 Kurllov formation矿床充水flooding of ore deposit矿床充水水源 water source of ore deposit boding矿床充水通道 flooding passage in ore deposit矿床疏干 mine draining矿床疏干深度(疏干水平) dewatering level of mines矿床水文地质mine hydrogeology矿床水文地质图 mine hydrogeological map矿床水文地质学mine hydrogeology矿井水文地质调查 survey of mine hydrogeology矿井突水water bursting in mines矿井涌水 water discharge intomine矿坑水 mine water矿坑突泥 mud gushing in mines矿坑突水量bursting water quantity of mines矿坑涌砂 sand gushing in mines矿坑涌水量 water yield of mine矿坑正常涌水量 normal water yield of mines矿坑最大涌水量 maximum water yield of mines矿区水文地质勘查 mine hydrogeological investigation矿泉 mineral spring雷诺数 Reynolds number连通试验 connecting test裂隙 fissure裂隙含水层fissured aquifer裂隙介质 fissure medium裂隙率 fissure ratio裂隙水fissure water临界深度 critical depth流量测井 flowmeter logging流量计flowmeter流网 flow net流线streamline滤料(填料) gravel pack滤水管(过滤器) screen pipe裸井barefoot well毛细带 capillary zone毛细管测压水头 capillary piezometric head毛细上升高度height of capillary rise毛细水 capillary water毛细性 capillarity弥散 dispersion弥散试验 dispersion test钠吸附比(SAR) sodium adsorption ratio拟稳定流 quasi-steady flow凝结水 condensation water凝结水补给condensation recharge排泄区 discharge area平均布井法 method of well uniform4configuration起泡作用 forming process气体成分分phreatic water /unconfined water潜水含水层厚度 thickness of 析 gas analysis潜水water-table aquifer潜水位 water table潜水溢出量 groundwater overflow onto surface潜水蒸发量 evaporation discharge of phreatic water浅层地震勘探shallow seismic prospecting强结合水(吸着水) strongly bound water adsorptive water侵蚀泉 erosional spring侵蚀性二氧化碳 corrosive carbon dioxide裘布依公式 Dupuit formula区域地下水位下降漏斗 regional groundwater depression cone区域水文地质普查 regional hydrogeological survey区域水文地质学 regional hydrogeology全排泄型泉 complete drainage spring泉 spring泉华 sinter泉流量衰减方程法 method of spring flow attenuation泉水不稳定系数 instability ratio of Spring discharge泉水流量过程曲线hydrograph of spring discharge泉域 spring area确定性模型deterministic model扰动土样 disturbed soil sample容积储存量 volumetricstorage容水度(饱和含水率) water capacity溶洞 cave cavern溶解他固体总量total dissolved solids溶解氧 (DO)dissolved oxygen溶滤水 lixiviation water溶滤作用 lixiviation软水soft water弱含水层 aquitard弱结合水(薄膜水) weakly bound water (film water)弱透水边界weakly-permeable boundary三维流 three-dimensional flow上层滞水perched water上升泉 ascending spring设汁水位降深 designed drawdown渗流场 seepage field渗流场剖分(单元划分) dissection of seepage field渗流速度 seepage velocity渗入水infiltration water渗水试验 pit permeability test渗透 seepage渗透率specific permeability渗透水流(渗流) seepage flow渗透系数(水力传导系数) hydraulic conductivity/ permeability生化需氧量(BOD) biochemical oxygen demand声波测井 acoustic logging声频大地电场法 audio-frequency telluric method湿地 wet land实井 real well试验抽水 trail pumping手压井 manual-operated pumping well疏干工程排水量 discharge of dewatering excavation疏干巷道 draining tunnel疏干因数 factor of drainage数学模型法 method of mathematical model数学模型检验 verification of mathematical model数学模型识别 calibration d mathematical model数值法 numerical method水文地质勘查报告 report of hydrogeologicai investigation水动力弥散系数coefficient of dispersion.水分散晕 water dispersion halo水化学hydrochemistry水解作用 hydrolytic dissociation水井布局 wafer well arrangement水均衡法 water balancemethod水均衡方程 equation of water balance水均衡要素 element of water balance水均衡原理 principle of water balance水力坡度 hydraulic gradient水力削减法 hydraulic cut method水流迭加原理 principle of flow superpersitiom水流折射定律 law of seepage flow refraction水圈hydrosphere水头场 water head field水头场的拟合 fitting of water-head field水头降深场 fieId6f water head drawdown水头降深场的拟合 fitting of water head drawdown field水头损失 water head loss水位计 wellhead water-level gauge水位降深值 drawdown水文地球化学 hydrogeochemistry水文地球化学分带hydrogeodenml zonality水文地球化学环境 hydrogeochemical environment 水文地球化学作用 hydrogeochemical process水文地质比拟法 hydrogeologic analogy method水文地质参数 Hydrogeological parameters水文地质测绘 hydrogeological mapping水文地质单元 hydrogeologic unit水文地质地球物理勘探 hydrogeophysical prospecting水文地质分区 hydrogeological division水文地质概念模型 conceptual hydrogeological model水文地质勘查 hydrogeological investigation水文地质勘查成果 result of hydrogeological investigation水文地质勘查阶段hydrogeological investigation stage水文地质勘探孔 hydrogeological exploration borehole水文地质剖面图hydrogeological profile水文地质试验 hydrogeological test水文地质试验孔hydrogeological test borehole水文地质条件 hydrogeological condition水文地质学 hydrogeology水文地质学原理 principles of hydrogeology5水文地质钻探 hydrogeological drilling水文水井钻机 hydrogeologic drilling rig水文物探测井 hydrogeological well logging水循环water cycle水盐均衡 water-salt balance水样 water sample水跃值hydraulic jump value水质标准 water quality standard水质分析 chemical analysis of water速度水头velocity head随机模型 stochastic model泰斯公式 Theis formula探采结合孔exploration-production well同位素水文地质学 isotopic hydrogeology透水边界permeable boundary透水层 permeable bed透水性 permeability突水水源source of water bursting突水系数 water bursting coefficient突水预测图water bursting prediction map土(岩)样 soil (rock)sample土的颗粒分析grading analysis of soil土壤改良 soil reclamation土壤水 soil water土壤盐渍化 soil salinization脱硫酸作用desulphidation脱碳酸作用 decarbonation脱硝(氮)作用 denitration完整井 completely penetrating well微量元素 microelement温泉 thermal spring 紊流 turbulent flow稳定流steady flow稳定流抽水试验 steady-flow pumping test稳定水位 steady water level污染通道 pollution channel污染源 pollution source污水资源化 water resources from sewage renewal无压含水层 unconfined aquifer物理模型法method of physical model细菌总数 bacterial amount下降泉 descending spring咸淡水界面 interface of salt-fresh water相关分析法(回归分析法)correlation analysis method(regression analysis method)硝化作用nitrification斜井 inclined well虚井 real well悬浮物 suspended solids悬挂泉(季节泉) suspended spring压力传导系数 hydraulic diffusivity压力水头pressure head雅可布公式 Jacob formula延迟给水(滞后给水) delayed drainage延迟指数 delayed index岩溶含水层 karst aquifer岩溶含水系统 karst water-bring system岩溶介质 karst medium岩溶水 karst water岩石圈 lithosphere岩石渗透性测定permeability determination of rock盐碱土 saline allkaline soil盐渍土 salinized soil阳离子交替吸附作用 cation exchange and adsorption氧化还原电位 oxidation-reductionpotent.。

卡梅伦液压数据手册(第 20 版)说明书

卡梅伦液压数据手册(第 20 版)说明书
11
iv

CONTENTS OF SECTION 1
☰ Hydraulics
⌂ Cameron Hydraulic Data ☰
Introduction. . . . . . . . . . . . . ................................................................ 1-3 Liquids. . . . . . . . . . . . . . . . . . . ...................................... .......................... 1-3
4
Viscosity etc.
Steam data....................................................................................................................................................................................... 6
1 Liquid Flow.............................................................................. 1-4
Viscosity. . . . . . . . . . . . . . . . . ...................................... .......................... 1-5 Pumping. . . . . . . . . . . . . . . . . ...................................... .......................... 1-6 Volume-System Head Calculations-Suction Head. ........................... 1-6, 1-7 Suction Lift-Total Discharge Head-Velocity Head............................. 1-7, 1-8 Total Sys. Head-Pump Head-Pressure-Spec. Gravity. ...................... 1-9, 1-10 Net Positive Suction Head. .......................................................... 1-11 NPSH-Suction Head-Life; Examples:....................... ............... 1-11 to 1-16 NPSH-Hydrocarbon Corrections.................................................... 1-16 NPSH-Reciprocating Pumps. ....................................................... 1-17 Acceleration Head-Reciprocating Pumps. ........................................ 1-18 Entrance Losses-Specific Speed. .................................................. 1-19 Specific Speed-Impeller. .................................... ........................ 1-19 Specific Speed-Suction...................................... ................. 1-20, 1-21 Submergence.. . . . . . . . . ....................................... ................. 1-21, 1-22 Intake Design-Vertical Wet Pit Pumps....................................... 1-22, 1-27 Work Performed in Pumping. ............................... ........................ 1-27 Temperature Rise. . . . . . . ...................................... ........................ 1-28 Characteristic Curves. . ...................................... ........................ 1-29 Affinity Laws-Stepping Curves. ..................................................... 1-30 System Curves.. . . . . . . . ....................................... ........................ 1-31 Parallel and Series Operation. .............................. ................. 1-32, 1-33 Water Hammer. . . . . . . . . . ...................................... ........................ 1-34 Reciprocating Pumps-Performance. ............................................... 1-35 Recip. Pumps-Pulsation Analysis & System Piping...................... 1-36 to 1-45 Pump Drivers-Speed Torque Curves. ....................................... 1-45, 1-46 Engine Drivers-Impeller Profiles. ................................................... 1-47 Hydraulic Institute Charts.................................... ............... 1-48 to 1-52 Bibliography.. . . . . . . . . . . . ...................................... ........................ 1-53

化工原理英文教材-传热 无相变传热Heat transfer to fluids without phase change

化工原理英文教材-传热 无相变传热Heat transfer to fluids without phase change

A recognized empirical correlation, for long tubes with sharp-edged entrances, is the Dittus-Boelter equation
Nu hid 0.023Re0.8 Prn k
Where n is 0.4 when the fluid is being heated and 0.3 when it is being cooled.
A better relationship for turbulent flow is known as the Sieder-Tate equation
Nu 0.023 Re0.8 P(r112/-33(2) )0.14 w
Equation(12-32) should not be used for Reynolds numbers below 6000 or for molten metals, which have abnormally low Prandtl number.
Estimation of wall temperature tw
The estimation of tw requires an iterative calculation based on the resistance equation
tm To tw ti 1 1 b do 1 do U o h o k dm hi di
At ordinary velocities the heat generated from fluid friction is negligible in comparison with the heat transferred between the fluids.

罗斯蒙特涡街流量计说明书

罗斯蒙特涡街流量计说明书
Transducer Block
The transducer block calculates flow from sensor frequency. The calculation includes information about damping, shedding frequency, K-factor, service type, pipe ID, and diagnostics.
• Replaceable Sensor - The sensor is isolated from the process and can be replaced without breaking the process seals. All line sizes use the same sensor design allowing a single spare to serve every meter.
• Alignment rings, provided with each wafer-style flowmeter, ensure that the meter body is properly centered with the adjacent piping.
• Both wafer and flanged style meter bodies are available in 316L stainless steel and Nickel Alloy materials of construction.
• Available as flanged meter for 1 through 12 inch stainless steel and nickel alloy C materials of construction.

低雷诺数圆柱绕流的大涡模拟分析

低雷诺数圆柱绕流的大涡模拟分析

低雷诺数圆柱绕流的大涡模拟分析李霖;张志国;王先洲;冯大奎【摘要】以二维圆柱为研究对象,采用大涡模拟的方法对圆柱绕流进行数值模拟.计算的雷诺数Re=400.计算结果能够清晰地反映卡门涡街的周期性脱落.通过对圆柱表面压力分布的深入探究,揭示圆柱尾流中产生周期性旋涡脱落的原因.研究结果中的阻力、升力呈周期性变化规律以及斯特劳哈尔数(St)都与前人实验结果较好吻合,说明大涡模拟能够对低雷诺数的圆柱绕流进行准确的模拟.%In this paper large eddy simulation is used to simulate the flow cross a 2D cylinder. The Reynolds number of the simulation is 400. The alternate eddy formation and shedding is captured precisely in this paper. The analysis of pressure distribution on cylinder reveals the mechanism of Karman vortex street. The drag, lift and Strouhal number obtained by simulation shows a good match with available data from the reference and literature. The large eddy simulation method shows a high quality on the flow field simulating and more attention should be paid on in the future.【期刊名称】《舰船科学技术》【年(卷),期】2013(035)001【总页数】5页(P22-26)【关键词】大涡模拟;圆柱绕流;卡门涡街;压力分布【作者】李霖;张志国;王先洲;冯大奎【作者单位】华中科技大学船舶与海洋工程学院,湖北武汉430074;华中科技大学船舶与海洋工程学院,湖北武汉430074;华中科技大学船舶与海洋工程学院,湖北武汉430074;华中科技大学船舶与海洋工程学院,湖北武汉430074【正文语种】中文【中图分类】O351.30 引言一个世纪以来,圆柱绕流问题一直是经典的流体力学问题之一,也是众多理论分析、数值模拟以及实验研究的对象[1-2]。

纳入雷诺数修正的GA-Elman_算法对EGTM_的研究

纳入雷诺数修正的GA-Elman_算法对EGTM_的研究

纳入雷诺数修正的GA-Elman 算法对EGTM 的研究赵寅 1 林文斌 1 刘博 21.中国南方航空股份有限公司工程技术分公司湖北基地 湖北武汉 432200;2.中国民航大学交通科学与工程学院 天津 300300摘要: 为进一步减小排气温度裕度计算误差,对发动机起飞排气温度裕度基线观察值和雷诺数影响系数进行了多元非线性拟合,提出了利用雷诺数影响系数修正排气温度( Exhaust Gas Temperature,EGT )基线观察值的方法,将雷诺数影响系数加入神经网络的输入层,利用遗传算法(Genetic Algorithm,GA )优化Elman 网络模型,建立排气温度裕度(Exhaust Gas Temperature Margin,EGTM )的预测模型。

通过结合飞行数据计算,对比多元非线性拟合以及Elman 网络模型和基于Elman 网络优化的GA-Elman 模型的计算误差效果,得出实验结果:GA-Elman 对EGTM 计算精度更高,鲁棒性更强。

关键词: 航空发动机 排气温度裕度 雷诺数 基线观察值 遗传算法中图分类号: V231文献标识码: A文章编号: 1672-3791(2024)02-0026-05Research of the Corrected GA-Elman Algorithm with theReynolds Number on EGTMZHAO Yin 1 LIN Wenbin 1 LIU Bo 2(1.Hubei Base of Engineering Technology Branch of China Southern Airlines Co., Ltd., Wuhan, Hubei Province,432200 China; 2.School of Transportation Science and Engineering, Civil Aviation University of China,Tianjin, 300300 China)Abstract: In order to further reduce the calculation error of exhaust gas temperature margin (EGTM), the baseline observation of the take-off EGTM and the influence coefficient of the Reynolds number of the engine are carried out multivariate nonlinear fitting, and a method of correcting the baseline observation of exhaust gas temperature (EGT) by using the influence coefficient of the Reynolds number is proposed. The influence coefficient of the Reynolds number is added to the input layer of the neural network, the Elman network model is optimized by the genetic algorithm (GA), and the prediction model of EGTM is established. By combing with flight data calculation, the calculation error effects of multivariate nonlinear fitting and the Elman network model and the GA-Elman model based on Elman network optimization are compared, and the experimental results show that GA-Elman has higher calculation accuracy and stronger robustness to EGTM.Key Words: Aeroengine; Exhaust gas temperature margin; Reynolds number; Baseline observation; Genetic algorithm排气温度裕度(Exhaust Gas Temperature Margin,EGTM )作为反映发动机整体性能衰退情况的主要参数之一,可作为发动机性能排队、水洗、换发等工作的重要依据。

传热学专业英语词汇

传热学专业英语词汇

Chapter 1 Thermodynamics and Heat Transfer主要内容:heat (thermal energy)、heat transfer、thermodynamics、total amount of heat transfer、heat transfer rate、heat flux、conduction、convection、radiation:1) The first law of thermodynamics (conservation of energy principle)2) Heat balance equation: a) closed system; b) open system (steady-flow)3) Fourier’s law of heat conduction4) Newton’s law of cooling5) Stefan-Boltzmann law主要专业词汇heat transfer 传热、热传递、传热学 thermodynamics热力学caloric 热素specific heat 比热 mass flow rate 质量流率latent heat 潜热 sensible heat 显热 heat flux 热流密度heat transfer rate热流量total amount of heat transfer 总热量conduction导热 convection对流 radiation 辐射thermal conductivity 热导率 thermal diffusivity 热扩散率convection/combined heat transfer coefficient 对流/综合换热系数emissivity 发射率 absorptivity 吸收率simultaneous heat transfer 复合换热Chapter 2 Heat Conduction Equation主要内容:temperature field、temperature gradient、heat generation、initial condition、boundary condition、steady\transient heat transfer、uniform\nonuniform temperature distribution:1) Fourier’s law of heat conduction (§2-1)v1.0 可编辑可修改2) Heat conduction equation (inrectangular\cylindrical\spherical coordinates) (§2-2、§2-3)3) Boundary conditions: (§2-4)a)Specified temperature B. C.b) Specified heat flux B. C. [special case(dt/dx=0):insulation、thermal symmetry];c) Convection .d) Radiation .e) Interface .4) Average thermal conductivity k ave (§2-7)5) Solution of one-dimensional, steady heat conduction inplane walls、cylinders and spheres (k =const):a) no heat generation, specified .: T(x) or T(r) (§2-5)Q(x) or Q(r), Q=constb) with heat generation, Specified . or Convection . :(§2-6)∆T max=T o-T s= gs2/2nk ; q(x)=gx/n; T s=T+gs/nhcharacteristic length S, shape factor n:plane walls — s = L (half thickness), n = 1cylinders ——s =r o, n = 2spheres ——s =r o, n =3: Solve a heat transfer problem1) Mathematical formulation (differential equation & .)2) General solution of equation3) Application of Unique solution of the problem主要专业词汇temperature field\distribution温度场\分布 temperature gradient温度梯度heat generation热生成(热源) initial\boundary condition 初始\边界条件transient heat transfer瞬态(非稳态)传热 isothermal surface 等温面Heat conduction differential equation 导热微分方程trial and error method试算法iterate迭代convergence 收敛Chapter 3 Steady Heat Conduction主要内容:multilayer\composite wall overall heat transfer coefficient U thermal resistance R t thermal contact resistance R c critical radius of insulation R crfin efficiency fin effectiveness:Multiplayer plane wall、cylinders and spheres:Fin: fin equation——refer to the attachment.1) Uniform cross-section: refer to the attachment.2) Varying cross-section: refer to the attachment.主要专业词汇thermal resistance热阻 parallel 并联 in series串联thermal contact resistance 接触热阻 composite wall 复合壁面thermal grease 热脂 cross-section 横截面 temperature execess 过余温度hyperbolic 双曲线的 exponent 指数fin 肋(翅)片 fin base 肋基 fin tip 肋端fin efficiency 肋效率 fin effectiveness 肋片有效度Chapter 4 Transient Heat Conduction主要内容:lumped system analysis characteristic length (L c=V/A)Biot number (Bi=hL c /k) Fourier number ( τ = at/L):Bi≤0, lumped system analysis (§4-1)Bi>0, Heisler/Grober charts OR analytical expressions 1-D:a) infinite large plane walls, long cylinders and spheres (§4-2)b) semi-infinite solids (§4-3)multidimensional: product solution (§4-4)主要专业词汇lumped system analysis 集总参数法 characteristic length 特征长度(尺寸)dimension 量纲 nondimensionalize 无量纲化 dimensionless quantity 无量纲量semi-infinite solid 半无限大固体 complementary error function 误差余函数series 级数 production solution 乘积解Chapter 5 Numerical Methods in Heat Conduction主要内容:control volume (energy balance) method、 finite difference method、discretization、 node、space step、time step、mesh Biot number、mesh Fourier number、mirror image concept、explicit/implicit method、stability criterion (primary coefficients 0) Numerical error: 1) discretization/truncation error; 2) round-off error:Numerical solution:1) Discretization in space and time (x, t);2) Build all nodes’finite difference formulations (including interior and boundary nodes);difference methodbalance method . Control Volume method)3) Solution of nodal difference eqs. of heat conduction;method: Gaussian Eliminationmethod: Gauss-Seidel iteration主要专业词汇control volume 控制容积 finite difference有限差分Taylor series expression泰勒级数展开式mirror image concept 镜像法 Elimination method 消元法direct/iterative method 直接/迭代方法 explicit/implicit method 显式/隐式格式stability criterion 稳定性条件 primary coefficients 主系数unconditionally 无条件地 algebraic eq. 代数方程discretization/truncation error 离散/截断误差 round-off error 舍入误差Chapter 6、7 Forced Convection and NaturalConvection主要内容:Nu、Re、Gr、PrForce/natural convection、external/internal flow、velocity/thermal boundary layerflow regimes、laminar/turbulent flowhydrodynamic/thermal entry region、fully developed regionCritical Reynolds Number (Re c)、hydraulic diameter (D h)、film temperature (T f)、bulk mean fluid temperature (T b)logarithmic mean temperature difference ( T ln)volume expansion coefficient (β= 1/T)effective thermal conductivity (K eff = K Nu):Drag force :F D = C f AρV2/2Heat transfer rate:Q = hA(T s-T)3.Typical Convection Phenomena:1) Forced convection:external flow——flow over flat plates (§6-4)——flow across cylinders and spheres (§6-5)internal flow——flow in tubes (§6-6)2) Natural convection: flow over surfaces (§7-2)flow inside enclosures (§7-3)主要专业词汇Force/natural convection 自然/强制对流 laminar/turbulent flow 层/湍流boundary layer 边界层 laminar sublayer 层流底层 buffer layer 缓冲层transition region 过渡区 flow regimes 流态inertia/viscous force 惯性/粘性力 shear stress 剪切应力friction/drag coefficient 摩擦/阻力系数 friction factor 摩擦因子dynamic/kinematic viscous 动力/运动粘度wake 尾流 stagnation point 滞止点 flow separation 流体分离vortex 漩涡 rotational motion 环流 velocity fluctuation 速度脉动hydrodynamic 水动力学的 hydraulic diameter 水力直径fully developed region 充分发展段 volume flow rate 体积流量arithmetic/logarithmic mean temperature difference 算术/对数平均温差volume expansion coefficient 体积膨胀系数interferometer 干涉仪 asymptotic渐近线的effective thermal conductivity 有效热导率analogical method 类比法 integral approach 积分近似法order of magnitude analysis 数量级分析法 similarity principle 相似原理Chapter 9 Radiation Heat Transfer主要内容:black body、gray body、diffuse surface、emissive power (E)emissivity (ε)、absorptivity (α)、reflectivity (ρ)、transmissivity (τ) irradiation(G)、radiosity(J)、reradiating(adiabatic) surfaceview factor (F ij)、radiation network、space resistance、surface resistance radiation shieldgas radiation、transparent medium to radiation、absorbing and transmitting medium:Blackbody: (1) Plank’s law(2) Stefan-Boltzmann’s law(3) Wien’s displacement lawGraybody: (4) Kirchhoff’s lawActual body:E (T) = ε E b(T) = εσT4 W/m2Gas: (5) Beer’s law3.Calculation:1) View factor:reciprocity/summation/superposition/symmetry Rulecrossed-strings method2) Radiation heat transfer:Radiation networkOpen system: between two surface . two large parallel plates) Enclosure: 2-surface enclosure;3-surface enclosureRadiation shield主要专业词汇thermal radiation热辐射、quantum theory量子理论、index of refraction 折射系数electromagnetic wave/spectrum 电磁波/波谱、ultraviolet (UV) rays紫外线、infrared (IR) rays 红外线absorptivity 吸收率、reflectivity 反射率、transmissivity 透射率、emissivity (ε) 发射率(黑度)、specular/diffuse reflection 镜反射/漫反射irradiation (incident radiation) 投入辐射、radiosity 有效辐射spectral/directional/total emissive power单色/定向/总辐射力fraction of radiation energy 辐射能量份额(辐射比)、blackbody radiation function 黑体辐射函数view factor 辐射角系数、crossed-strings method交叉线法、reciprocity/summation/superposition/symmetry Rule相互/完整/和分/对称性net radiation heat transfer 净辐射热流量radiation network 辐射网络图、space/surface radiation resistance 空间/表面辐射热阻、reradiating surface重辐射面、adiabatic 绝热的radiation shield遮热板transparent medium to radiation辐射透热体、absorbing and transmitting medium吸收-透过性介质Chapter 10 Heat Exchangers主要内容:heat exchanger type---- double-pipe、compact、shell-and-tube、plate-and-frame、regenerative heat exchangerparallel/counter/cross/multipass flowoverall heat transfer coefficient (U) fouling factor (R f)heat capacity rate capacity rationlog mean temperature difference (ΔT lm)heat transfer effectiveness (ε)number of transfer units (NTU):1) heat balance eq.: Q = C h (T h,in - T h,out)=C c(T c,out - T c,in)2) heat transfer eq.: Q = UAΔT lm ( LMTD method)or Q = εQ max = εC min (T h,in C T c,in) ( ε-NTU method) 3.Methods:1) LMTD Method:select a heat exchangerKnown: C h、C c、3‘T’Predict: 1‘T’、Q、A2) ε-NTU Method:evaluate the performance of a specified heat exchangerKnown: C h、C c、UA、T h,in、T c,inPredict: Q、T h,out、T c,out主要专业词汇double-pipe/compact/shell-and-tube/plate-and-frame/regenerative heat exchanger套管式/紧凑式/壳管式/板式/蓄热(再生)式换热器parallel/counter/cross/multipass flow 顺流/逆流/叉流/多程流area density 面积密度tube/shell pass 管程/壳程 static/dynamic type 静/动态型baffle 挡板 header 封头 nozzle管嘴 guide bar 导向杆 porthole 孔口gasket 垫圈 lateral 侧面的/横向的fouling factor 污垢因子 heat capacity rate 水当量heat transfer effectiveness (ε) 传热有效度number of transfer units (NTU) 传热单元数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

or mass-transfer parameters; and in this way one may certainly improve upon the accuracy of prediction generated by Van Driest’s original proposal. We have nevertheless now abandoned the above approach, for we came to believe that completely successful prediction of nonequilibrium processes in the low-Reynoldsnumber flow could not be achieved with a transport hypothesis based so firmly on local equilibrium notions. If the length scale of turbulence near the wall is not the same in a strongly accelerated flow as in a zero-pressure-gradient boundary layer then it is because the turbulence generation and decay rates are affected by convective and diffusive transport processes ; and these are not the same in the two flows. Thus one ought really to determine the length scale from a transport equation either for the length scale itself or for some other equivalent variable. In fact the use of turbulence models in which one or more turbulence quantities are found from the solution of approximated transport equations is now becoming quite commonplace. Launder and Spalding [ 131 have made a survey of recent proposals and have argued that models of the two-equation kind are especially to be recommended for boundary-layer flow. The solution of these equations provides the length and time scales, I and t, of the active part of the turbulent motion; the turbulent stress is then obtained by multiplying the local mean rate of strain by the turbulent viscosity of the fluid, pLT, where /4r = cplt
NOMENCLATURE Cl, c2, Cfl’
CJ-9
H, k K M, R, Re,
constants or functions of turbulence Reynolds number appearing in turbulence model ; skin friction coefficient ; shape factor (displacement thickness/momentum thickness) ; turbulence kinetic energy ; acceleration parameter ; (wall suction velocity)/uc ; radius of pipe ; pipe flow Reynolds number based on bulk velocity and pipe diameter ; turbulence Reynolds number ; mean velocity in x, y, z directions ; fluctuating components of velocity in x, y, z directions ; Cartesian coordinates denoting streamwise, cross-stream and lateral directions respectively ; kinematic energy dissipation rate ; thermal conductivity,/specitic heat at constant pressure; dynamic viscosity ;
1119
1120
W. P. JONES
and B. E. LAUNDER
turbulent motions immediately adjacent to a wall. The presence of the wall ensures that over a finite region of the flow, however thin, the turbulence Reynolds number is low enough for molecular viscosity to influence directly the processes of production, destruction and transport of turbulence. And these viscous interactions in turn render the problem of creating a general mathematical model of the turbulence at least an order of magnitude more difficult than for high-Reynolds-number flows. Notwithstanding the above remarks, it is possible, under favourable circumstances, to escape the inherent complexities of lowReynolds-number turbulence. For if gradients in static pressure parallel to the surface are small and if mass injection through the wall and property gradients in the fluid are, likewise, small or absent, both mean and turbulence quantities are nearly-universal functions of the normal-distance Reynolds number, yf. Thus, the near-wall effective viscosity distribution deduced from experimental data of one flow may be employed to calculate mean velocity profiles in many others. Patankar and Spalding [l] were among the first to exploit this comparative universality of the near wall region. They used a version of Van Driest’s [2] formula for the variation of mixing length near the wall to obtain satisfactory predictions of a variety of boundary layer flows. Not all boundary layers, however, possess a turbulence structure near the wall which conforms with this “universal” pattern. It has been well established that severe streamwise pressure gradients and surface mass fluxes may substantially disturb the near wall flow [3-51, as may likewise steep property gradients or the influences of buoyancy, centrifugal or Coriolis forces [ 6-81. A number of workers, including the present authors, have attempted to account for the effects of the first two of the above parameters within the framework of the Prandtl mixing-length hypothesis. Often [9-121 the mixing-length distribution is chosen to be a function of dimensionless pressure-gradient and/
相关文档
最新文档