某城市污水处理厂工艺设计含外文翻译
某城市污水处理厂工艺设计(日处理6万方)
某城市污水处理厂工艺设计1.设计任务书一、设计任务根据所给的其他原始资料,设计污水处理厂,具体内容包括:1、确定污水处理厂的工艺流程,选择处理构筑物并通过计算确定其尺寸;2、画出污水厂的工艺平面布置图,内容包括表示出处理厂的范围,全部处理构筑物及辅助构筑物、主要管线的布置、主干道及处理构筑物发展的可能性;3、按扩初设计要求,画出污水厂工艺流程高程布置图,表示原水、各处理构筑物的高程关系、水位高度以及处理出水的出厂方式;4、按扩初设计要求,画出主要构筑物单体的平面、剖面图;5、编写设计说明书、计算书.二、设计资料1.设计规模及水质①原始资料该城市污水中包括居民生活污水和工业废水两大部分,工业废水占总量的40%,主要为化工、机械、纺织等工业排出的废水,大部分经厂里处理,达到GB8978-1996<<污水综合排放标准>>中三级标准后排入城市污水下水管道。
考虑到城市的近期、远期规划,拟建规模为60000m3/d。
②设计进水水质COD cr=400mg/L; BOD5=180mg/L; SS=250mg/LT-P=35mg/L; T-P=4mg/L; PH=7-8; 总碱度=280mg/L③设计出水水质根据GB18918-2002<<城市污水处理厂污染物排放标准>>的相关规定,要求出水水质达到一级标准(B标准)。
水质情况如下:COD c r≤60mg/L; BOD5≤20mg/L; SS≤20mg/L;T-P≤20mg/L; T-P≤1.5 mg/L; PH=7-82、城市自然状况气候:大陆行季风气候气温:最低温度:-10℃; 最高气温:40℃夏季平均气温:20-26℃; 冬季平均气温:6-10℃冻土深度:0.4-0.8m主导风向:西北风3、污水处理厂厂区概况该污水处理厂为新建污水厂,根据规划位于城市下游,城市海拔高度340.0m,规划用地长宽分别为:350mx200m,场地平整.污水厂进水口位于厂区西南角,进水污水管的标高为336.0m;出水靠重力排入厂区东侧500m处某河,该河符合<<地表水环境质量标准>>中的III类标准.河水最高水位336.0m.地下水位深度:3-4m.2.设计说明书2.1 工程概况2.1.1 基本情况设计名称:某城镇6万m3/d污水处理厂设计设计规模:日处理城镇污水6万m3,包括生活污水和城市工业废水处理工艺:污水处理采用厌氧选择池加氧化沟工艺,污泥处理采用机械浓缩压滤处理工艺。
某城市污水处理厂工艺设计(6万m3)
摘要城市污水处理厂是现代城市发展和水资源保护不可缺少的组成部分。
本课题是设计一座日处理量为 6万m3的城市生活污水处理厂。
其核心处理工艺选用的是卡鲁塞尔氧化沟工艺流程。
污水在氧化沟中经曝气设备的搅动与活性污泥充分接触后,大部分的污染物被除去。
最后出水达到国家的有关排放标准。
本文设计介绍了该工艺的特点,并有相关的城市污水处理厂的工艺设计过程。
关键词:污水处理厂工艺设计氧化沟工艺污泥处理AbstractThe city sewage treatment plant is essential constituent of the modern urban development and the water resources conservation. This topic designs a city life sewage treatment plant which can treat 60,000 m3 sewage one day. Its core processing craft selects the Carrousel oxidation ditch technicalprocess. Sewage in oxidation ditch after aerator mixing and active sludgefull contact, most of pollutants of which are removed. Last, the water leakage achieved the country related discharges standard. This article introduceds the characteristic of this craft and supplies the correlated process of the city sewage treatment plant.Key words:Sewage treatment plant Technological design Oxidation ditch craft Sludge processing目录第一章设计概述............................................. - 4 -1.1城市生活污水处理现状及发展.................................................................... - 4 -1.1.1 目前存在的问题................................................................................ - 4 -1.1.2 今后的发展趋势................................................................................ - 5 -1.2 毕业设计任务的主要内容(含主要技术参)..................... - 5 -1.2.1 污水处理厂服务范围及建设规模.................................................. - 5 -1.2.2 污水处理厂进水水质...................................................................... - 5 -1.2.3 污水处理厂出水水质...................................................................... - 6 -1.2.4 污水处理厂厂区概况...................................................................... - 6 -1.3 毕业设计应完成的工作(含图纸数量)................................................. - 7 -1.3.1 毕业设计最终成果.......................................................................... - 7 -1.3.2 要求.................................................................................................. - 7 -1.3 设计目的..................................................................................................... - 7 -第二章工艺流程确定............................................ - 9 -2.1 设计原则....................................................................................................... - 9 -2.1.1 设计原则............................................................................................ - 9 -2.1.2 设计依据............................................................................................ - 9 -2.2 适合中小型污水处理厂的脱氮除磷工艺............................................... - 10 -2.2.1 处理工艺大方案的比选................................................................ - 10 -2.2.2 处理工艺小方案的比选................................................................ - 16 -2.2.3 处理工艺流程................................................................................ - 19 -第三章处理系统构筑物计算..................................... - 25 -3.1 进水井....................................................................................................... - 25 -3.2 粗格栅....................................................................................................... - 25 -3.3 提升泵房................................................................................................... - 29 -3.4 细格栅....................................................................................................... - 30 -3.5 曝气沉砂池............................................................................................... - 34 -3.6 厌氧池......................................................................................................... - 38 -3.7 卡鲁塞尔氧化沟......................................................................................... - 39 -3.8 二沉池....................................................................................................... - 49 -3.9 接触池....................................................................................................... - 56 -3.10 计量槽..................................................................................................... - 58 -3.11 污泥泵房................................................................................................... - 58 -3.12 污泥浓缩池............................................................................................. - 60 -3.13 储泥池..................................................................................................... - 62 -3.14 污泥脱水间............................................................................................. - 63 -第四章水头损失确定........................................... - 65 -4.1 废水处理水的高程布置计算..................................................................... - 65 -4.1.1 管段选择及沿程损失的计算.......................................................... - 65 -4.1.2 污水管的弯头处局部损失的计算.................................................. - 67 -4.1.3 流过构筑物时水头损失的确定...................................................... - 68 -4.1.4 总水头损失...................................................................................... - 68 -4.2 污泥高程的计算......................................................................................... - 68 -第五章污水处理厂总体布置...................................... - 69 -5.1 污水厂厂址选择......................................................................................... - 69 -5.1.1 遵循原则.......................................................................................... - 69 -5.2 污水厂平面布置......................................................................................... - 70 -5.2.1 污水处理厂平面布置原则.............................................................. - 70 -5.3 污水厂的高程布置..................................................................................... - 71 -第六章劳动定员............................................... - 72 -6.1 生产组织..................................................................................................... - 72 -6.2 劳动定员..................................................................................................... - 72 -6.3 人员培训..................................................................................................... - 72 -第七章工程技术经济分析........................................ - 73 -7.1 土建费用及主要设备材料费用................................................................. - 73 -7.1.1 土建费用造价列表.......................................................................... - 73 -7.1.2 主要设备清单.................................................................................. - 73 -7.1.3 直接投资费用.................................................................................. - 74 -7.2 运行费用计算............................................................................................. - 74 -7.2.1 成本估算.......................................................................................... - 74 -7.2.2 运行费用.......................................................................................... - 75 -7.2.3 工资福利开支.................................................................................. - 75 -7.2.4 生产用水水费开支.......................................................................... - 75 -7.2.5 运费.................................................................................................. - 76 -7.2.6 维护维修费...................................................................................... - 76 -7.2.7 管理费用.......................................................................................... - 76 -7.2.8 运行成本核算.................................................................................. - 76 -第八章环境保护、建筑防火和职业安全防护....................... - 77 -8.1 环境保护..................................................................................................... - 77 -8.1. 污水............................................................................................................ - 77 -8.2 厂区绿化..................................................................................................... - 77 -8.3 建筑防火..................................................................................................... - 77 -8.4 职业安全防护............................................................................................. - 78 -参考文献(References)......................................... - 78 -致谢- 80 -第一章设计概述1.1城市生活污水处理现状及发展世界任何国家的经济发展,都会推进社会进步、促进工农业生产能力得到提高,使人民生活得到进一步改善,但是也随之带来不同程序的环境污染。
污水处理厂 外文文献
ENVIRONMENTAL BIOTECHNOLOGYOne-stage partial nitritation/anammox at15°Con pretreated sewage:feasibility demonstration at lab-scale Haydée De Clippeleir&Siegfried E.Vlaeminck&Fabian De Wilde&Katrien Daeninck&Mariela Mosquera&Pascal Boeckx&Willy Verstraete&Nico BoonReceived:26November2012/Revised:28January2013/Accepted:30January2013#Springer-Verlag Berlin Heidelberg2013Abstract Energy-positive sewage treatment can beachieved by implementation of oxygen-limited autotrophicnitrification/denitrification(OLAND)in the main water line,as the latter does not require organic carbon and thereforeallows maximum energy recovery through anaerobic diges-tion of organics.To test the feasibility of mainstreamOLAND,the effect of a gradual temperature decrease from29to15°C and a chemical oxygen demand(COD)/Nincrease from0to2was tested in an OLAND rotatingbiological contactor operating at55–60mg NH4+–NL−1 and a hydraulic retention time of1h.Moreover,the effectof the operational conditions and feeding strategies on thereactor cycle balances,including NO and N2O emissionswere studied in detail.This study showed for the first timethat total nitrogen removal rates of0.5g NL−1day−1can bemaintained when decreasing the temperature from29to15°Cand when low nitrogen concentration and moderate CODlevels are treated.Nitrite accumulation together with elevatedNO and N2O emissions(5%of N load)were needed to favoranammox compared with nitratation at low free ammonia(<0.25mg NL−1),low free nitrous acid(<0.9μg NL−1),and higher DO levels(3–4mg O2L−1).Although the total nitrogen removal rates showed potential,the accumulation of nitrite and nitrate resulted in lower nitrogen removal efficiencies (around40%),which should be improved in the future. Moreover,a balance should be found in the future between the increased NO and N2O emissions and a decreased energy consumption to justify OLAND mainstream treatment. Keywords Energyself-sufficient.Nitrospira.Nitricoxide. Nitrous oxide.DeammonificationIntroductionCurrently,around40full-scale one-stage partial nitrita-tion/anammox plants are implemented to treat highly loaded nitrogen streams devoid in carbon(Vlaeminck et al.2012). This process,known under the acronyms oxygen-limited autotrophic nitrification/denitrification(OLAND)(Kuai and Verstraete1998),deammonification(Wett2006),com-pletely autotrophic nitrogen removal over nitrite(Third et al. 2001),etc.,showed highly efficient and stable performance when treating digestates from sewage sludge treatment plants and industrial wastewaters(Wett2006;Abma et al. 2010;Jeanningros et al.2010).For clarity,one-stage partial nitritiation/anammox processes will be referred to as OLAND in this work.From an energy point of view,the implementation of the OLAND process for the treatment of sewage sludge digestate decreased the net energy consump-tion of a municipal wastewater treatment plant(WWTP)by 50%,with a combination of a lower aeration cost in the side stream and the opportunity to recover more organics from the mainstream(Siegrist et al.2008).Moreover,when co-digestion of kitchen waste was applied,an energyneutral Electronic supplementary material The online version of this article(doi:10.1007/s00253-013-4744-x)contains supplementary material,which is available to authorized users.H.De Clippeleir:S.E.Vlaeminck:F.De Wilde:K.Daeninck:M.Mosquera:W.Verstraete:N.Boon(*)Laboratory for Microbial Ecology and Technology(LabMET),Ghent University,Coupure Links653,9000Gent,Belgiume-mail:Nico.Boon@UGent.beP.BoeckxLaboratory of Applied Physical Chemistry(ISOFYS),Ghent University,Coupure Links653,9000Gent,BelgiumAppl Microbiol BiotechnolDOI10.1007/s00253-013-4744-xWWTP was achieved(Wett et al.2007).To fully recover the potential energy present in wastewater,a first idea of a new sustainable wastewater treatment concept was reported (Jetten et al.1997).Recently,a“ZeroWasteWater”concept was proposed which replaces the conventional activated sludge system by a highly loaded activated sludge step (A-step),bringing as much as organic carbon(chemical oxygen demand(COD))as possible to the solid fraction, and a second biological step(B-step)removing the residual nitrogen and COD with a minimal energy demand (Verstraete and Vlaeminck2011).Subsequently,energy is recovered via anaerobic digestion of the primary and sec-ondary sludge.For the B-step in the main line,OLAND would potentially be the best choice as this process can work at a low COD/N ratio,allowing maximum recovery of COD in the A-step.Moreover,it was calculated that if OLAND is implemented in the main water treatment line and a maximum COD recovery takes place in the A-step,a net energy gain of the WWTP of10Wh inhabitant equivalent (IE)−1day−1is feasible(De Clippeleir et al.2013).To allow this energy-positive sewage treatment,OLAND has to face some challenges compared with the treatment of highly loaded nitrogen streams(>250mg NL−1).A first difference is the lower nitrogen concentration to be removed by OLAND.Domestic wastewater after advanced concen-tration will still contain around30–100mg NL−1and113–300mg CODL−1(Metcalf and Eddy2003;Tchobanoglous et al.2003;Henze et al.2008).High nitrogen conversion rates(around400mg NL−1day−1)by the OLAND process can be obtained at nitrogen concentrations of30–60mg N L−1and at low hydraulic retention times(HRT)of1–2h(De Clippeleir et al.2011).A second challenge is the low tem-perature at which OLAND should be operated(10–15°C compared with34°C).Several studies already described the effect of temperature on the activity of the separate micro-bial groups(Dosta et al.2008;Guo et al.2010;Hendrickx et al.2012).Only a few studies showed the long-term effect of a temperature decrease below20°C on the microbial bal-ances of anoxic and aerobic ammonium-oxidizing bacteria (AnAOB and AerAOB)and nitrite-oxidizing bacteria (NOB)at nitrogen concentrations above100mg NL−1 (Vazquez-Padin et al.2011;Winkler et al.2011).However, the combination of low temperature and low nitrogen con-centration was never tested on a co-culture of AerAOB, AnAOB,and NOB before.At temperatures around15°C, maintaining the balance between NOB and AnAOB and the balance between NOB and AerAOB will get more challeng-ing since the growth rate of NOB will become higher than the growth rate of AerAOB(Hellinga et al.1998). Therefore,it will not be possible to wash out NOB based on overall or even selective sludge retention.The third and main challenge in this application will therefore be the suppression of NOB at temperature ranges of10–20°C and at nitrogen concentration ranges of30–60mg NL−1 (low free ammonia and low nitrous acid),which was not shown before.A final fourth challenge will include the higher input of organics at moderate levels of90–240mg biodegradable CODL−1in the wastewater.Depending on the raw sewage strength,COD/N ratios between2and3are expected after the concentration step,which is on the edge of the described limit for successful OLAND(Lackner et al. 2008).The presence of organics could result in an extra competition of heterotrophic denitrifiers with AerAOB for oxygen or with AnAOB for nitrite or organics,since certain AnAOB can denitrify consuming organic acids (Kartal et al.2007).In this study,the challenges2to4,were evaluated in an OLAND rotating biological contactor(RBC).This reactor at 29°C was gradually adapted over24,22,and17to15°C under synthetic wastewater conditions(60mg N L−1, COD/N of0).Additionally,the COD/N ratio of the influent was increased to2by supplementing NH4+to diluted sewage to simulate pretreated sewage.The effect of the operational conditions and feeding strategies on the reactor cycle balan-ces,including gas emissions and microbial activities were studied in detail.An alternative strategy to inhibit NOB activity and as a consequence increase AnAOB activity at low temperatures based on NO production was proposed. Materials and methodsOLAND RBCThe lab-scale RBC described by De Clippeleir et al.(2011) was further optimized at29°C by an increase in the influent nitrogen concentration from30to60mg NL−1and a limitation of the oxygen input through the atmosphere by covering the reactor before this test was started.The reactor was based on an air washer LW14(Venta,Weingarten, Germany)with a rotor consisting of40discs interspaced at 3mm,resulting in a disc contact surface of1.32m2.The reactor had a liquid volume of2.5L,immersing the discs for 55%.The latter was varied over the time of the experiment. The reactor was placed in a temperature-controlled room. The DO concentration was not directly controlled.In this work,continuous rotation was applied at a constant rotation speed of3rpm,which allowed mixing of the water phase. RBC operationThe RBC was fed with synthetic wastewater during phases I to VII.From phase VIII onwards,the COD/N was gradually increased(phases VIII–X)to2(phases XI–XIII).The syn-thetic influent of an OLAND RBC,consisted of(NH4)2SO4 (55–60mg NL−1),NaHCO3(16mg NaHCO3mg−1N),andAppl Microbiol BiotechnolKH2PO4(10mg PL−1).Pretreated sewage was simulated by diluting raw sewage of the communal WWTP of Gent, Belgium(Aquafin).The raw wastewater after storage at 4°C and settlement contained23–46mg NH4+–NL−1, 0.2–0.4mg NO2−–NL−1,0.4–2.7mg NO3−–NL−1,23–46mgKjeldahl–NL−1,3.8–3.9mg PO43−–PL-1,26–27mg SO42−–S L−1,141–303mg COD tot L−1,and74–145mg COD sol L−1.The raw sewage was diluted by factors2–3to obtain COD values around110mg COD tot L−1and by addition of(NH4)2SO4to obtain final COD/N values around2.The reactor was fed in a semi-continuous mode:two periods of around10min/h for phases I–XI and one period of20min/h for phases XII and XIII.The influent flow range varied from47to65Lday−1and the reactor volume from3.7to2.5L(during78and55% submersion,respectively).Corresponding HRTare displayed in Tables1and2.Reactor pH,DO,and temperature were daily monitored and influent and effluent samples were taken at least thrice a week for ammonium,nitrite,nitrate,and COD analyses. Detection of AerAOB,NOB,and AnAOB with FISHand qPCRFor NOB and AnAOB,a first genus screening among the most commonly present organisms was performed by fluo-rescent in-situ hybridization(FISH)on biomass of days1 (high temperature)and435(low temperature and COD presence).A paraformaldehyde(4%)solution was used for biofilm fixation,and FISH was performed according to Amann et al.(1990).The Sca1309and Amx820probes were used for the detection of Cand.Scalindua and Cand. Kuenenia&Brocadia,respectively,and the NIT3and Ntspa662probes and their competitors for Nitrobacter and Nitrospira,respectively(Loy et al.2003).This showed the absence of Nitrobacter and Scalindua(Table S1in the Electronic supplementary material(ESM)).Biomass sam-ples(approximately5g)for nucleic acid analysis were taken from the OLAND RBC at days1,60,174,202,306,385, 399,and413of the operation.DNA was extracted using FastDNA®SPIN Kit for Soil(MP Biomedicals,LLC), according to the manufacturer’s instructions.The obtained DNA was purified with the Wizard®DNA Clean-up System (Promega,USA)and its final concentration was measured spectrophotometrically using a NanoDrop ND-1000spec-trophotometer(Nanodrop Technologies).The SYBR Green assay(Power SyBr Green,Applied Biosystems)was used to quantify the16S rRNA of AnAOB and Nitrospira sp.and the functional amoA gene for AerAOB.The primers for quantitative polymerase chain reactions(qPCR)for detection of AerAOB,NOB,and AnAOB were amoA-1F–amoA-2R (Rotthauwe et al.1997),NSR1113f–NSR1264r(Dionisi et al. 2002),and Amx818f–Amx1066r(Tsushima et al.2007),re-spectively.For bacterial amoA gene,PCR conditions were: 40cycles of94°C for1min,55°C for1min,and60°C for 2min.For the amplification of Nitrospira sp.16S rRNA gene, 40cycles of95°C for1min,50°C for1min,and60°C for 1min were used while for AnAOB16S rRNA the PCR temperature program was performed by40cycles of15s at 94°C and1min at60°C.Plasmid DNAs carrying NitrospiraTable1Effect of temperature decrease on the operational conditions and performance of OLAND RBC reactorPhase I II III IV V VI VIIPeriod(days)1–2122–3536–6162–210210–263263–274275–306 Immersion level(%)78787878557855 Temperature(°C)29±224±122±0.617±1.216±0.915±0.814±0.4 Operational conditionsDO(mg O2L−1) 1.1±0.2 1.3±0.2 1.4±0.1 1.7±0.3 2.8±0.4 2.4±0.2 3.1±0.2 pH(−)7.5±0.17.5±0.17.5±0.17.6±0.17.7±0.17.7±0.17.8±0.1 HRT(h) 1.85±0.04 1.84±0.09 1.73±0.04 1.86±0.11 1.09±0.02 1.57±0.02 1.09±0.02 FA(mg NL−1)0.35±0.180.36±0.180.34±0.140.36±0.130.25±0.160.33±0.170.13±0.04 FNA(μg NL−1)0.3±0.10.3±0.20.4±0.20.4±0.10.9±0.40.6±0.10.9±0.2 PerformanceTotal N removal efficiency(%)54±552±549±934±936±936±942±4 Relative NO3−prod(%of NH4+cons a)7±17±17±114±618±916±321±4 Relative NO2−accum(%of NH4+cons)2±43±45±515±530±826±631±5 AerAOB activity(mg NH4+–NL−1day−1)267±38267±49260±52260±53811±229460±44986±71 NOB activity(mg NO2–NL−1day−1)0±00±00±09±1260±9420±585±25 AnAOB activity(mg N tot L−1day−1)412±38403±37368±76248±67448±117305±74529±75DO dissolved oxygen,HRT hydraulic retention time,F A free ammonia,FNA free nitrous acid,cons consumption,prod production,accum accumulation,tot totala NH4+consumption is corrected for nitrite accumulationAppl Microbiol Biotechnoland AnAOB16S rRNA gene and AerAOB functional AmoA gene,respectively,were used as standards for qPCR.All the amplification reactions had a high correlation coefficient (R2>0.98)and slopes between−3.0and−3.3.Detailed reactor cycle balancesFor the measurements of the total nitrogen balance,including the NO and N2O emissions,the OLAND RBC was placed in a vessel(34L)which had a small opening at the top(5cm2).In this vessel,a constant upward air flow(around1ms−1or0.5L s-1)was generated to allow calculations of emission rates.On the top of the vessel(air outlet),the NO and N2O concentra-tion was measured,off-and online,respectively.NH3emis-sions were negligible in a RBC operated at about2mg NH3–NL−1(Pynaert et al.2003).Since FA levels in the currentstudy are about ten times lower,NH3emissions were not included.In the water phase,ammonium,nitrite,nitrate,hy-droxylamine(NH2OH),N2O,and COD concentrations were measured.Moreover,DO concentration and pH values were monitored.The air flow was measured with Testo425hand probe(Testo,Ternat,Belgium).Chemical analysesAmmonium(Nessler method)was determined according to standard methods(Greenberg et al.1992).Nitrite and nitrate were determined on a761compact ion chromatograph equipped with a conductivity detector(Metrohm,Zofingen, Switzerland).Hydroxylamine was measured spectrophoto-metrically(Frear and Burrell1955).The COD was determined with NANOCOLOR®COD1500en NANOCOLOR®COD 160kits(Macherey-Nagel,Düren,Germany).The volumetric nitrogen conversion rates by AerAOB,NOB,and AnAOB were calculated based on the measured influent and effluent compositions and the described stoichiometries,underestimat-ing the activity of AnAOB by assuming that all COD removed was anoxically converted with nitrate to nitrogen gas (Vlaeminck et al.2012).DO and pH were measured with respectively,a HQ30d DO meter(Hach Lange,Düsseldorf, Germany)and an electrode installed on a C833meter (Consort,Turnhout,Belgium).Gaseous N2O concentrations were measured online at a time interval of3min with a photo-acoustic infrared multi-gas monitor(Brüel&Kjær, Model1302,Nærem,Denmark).Gas grab samples were taken during the detailed cycle balance tests for NO detec-tion using Eco Physics CLD77AM(Eco Physics AG, Duernten,Switzerland),which is based on the principle of chemiluminescence.For dissolved N2O measurements,a1-mL filtered(0.45μm)sample was brought into a7-mL vacutainer(−900hPa)and measured afterwards by pressure adjustment with He and immediate injection at21°C in a gas chromatograph equipped with an electron capture detector (Shimadzu GC-14B,Japan).Table2Effect of COD/N increase on the operational conditions and performance of OLAND RBC reactorPhase VIII IX X XI XII XIIIPeriod(days)355–361362–369370–374375–406407–421422–435 Immersion level(%)555555555555COD/N(-)0.51 1.5222 Feeding regime(pulsesh−1)222211 Operational conditionsDO(mg O2L−1) 2.9±0.3 2.5±0.6 2.4±0.3 3.0±0.7 3.6±0.3 3.2±0.3 pH(−)7.8±0.027.7±0.17.6±0.027.6±0.17.6±0.27.6±0.1 HRT(h) 1.06±0.11 1.03±0.020.92±0.020.94±0.05 1.10±0.05 1.06±0.2 FA(mg NL−1)0.10±0.050.04±0.050.15±0.050.21±0.100.23±0.120.04±0.02 FNA(μg NL−1)0.4±0.10.2±0.20.2±0.010.3±0.10.2±0.10.6±0.2 PerformanceTotal N removal efficiency(%)36±545±1823±328±623±1342±3 Relative NO3−prod(%of NH4+cons a)42±543±1263±250±662±1846±6 Relative NO2−accum(%of NH4+cons)20±410±105±18±37±413±6 AerAOB activity(mg NH4+–NL−1day−1)592±15446±31238±28352±73289±138600±204 NOB activity(mg NO2−–NL−1day−1)257±19294±81465±60352±84427±115394±76 AnAOB activity(mg N tot L−1day−1)385±86452±205262±39355±73281±159481±73COD removal rates were negligible in all phasesDO dissolved oxygen,HRT hydraulic retention time,F A free ammonia,FNA free nitrous acid,cons consumption,prod production,accum accumulation,tot totala NH4+consumption is corrected for nitrite accumulationAppl Microbiol BiotechnolResultsEffect of temperature decreaseDuring the reference period (29°C),a well-balanced OLAND performance (Fig.1;Table 1)was reached with minimal nitrite accumulation (2%)and minimal nitrate production (7%).This was reflected in an AerAOB/AnAOB activity ratio of 0.6(Table 1,phase I).The total nitrogen removal rate was on average 470mg N L −1day −1or 1314mg Nm −2day −1,and the total nitrogen removal efficiency was 54%.Decreasing the temperature from 29to 24°C and further to 22°C over the following 40days,did not result in anysignificant changes of the operational conditions (Table 1;phases I –III),performance of the reactor (Fig.1)or abun-dance of the bacterial groups (qPCR;Fig.S1in the ESM ).However at 17°C,a decrease in total nitrogen removal efficiency was observed (Table 1;phase IV).An imbalance between the AerAOB and the AnAOB was apparent from a stable AerAOB activity yet a declining AnAOB activity.Moreover,NOB activity was for the first time detected in spite of free ammonia (FA)and free nitrous acid (FNA)con-centrations did not change (Table 1;phase IV).Moreover,no significant differences in abundance of NOB,AerAOB,and AnAOB could be detected with qPCR (Fig.S1in the ESM ).However,DO concentrations started to increase during that period from 1.4to 1.7mg O 2L −1.As the availabilityofFig.1Phases I –VII:effect of temperature decrease on the volumetric rates (top )and nitrogen concentrations (bottom )Appl Microbiol Biotechnoloxygen through the liquid phase did not seem to be satisfac-tory to counteract the decrease in ammonium removal effi-ciency,the immersion level was lowered to55%to increase the availability of oxygen through more air-biofilm contact surface.Consequently,the volumetric loading rate increased (factor1.7)due to the decrease in reactor volume(day210, Fig.1).This action allowed higher ammonium removal effi-ciencies due to higher AerAOB activities(factor3).AnAOB activity increased with a similar factor as the volumetric loading rate(1.8compared with1.7)consequently resulting in an increased imbalance between these two groups of bac-teria(Table1;phase V).Moreover,although the FNA in-creased with a factor2,the NOB activity increased with a factor7,resulting in a relative nitrate production of30% (Table1;phase V).As NOB activity prevented good total nitrogen removal efficiencies,the immersion level was in-creased again to78%(day263;Fig.1).This resulted indeed in a lower NOB activity(Table1;phase VI).However,also the AerAOB activity decreased with the same factor,due to the lower availability of atmospheric oxygen.Therefore,the reactor was subsequently operated again at the lower immer-sion level(55%)to allow sufficient aerobic ammonium conversion.The latter allowed a stable removal efficiency of 42%.The AnAOB activity gradually increased to a stable anoxic ammonium conversion rate of529mg NL−1day−1. During the synthetic phase,no changes in AerAOB, AnAOB,and NOB abundance were measured with qPCR (Fig.S1in the ESM).The effluent quality was however not optimal as still high nitrite(around15mg NL−1)and nitrate (around13mg NL−1)levels were detected.Effect of COD/N increaseThe synthetic feed was gradually changed into pretreated sewage by diluting raw sewage and adding additional nitro-gen to obtain a certain COD/N ratio.During the first3weeks of this period(Fig.2),the COD/N ratio was gradually increased from0.5to2.Due to the short adaptation periods (1week per COD/N regime),the performance was unstable (Fig.2;Table2,phases VIII–XI).Compared with the end of the synthetic period(phase VII),operation at a COD/N ratio of2(phase XI)resulted in a sharp decrease in nitrite accu-mulation(Fig.2)and an increase in the ammonium and nitrate levels.This indicated increased NOB activity(factor 4),decreased AerAOB(factor3)and decreased AnAOB (factor2)activity(Tables1and2).To allow higher nitrogen removal rates,the HRT was increased from0.94to1.1h,by decreasing the influent flow rate.Moreover,the feeding regime was changed from two pulses of10min in1h to one period of20min/h.These actions did not significantly decrease the effluent nitrogen concentration(Fig.2)and did not influence the microbial activities(Table2,phase XII). Therefore the loading rate was again increased to the levels before phase XII.However,the single-pulse feeding wasmaintained.This resulted in high ammonium removal effi-ciencies and therefore low ammonium effluent concentra-tion around dischargeable level(4±1mg NH4+–NL−1; Fig.2).Nitrate and nitrite accumulation were not counter-acted by denitrification as only0.02mg CODL−1day−1wasremoved.Therefore,nitrite and nitrate levels were still toohigh to allow effluent discharge.The total nitrogen removalefficiency(42%)and rate(549±83mg NL−1day−1or1,098±106mgNm−2day−1)at COD/N ratios of2wassimilar as during the synthetic period(phase VII).Comparedwith the reference period at29°C,the total nitrogen removalrate did not changed significantly(470±43versus549±83mgNL−1day−1at high and low temperatures,respectively).The22%lowered removal efficiency was merely due to anincreased nitrogen loading rate.Nitratation and NO/N2O emissionsAt the end of the synthetic phase(phase VII)and the end ofthe experiment(phase XIII),the total nitrogen balance of thereactor was measured.A total nitrogen balance was obtainedby measuring all nitrogen species(NH4+,NO2−,NO3−,NH2OH,and N2O)in the liquid phase and N2O and NO inthe gas phase.A constant air flow,diluting the emitted N2Oand NO concentrations was created over the reactor tomeasure gas fluxes over time.The effect of the loading rate,feeding pattern,and concentration of nitrite and ammoniumon the total nitrogen balance in the reactor were tested(Table3).NH2OH measurements showed low concentra-tions(<0.2mg NL−1)in all tests,making it difficult to linkthe profiles with the N2O emission.Lowering the loading rate by increasing the HRT(Table3,test B)increased the DO values and allowed higherDO fluctuations over time at synthetic conditions.Moreover,NOB activity increased significantly resultingin lower total nitrogen removal efficiencies and high levelsof nitrate in the effluent(Table3,test B).The relative N2Oemissions did not change and were relatively high(6%of Nload).However,the concentration of N2O in the liquid andin the gas phase decreased with a factor2(Table3).When pretreated sewage was fed to the reactor,theOLAND RBC was operated at lower nitrite concentration,while similar ammonium and nitrate concentrations wereobtained(Table3,test C).The lower nitrite concentrationshowever did not result in lower N2O emission rates.Whenthe feeding regime was changed to a more continuous-likeoperation(4pulses/h),the N2O emission increased signifi-cantly,while NO emission remained constant(Table3,testD).Due to the lower ammonium removal efficiency(65compared with81%),but similar relative nitrite and nitrateaccumulation rate,the total nitrogen removal efficiencydecreased.Appl Microbiol BiotechnolWhen a nitrite pulse was added just after feeding,about 20mg NO 2−–NL −1was obtained in the reactor.This did increase the NO and N 2O emissions significantly (p <0.05)compared with the same feeding pattern (Table 3,tests C –E).Although similar constant total nitrogen removal efficien-cies were obtained during this operation,a significant (p <0.05)decrease in the relative nitrate production was observed.The latter was mainly caused by a global increase in AnAOB activity.In the last test (F),the influent ammo-nium concentration was doubled,leading to higher ammo-nium and also FA concentrations (1±0.4mg N L −1compared with 0.1±0.4mg NL −1).Due to overloading of the system,the total nitrogen removal efficiency decreased.However,at these conditions a lower relative nitrate pro-duction was obtained;due to a decrease in NOB and in-crease in AnAOB activity (Table 3,test F).Together with this,increased NO and N 2O emissions were observed.As the influence of the nitrogen loading and DO concentration could be considered minor in this test range (Fig.S2in the ESM ),these tests show a relation between increased NO emissions and decreased relative nitrate productions (Table 3).When the activity during the feeding cycle was studied in more detail,it could be concluded that the highest nitrogen conversion rates took place during the feeding period,which was characterized by a high substrate availability and high turbulence (Fig.3).As the HRT is only 1h,the reactor volume is exchanged in 20min.During this phase,ammo-nium increased,while nitrite and nitrate concentrations de-creased due to dilution (Figs.S3,S4,and S5in the ESM ).The NOB/AnAOB ratio was around 1,which means that NOB were able to take twice as much nitrite thanAnAOBFig.2Phases VIII –XIII:effect of COD/N increase on the volumetric rates (top )and nitrogen concentrations (bottom ).Data during the N balance tests (days 424–431)were not incorporated in the figure but are shown in Table 3Appl Microbiol BiotechnolTable 3Operational parameters and nitrogen conversion rates during the six different RBC operations which differ from feeding composition and feeding regime (volume at 2.5L and 50%immersion of the discs,days 307–309for synthetic feed,and days 424–431)Reactor phaseVII (synthetic)XIII (pretreated sewage)Test A a B C a D E -F Additive––––NO 2−NH 4+Feeding regime (pulses/h)221411Total N loading rate (mg NL −1day −1)1,1695851,3401,5541,7372,718Temperature water (°C)15±0.316±0.2*14±0.415±0.1*16±0.1*15±0.4DO (mg O 2L −1) 2.9±0.1 3.7±0.6* 4.0±0.1 3.2±0.1* 3.3±0.1* 3.2±0.1*pH (-)7.6±0.067.6±0.057.6±0.047.6±0.017.6±0.027.8±0.02*Ammonium out (mg NL −1)9±1 1.4±1*11±319±3*12±158±4*Nitrite out (mg NL −1)14±213±16±16±0.418±2*9±0.3*Nitrate out (mg NL −1)17±337±6*18±216±1*18±0.420±0.4NH 4+oxidation rate (mg NL −1day −1)895±22509±2*1,051±73957±891,053±161,285±93*Relative nitrite accumulation (%)25±320±1*14±315±18±4*15±1Relative nitrate production (%)36±876±6*48±147±342±2*34±3*Total efficiency (%)38±417±4*35±328±4*32±227±4*AerAOB activity (mg NH 4+–NL −1day −1)658±88469±17*827±44781±57795±30938±46*NOB activity (mg NO 2−–NL −1day −1)174±59299±28*375±38342±24*362±13277±18*AnAOB activity (mg N tot L −1day −1)205±3849±13*234±20218±29263±15*354±49*N 2O in liquid (μg NL −1)64±4630±22*78±12104±29*61±1374±4NO emission (mg Nday −1)0.53±0.03n.d.0.66±0.060.74±0.08 1.65±0.18*0.82±0.1*N 2O emission (mg Nday −1)151±2893±23*170±19179±6*274±37*202±18*%N 2O emission on loading5.1±1.06.4±1.6*5.0±0.64.5±0.2*6.2±0.8*3.0±0.3*aReference period for synthetic and pretreated sewage*p <0.05,significant differences compared with referenceperiod Fig.3Detailed NO/N 2Omonitoring during the reference test (Table 3,test C)and when nitrite was pulsed (Table 3,test E)and effect on AerAOB,AnAOB,and NOB activity during the different phases of the feeding cycle.Significant differences in AerAOB,AnAOB,NOB,and NO/N 2O concentration compared with the reference period areindicated with asterisks ,circles ,double quotation mark ,and plus sign ,respectivelyAppl Microbiol Biotechnol。
毕业设计---某城市污水处理厂工艺设计(含外文翻译)
摘要本次设计的题目某城市污水处理厂工艺设计,设计流量为15万m3/d,进水水质为BOD5=200mg/L,CODc r=450mg/L,SS=370mg/L,氨氮=15。
出水水质:CODcr≤63mg/L;BOD5≤14 mg/L;SS≤30 mg/L;氨氮≤3 mg/L。
设计要求出水水质满足《中华人民共和国污水综合排放标准》(GB8978-1996)二级标准。
采用氧化钩法处理该城市污水,氧化沟处理技术70年代末就在国内开始应用,在污水处理中取得了良好的效果。
氧化沟是活性污泥法的一种改型,其曝气池呈封闭的沟渠型,污水和活性污泥的混合液在其中进行不断的循环流动,氧化沟通常在延时曝气条件下进行污水处理,这时水力停留时间长(10~40h),有机负/(kg VSS•d)]。
与其他生物处理工与艺相比,有以下一些荷低[0.05~0.15kg BOD5技术、经济方面的特点:工艺流程简单,构筑物少,运行管理方便;曝气设备和构造形式的多样化、运行灵活;处理效果稳定、出水水质好并可以实现脱氮除磷。
关键词:城市污水,氧化沟,活性污泥法AbstractThe design for the title of the city sewage treatment plant process design, design flow for the 150 ,000 m3 / d, water quality for BOD5 is200mg / L, COD cr is 450mg / L, SS is 370mg / L, Ammonia is15. Effluent quality for BOD5is less than 14mg / L, COD is less than 63mg / L, SS is less than 30 mg / L, Ammonia is less than 3mg / L. The drainage water should meet the two criteria water requirements of GB8978-1996《wastewater discharge standards》.By the oxidation ditch treatment of urban sewage,oxidation ditch technology was applied in our country about 70s, and had good effect in treating waste water. Oxidation ditch is a remodel of active mud method, its plug flow aeration assuming obturate ditch type, the mixed liquid of waste water and active mud flowing in circle. Oxidation ditch usually treats waste water in delay plug flow condition, the waterpower has long settle time (10~40h), low organic loading [0.05~0.15kg BOD5/(kg VSS•d)]. comparing with other biology treat technology, such as: simple process, little building, convenient to administering, its equipment and structure diversification, stabilization effect, and has good water quality, can pull off the nitrogen.Keywords : Urban Sewage,Oxidation ditch,Live and dirty mire method目录摘要 (I)ABSTRACT (II)目录 (1)第一章绪论 (4)1.1设计任务 (4)1.1.1设计题目 (4)1.1.2设计任务与内容 (4)1.1.3基本要求 (4)1.1.4设计计算说明书的具体要求 (5)1.2设计原始资料及处理目标 (5)1.2.1进水水质资料 (5)1.2.2气候资料 (5)1.2.3处理目标 (6)1.2.4处理效果的估算 (6)1.3处理工艺比较与选定 (6)1.3.1水质特征 (6)1.3.2目前国内外的研究现状 (7)1.3.3活性污泥法的新发展 (8)1.3.4工艺流程的确定 (9)1.3.5设计依据 (12)第二章污水处理构筑物设计计算 (14)2.1中格栅 (14)2.1.1设计说明 (14)2.1.2设计参数 (14)2.1.3设计计算 (14)2.2污水提升泵房 (17)2.2.1泵房设计计算 (17)2.3曝气沉砂池 (18)2.3.1.设计说明 (18)2.3.2池体设计计算 (18)2.4.1氧化沟的由来 (21)2.4.2氧化沟的结构 (21)2.4.3 Carrousel氧化沟处理污水的原理 (21)2.4.4设计参数 (22)2.4.5池体设计计算 (22)2.4.6曝气机设计选型 (23)2.4.7剩余污泥计算 (24)2.4.8计算校核 (25)2.5二沉池 (25)2.5.1设计说明 (25)2.5.2设计参数 (27)2.5.3池体设计计算 (27)2.6接触消毒池 (29)2.6.1设计说明 (29)2.6.2设计参数 (30)2.6.3设计计算 (30)第三章污泥处理构筑物设计计算 (33)3.1回流污泥泵房 (33)3.1.1设计说明 (33)3.1.2回流污泥泵房设计选型 (33)3.2剩余污泥泵房 (33)3.2.1设计说明 (33)3.2.2设计选型 (33)3.3污泥浓缩池 (34)3.3.1设计说明 (34)3.3.2设计参数 (34)3.3.3设计计算 (34)3.4污泥脱水间 (36)第四章污水处理厂平面与高程布置 (38)4.1平面布置 (38)4.1.1各处理单元构筑物的平面布置 (38)4.1.3辅助建筑物 (38)4.2高程布置 (38)4.2.1输送方式 (39)4.2.2污水管材料选取 (39)4.2.3设计充满度 (39)4.2.4设计流速 (39)4.2.5管径设计 (39)4.2.6最小设计坡度 (39)4.2.7污水管道的埋深深度 (40)4.3水力损失计算 (40)4.3.1水头损失计算 (40)4.3.2构筑物水力损失 (41)4.3.3总水力损失 (41)4.4高程计算 (42)4.4.1设计说明 (42)4.4.2设计计算 (42)第五章工程概预算 (43)5.1.基本建设投资 (43)5.2运行费用 (44)5.2.1运行成本估算 (44)第六章设计结论 (45)参考文献 (46)附录A 英文文献及译文 (48)附录B 设计图纸...................................... 错误!未定义书签。
(完整版)某城市污水处理厂污水处理工艺设计计算书(毕业课程设计)
设
计
计
算
书
专业:环境工程
设计者:
学号:
指导老师:
完成日期:
目录
第一节格栅
1.1计算依据
重要参数的取值依据
取值
安装倾角一般取60º~70º
θ=60º
栅前水深一般取0.3~0.5m
栅条间距宽:粗:>40mm中:15~25mm细:4~10mm
b=40mm
b=25mm
水流过栅流速一般取0.6~1.0ms
A.
B.%%
C.和的氧的饱和度
计算鼓风曝气池时的脱氧清水的需氧量
供氧量:%%
6)空气管路计算
A.去除每的供氧量:
B.每立方米污水的供氧量:
C.本系统的空气总用量:除采用鼓风曝气外,本系统还采用空气在回流污泥井提升污泥,空气量按回流污泥量的8倍考虑,污泥回流比R取值%。这样,提升回流污泥所需空气量为
总需氧量:
城市污水沉砂量
池个数
2.3计算过程
1.曝气沉砂池的尺寸设计
1)池子总有效容积取停留时间,
2)水流断面面积取水平流速,
3)池子总宽度取有效水深,
取池子格数格,每个池子宽度
4)池长
5)每小时所需空气量取,
3.沉砂室设计计算
1)沉砂斗所需容积
2)沉砂室坡向沉砂斗的坡度,取。每个分格有2个沉砂斗,共有4个沉砂斗,则
3)池子的进口和出口布置应防止发生短路,进水方向应与池中旋流方向一致;出水方向应与进水方向垂直,并宜考虑设置挡板。
4)池内考虑消泡装置。
5)曝气沉砂池多采用穿孔管曝气,孔径为,距池底约。
2.2设计参数
水平流速一般取
某城市日处理水量10万m3每d污水处理厂工艺设计 secret
某城市日处理水量10万m3每d污水处理厂工艺设计 secret----58e47526-6eb5-11ec-bd94-7cb59b590d7d某城市日处理水量10万m3每d污水处理厂工艺设计-secret《水污染控制工程》课程设计序言水是一切生存必不可少的物质之一,没有水的世界是无法想象的。
虽然我国水资源总量非常丰富,年径流总量2.71?1012m3,,居世界第六位,但是由于人口众多,人均占有仅2263m3,约为世界平均的1/4,属世界缺水国家之一。
由于水污染控制的相对滞后,受到污染的水体逐年增加,又加剧了水资源的短缺。
而中国迅速进行的工业化、城市化、不可避免地会加快水污染速度。
据统计,2000年我国城市污水排放量已达332亿立方米,其中绝大部分水未经有效处理而排入江河湖海。
全国90%以上的城市水域受到不同程度的污染,近50%的重点城镇的集中饮用水源不符合标准。
我国北方城市大部分受到资源型缺水困扰,南方多水地区由于受到不同程度的污染,已经呈现缺水趋势。
因此,增加污水处理比例和将污水处理之后再回用是今后我国城市污水处理的趋势。
今后5年我国要新增2800万吨城市污水日处理能力。
此外,我国城市污水再生利用项目已经启动,一些城市或区域正全面规划污水资源化工程。
到2005年,我国城市污水处理率将达45%。
城市污水包括生活污水、工业污水(受轻微污染的冷却水除外)、初期污染雨水三种。
生活污水是指人类在日常生活中使用过的,并被生活废料所污染的水。
初期污染雨水只指降雨初期雨水冲刷地面后形成的污染严重的雨水。
城市污水的性质特征与下列因素有关:人们的生活习惯;环境气候条件;生活污水与生活污水所占比例;所采用的排水体制以及国家、地方部门对水质的要求等。
城市污水排放至下水道时要满足《污水排入城市下水道水质标准》(cj3082-1999),排放到水体时要满足《污水综合排放标准》(gb8978-96)。
为有效的解决水污染问题,必须深入了解城市污水的各项特性。
毕业设计---某城市污水处理厂工艺设计(含外文翻译)
摘要本次设计的题目某城市污水处理厂工艺设计,设计流量为15万m3/d,进水水质为BOD5=200mg/L,CODc r=450mg/L,SS=370mg/L,氨氮=15。
出水水质:CODcr≤63mg/L;BOD5≤14 mg/L;SS≤30 mg/L;氨氮≤3 mg/L。
设计要求出水水质满足《中华人民共和国污水综合排放标准》(GB8978-1996)二级标准。
采用氧化钩法处理该城市污水,氧化沟处理技术70年代末就在国内开始应用,在污水处理中取得了良好的效果。
氧化沟是活性污泥法的一种改型,其曝气池呈封闭的沟渠型,污水和活性污泥的混合液在其中进行不断的循环流动,氧化沟通常在延时曝气条件下进行污水处理,这时水力停留时间长(10~40h),有机负/(kg VSS•d)]。
与其他生物处理工与艺相比,有以下一些荷低[0.05~0.15kg BOD5技术、经济方面的特点:工艺流程简单,构筑物少,运行管理方便;曝气设备和构造形式的多样化、运行灵活;处理效果稳定、出水水质好并可以实现脱氮除磷。
关键词:城市污水,氧化沟,活性污泥法AbstractThe design for the title of the city sewage treatment plant process design, design flow for the 150 ,000 m3 / d, water quality for BOD5 is200mg / L, COD cr is 450mg / L, SS is 370mg / L, Ammonia is15. Effluent quality for BOD5is less than 14mg / L, COD is less than 63mg / L, SS is less than 30 mg / L, Ammonia is less than 3mg / L. The drainage water should meet the two criteria water requirements of GB8978-1996《wastewater discharge standards》.By the oxidation ditch treatment of urban sewage,oxidation ditch technology was applied in our country about 70s, and had good effect in treating waste water. Oxidation ditch is a remodel of active mud method, its plug flow aeration assuming obturate ditch type, the mixed liquid of waste water and active mud flowing in circle. Oxidation ditch usually treats waste water in delay plug flow condition, the waterpower has long settle time (10~40h), low organic loading [0.05~0.15kg BOD5/(kg VSS•d)]. comparing with other biology treat technology, such as: simple process, little building, convenient to administering, its equipment and structure diversification, stabilization effect, and has good water quality, can pull off the nitrogen.Keywords : Urban Sewage,Oxidation ditch,Live and dirty mire method目录摘要 (I)ABSTRACT (II)目录 (1)第一章绪论 (4)1.1设计任务 (4)1.1.1设计题目 (4)1.1.2设计任务与内容 (4)1.1.3基本要求 (4)1.1.4设计计算说明书的具体要求 (5)1.2设计原始资料及处理目标 (5)1.2.1进水水质资料 (5)1.2.2气候资料 (5)1.2.3处理目标 (6)1.2.4处理效果的估算 (6)1.3处理工艺比较与选定 (6)1.3.1水质特征 (6)1.3.2目前国内外的研究现状 (7)1.3.3活性污泥法的新发展 (8)1.3.4工艺流程的确定 (9)1.3.5设计依据 (12)第二章污水处理构筑物设计计算 (14)2.1中格栅 (14)2.1.1设计说明 (14)2.1.2设计参数 (14)2.1.3设计计算 (14)2.2污水提升泵房 (17)2.2.1泵房设计计算 (17)2.3曝气沉砂池 (18)2.3.1.设计说明 (18)2.3.2池体设计计算 (18)2.4.1氧化沟的由来 (21)2.4.2氧化沟的结构 (21)2.4.3 Carrousel氧化沟处理污水的原理 (21)2.4.4设计参数 (22)2.4.5池体设计计算 (22)2.4.6曝气机设计选型 (23)2.4.7剩余污泥计算 (24)2.4.8计算校核 (25)2.5二沉池 (25)2.5.1设计说明 (25)2.5.2设计参数 (27)2.5.3池体设计计算 (27)2.6接触消毒池 (29)2.6.1设计说明 (29)2.6.2设计参数 (30)2.6.3设计计算 (30)第三章污泥处理构筑物设计计算 (33)3.1回流污泥泵房 (33)3.1.1设计说明 (33)3.1.2回流污泥泵房设计选型 (33)3.2剩余污泥泵房 (33)3.2.1设计说明 (33)3.2.2设计选型 (33)3.3污泥浓缩池 (34)3.3.1设计说明 (34)3.3.2设计参数 (34)3.3.3设计计算 (34)3.4污泥脱水间 (36)第四章污水处理厂平面与高程布置 (38)4.1平面布置 (38)4.1.1各处理单元构筑物的平面布置 (38)4.1.3辅助建筑物 (38)4.2高程布置 (38)4.2.1输送方式 (39)4.2.2污水管材料选取 (39)4.2.3设计充满度 (39)4.2.4设计流速 (39)4.2.5管径设计 (39)4.2.6最小设计坡度 (39)4.2.7污水管道的埋深深度 (40)4.3水力损失计算 (40)4.3.1水头损失计算 (40)4.3.2构筑物水力损失 (41)4.3.3总水力损失 (41)4.4高程计算 (42)4.4.1设计说明 (42)4.4.2设计计算 (42)第五章工程概预算 (43)5.1.基本建设投资 (43)5.2运行费用 (44)5.2.1运行成本估算 (44)第六章设计结论 (45)参考文献 (46)附录A 英文文献及译文 (48)附录B 设计图纸...................................... 错误!未定义书签。
某市10万吨天污水处理厂工艺毕业设计完整版(优秀毕业设计)(汇编)
目录第一章设计任务及资料 (1)1.1设计任务 (1)1.2设计目的及意义 (1)1.3设计要求 (1)1.4设计资料 (2)1.5设计依据 (3)第二章设计方案论证 (4)2.1厂址选择 (4)2.2污水厂处理流程的选择 (4)2.3设计污水水量 (9)2.4污水处理程度计算 (9)第三章污水的一级处理构筑物设计计算 (12)3.1格栅 (12)3.2提升泵站 (17)3.3沉砂池 (21)第四章污水的二级处理设计计算 (27)4.1厌氧池+DE型氧化沟工艺计算 (27)4.2辐流式沉淀池 (36)4.3消毒设施计算 (45)4.4计量设备 (48)第五章污泥处理设计计算 (52)5.1污泥处理(sludge treatment)的目的与处理方法 (52)5.2污泥泵房设计 (52)5.3污泥浓缩池 (53)5.4贮泥池 (58)5.5污泥脱水 (59)第六章污水处理厂的布置 (65)6.1污水处理厂平面布置 (65)6.2污水处理厂高程布置 (68)第七章供电仪表与供热系统设计 (74)7.1变配电系统 (74)7.2监测仪表的设计 (74)第八章劳动定员 (75)8.1定员原则 (75)8.2污水厂人数定员 (75)参考文献 (76)附录 (77)外文资料 (78)中文译文 (81)致谢 (84)第一章设计任务及资料1.1设计任务某市10万吨污水处理厂工艺设计。
1.2设计目的及意义1.2.1设计目的该市为东北某市,面积10301平方公里,人口300万,城市发展方向为以老城为依托,以疏港公路为轴线,向南发展。
并逐步向经济技术开发区发展。
随着城市及工业的发展,城市污水排放量也在逐年增加,至2007年城北排放未经处理污水排放量已达10万吨/日左右。
大量的工业废水和生活污水未经处理直接排入M河,使M河受到严重污染,致使河水中生物、植物大部分绝迹,破坏了自然景观、污染城区下游地下水源,严重制约着该市经济的发展。
某城市生活污水处理厂工艺设计
某城市生活污水处理厂工艺设计摘要本设计为某市污水处理厂的初步设计。
由于进水的BOD:N:P=190:45:4.9,污水经二级生物处理后,氮、磷将难以达标,必须进行脱氮除磷处理。
因此,本方案决定选用A2/0工艺。
工艺流程为:“格栅——曝气沉砂池——厌氧池——缺氧池——好氧池——二沉池”。
根据国内众多城市污水处理厂运行结果,A2/0工艺处理出水一般可达到《GB18918-2002》排放标准的一级B标准,能够确保城市周边海洋水体的环境要求。
关键词:城市污水,初步设计,脱氮除磷,A2/O工艺The method design for the town wastewater treatment plantABSTRACTThe design is a primary design for the town wastewater treatment plant. Because of BOD:N:P=218:45:8 of the enter water, wastewater by way of the secondary biological treatment, N and P will hardly accomplish standard, have to remove the N and P. therefore, this plan decided to adopt the anaerobic anoxic oxic. The process of the design is described as the following: Screening——Aerated Sediment tank——Anaerobic tank——Anoxic tank——Oxic tank——Second Deposition tank. According to the running effect of many inland urban wastewater treatment plants, the exit water disposed by anaerobic anoxic oxic generally can reach the B standard in the first rating of the <GB18918-2002 >discharge standard, can guarantee the environmental require of the water body around the ocean.KEY WORDS:Urban Sewage ,Primary Design ,The Anaerobic–Anoxic–Oxic,Denitrification and Dephosphorization目录摘要 (1)引言 (6)1设计任务及基础资料 (7)1.1设计任务 (7)1.1.1设计要求 (7)1.1.2设计说明书编制........................................................... 错误!未定义书签。
城市垃圾卫生填埋场毕业设计(全套毕业设计含外文翻译及图纸)(想要CAD格式图纸的请购买文档后留言)
城市垃圾卫生填埋场摘要本工程设计的主要内容包括:城市生活垃圾卫生填埋场处理总平面布置(选址和场区总体设计等等),填埋工艺,防治工程,渗滤液收集导排工程,渗滤液处理工程,地下水、地表水导排处理工程,填埋气体收集与利用设计,环境监测设计,封场工程,辅助工程(如绿化、道路等),设备选型,二次污染防治设计,经济分析等等。
关键词垃圾卫生填埋设计渗滤液气体The Design Of Sanitary LandfillAbstractThis engineering design primary coverage includes: The city life trash health fill in bury the field to process the total plane arrangement (selected location and field area system design and so on), fills in buries the craft, the preventing and controlling project, the infiltration fluid collection leads a row of project, the infiltration fluid processing project, the ground water, the surface water leads the row of processing project, fills in buries the gathering of gas and the use design, the environmental monitoring design, seals the field project, auxiliary project (for example afforestation, path and so on), equipment shaping, two pollution preventing and controlling design, economic analysis and so on.Keywords Rubbish Landfill of hygiene Design Ooze and filtrate Gas目录摘要 (I)Abstract (II)第1章概论 (5)1.1设计背景 (5)1.1.1 生活垃圾的危害 (5)1.1.2生活垃圾的处理方法及国内外处理现状 (5)1.1.3卫生填埋法的类型及发展趋势 (7)1.2城市概况及自然条件 (8)1.2.1 城市概况 (8)1.2.2 自然条件 (9)1.3该城市垃圾的处理概况 (10)1.3.1 垃圾成分 (11)1.3.2 垃圾处理状况及存在问题 (11)1.4设计的必要性及依据 (15)1.4.1 设计的必要性 (15)1.4.2 设计的依据 (15)1.5设计的主要内容 (16)1.6本章小结 (16)第2章总体设计 (17)2.1填埋方案的确定 (17)2.2 设计规模 (18)2.2.1 服务人口 (18)2.2.2 垃圾产量 (18)2.3 场址选择 (19)2.3.1 填埋场址的选择原则 (19)2.3.2 垃圾填埋场场址的确定 (20)2.4 本章小结 (20)第3章垃圾收运系统 (21)3.1 垃圾的收运原则 (21)3.2 垃圾收运规模 (21)3.3 垃圾收运现状及设计收运方案的确定 (22)3.4 本章小结 (23)第4章垃圾处理场工程设计 (24)4.1 垃圾处理场的组成 (24)4.2 卫生填埋场工程设计 (24)4.2.1 垃圾场总库容及使用年限的确定 (24)4.2.2 垃圾坝 (24)4.2.3 渗滤液的收集系统 (26)4.2.4 渗滤液处理设备尺寸的计算 (37)4.2.5 填埋气导排 (48)4.2.6 终期封场 (49)4.3 配套工程 (50)4.3.1 道路工程 (50)4.3.2 围墙与绿化工程 (50)4.3.3 给水工程 (51)4.3.4 消防工程 (51)4.3.5 防洪工程 (51)4.3.6 防震工程 (51)4.3.7 通讯工程 (51)4.3.8 电气工程 (52)4.3.9 垃圾场主要机械设备 (52)4.4 本章小结 (52)第5章环境保护与环境监测 (53)5.1 环境保护 (53)5.1.1 污染来源 (53)5.1.2 环境保护标准和规定 (54)5.1.3 环境保护措施 (54)5.2 环境监测 (55)5.3 本章小结 (56)总结 (57)致谢 (60)参考文献 (61)英文翻译 (62)中文译文: (68)第1章概论1.1设计背景1.1.1生活垃圾的危害随着经济的发展,人们生活消费水平的提高,城市的生活垃圾产生量日渐增加。
环境工程课程设计-某城市污水处理厂工艺设计
环境工程课程设计-某城市污水处理厂工艺设计辽宁科技学院(2010 级)本科课程设计题目:陕西某城市污水处理厂工艺设计专业:环境工程班级:环境BG101 姓名:苏广兵学号:6411110120 指导教师:兴虹辽宁科技学院本科生课程设计第1页摘要本设计任务是采用SBR法处理城市污水工艺设计。
进水水质指标为:BOD5=180mg/L;CODcr =350mg/L;SS=220mg/L;TN=40mg/L;NH3-N=25mg/L;TP≤8mg/L;pH=6.5~7.5;重金属及有毒物质:微量,对生化处理无不良影响。
出水水质要求达到:BOD5≤30mg/L;CODcr≤100mg/L;SS≤30mg/L。
该工艺污水处理流程为:进水→粗格栅→提升泵房→细格栅→沉砂池→初沉池→SBR池→接触消毒池→巴氏计量槽→出水排放。
污泥处理流程为:污泥→污泥浓缩池→污泥提升泵房→污泥消化池→污泥脱水间→泥饼外运。
通过此工艺的处理,出水水质将达到设计要求。
污水处理厂的平面布置,各种构筑物及各种管道布置应尽量紧凑、节省占地面积,同时还要遵守设计规范、考虑运行管理、检修、运输及远期发展的可能性。
污水和污泥流程应尽量考虑重力流,避免迂回曲折。
污水、污泥处理流程的高程计算,沿污水、污泥处理中流动距离最长、水头损失最大流程,并按最大设计流量进行高程计算,根据河流洪水位,从后往前,依次推算出各个构筑物的水面标高,根据某些构筑物的设计要求进行核算,符合要求后,以此来绘制各处理构筑物与连接管道(槽)的高程剖面图。
计算各构筑物及管道中的水头损失。
绘制污水、污泥处理流程的平面布置图和高程布置图。
本设计要求对主要处理构筑物进行选型和设计计算,绘制出污水处理厂平面布置图和高程图。
关键词:污水、构筑物、水位、水头损失、布置。
辽宁科技学院本科生课程设计第I页目录1 前言 (1)1.1 课程设计目的 (1)1.2 设计依据与原则 (1)1.2.1 设计依据 (1)1.2.2 设计原则 (2)1.3废水水质水量 (2)1.3.1平均日流量 (2)1.3.2最大流量 (2)2处理构筑物设计与计算 (3)2.1泵前中格栅的设计计算 (3)2.1.1格栅的设计要求 (3)2.1.2格栅尺寸计算 (4)2.2污水提升泵房设计计算 (5)2.2.1提升泵房设计说明 (5)2.2.2泵房设计计算 (6)2.3泵后细格栅设计计算 (6)2.3.1细格栅设计说明 (6)2.3.2设计参数确定 (6)2.3.3设计计算 (7)2.4沉砂池设计计算 (8)2.4.1沉砂池选型 (8)2.4.2参考资料 (9)2.4.3设计参数确定 (10)2.4.4池体设计计算 (10)2.5初沉池设计计算 (12)2.5.1基本参数确定 (12)2.6 SBR池设计计算 (14)2.6.1参数拟定 (14)2.6.2 SBR池容积 (15)2.6.3污泥体积 (15)2.6.4需氧量 (16)2.6.5 滗水器 (17)2.7接触消毒池的计算 (18)2.8计量槽设计计算 (19)2.8.1 基本参数 (19)2.8.2主要设计尺寸 (20)2.8.3计量槽总长度 (20)2.9污泥重力浓缩池设计计算 (21)2.9.1设计参数 (21)2.10柱体容积污泥厌氧消化池设计计算 (22)2.10.1一级消化池设计计算 (22)2.10.2二级消化池设计计算 (23)2.10.3储气罐计算 (24)2.11机械脱水间设计计算 (25)2.11.1污泥机械脱水设计说明 (25)2.11.2脱水机 (25)3污水处理厂的平面布置 (25)3.1总平面布置原则 (25)4污水处理厂的高程布置 (25)4.1污水高程布置 (26)4.1.1连接管段水头损失 (26)4.1.2各构筑物水头损失 (26)4.2污泥高程布置 (28)参考文献 (30)辽宁科技学院本科生课程设计第1页1 前言SBR( Sequencing Batch Reactor Activated Sludge Process )是一种好氧微生物污水处理技术,是连续进水、间歇排水的周期循环间歇曝气系统。
环境工程毕业设计书-城市污水处理厂(含外文翻译)
摘要本设计项目所处理的污水主要是由天然气净化厂厂区工业废水和公共建筑用水以及厂区生活用水组成。
其混合污水最大日设计流量为Q=8000m3/d,总变化系数为K=1.33 , 该厂现有人口8000,随着厂区发展速度的加快,厂区污水的排放严重威胁着该河水质,为了避免该河水质恶化,该厂拟建一座厂区污水处理厂,以解决生活污水和工业废水的污染问题。
设计水质经环保部门监测,污水主要污染物COD、SS、BOD5、TP、TN以及重金属和有毒物质少量,其污水水质如下:COD=360mg/l , SS=200mg/l, BOD5=160mg/l,PH=6-9,历年最高气温 38.1℃历年最低气温 -0.3℃,年平均气温18.5℃,最高月平均气温 29.4℃,最低月平均气温 5.6℃。
处理厂处理水质为:BOD5≤10mg/l,CODcr≤50mg/l,SS≤10mg/l,NH3-N≤5mg/l,TP≤0.5mg/l,出水水质符合国家的一级排放标准。
本设计中,采用SBR工艺处理该厂区污水。
SBR工艺处理污水已有很长的时间,是一种较成熟的工艺,在国内已有很多成功的工程实例。
处理构筑物主要有曝气沉砂池、SBR反应池、污泥浓缩池等,其主要构筑物 SBR反应池属于间歇式反应器,本设计的SBR 反应池建成长方形,有利于减少建设费用。
SBR工艺占地少,污泥产生量少,抗冲击负荷能力强。
通过调节污泥龄能达到同时脱氮除磷的目的,出水水质好。
关键词:总变化系数; SBR; 设计流量; 脱氮除磷 .AbstractThe handled wastewater is formed mianly by industrial waste gaspurification plant area and public building sewage, water and plant water composition. The biggest day rated discharge of wastewater is 8000m3/d. Total changes coefficiet K =1.33.There is 8000 persons in the factory. As plantfying process accelerates, in order to avoid The river water quality deterioration, a factory plant proposed sewage treatment plant to address sewage and industrial wastewater pollution problems , Design wastewater quality is monitored by the department of environmental protection. Major contanmints are CODcr,SS,BOD5,TP,TN,heavy metal and few poisonous material in the wastewater,. The wastewater quality is as follow:COD=360mg/l ,SS=200mg/l,BOD5=160mg/l,PH=6-9. The highest temperature is 38.1℃ and the minimum temperature is - 0.3℃ over the years, year in average temperature is 18.5 ℃. The highest mean monthly temperature is 29.4 ℃,and the minimum mean monthly temperature 5.6 ℃. Sewage treatment plant handlingwater quality is: BOD5≤10mg/l,CODcr≤50mg/l,SS≤10mg/l,NH3-N≤5mg/l,TP≤0.5mg/l.Effluent water quality accords with a level emission standard of country.In the design, the plant sewage is handled with SBR technology. Used SBR technology to handle sewage have had very long time. It is a kind of mature technology.There are the project example of many successes in our country. Mainly handling buildings are aeration setting pot, SBR reactor and mud concentrated pool etc. The SBR reactor belongs to intermittence type responser, The SBR reactor of this design is established into rectangle, helpful to reduce construction cost. It coveres less land, produces less mud,and it is strong to fight impact load ability. Through regulating mud age can be nitrogen and phosphorus removal at the same time,and effluent water quality is good.Keywords: Total changes coefficient; Sequencing Batch Reactor; Rated discharge; Nitrogen and phosphorus removal.目录任务书II 毕业设计开题报告XII 摘要1 Abstract 2目录I 第1章概述11.1设计依据及设计任务 (1)1.1.1 设计题目 (1)1.1.2 设计依据 (1)1.1.3 设计任务与内容 (2)1.2 设计水量 (3)1.2.1 污水来源及状况 (3)1.2.2 污水量计算 (3)1.3 处理程度 (3)1.3.1 进出水水质 (3)1.3.2 去除率 (3)1.3.3 PH值 (4)1.3.4 重金属及有毒物质 (4)第2章城市污水处理方案的确定 52.1 确定污水处理方案的原则 (5)2.2 污水处理厂建设规模及厂址选择原则 (5)2.2.1 污水处理厂建设规模及厂址选择原则 (5)2.2.2污水处理厂设计进出水水质 (6)2.2.3建设范围 (7)2.2.4建设原则 (7)2.3 污水处理方案的确定 (7)2.3.1 处理标准的确定 (7)2.3.2 污水处理路线的选择 (8)2.4 污水处理工艺流程方案介绍 (10)2.4.1处理工艺流程选定应考虑的因素 (10)2.4.2工艺方案分析 (11)2.4.3 A2/O法 (12)2.4.4 SBR法 (14)2.5工艺流程图框 (17)2.5.1 A2/O工艺流程 (17)2.5.2 SBR工艺流程 (18)2.6 主要构筑物的选择 (20)2.6.1 格栅 (20)2.6.2 进水闸井 (20)2.6.3 污水泵房 (20)2.6.4 沉砂池 (21)2.6.5 SBR反应池 (22)2.6.6 消毒 (22)2.6.7 浓缩池 (23)2.6.8 污泥脱水 (23)第3章污水处理系统的设计243.1 中格栅 (24)3.1.1 设计要求 (24)3.1.2 设计流量 (25)3.1.3 格栅计算 (25)3.1.4 格栅的比较选型 (26)3.2 污水提升泵站 (28)3.2.1 设计说明 (28)3.2.2 一般规定 (28)3.2.3 选泵 (28)3.2.4 吸、压水管路实际水头损失的计算 (30)3.2.5 水泵机组基础的确定和污水泵站的布置 (31)3.2.6 泵房高度的确定 (32)3.2.7 泵房附属设施及尺寸的确定 (33)3.2.8 泵房值班室、控制室及配电间 (33)3.3 细格栅 (33)3.4 曝气沉砂池 (35)3.4.1 设计说明 (35)3.4.2 设计参数 (36)3.4.3 沉砂池比较 (36)3.4.4 池体设计计算 (37)3.4.5 曝气系统设计计算 (37)3.4.6 进水,出水及撇油 (38)3.4.7 排砂量计算 (38)3.5 提砂泵房与砂水分离器 (39)3.6 配水井 (40)3.6.1 比较选型 (40)3.6.2 设计要求 (40)3.6.3 设计计算 (41)3.7 SBR反应器设计 (42)3.7.1 设计要点 (42)3.7.2 主要设计参数 (43)3.7.3 运行周期 (44)3.7.4 曝气池体积V (44)3.7.5 复核滗水高度h1 (45)3.7.6 复核污泥负荷 (45)3.7.7 剩余污泥产量 (45)3.7.8复核出水BOD5 (46)3.7.9 复核出水NH3-N (46)3.7.10 设计需氧量 (48)3.7.11 标准需氧量SOR (49)3.7.12 曝气池布置 (49)3.7.13 SBR反应池构造尺寸 (50)3.7.14 曝气头计算 (50)3.7.15 空气管计算 (51)3.7.16 滗水器 (52)3.8 鼓风机房 (52)3.8.1 鼓风机房设计要求 (52)3.8.2 供风量 (53)3.8.3 供风风压 (53)3.8.4 鼓风机的选择 (53)3.8.5 鼓风机房布置 (54)3.9 接触消毒池及加氯时间 (54)3.9.1 设计要点 (54)3.9.2 设计说明 (54)3.9.3 设计计算 (55)3.10 电磁流量计 (56)第4章污泥处理系统574.1 污泥处理方式 (57)4.2 污泥浓缩池设计计算 (57)4.2.1 设计说明 (57)4.2.2 容积计算 (57)4.2.3 排水与排泥 (58)4.3 污泥脱水系统设计 (59)4.3.1 均质池 (59)4.3.2 污泥脱水机房 (59)第5章污水厂总体布置615.1 平面布置及总平面图 (61)5.1.1 平面布置的一般原则 (61)5.1.2 厂区平面布置形式 (61)5.1.3 污水厂平面布置的具体内容 (62)5.2 污水厂的高程布置 (62)5.2.1 污水处理厂高程布置应考虑的因素 (62)5.2.2 污水厂的高程布置 (62)5.2.3 高程计算 (62)致谢64参考文献65附录(外文翻译) 66第1章概述1.1设计依据及设计任务1.1.1 设计题目普光天然气净化厂污水处理厂设计初步1.1.2 设计依据《环境工程专业》毕业设计任务书1.排水体制:完全分流制2.混合污水水质水量如表1-1表1-1 水质水量表温29.4℃,最低月平均气温5.6℃。
某城镇污水处理厂工艺初步设计中英文摘要
摘要本次毕业设计是对H市某城镇5万m3/d城市污水处理厂进行工艺初步设计。
主要任务是完成一个该污水处理厂工艺流程初步设计和单项处理构筑物设计,并完成完成设计说明书,污水处理厂总平面图,高程图及各单项处理构筑物设计图。
该污水处理厂设计规模为5万m3/d。
由于该设计对脱氮除磷有要求故应选取二级强化处理,且根据该地区进出水水质要求,确定工艺为A2/O工艺。
该工艺的生物处理部分由厌氧池、缺氧池和好氧池组成。
厌氧池主要功能是释放磷,同时部分有机物进行氨化。
缺氧池的主要功能是脱氮。
好氧池能够去除BOD、硝化和吸收磷。
该污水厂的污水处理流程设计为:从泵房到沉砂池,进入A2/O反应池,进入辐流式二次沉淀池,再进入消毒池,最后出水;污泥流程设计为:从反应池排出的剩余污泥进入集泥配水井,再由污水泵送入浓缩池,然后进入贮泥池,再进入脱水机房脱水,最后外运处置。
关键词:城镇污水;脱氮除磷;二级强化处理;A2/O工艺;工艺设计ABSTRACTThe topic of this graduate design is about the design of the sewage treatment plant in the area of H . The main task is the primary design of the plant and the single item processing construction drawing design.The harvest of the primary design are not only design book、site plan of the sewage treatment plant、the elevation drawings of the treatment of sludge and sewage but also the single item processing construction drawing design .The construction of this plant is 50000 tons per day. Cause this design has demands on taking off the nitrogen and the phosphorus , the plant is designed to take upgraded secondary treatment ; and because of the water quality of the inflow and the izumi ,this design decides to use the Anaerobic-Anoxic-Oxic. The biological treatment part of the Anaerobic-Anoxic-Oxic consists of anaerobic pond, anoxic pond, and aerobic pond. The anaerobic tank releases phosphorus, at the same time some parts of organic matter were ammoniated. The main function of the anoxic pond is denitrification. The aerobic pond is multifunctional; it can remove BOD, make nitratlon reactions and absorb phosphorus.The process of the sewage in the plant is that: the sewage runs from pump house to sand sinking pond, enters the pond of sedimentation tank, enters disinfection pond, at last lets out. The process of the sludge is that: surplus sludge from the sedimentation tank enters concentration pond, enters sludge storage tank , then enters dehydration machine room, at last it is carried out of the plant.Keywords: town sewage; taking off the nitrogen and the phosphorus; upgraded secondary treatment; the Anaerobic-Anoxic-Oxic; process design。
课程设计(论文)-某城市污水处理厂工艺设计(日处理6万方)
某城市污水处理厂工艺设计1.设计任务书一、设计任务根据所给的其他原始资料,设计污水处理厂,具体内容包括:1、确定污水处理厂的工艺流程,选择处理构筑物并通过计算确定其尺寸;2、画出污水厂的工艺平面布置图,内容包括表示出处理厂的范围,全部处理构筑物及辅助构筑物、主要管线的布置、主干道及处理构筑物发展的可能性;3、按扩初设计要求,画出污水厂工艺流程高程布置图,表示原水、各处理构筑物的高程关系、水位高度以及处理出水的出厂方式;4、按扩初设计要求,画出主要构筑物单体的平面、剖面图;5、编写设计说明书、计算书.二、设计资料1.设计规模及水质①原始资料该城市污水中包括居民生活污水和工业废水两大部分,工业废水占总量的40%,主要为化工、机械、纺织等工业排出的废水,大部分经厂里处理,达到GB8978-1996<<污水综合排放标准>>中三级标准后排入城市污水下水管道。
考虑到城市的近期、远期规划,拟建规模为60000m3/d。
②设计进水水质COD cr=400mg/L; BOD5=180mg/L; SS=250mg/LT-P=35mg/L; T-P=4mg/L; PH=7-8; 总碱度=280mg/L③设计出水水质根据GB18918-2002<<城市污水处理厂污染物排放标准>>的相关规定,要求出水水质达到一级标准(B标准)。
水质情况如下:COD c r≤60mg/L; BOD5≤20mg/L; SS≤20mg/L;T-P≤20mg/L; T-P≤1.5 mg/L; PH=7-82、城市自然状况气候:大陆行季风气候气温:最低温度:-10℃; 最高气温:40℃夏季平均气温:20-26℃; 冬季平均气温:6-10℃冻土深度:0.4-0.8m主导风向:西北风3、污水处理厂厂区概况该污水处理厂为新建污水厂,根据规划位于城市下游,城市海拔高度340.0m,规划用地长宽分别为:350mx200m,场地平整.污水厂进水口位于厂区西南角,进水污水管的标高为336.0m;出水靠重力排入厂区东侧500m处某河,该河符合<<地表水环境质量标准>>中的III类标准.河水最高水位336.0m.地下水位深度:3-4m.2.设计说明书2.1 工程概况2.1.1 基本情况设计名称:城镇6万m3/d污水处理厂设计设计规模:日处理城镇污水6万m3,包括生活污水和城市工业废水处理工艺:污水处理采用厌氧选择池加氧化沟工艺,污泥处理采用机械浓缩压滤处理工艺。
尚志市污水处理厂工程工艺设计 中英文翻译
尚志市污水处理厂工程工艺设计本设计为尚志市污水处理厂工程工艺设计,污水处理厂处理规模为一期40000m3/d,二期60000 m3/d。
污水主要来源为生活污水和工业废水,主要污染物质为NH3-N、BOD、COD,适宜采用生化处理方法。
经过方案比较,确定采用三槽式氧化沟工艺。
NH3-N、BOD、COD的去除率分别达到92%、93%、89%,污水处理厂处理后的出水达到《污水综合排放标准》(GB8978-1996)中的二级标准。
污水和活性污泥的混合液在氧化沟中进行不断的循环运动,具有良好的去除BOD、COD及脱氮除磷的功能。
另外,工艺流程简单,构筑物少,构造形式多样,运行较为灵活,运行稳定性好,基建投资省,运行费用低,操作管理方便,出水水质好也是氧化沟优于其他处理工艺的地方。
活性污泥或任何生物废水处理法的目的是花费最少的时间和资金,将有机物质尽可能彻底地从原废水中除去。
原废水的性质及其流动特征确定了,便必须根据它们进行处理法的设计。
仅在少数情况下,工业废水可排放到调节池以平衡有机物浓度和流量。
常规活性污泥的基本问题之一是微生物的优势种群易于变化。
原废水中的有机物促进曝气池中某些菌种的生长。
当除去有机物质,微生物进人内源期时,原有的用于稳定有机物的微生物群衰减以致死亡。
第二批细菌利用原来的微生物死亡的产物并在曝气池的终端占据优势。
当污泥回流到曝气池的首端时,原来的细菌群又必须重新生长起来。
只有长的曝气时间,原来的细菌数量才能减少到某一水平,故需要较长的恢复期,来处理流量或浓度突然增加的废水。
在以活性污泥处理不同的工业废水中,这是很重要的,并且也是活性污泥对冲击负荷反应缓慢的原因之一。
保持菌种均匀的唯一方法是保持有机物浓度的均匀。
对于处理多变的废水来说,这是不可能的,但这种变化可保持在最小的限度。
食料微生物比(F:M)是细菌生长的关键。
业已证明,高的食料微生物比使细菌迅速生长,而低食料微生物比便细菌生长不显著。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要出水水质:CODcr≤63mg/L;BOD5≤14 mg/L;SS≤30 mg/L;氨氮≤3 mg/L。
设计要求出水水质满足《中华人民共和国污水综合排放标准》(GB8978-1996)二级标准。
氧化沟处理技术70年代末就在国内开始应用,在污水处理中取得了良好的效果。
氧化沟是活性污泥法的一种改型,其曝气池呈封闭的沟渠型,污水和活性污泥的混合液在其中进行不断的循环流动,氧化沟通常在延时曝气条件下进行污水处理,这时水力停留时间长(10~40h),有机负荷低[0.05~0.15kg BOD/(kg5 VSS•d)]。
与其他生物处理工与艺相比,有以下一些技术、经济方面的特点:工艺流程简单,构筑物少,运行管理方便;曝气设备和构造形式的多样化、运行灵活;处理效果稳定、出水水质好并可以实现脱氮除磷。
AbstractThe design for the title of the city sewage treatment plant process design, design flow for the 150 ,000 m3 / d, water quality for BOD5 is200mg / L, COD cr is 450mg / L, SS is 370mg / L,Effluent quality for BOD5is less than 14mg / L, COD is less than 63mg / L, SS is less than 30 mg / L, Ammonia is less than 3mg / L. The the two criteria water requirements of GB8978-1996《wastewater discharge standards》.By the oxidation ditch treatment of urban sewage,oxidation ditch technology was applied in our country about 70s, and had good effect in treating waste water. Oxidation ditch is a remodel of active mud method, its plug flow aeration assuming obturate ditch type, the mixed liquid of waste water and active mud flowing in circle. Oxidation ditch usually treats waste water in delay plug flow condition, the waterpower has long settle time (10~40h), low organic loading [0.05~0.15kg BOD5/(kg VSS•d)]. comparing with other biology treat technology, such as: simple process, little building, convenient to administering, its equipment and structure diversification, stabilization effect, and has good water quality, can pull off the nitrogen.Keywords : Urban Sewage,Oxidation ditch,Live and dirty mire method目录摘要 (I)ABSTRACT (II)目录 (1)第一章绪论 (4)1.1设计任务 (4)1.1.1设计题目 (4)1.1.2设计任务与内容 (4)1.1.3基本要求 (4)1.1.4设计计算说明书的具体要求 (5)1.2设计原始资料及处理目标 (5)1.2.1进水水质资料 (5)1.2.2气候资料 (5)1.2.3处理目标 (6)1.2.4处理效果的估算 (6)1.3处理工艺比较与选定 (6)1.3.1水质特征 (6)1.3.2目前国内外的研究现状 (7)1.3.3活性污泥法的新发展 (8)1.3.4工艺流程的确定 (9)1.3.5设计依据 (12)第二章污水处理构筑物设计计算 (14)2.1中格栅 (14)2.1.1设计说明 (14)2.1.2设计参数 (14)2.1.3设计计算 (14)2.2污水提升泵房 (17)2.2.1泵房设计计算 (17)2.3曝气沉砂池 (17)2.3.1.设计说明 (17)2.3.2池体设计计算 (17)2.4.1氧化沟的由来 (19)2.4.2氧化沟的结构 (19)2.4.3 Carrousel氧化沟处理污水的原理 (19)2.4.4设计参数 (19)2.4.5池体设计计算 (20)2.4.6曝气机设计选型 (21)2.4.7剩余污泥计算 (22)2.4.8计算校核 (22)2.5二沉池 (23)2.5.1设计说明 (23)2.5.2设计参数 (24)2.5.3池体设计计算 (24)2.6接触消毒池 (25)2.6.1设计说明 (25)2.6.2设计参数 (26)2.6.3设计计算 (27)第三章污泥处理构筑物设计计算 (29)3.1回流污泥泵房 (29)3.1.1设计说明 (29)3.1.2回流污泥泵房设计选型 (29)3.2剩余污泥泵房 (29)3.2.1设计说明 (29)3.2.2设计选型 (29)3.3污泥浓缩池 (29)3.3.1设计说明 (29)3.3.2设计参数 (30)3.3.3设计计算 (30)3.4污泥脱水间 (32)第四章污水处理厂平面与高程布置 (33)4.1平面布置 (33)4.1.1各处理单元构筑物的平面布置 (33)4.1.3辅助建筑物 (33)4.2高程布置 (33)4.2.1输送方式 (34)4.2.2污水管材料选取 (34)4.2.3设计充满度 (34)4.2.4设计流速 (34)4.2.5管径设计 (34)4.2.6最小设计坡度 (34)4.2.7污水管道的埋深深度 (35)4.3水力损失计算 (35)4.3.1水头损失计算 (35)4.3.2构筑物水力损失 (36)4.3.3总水力损失 (36)4.4高程计算 (37)4.4.1设计说明 (37)4.4.2设计计算 (37)第五章工程概预算 (38)5.1.基本建设投资 (38)5.2运行费用 (39)5.2.1运行成本估算 (39)第六章设计结论 (40)参考文献 (41)附录A 英文文献及译文 (43)附录B 设计图纸...................................... 错误!未定义书签。
致谢................................................ 错误!未定义书签。
第一章绪论1.1设计任务1.1.1设计题目某城市污水处理厂工艺设计1.1.2设计任务与内容(1)根据水质特征并结合当地的具体条件,选择即经济又合理的污水处理工艺,选定各单体处理构筑物,对各单体构筑物进行设计计算绘制主体处理构筑物的工艺施工图;(2)污泥处理系统设计计算及绘制主要处理构筑的工艺施工图。
(3) 污水泵房的工艺设计,包括选泵、泵房工艺设计计算和泵房工艺图的绘制;(4) 污水处理厂的平面布置,包括污水处理厂处理构筑物和辅助建筑物的工艺平面图绘制;(5) 污水处理厂水力及高程计算,绘制污水处理部分和污泥处理部分高程布置图;1.1.3基本要求(1) 污水经处理以后其水质应达到国家污水综合排放二级标准,即COD≤120mg/l,BOD5≤30mg/l ,SS≤30mg/l,NH3-N≤25。
(2) 在确定污水处理工艺流程时,同时选择适宜的各处理单体构筑物的类型,对所有构筑物都进行设计计算,包括确定各有关设计参数、负荷、尺寸与所需的材料与规格等。
(3) 污水泵房工艺设计要求要确定水泵机组的台数、水泵型号、泵站的结构形式以及集水池的容积,泵站的建筑与结构设计可参照标准图大概的来确定。
(4) 根据污水性质及成分,选择适合的污泥处理系统并进行设计计算。
(5) 污水处理厂平面布置要尽量做到紧凑合理,同时应保证运行管理方便,绘制详细平面布置图。
(6) 对污水与污泥处理系统进行水力计算和高程计算,绘制高程图.(7) 对污水处理厂要进行经济概算与成本分析。
(8) 污水处理站总平面图,1#图1张。
(9) 主要处理构筑物(曝气沉砂池、氧化沟、二沉池、污泥浓缩池等)工艺图,1#图4张。
(10) 污水提升泵站工艺图,1#图1张。
(11) 污水处理工艺与污泥处理工艺高程布置图,1#图1张。
1.1.4设计计算说明书的具体要求毕业设计计算说明书要结构严谨、层次分明、语言流畅、布局合理、简图合理、计算正确,符合学科、专业的有关要求。
具体要求及格式按照学校规定毕业设计标准执行。
1.2设计原始资料及处理目标1.2.1进水水质资料进水各污染物浓度见表1.1:表1.1 进水污染物浓度指标(mg/L)1.2.2(1)气温:该市属暖温带季风气候,光照充足、热量丰富、降水适中、无霜期长、气候比较单一,差异性小。
其特点为四季分明,春季干旱多风沙,夏季炎热雨集中,秋高气爽,日照长,冬季寒冷少雨雪。
历年平均气温为14.7℃,夏季最热月在7月,平均气温为32.6℃,冬季最冷月在1月,平均气温为-2.5℃。
(2)封冻:最大冻土深度为18cm(3)风向:秋冬两季多北和偏东风,春季多南和偏南风,夏季多南和南偏东风。
月平均风速为2~4m/s。
(4)降雨多年平均降水量为727.7mm。
1.2.3处理目标出水执行《中华人民共和国污水综合排放标准》(GB8978-1996)二级标准,具体排放标准见表1.2:表1.2 出水排放标准 (mg/l )1.2.4(1) 溶解性BOD 5的去除率%93%10020014200=⨯-=η (2) COD 的去除率 %86%10045063450=⨯-=η (3) SS 的去除率 %92%10037030370=⨯-=η (4) NH 3-N 的去除率 %80%10015315=⨯-=η 1.3处理工艺比较与选定1.3.1水质特征生活污水中含有有机物、病原菌、虫卵等,排入水体后渗入地下造成污染。
微生物在分解有机物中消耗了水体中的氧,会影响鱼类生活,当溶解氧耗尽时,在厌氧状态下,使细菌分解有机物产生硫化氢,水体黑臭,鱼虾绝迹,污水中的氮磷等营养物质排入水体,特别是湖泊、水库将引起水体的富营养化。