模拟电路基础知识
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章晶体管低频放大器
晶体管低频放大器主要是用来放大低频小信号电压的放大器,频率从几十赫到一百千赫左右
一、晶体管的偏置电路
为了使放大器获得线性的放大作用,晶体管不仅须有一个合适的静态工作点,而且必须使工作点稳定。
由于温度对管子参数β、Icbo 、Ube 的影响,最终都集中反映在Ic 的变化上,为了消除这种影响,我们通过晶体管偏置的直流或电压的负反馈作用使静态工作点稳定下来,常见的两种偏置电路及工作点稳定原理如下表表一、晶体管放大器的偏置电路
设温度T ,直流负反馈过程
二、放大器的三种电路形式
放大器是一种三端电路,其中必有一个端是输入和输出的共同“地”端,如果这个共“地”端接于发射极的,称为共射电路,接于集电极的,称为共集电路,接于基极的,称为共基电路,这三种有不同的性能,见下表
三种电路形式及其性能比较
三、图解法
所谓图解法,就是利用晶体管输入和输出的特性曲线,通过作图来分析放大器性能的方法,图解法能直观和全面地表明三极管放大的工作过程,并能计算放大器的某些性能指标,现举例子来说明图解法的图解过程,例:已知下图电路中的参数及输入电压Ui=15sinωt(毫伏)要求用图解法确定电路的静态工作点参数Ibq、Icq、Iceq,并计算电压和电流的放大倍数Ku、Kio。
图解法步骤
1、确定基极度回路的静态工作点,从输入特性曲线中选取直线段的中点Q(此点的Ubeq=0.7伏,Ibq=40微安)为基极回路的静态工作点,通过选取合适的Eb或Rb(一般通过调整Rb)来满足工作点的要求,
2、作直流负载线从上图可得负载线方程为Uce=Ec-IcRc,它的轨迹为一根直线,若令Ic=0,得Uce=Ec=20伏,在横轴上标出N点;又令Uce=0,得Ic=Ec/Rc=20伏/6千欧=3.3毫安,在纵轴上标出M点,连结M、N就是直流负载线。
它与Ib=40微安的输出特性曲线相交于Q,由Q点找出Icq=1.8毫安,Uceq=9伏,Q点就是集电极回路的静态工作点,今后为简便起见,静态的电流、电压不再加下标Q表示,Ic、Ie即Icq、Ieqo
3、作波形,在输入特性上作出波形Ut=15sinωt(毫伏),并根据Ut的波形,作出ib、ic及Uce的波形
从图解法法得以下几点
(1)从波形正弦性可以判断静态工作点Q的选取是否合适。
(2)从图解得知输入电压Ui与集电极输出电压Uo反相,基极电流ib、集电极度电流Ic与输入电压Ui同相。
(3)上述图解法是在空载情况下进行的若考虑负载电阻RL的作用,交流负载应为RL=RC//RL。
由于交流负载线与直流负载线均相交于Q,故通过Q点作出倾斜角a'=(arctg)1/RL的直线M’N’,称为交流负载线。
四、等效电路法与h参数
1、简化的h参数等效电路
“微变”是指晶体管的Ib、Ube、Ic、Uce在静态工作点Q附近只作微量的变化。
其中Ib、Ube为晶体管的输入变量,面Ic、Uce为输出变量。
若把晶体管看作含受控源的二端口网络,就可以用四个h参数模拟晶体管的物理结构,从而得出晶体管的h参数等效电路如图7-1-4所示h的定义如下:
hie=△Ube/△Ib△Uce=0,hfe=△Ic/△Ib△Uce=0
hre=△Ube/△Uce△Ib=0,hoe=△Ic/△Uce△Ib=O
几个参数有各自的物理意义:hie是输出端短路时的输入电阻,也就是输入特性曲线斜率的倒数;hfe是输出端短路的电流放大系数,即β(共发射极)或a(共基极);hre是输入端开路的内反馈系数,它表示输出电压对输入电压影响的程度;hoe是输入端开路时的输出电导,即为输出特性曲线的斜率
由于晶体管工作在低频时,hre和hoe两个参数小到可以忽略不计,通常用hie和hre两个参数模拟低频晶体管电路即可,这叫做简化后的h参数等效电路,如图7-1-3所示,图中的rbe、β即上述的hie、hfe.电流放大系数β(或hfe)可以从输出特性曲线中求出或通过仪器测试出来,输入电阻rbe由下式计算:
rbe=rb+(β+1)26(毫伏)/Ie(毫安)
式中:Rb为基区电阻,约为几百欧姆,Ie为静态发射极电流
求晶体管放大器的微变等效电路的方法如下:
(1)晶体管以图7-1-3示出的等效模拟型代替;
(2)所有直流电源、隔直电容,旁路电容都看作短路;
(3)其它元件按原来相对位置画出,
利用等效电路可以求取放大器的放大倍数、输入电阻、输出电阻以及分析放大器的频率特性。
第二章低频功率放大器
功率放大是一种能量转换的电路,在输入信号的作用下,晶体管把直流电源的能量,转换成随输入信号变化的输出功率送给负载,对功率放大要求如下:
(1)输出功率要大:要增加放大器的输出功率,必须使晶体管运行在极限的工作区域附近,由ICM、UCM和PCM决定见图一。
图一
(2)效率η要高:放大器的效率η定义为:η=交流输出功率/直流输入功率
(3)非线性失真在允许范围内:由于功率放大器在大信号下工作,所以非线性失真是难免的,问题是要把失真控制在允许范围内,
功率放大器按工作状态和电路形式可分成以下几种:
(1)甲类功率放大器:在整个信号周期内,存在集电极电流;
(2)乙类功率放大器:只有半个信号周期内,存在集电极电流,按电路形式它又可分为:
1)双端推挽电路(DEPP)
2)单端推挽电路(SEPP)
3)平衡无变压器电路(BTL)
在实际中,为了克服交越失真,推挽式昌体管电路是工作于甲、乙类状态的。
一、甲类功率放大器
图一是甲类功率放大器,负载RL通过阻抗变换器B变成集电极负载RL=nRLo对直流来说,变压器B初级直流电阻和Re均很小,所以直流负载线接近一条垂直线见图一(b)为使放大器输出较大功率,可使交流负载线处于a 点和b点位置:a点的Uce=UCM,而工作点Q处于ab直线中点,通常晶体管的饱和压降和穿透电流都很小,实际上可以认为Icmin=0和Ucemin=0o因此,供给负载的电流和电压振幅分别为:
Icm=IcM/2,Ucem=UCM/2式1
负载的交流功率(或放大器输出功率)为:
PL=(UceM/)×(IcM/)=(IcM/)×(UcM/)=(1/8)IcM×UcM式2
工作点Q的集电极电流ICQ和电压UceQ分别为:
ICQ=ICM/2,UceQ=Ec=UCM/2式3
所以,直流电源的输入功率:
PD=IcQ×UceQ=(ICM/2)×(UCM/2)=1/4IcMUcm式4
甲类功率放大器的效率为:
η=PL/PD=50%式5
可见:
(1)晶体管的最大集射电压为电源电压EC的两倍。
(2)晶体管静态时耗功率为输出功率的两倍。
(3)甲类放大器的效率最高只有50%。
二、乙类推挽电路
图2(a)为乙类推挽电路,由于输出端使用变压器,因而晶体管对地有两个输出端,设电路完全对称,当输入信号Us为正半波时,BG1截止、BG2导通,输出电压UL为负半波,因此,两管轮流导通,一推一挽地工作,故称为推挽电路。
由于两管轮流地工作,所以把两管的输出特性按相反方向叠在一起,两管的交流负载线正好连成直线ab,工作点Q处于直线ab的中点,如图2(b)所示,从图中可看出各电量的关系:
(1)如输出变压器的初级和次级绕组的匝数比为n,则每只晶体管的负载电阻RL为:
RL=(n/2)RL=(n/4)RL式6
而集电极与集电极之间的电阻RCC为
Rcc=n RL=4RL式7
(2)变压器B2的初级绕组端电压振幅为:
Ucem=UceQ≈Ec式8
初级绕组电流振幅为:
Icm=IcM式9
所以输送到初级绕组的功率为:
Ps=(Ucem/)×(Icm/)=(1/2)EcIcm式10
(3)通过每只晶体管的电流平均值为:
Ico=IcM/π式11
由直流电源供给的功率为
PD=(2Ico)Ec=2×(Icm/π)×Ec式12
(4)推挽电路的效率为:
η=(Ps/PD)100%={(1/2×Ec×Icm)/[2×(Icm/π)×Ec]}100%≈78.5%式13
设计推挽电路时要注意:
(1)为避免交越失真,晶体管应具有一定的偏置电流,但不要过大,否则使电路效率降低。
(2)晶体管的最大集电极电压Ucm>2Ec。
(3)晶体管的耗散功率Pcm≥1.2Pc1,其中Pc1为每只晶体管送给变压器B2初级的功率,即Pc1=[(1/2)Pso]。
(4)根据Pc1及Ec1的要求,算出晶体管负载电阻PL及输出变压器的匝数比n。
图2
第三章直流放大器
直流放大器能够放大直流信号或变化极其缓慢的交流信号,它广泛应用于自动控制仪表,医疗电子仪器、电子测量仪器等。
常用的直流放大电路有单端式直流放大器、差动式直流放大器、调制型直流放大器等。
一、单端式直流放大器
单端式直流放大器需要解决级间直流电平配置问题,如下图(a)的电路是利用电阻Re2拉低BG2的射极电位以满足直流电平配置要求(即令Ube2=Uc1-Ue2).下图(b)的电路是利用D1及D2作电平配置。
使BG2、BG3的偏听偏信置电压分别为Ube2=0.3伏、Ube3=0.45伏。
D3起保护作用,避免使BG1基极受到过大的反压,如果前级输出电压主和后级输入电压相差较大,可以利用硅稳压管的稳定电压来代替硅二极管的作用。
下图C的电路是利用较大的Rc1、Rc2来提高集电极电压,以实现前后级直流电平的配置。
下图D的电路是利用PNP(BG1和BG3)与NPN(BG2)的极性相反来进行电平配置于,BG1的输出电流是BG2的输入电流,BG2的输出电流是BG2的输出电流是BG3输入电流,较好地实现了级间耦合,上述四种电路的最大缺点是零点漂移大。
二、差动式直流放大器
图2(a)是差动式直流放大电路的一种型式。
它是由BG1、BG2一对特性相同的晶体管组成,而且电路元件也都是对称的。
输入信号人别为Ui1、Ui2;单端输出信号分别是Uc1、Uc2;双端输出为UC1与UC2之差,即UO=U C1-UC2O差动电路具有下列特点:
1、具有抑制零点漂移能力
差动电路由于管特性相同和电路元件对称,所以当温度升高时,两管的集电极电流将得到同样的增量,即△IC1=△IC20而双端输出为UO=△IC1RC-△IC2RC=0,所以输出没有零点漂移。
2、共模输入时,具有抑制放大能力
通常把幅度相等,相位相同的一对输入信号,称为共模信号,由下列电路图A可见,当Ui1=Ui2时,在对称条件下,则双端输出Uo=KUil-KUi2=0,
3、差模输入时,具有放大能力
通常把幅度相等,相位相反的一对输入信号,称为差模信号。
当Ui1=-Ui2差模输入时,两面三刀管集电极输出分别为Uc1=-KUi1、Uc2=-KUi2;所以,差模放大倍数Kud:Kud=(Uc1-Uc2)/(Ui1-Ui2)=(-Ui1K-Ui1K)/2Ui1=-K=(-)(hfeRc)/(Rs+hie)
由于差动电路的双端输入电压、双端输出电压均比单管共射放大电路多了一倍,所以差模放大倍数Kud与单管共射电路的放大倍数相同
为提高抑制零漂能力,应使共模放大倍数越小越好,差模放大倍数越大越好,因而利用共模抑制比CMRR*=Kud/Kuc作为评价差动放大电路性能好坏的重要指标。
图2
4、具有稳定静态工作点的能力
图2(a)的射极度电阻Re对共模信号及温漂电平均有很强的负反馈作用。
例如在温度升高时,Ic1、Ic2都同时增加,并产生下列负反馈过程:
结果使IC1、IC2的实际变化相对地减小,这里Re起着恒流作用,从而稳定静态工作点,显然Re越大,恒流作用也越大,抑制零漂的能力也就越强,引入辅助电,以抵消Re的压隆。
使射极度对地电位能维持正常的数值。
值
第四章射极跟随器
射极跟随器(又称射极输出器,简称射随器或跟随器)是一种共集接法的电路见下图,它从基极输入信号,从射极输出信号。
它具有高输入阻抗、低输出阻抗、输入信号与输出信号相位相同的特点
一、射随器的主要指标及其计算
一、输入阻抗
从上图(b)电路中,从1、1`端往右边看的输入阻抗为:Ri=Ui/Ib=r be+(1+β)ReL
式中:ReL=Re//RL,r be是晶体管的输入电阻,对低频小功率管其值为:r be=300+(1+β)(26毫伏)/(Ie毫伏)在上图(b)电路中,若从b、b’端往右看的输入阻抗为Ri=Ui/Ii=Rb//Rio.由上式可见,射随器的输入阻抗要比一般共射极电路的输入阻抗rbe高(1+β)倍。
2、输出阻抗
将Es=0,从上图(C)的e、e'往式看的输出阻抗为:Ro=Uo/Ui=(r be+Rsb)/(1+β),式中Rs=Rs//Rb,
若从输出端0、0’往左看的输出阻抗为Ro=Ro//Reo
3、电压放大倍数
根据上图(b)等效电路求得:Kv=Uo/Ui=(1+β)Rel/[Rbe+(1+β)Rel],
式中:Rel=Re//RL,当(1+β)Rel>>rbe时,Kv=1,通常Kv<1.
4、电流放大倍数
根据上图(b)等效电路求得:KI=Io/Ii=(1+β)RsbRe/(Rsb+Ri)(Re+RL)
式中:Rsb=Rs//Rb,Ri=rbc+(1+β)Relo通常,射随器具有电流和功率放大作用。
二、射随器的实用电路
下图是高频放大器使用的一种电路,由同轴电缆把信号输出,电缆的特性阻抗一般为50欧或70欧,所以要通过跟随器BG2实现阻抗变换。
图2是一种自举式的跟随器,它的特点是:
1、自举
由于R3的下端电位随上端电位升曾而升高,故称为自兴举,自举作用使R3两端的交流压降为零。
所以对交流来说,R3相当于开路,从而避免了偏置电路降低了输入阻抗的缺陷。
2、输入阻抗高
为了尽量地提高晶体管有效的输入阻抗,采用BG1和BG2组成复合管电路,这时β=β1β2,使总的输入阻抗大大提高。
因为输入阻抗Ri=Rbe+(1+β)Reo本电路的输入阻抗为2兆欧,
图3是串接式的跟随器,其特点是:(1)类似图2一样,R4两端交流电压具有自举作用;(2)BG2采用共基接法,使Ic2具有恒流作用,A、B两点交流阻抗RAB大大也提高,从而提高了跟随器的输入阻抗。
图4是互补式的跟随器,电路的特点是:(1)由于两只三极管轮流供给负载电流,所以每只管的功耗只为输出功率的(12-20)%左右,效率较高;(2)两只三极管都从射极输出,其输出阻抗基本上一样,所以输出波形正、负半波对称;(3)由于输入信号通过BG3或BG4耦合至三极管的基极,所以,对交、直流信号都可跟随。
其跟随范围约为±5伏
第五章负反馈放大器
一、正反馈与负反馈
从放大器的输出端把某些量送回输入端去,称为反馈。
若反馈量与输入量的相位相同,且加入反馈后使放大倍数增加的称为正反馈;若反馈量与输入量的相位相反,其反馈用于电路产生振荡,负反馈用于改善放大器的性能。
二、反馈方式与反馈效果
反馈效果与反馈量的性质和方式是密切相关的,若负反馈量与输出电压成正比,其反馈效果能使输出电压稳定,输出电阻减小,称为电压负反馈;如果负反馈量与输出电流成正比,其反馈效果能使输出电流稳定,输出电阻增加,则称为电流反馈。
按反馈量在输入端的接入形式划分为串联反馈和并联反馈。
串联反馈的反馈量以串联形式串接于输入回路,并联反馈的反馈量以并联莆式并接于输入回路,串联负反馈能增加输入电阻,而并联负反馈却减小输入电阻。
三、反馈的判别方法
正反馈还是负反馈用瞬间极性法判别,先假定输入信号某一瞬时极性然后按单级共射极放大器输入与输出反相的原理逐级推出各输入、输出端的瞬时极性,最后看反馈到输入端的反馈量的极性与最初输入信号的假定极性:若两者极性相同,则为正反馈,若两者极性相反则为负反馈。
电压反馈还是电流反馈用假想输出端交流短路法判别。
把输出端效流短路后,若反馈量消失,则为电压反馈,若仍然有反馈量,则为电流反馈,
串联反馈还是并联反馈考察输入回路的联接方式进行判别。
反馈量与输入信号若是电压相加,则为串联反馈,若是电流相加,则为并联反馈。
四种形式负反馈电路列于表一,
它们的有关计算公式列于表二
表一、三种形式的反馈
设输入电压极性为Ui↑,反馈量
Kuu=Uo/Ube Kui=Uo/Ib Kii=Io/Ib
第六章宽频放大器
一、宽频放大器的主要性能指标
(1)通频带△f由定义知△f=fH-fL,通常下限频率fL≈O,△f≈fHo,因此放大器通频带的扩展是设法增大上限频率fH数值。
(2)中频电压放大倍数KO:它的定义中频段的输出电压UO与输入电压Ui之比。
(3)增益与带宽乘积KO△f存在矛盾,即增大△f就会减小KO,反之则反,所以要用两者之积才能更全面地衡量放
大器的质量。
KO△f越大,则宽频放大器的性能就越好,
(4)上升时间ts:它定义为脉冲幅度从10%上升至90%所需时间,放大器的高频特性越好,则上升时间ts越小。
(5)下降时间tf:它的定义为脉冲幅度从90%下降至10%所需时间,
(6)上冲量δ:超过脉冲幅度的百分数,
(7)平顶下降量△:脉冲持续期内,顶部下降的百分数,放大器低频特性越好,平顶下降量越小。
二、扩展通频带的方法和电路
通常使用扩展频带的方法有三种:(1)负反馈法,在电路中引入负反馈,并使负反馈量高频时比低频时小,以补尝高频时输出电压减小的损失,这种方法是在不损坏失低频增益下进行补尝,但它的幅频特性却开不平坦,使输出脉冲波出现上冲;(3)利用各种接地电路的特点进行电路组合,以扩展放大器的通频带,下面介绍扩展带的电路1、电压并联负反馈电路
图1是电压并联负反馈电路,这种电路主要补偿晶体管集-基结电容CC、输出电容CO及电流放大倍数β随频率升高而引起放大器增益下降的作用,因为,低频时CO的容抗较小,使UO减小。
攀?潢摲牥?????师?所以,负反馈量也减小,使高、低频放大倍数基本一致,若RF取值与CC在高频时容抗相当,则CC只能在高频上起作用,把上限频率扩展
图1图2
2、电流串联负反馈电路
图2是电流串联负反馈电路,这种电路只能补偿因β减小而造成的损失,但不能补偿CO的作用,只适用于分布电容小的场合,因为,负返馈量取决于ReLe低频时β大,所以Ie也大,引入负反馈也较大,而高频时,由于β↓Ie减小使负反馈量也减小,从而补偿了因β↓而使增益下降的损失。
3、电抗元件补偿电路
图4是电抗元件补偿电路,图中Ce约为几个皮法至几十个皮法,低频时其容抗甚大于,Reo由Re,引入较大的负反馈量,高频时Ce容抗变小,使发射极的反馈总阻抗变小,相应的高频负反馈减弱了。
这就更有效地补偿β的下降,最佳补偿条件为:(3-5)ReCe=(0.35/△f
通过调整ReCe数值,可以同时补偿β↓及Co的作用,当CoRe较小时,按最佳条件选ReCe即可。
若Co较大时,应由调整确定,
4、并联电感补偿电路
图5为并联电感补偿电路,从交流观点看,L与输出负载并联,故称并联电感补偿。
由L与[Co+CL]组成回路,高频时产生谐振。
由于谐振阻抗大,故补偿了β↓使入大倍数减小的作用,通常按下式选择电感
L=0.4RL(CL+CO)
5、串联电感补偿电路
图5为串联电感补偿电路,图中L与RL串联称为电感串联补偿。
L与CC及CL组成谐振回路,补偿效果不如并联电感补偿法好。
6、串、并联电感补偿电路
图6为串、并联电感补偿电路,图中C1、C2、C3分别为晶体管集电极电容及电路输出端的分布电容,电感L1和L2可以由下式选择
L1=[(1/2)+(C1/C2)]L2
L2=[(1/2)+(C3/C2)]L0
LO=RC/2π△f由于L1、L2有二次谐振机会,使通频带有较大的扩展。
7、电容和电感的混合补偿电路
图7为电容和电感的混合补偿电路,电路由BG1和BG2两级组成,其中BG2的集-基之间由RF和LF实现并联电压负反馈。
高频时LF感抗增大使负反馈量减小,从而补偿了高频时输出电感受的下降,这种电路的输入、输出阻抗很低,故能承受较大容性负载,使频宽大大扩展。
BG1和BG2实现电容的补偿,以抵销频时攀?潢摲牥?????师?β↓的作用。
由于BG2输入阻抗小,BG1集电极交流负载减小,使BG1输入电容也减小,所以BG1放大级频响更好,8、共射、共集组合电路
图8共射、共集组合电路,图中BG2是共集电路,具有输入阻抗高,输入电容小的优点,它接于BG1共射电路后面,可以减轻后级输入电容对前级的影响。
与共射-共射电路相比,它具有更好的频响特性。
又由于共集电路输出阻抗低,可以承受较重的负载,输出电容对频响特性影响小,
由于共集电路本身的频率特性较好,所以共射-共集电路的频响声基本上决定于共射电路,这种电路适用于放大器的末级。
9、共射、工会基组合电路
图9为共射、共基电路,图中BG2共基电路的输入阻抗小,一般在几欧至十几欧范围,它作为BG1共射电路后级,当BG1集电极存在有分布民容时,对电路的频响的影响较小。
所以比共射-共射电路的通频带有较大的扩展
这种电路总的带宽增益不积不及共射-共集电路,但共射-共基电路应用在多级电路中,不易产生寄生振荡。
适用于较高频的宽带放大器。
图3图4图5
图8
图6图7
图9
第七章选频放大器
一、工作原理与双T电桥的频率特性
选频放大器,它从多种频率的输入信号中,选取所需的一种频率信号加以放大下图所示的方框图可以构成选频放大电路,其中方框K是基本放大电路,方框F是选频负反馈网络,因此,选频放大器实质上是一种具有选频作用的负反馈电路。
电路的闭环益为
KF=K/(1+FK)
式中:K=UO/Ui是开环增益
F=UF/UO是反馈系数
一般用RC选频网络实现选期,图(b)示出反馈系数F随频率f的变化曲线(频率特性),当f=fo时,则F=0。
所以,对谐振频率fo来说,放大电路不存在负反馈,故KF=K,此时放大器的输出电压最大。
随着频率远离fo,F就急速地增加,相应的KF也很快衰减至零,见上图C因而,偏离fo点的其它无用频率的输出电压也就很小很小了,至于KF的衰减快慢,主要是取决于反馈网络的选频特性,通常用双T电桥的RC选频网络,它在实际使用中,最常用的有两种:
等一种是非对称双T电桥如上图所示,假设电源内阻RS=0,负载RL=00,则计算公式如下:
谐振角频率ωO=1/RC1式
品质因数Q=[1/2(1+a)]=[fo/2△fo.7]2式
传输系数(反馈系数)的模、幅角分别为:
3式
φ=arctg1/QY
式中:Y=σ-(1/σ)是广义失谐系数
σ=f/fo是相对失谐系数4式
2△fo.7主为半功点的带宽
由2式可见:对固定的谐振频率fo来说,Q越大,则通频带越窄;反之Q越小,则通频带越宽,因此,Q的大小可以反应出双T网络的选择性好坏。
这种双T电桥的优点是Q较大,但输入阻抗低,输出阻抗高,与放大器联接不便,由于桥臂参数不同,选用和调节也带来麻烦,只有选择性要求较高,才使用非对称双T电路,该电路的输入、输出阻抗及相角变化情况请参看最上面的图其中a通常选用(0.1-0.2)可得到较大的Q值。
第二种是对称双T电路,如下图-3所示,计算公式如下:
谐振频率:ω0=
品质因数:Q=
显然,Q与n有关,当n=1时,则Qmax=0.25,但调节不便,为了调节方便,经常选用n=0.5,相应于三只电阻数值相等;或选用n=2,相应于三只电容数值相等,由于对称双T电桥,在选择元件和调整上都比较方便,故得到广泛的
应用,
传输特性不对称性的校正方法:
实际使用中,由于RS≠O和RL≠OO而且有时双T网络与放大器使用交流耦合,例图4(A)的情况,信号源(ES及RS)经CS与双T耦合,由于频率为零时,容抗1/ωCS为无限大,所以F=O;而当频率很高时,则CS、C2、C3容抗很小,此时F近似为RL/(RL+RS);由于ZS、RL不影响谐振频率,仍然在f=fo时,F=0;因此,F随频率变化的曲线如图4(B
)示,由图可见,传输特性是不对称的
Z3和RL的存在不但使F的幅频特性畸变,而且也使它的相频特性产生不对称,如果在谐振点附近的相移超过
π/2,加上某此附加相移的作用,在这次闭环放大电路里,就会引入正反馈而发生自激振荡。
为了消除这种不良现象,在电路图4(A)的RL两端并接上电容CL,在CL的作用下可F的幅相特性得到校正见图4(B),理相校正时,应满足下式关系:
R1C1=R2C2=RLCL=RSCS
R1R2=(1+n)RLRS
如果耦合电容接于负载端,则必须在输入端1、1’并接电容CS,理想较正条件仍如上式关系
如果,双T与放大咕嘟使用直接耦合方式,则不必接入CS或CL,此时,F的振幅、相移特性的对称条件可简化为:R1R2=(1+n)RSRL
R1C1=R2C2
必须注意:(1)双T网络与放大器直接耦合,虽然选择性较高,但直流工作点将受到影响,调整因难;
(2)要使内阻ZS尽量减小及负载ZL尽量加大,否则会明显地降低双T的选择性,因此基本放大电路应前后接入射极跟随器或源极跟随器,以满足双T网络的要求,(3)在元伯参数有误差的影响下,,也会破坏了双T的平衡条件,使幅频、相频特性发生变化,因此双T网络的元件应按照具体要求,必须经严格选出温度特性好,工作稳定的元件,
并要进行老化
图4(A )图4(B
)
图4(C)
二、双T电桥与放大器的连接方式双T电桥与放大器的连接方式见下表。