河北省2017年中考数学模拟试卷
(完整版)17-2017年河北省中考数学试卷
2017年河北省中考数学试卷一、选择题(本大题共16小题,共42分。
1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算结果为正数的是()A.(﹣3)2 B.﹣3÷2 C.0×(﹣2017)D.2﹣32.(3分)把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1 B.﹣2 C.0.813 D.8.133.(3分)用量角器测得∠MON的度数,下列操作正确的是()A.B.C.D.4.(3分)=()A.B.C.D.5.(3分)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④6.(3分)如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分7.(3分)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10% B.减少了10% C.增加了(1+10%)D.没有改变8.(3分)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A.B.C.D.9.(3分)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②10.(3分)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能..是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°11.(2分)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A. B. C.D.12.(2分)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误..的是()A.4+4﹣=6 B.4+40+40=6 C.4+=6 D.4﹣1÷+4=613.(2分)若= +,则中的数是()A.﹣1 B.﹣2 C.﹣3 D.任意实数14.(2分)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表用水量(吨)4569户数4521比较5月份两组家庭用水量的中位数,下列说法正确的是()A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断15.(2分)如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.16.(2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5二、填空题(本大题共3小题,共10分。
2017年河北中考数学一模考试
2017年河北中考数学一模考试————————————————————————————————作者:————————————————————————————————日期:2017年河北省中考数学一模试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共16小题,共42.0分)1.下列所给图形是中心对称图形但不是轴对称图形的是()A. B. C. D.2.下列计算正确的是()A.-2+|-2|=0B.20÷3=0C.42=8D.2÷3×13=23.有一种圆柱体茶叶筒如图所示,则它的主视图是()A. B. C. D.4.已知点P(x+3,x-4)在x轴上,则x的值为()A.3B.-3C.-4D.45.如图,DE是△ABC的中位线,若BC=8,则DE的长为()A.2B.4C.6D.86.2016年4月6日22:20某市某个观察站测得:空气中PM2.5含量为每立方米23μg,1g=1000000μg,则将23μg用科学记数法表示为()A.2.3×10-7gB.23×10-6gC.2.3×10-5gD.2.3×10-4g7.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.中位数B.众数C.平均数D.方差8.如果代数式-2a+3b+8的值为18,那么代数式9b-6a+2的值等于()A.28B.-28C.32D.-329.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身身高的17,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A.{x+y=3.2(1+17)x=(1+13)y B.{x+y=3.2(1−17)x=(1−13)y C.{x+y=3.213x=17y D.{x+y=3.2(1−13)x=(1−17)y10.已知a=√2,b=√3,则√18=()A.2aB.abC.a2bD.ab2则图中阴影部分的周长为()A.11B.16C.19D.2212.数学课上,老师让学生尺规作图画R t△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径13.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰R t△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.14.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=()A.12B.8C.4D.315.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果AEEC =35,那么ACAB等于()A.3 5B.53C.85D.3216.如图,在平面直角坐标系中,直线y=-3x+3与x轴、y 轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线y=kx(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1B.2C.3D.417.函数y=√1−2x的自变量x的取值范围是______ .1+x18.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=______ .19.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE⊥BC于点E,作R t△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于______ ,第n个三角形的面积等于______ .三、计算题(本大题共1小题,共8.0分)20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2-(9-1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.四、解答题(本大题共6小题,共60.0分)21.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.22.如图,在平面直角坐标系中,一次函数y=kx+b(m≠0)的图象交于点A(3,与反比例函数y=mx1),且过点B(0,-2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.23.阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2-ax+2b=0有实数根的概率.24.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2√2,求BC的长.25.某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B 型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.26.如图,已知抛物线的方程C1:y=-1(x+2)(x-m)m(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.。
2017年河北省中考数学试卷含解析(完美打印版)
2017年河北省中考数学试卷(含解析)一、选择题(本大题共16小题,共42分。
1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算结果为正数的是()A.(﹣3)2B.﹣3÷2C.0×(﹣2017)D.2﹣32.(3分)把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1B.﹣2C.0.813D.8.133.(3分)用量角器测得∠MON的度数,下列操作正确的是()A.B.C.D.4.(3分)=()A.B.C.D.5.(3分)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④6.(3分)如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分7.(3分)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10%B.减少了10%C.增加了(1+10%)D.没有改变8.(3分)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A.B.C.D.9.(3分)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②10.(3分)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°11.(2分)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A.B.C.D.12.(2分)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A.4+4﹣=6B.4+40+40=6C.4+=6D.4﹣1÷+4=613.(2分)若=____+,则中的数是()A.﹣1B.﹣2C.﹣3D.任意实数14.(2分)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表比较5月份两组家庭用水量的中位数,下列说法正确的是()A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断15.(2分)如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.16.(2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4B.1.1C.0.8D.0.5二、填空题(本大题共3小题,共10分。
2017河北数学中考模拟试卷解析
2017河北数学中考模拟试卷解析中考数学试卷一直受到社会的广泛关注和重视,考生想要提升自己的中考模拟试题需要多做模拟练习,以下是小编精心整理的2017河北数学中考模拟试题解析,希望能帮到大家!2017河北数学中考模拟试题一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 的值等于( )A.4B.﹣4C.±4D.2.函数y= 中,自变量x的取值范围为( )A.x>B.x≠C.x≠ 且x≠0D.x<3.下列图案中,是轴对称图形但不是中心对称图形的是( )A. B. C. D.4.下列运算正确的是( )A.x4+x2=x6B.x2•x3=x6C.(x2)3=x6D.x2﹣y2=(x﹣y)25.若一组数据3,x,4,5,6的众数是3,则这组数据的中位数为( )A.3B.4C.5D.66.若y=kx﹣4的函数值y随x的增大而减小,则k的值可能是下列的( )A.﹣4B.0C.1D.37.已知等腰△ABC的两条边的长度是一元二次方程x2﹣6x+8=0的两根,则△ABC的周长是 ( )A.10B.8C.6D.8或108.如图,A、D是⊙O上的两个点,BC是直径.若∠D=32°,则∠OAC=()A.64°B.58°C.72°D.55°9.如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为( )A.3B.6C.3πD.6π10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )A. B. C. D.二、填空题(本大题共6小题,每小题4分,共24分)11.时光飞逝,小学、中学的学习时光已过去,九年的在校时间大约有16200小时,请将数16200用科学记数法表示为.12.因式分解:m2n﹣6mn+9n= .13.如图,△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边BC上A1处,折痕为CD,则∠A1DB= 度.14.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为m(结果保留根号).15.不等式组的解集是.16.如图,△ABC和△DEF有一部分重叠在一起(图中阴影部分),重叠部分的面积是△ABC面积的,是△DEF面积的,且△ABC与△DEF面积之和为26,则重叠部分面积是.三、解答题(本大题共3小题,每题6分共18分)17.解方程: =5.18.先化简,再求值:2a(a+2b)+(a﹣2b)2,其中a=﹣1, .19.如图,在△ABC中,∠C=90°,∠B=30°.(1)作∠A的平分线AD,交BC于点D(用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加黑);(2)计算S△DAC:S△ABC的值.四、解答题(本大题共3小题,每题7分共21分)20.为了解某市初三学生的体育测试成绩和课外体育锻炼时间的情况,现从全市初三学生体育测试成绩中随机抽取200名学生的体育测试成绩作为样本.体育成绩分为四个等次:优秀、良好、及格、不及格.体育锻炼时间人数4≤x≤62≤x<4 430≤x<2 15(1)试求样本扇形图中体育成绩“良好”所对扇形圆心角的度数;(2)统计样本中体育成绩“优秀”和“良好”学生课外体育锻炼时间表(如图表所示),请将图表填写完整(记学生课外体育锻炼时间为x小时);(3)全市初三学生中有14400人的体育测试成绩为“优秀”和“良好”,请估计这些学生中课外体育锻炼时间不少于4小时的学生人数.21.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?22.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.五、解答题(本大题共3小题,每题9分共27分)23.如图,直线y=mx与双曲线y= 相交于A、B两点,A点的坐标为(1,2),AC⊥x轴于C,连结BC.(1)求反比例函数的表达式;(2)根据图象直接写出当mx> 时,x的取值范围;(3)在平面内是否存在一点D,使四边形ABDC为平行四边形?若存在,请求出点D坐标;若不存在,请说明理由.24.如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE2=DF•DB;(3)在(2)的条件下,延长ED、BA交于点P,若PA=AO,DE=2,求PD的长.25.如图,已知抛物线y=﹣ x2﹣ x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.。
2017年河北省中考数学试卷及答案(word版)
2017年河北省中考数学试卷及答案第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算结果为正数的是( ) A .2(3)- B .32-÷C .0(2017)⨯-D .23-2.把0。
0813写成10n a ⨯(110a ≤<,n 为整数)的形式,则a 为( ) A .1 B .2- C .0.813 D .8.13 3。
用量角器测量MON ∠的度数,操作正确的是( )4.23222333m n ⨯⨯⨯=+++个个……( )A .23n m B.23m n C 。
32mnD.23m n5。
图1—1和图1-2中所有的小正方形都全等,将图1-1的正方形放在图1-2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( ) A .① B .② C .③ D .④6。
图2为张小亮的答卷,他的得分应是( ) A .100分 B .80分 C .60分 D .40分7。
若ABC ∆的每条边长增加各自的10%得'''A B C ∆,则'B ∠的度数与其对应角B ∠的度数相比( )A .增加了10%B .减少了10%C .增加了(110%)+D .没有改变8。
图3是由相同的小正方体木块粘在一起的几何体,它的主视图 是( )姓名 得分 填空(每小题20分,共100分)① -1的绝对值是 . ② 2的倒数是 . ③ -2的相反数是 . ④ 1的立方根是 . ⑤ -1和7的平均数是 .张小亮 ? 1 -2 2 1 3 图3① ②③④ 图1-1图1-2图 4 乙组12户家庭用水量统计图9。
求证:菱形的两条对角线互相垂直.已知:如图4,四边形ABCD 是菱形,对角线AC ,BD 交于点O . 求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =, ②∴AO BD ⊥,即AC BD ⊥. ③∵四边形ABCD 是菱形, ④∴AB AD =. 证明步骤正确的顺序是( )A .③→②→①→④B .③→④→①→②C .①→②→④→③D .①→④→③→②10。
2017年河北省中考数学试卷(含答案解析)
2017年河北省中考数学试卷一、选择题(本大题共16小题,共42分。
1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算结果为正数的是()A.(﹣3)2 B.﹣3÷2 C.0×(﹣2017)D.2﹣32.(3分)把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1 B.﹣2 C.0.813 D.8.133.(3分)用量角器测得∠MON的度数,下列操作正确的是()A.B.C.D.4.(3分)=()A.B.C.D.5.(3分)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④6.(3分)如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分7.(3分)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10% B.减少了10% C.增加了(1+10%)D.没有改变8.(3分)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A.B.C.D.9.(3分)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②10.(3分)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能..是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°11.(2分)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A. B. C.D.12.(2分)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误..的是()A.4+4﹣=6 B.4+40+40=6 C.4+=6 D.4﹣1÷+4=613.(2分)若= +,则中的数是()A.﹣1 B.﹣2 C.﹣3 D.任意实数14.(2分)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表用水量(吨)4569户数4521比较5月份两组家庭用水量的中位数,下列说法正确的是()A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断15.(2分)如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.16.(2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5二、填空题(本大题共3小题,共10分。
天津市河北区双环中学 2017年九年级数学中考模拟试卷(含答案)
2017年九年级数学中考模拟试卷一、选择题:1.﹣10+3的结果是()A.﹣7B.7C.﹣13D.132.在Rt△ABC中,∠C=90°,∠B=60°,那么sinA+cosB的值为()A.1B.C.D.3.下列图形既是轴对称图形又是中心对称图形的是( )4.纳米是一种长度单位,1纳米 = 10-9米,已知某种植物花粉的直径为35000纳米,则用科学记数法表示该种花粉的直径为()A.3.5 ×10-4米B.3.5 ×10-5米C.3.5 ×10-9米D.3.5 ×10-13米5.如图是某几何体的三视图,则该几何体的表面积为()A.24+12B.16+12C.24+6D.16+66.(﹣2)2的平方根是()A.2B.﹣2C.±2D.7.化简的结果是()A.x+1B.C.x﹣1D.8.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14B.(x﹣3)2=14C.(x+3)2=4D.(x﹣3)2=49.在函数y=中,自变量x的取值范围是()A.x≤1且x≠﹣2B.x≤1C.x<1且x≠﹣2D.x>1且x≠2.10.如图,在□ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,□ABCD的周长是14,则DM等于()A.1 B.2 C.3 D.411.对于函数y=4x-1,下列说法错误的是( )A.这个函数的图象位于第一、三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小12.在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A.y=﹣(x﹣2.5)2﹣2.75B.y=﹣(x+2.5)2﹣2.75C.y=﹣(x﹣2.5)2﹣0.25D.y=﹣(x+2.5)2+0.25二、填空题:13.a﹣4ab2分解因式结果是.=_________.15.抛掷一枚质地均匀的正方体骰子1枚,朝上一面的点数为偶数的概率是.16.已知一个一次函数,当x>0时,函数值y随着x的增大而减小,请任意写出一个符合以上条件的函数关系式.17.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)18.如图,正方形OEFG和正方形ABCD是位似形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是.三、解答题:19.解不等式组:,并在数轴上表示不等式组的解集.20.今年4月,我市某中学举行了“爱我中国•朗诵比赛”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了如下两种不完整的统计图.根据图中提供的信息,回答下列问题:(1)参加朗诵比赛的学生共有人,并把条形统计图补充完整;(2)扇形统计图中,m= ,n= ;C等级对应扇形的圆心角为度;(3)学校准备从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A等级的小明参加市朗诵比赛的概率.21.如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF、DC.已知OA=OB,CA=CB,DE=10,DF=6.(1)求证:①直线AB是⊙O的切线;②∠FDC=∠EDC;(2)求CD的长.22.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B 两点的距离.23.春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.24.在数学兴趣小组活动中,小明进行数学探究活动,将边长为的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线l上,AB与AG在同一直线上.(1)图1中,小明发现DG=BE,请你帮他说明理由.(2)小明将正方形ABCD按如图2那样绕点A旋转一周,旋转到当点C恰好落在直线l上时,请你直接写出此时BE 的长.25.如图,抛物线m:y=-0.25(x+h)2+k与x轴的交点为A,B,与y轴的交点为C,顶点为M(3,6.25),将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为D.(1)求抛物线n的解析式;(2)设抛物线n与x轴的另一个交点为E,点P是线段DE上一个动点(P不与D,E重合),过点P作y轴的垂线,垂足为F,连接EF.如果P点的坐标为(x,y),△PEF的面积为S,求S与x的函数关系式,写出自变量x的取值范围,并求出S 的最大值;(3)设抛物线m的对称轴与x轴的交点为G,以G为圆心,A,B两点间的距离为直径作⊙G,试判断直线CM与⊙G的位置关系,并说明理由.参考答案1.A2.A3.C4.B5.A6.C7.A8.A9.A10.C11.C12.A13.答案为:a(1﹣2b)(1+2b).14.答案为:215.答案为.16.答案为:y=﹣x+1.17.答案为:.18.答案是(﹣2,0)或(,).19.答案为:-1<x≤2.20.21.【解答】(1)①证明:连接OC.∵OA=OB,AC=CB,∴OC⊥AB,∵点C在⊙O上,∴AB是⊙O切线.②证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC,∵OD=OF,∴∠ODF=∠OFD,∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD,∵OD=OC,∴∠ODC=∠OCD,∴∠ADC=∠CDF.(2)作ON⊥DF于N,延长DF交AB于M.∵ON⊥DF,∴DN=NF=3,在RT△ODN中,∵∠OND=90°,OD=5,DN=3,∴ON==4,∵∠OCM+∠CMN=180°,∠OCM=90°,∴∠OCM=∠CMN=∠MNO=90°,∴四边形OCMN是矩形,∴ON=CM=4,MN=OC=5,在RT△CDM中,∵∠DMC=90°,CM=4,DM=DN+MN=8,∴CD===4.22.【解答】解:作AM⊥EF于点M,作BN⊥EF于点N,如右图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,∴CM=米,DN=米,∴AB=CD+DN﹣CM=100+20﹣60=(40+20)米,即A、B两点的距离是(40+20)米.23.【解答】解:(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,依题意得:,解得:,答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.(2)设该商场购进甲种商品m件,则购进乙种商品件,由已知得:m≥4,解得:m≥80.设卖完A、B两种商品商场的利润为w,则w=(40﹣30)m+(90﹣70)=﹣10m+2000,∴当m=80时,w取最大值,最大利润为1200元.故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元.24.25.。
河北省2017年中考数学模拟试卷(含解析)
2017年河北省中考数学一模试卷一、选择题:本大题共16小题,1-10小题,每小题3分,11-16小题,每题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给图形是中心对称图形但不是轴对称图形的是()A.B. C. D.2.下列计算正确的是()A.﹣2+|﹣2|=0 B.20÷3=0 C.42=8 D.2÷3×=23.有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.4.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.45.如图,DE是△ABC的中位线,若BC=8,则DE的长为()A.2 B.4 C.6 D.86.2016年4月6日22:20某市某个观察站测得:空气中PM2.5含量为每立方米23μg,1g=1000000μg,则将23μg用科学记数法表示为()A.2.3×10﹣7g B.23×10﹣6g C.2.3×10﹣5g D.2.3×10﹣4g7.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.中位数B.众数C.平均数D.方差8.如果代数式﹣2a+3b+8的值为18,那么代数式9b﹣6a+2的值等于()A.28 B.﹣28 C.32 D.﹣329.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A.B.C. D.10.已知a=,b=,则=()A.2a B.ab C.a2b D.ab211.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.11 B.16 C.19 D.2212.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径13.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.14.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=()A.12 B.8 C.4 D.315.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.16.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4二、填空题:本大题共3小题,共10分,17-18题各3分,19小题有2个空,每空2分.17.函数y=的自变量x的取值范围是.18.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=.19.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE ⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于,第n个三角形的面积等于.三、解答题:本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤.20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.21.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.22.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.23.阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.24.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.25.某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.26.如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.2017年河北省中考数学一模试卷参考答案与试题解析一、选择题:本大题共16小题,1-10小题,每小题3分,11-16小题,每题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给图形是中心对称图形但不是轴对称图形的是()A.B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解:A、此图形不是中心对称图形,不是轴对称图形,故A选项错误;B、此图形是中心对称图形,也是轴对称图形,故B选项错误;C、此图形是中心对称图形,不是轴对称图形,故C选项正确;D、此图形不是中心对称图形,是轴对称图形,故D选项错误.故选:C.2.下列计算正确的是()A.﹣2+|﹣2|=0 B.20÷3=0 C.42=8 D.2÷3×=2【考点】零指数幂.【分析】根据绝对值的规律,及实数的四则运算、乘法运算.【解答】解:A、﹣2+|﹣2|=﹣2+2=0,故A正确;B、20÷3=,故B错误;C、42=16,故C错误;D、2÷3×=,故D错误.故选A.3.有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看,茶叶盒可以看作是一个圆柱体,圆柱从正面看是长方形.故选:D.4.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.4【考点】点的坐标.【分析】直接利用x轴上点的纵坐标为0,进而得出答案.【解答】解:∵点P(x+3,x﹣4)在x轴上,∴x﹣4=0,解得:x=4,故选:D.5.如图,DE是△ABC的中位线,若BC=8,则DE的长为()A.2 B.4 C.6 D.8【考点】三角形中位线定理.【分析】已知DE是△ABC的中位线,BC=8,根据中位线定理即可求得DE的长.【解答】解:∵DE是△ABC的中位线,BC=8,∴DE=BC=4,故选B.6.2016年4月6日22:20某市某个观察站测得:空气中PM2.5含量为每立方米23μg,1g=1000000μg,则将23μg用科学记数法表示为()A.2.3×10﹣7g B.23×10﹣6g C.2.3×10﹣5g D.2.3×10﹣4g【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:23μg=23÷1000000g=0.000 023g=2.3×10﹣5g.故选:C.7.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.中位数B.众数C.平均数D.方差【考点】统计量的选择.【分析】由于比赛取前3名进入决赛,共有5名选手参加,故应根据中位数的意义分析.【解答】解:因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入决赛了,故选:A.8.如果代数式﹣2a+3b+8的值为18,那么代数式9b﹣6a+2的值等于()A.28 B.﹣28 C.32 D.﹣32【考点】代数式求值.【分析】先求得代数式﹣2a+3b的值,然后将所求代数式变形为3(﹣2a+3b)+2,最后将﹣2a+3b的值整体代入求解即可.【解答】解:∵﹣2a+3b+8=18,∴﹣2a+3b=10.原式=3(﹣2a+3b)+2=3×10+2=32.故选:C.9.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A.B.C. D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得两个等量关系:①爸爸的身高+儿子的身高=3.2米;②父亲在水中的身高(1﹣)x=儿子在水中的身高(1﹣)y,根据等量关系可列出方程组.【解答】解:设爸爸的身高为x米,儿子的身高为y米,由题意得:,故选:D.10.已知a=,b=,则=()A.2a B.ab C.a2b D.ab2【考点】算术平方根.【分析】将18写成2×3×3,然后根据算术平方根的定义解答即可.【解答】解: ==××=a•b•b=ab2.故选D.11.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.11 B.16 C.19 D.22【考点】矩形的性质;翻折变换(折叠问题).【分析】首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.【解答】解:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°∵∠B′EC=∠DEA,在△AED和△CEB′中,,∴△AED≌△CEB′(AAS);∴EA=EC,∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,=AD+DE+EC+EA+EB′+B′C,=AD+DC+AB′+B′C,=3+8+8+3,=22,故选D.12.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径【考点】作图—复杂作图;勾股定理的逆定理;圆周角定理.【分析】由作图痕迹可以看出AB是直径,∠ACB是直径所对的圆周角,即可作出判断.【解答】解:由作图痕迹可以看出O为AB的中点,以O为圆心,AB为直径作圆,然后以B为圆心BC=a为半径画弧与圆O交于一点C,故∠ACB是直径所对的圆周角,所以这种作法中判断∠ACB是直角的依据是:直径所对的圆周角是直角.故选:B.13.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选A.14.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=()A.12 B.8 C.4 D.3【考点】等边三角形的性质.【分析】过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.【解答】解:延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得,四边形PGBD,EPHC是平行四边形,∴PG=BD,PE=HC,又△ABC是等边三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,∴PF=PG=BD,PD=DH,又△ABC的周长为12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故选:C.15.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.【考点】平行线分线段成比例.【分析】由平行线分线段成比例定理得出=,再由角平分线性质即可得出结论.【解答】解:∵DE∥AB,∴=,∵AD为△ABC的角平分线,∴=;故选:B.16.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4【考点】反比例函数综合题.【分析】作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F,易证△OAB≌△FDA≌△BEC,求得A、B 的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a的值即可求解.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,∵在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4).代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把y=4代入y=得:x=1.即G的坐标是(1,4),∴CG=2.故选:B.二、填空题:本大题共3小题,共10分,17-18题各3分,19小题有2个空,每空2分.17.函数y=的自变量x的取值范围是x≤0.5且x≠﹣1 .【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,让被开方数大于等于0,分母不等于0,就可以求解.【解答】解:由题意得:1﹣2x≥0,1+x≠0,解得:x≤0.5且x≠﹣1.故答案为:x≤0.5且x≠﹣1.18.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=90°.【考点】平行线的性质.【分析】根据平行线的性质即可得到结论.【解答】解:过C作CE∥m,∵m∥n,∴CE∥n,∴∠1=∠α,∠2=∠β,∵∠1+∠2=90°,∴∠α+∠β=90°,故答案为:90°.19.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE ⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于a2,第n个三角形的面积等于.【考点】相似三角形的判定与性质.【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,然后判定出△ACD是等边三角形,同理可得被分成的第二个、第三个…第n个三角形都是等边三角形,再根据后一个等边三角形的边长是前一个等边三角形的边长的一半求出第n个三角形的边长,然后根据等边三角形的面积公式求解即可.【解答】解:∵∠ACB=90°,CD是斜边AB上的中线,∴CD=AD,∵∠A=60°,∴△ACD是等边三角形,同理可得,被分成的第二个、第三个…第n个三角形都是等边三角形,∵CD是AB的中线,EF是DB的中线,…,∴第一个等边三角形的边长CD=DB=AB=AC=a,∴第一个三角形的面积为a2,第二个等边三角形的边长EF=DB=a,…第n个等边三角形的边长为a,所以,第n个三角形的面积=×a×(•a)=.故答案为a2,.三、解答题:本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤.20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.【考点】整式的混合运算.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)根据题意列出关系式,化简得到结果,验证即可.【解答】解:(1)[(9+1)2﹣(9﹣1)2]×25÷9=18×2×25÷9=100;(2)[(a+1)2﹣(a﹣1)2]×25÷a=4a×25÷a=100.21.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.【考点】全等三角形的判定与性质.【分析】根据AB∥CD,得到∠B=∠C,推出△ABE≌△CDF,根据全等三角形的性质即可得到结论.【解答】解:添加条件为:∠A=∠D,理由:∵AB∥CD,∴∠B=∠C,在△ABE与△CDF中,,∴△ABE≌△CDF,∴AE=DF.22.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可求得函数的解析式;(2)首先求得AB与x轴的交点,设交点是C,然后根据S△ABP=S△ACP+S△BCP即可列方程求得P的横坐标.【解答】解:(1)∵反比例函数y=(m≠0)的图象过点A(3,1),∴3=∴m=3.∴反比例函数的表达式为y=.∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2).∴,解得:,∴一次函数的表达式为y=x﹣2;(2)令y=0,∴x﹣2=0,x=2,∴一次函数y=x﹣2的图象与x轴的交点C的坐标为(2,0).∵S△ABP=3,PC×1+PC×2=3.∴PC=2,∴点P的坐标为(0,0)、(4,0).23.阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.【考点】列表法与树状图法;根的判别式.【分析】(1)用列表法易得(a,b)所有情况;(2)看使关于x的一元二次方程x2﹣ax+2b=0有实数根的情况占总情况的多少即可.【解答】解:(1)(a,b)对应的表格为:1 2 3ab1 (1,1)(1,2)(1,3)2 (2,1)(2,2)(2,3)3 (3,1)(3,2)(3,3)4 (4,1)(4,2)(4,3)(2)∵方程x2﹣ax+2b=0有实数根,∴△=a2﹣8b≥0.∴使a2﹣8b≥0的(a,b)有(3,1),(4,1),(4,2),∴.24.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.【考点】切线的判定.【分析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.【解答】(1)证明:连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为2,∴OB=2,AC=4,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=2.25.某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意列出方程组求解;(2)①据题意得,y=﹣50n+16500,②利用不等式求出n的范围,又因为y=﹣50x+16500是减函数,所以n取37,y取最大值;(3)据题意得,y=150+n,即y=(m﹣50)n+16500,分三种情况讨论,①当30<m<50时,y随n的增大而减小,②m=50时,m﹣50=0,y=16500,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【解答】解:(1)设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意,得:,解得:,答:每部A型手机的销售利润为150元,每部B型手机的销售利润为100元;(2)①设购进B型手机n部,则购进A型手机部,则y=150+100n=﹣50n+16500,其中,110﹣n≤2n,即n≥36,∴y关于n的函数关系式为y=﹣50n+16500 (n≥36);②∵﹣50<0,∴y随n的增大而减小,∵n≥36,且n为整数,∴当n=37时,y取得最大值,最大值为﹣50×37+16500=14650(元),答:购进A型手机73部、B型手机37部时,才能使销售总利润最大;(3)根据题意,得:y=150+n=(m﹣50)n+16500,其中,36≤n≤80,①当30<m<50时,y随n的增大而减小,∴当n=37时,y取得最大值,即购进A型手机73部、B型手机37部时销售总利润最大;②当m=50时,m﹣50=0,y=16500,即商店购进B型电脑数量满足36≤n≤80的整数时,均获得最大利润;③当50<m<100时,y随n的增大而增大,∴当n=80时,y取得最大值,即购进A型手机30部、B型手机80部时销售总利润最大.26.如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将点(2,2)的坐标代入抛物线解析式,即可求得m的值;(2)求出B、C、E点的坐标,进而求得△BCE的面积;(3)根据轴对称以及两点之间线段最短的性质,可知点B、C关于对称轴x=1对称,连接EC与对称轴的交点即为所求的H点,如答图1所示;(4)本问需分两种情况进行讨论:①当△BEC∽△BCF时,如答图2所示.此时可求得m=+2;②当△BEC∽△FCB时,如答图3所示.此时可以得到矛盾的等式,故此种情形不存在.【解答】解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,。
河北省2017届中考数学模拟试卷(一)(含解析)
2017年河北省中考数学模拟试卷(一)一、选择题(本题共16个小题,共42分)1.计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣82.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b3.化简的结果是()A. B.C. D.2x+24.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.5.下列命题是假命题的是()A.若|a|=|b|,则a=bB.两直线平行,同位角相等C.对顶角相等D.若b2﹣4ac>0,则方程ax2+bx+c=0(a≠0)有两个不等的实数根6.菱形具有而一般平行四边形不具有的性质是()A.对边相等 B.对角相等C.对角线互相平分D.对角线互相垂直7.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.118.如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE9.若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.3010.下列图案属于轴对称图形的是()A.B.C.D.11.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD=()A.3 B.4 C.4.8 D.512.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是()A.a2+b>0 B.a﹣b>0 C.a2﹣b>0 D.a+b>013.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.B.2 C. +1 D.2+114.给出一种运算:对于函数y=x n,规定y′=nx n﹣1.例如:若函数y=x4,则有y′=4x3.已知函数y=x3,则方程y′=12的解是()A.x1=4,x2=﹣4 B.x1=2,x2=﹣2 C.x1=x2=0 D.x1=2,x2=﹣215.如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是()A.4 B.3 C.2 D.2+16.如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数y=(x>0)和y=(x>0)的图象于点P和Q,连接OP和OQ.则下列结论正确的是()A.∠POQ不可能等于90°B. =C.这两个函数的图象一定关于x轴对称D.△POQ的面积是(|k1|+|k2|)二、填空题(本大题共3小题,共10分)17.分式方程的解是.18.如图,⊙O的直径AB过弦CD的中点E,若∠C=25°,则∠D= .19.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为.三、解答题(本大题共7小题,共68分)20.(9分)已知关于x的方程x2+x+n=0有两个实数根﹣2,m.求m,n的值.21.(9分)某同学要证明命题“平行四边形的对边相等.”是正确的,他画出了图形,并写出了如下已知和不完整的求证.已知:如图,四边形ABCD是平行四边形.求证:AB=CD,(1)补全求证部分;(2)请你写出证明过程.证明:.22.(9分)P n表示n边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P n与n的关系式是:P n=•(n2﹣an+b)(其中a,b是常数,n≥4)(1)通过画图,可得:四边形时,P4= ;五边形时,P5=(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a,b的值.23.(9分)某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:(1)求a的值;(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).24.(10分)某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).若师生均购买二等座票,则共需1020元.(1)参加活动的教师有人,学生有人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.①求y关于x的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?25.(10分)如图,AB是半圆O的直径,AB=2,射线AM、BN为半圆的切线,在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆的切线DP,切点为P,与BN相交于点Q.(1)求证:△ABC∽△OFB;(2)当△ABD与△BFO的面积相等时,求BQ的长;(3)求证:当D在AM上移动时(A点除外),点Q始终是线段BF的中点.26.(12分)如图1,直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y= x2+bx+c经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图2,将△BDP绕点B逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.2017年河北省中考数学模拟试卷(一)参考答案与试题解析一、选择题(本题共16个小题,共42分)1.计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣8【考点】48:同底数幂的除法;6F:负整数指数幂.【分析】直接利用同底数幂的除法运算法则化简求出答案.【解答】解:a10÷a2(a≠0)=a8.故选:C.【点评】此题主要考查了同底数幂的除法运算法则,正确掌握相关法则是解题关键.2.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b【考点】29:实数与数轴.【分析】利用数轴上a,b所在的位置,进而得出a以及﹣b的取值范围,进而比较得出答案.【解答】解:A、如图所示:﹣3<a<﹣2,故此选项错误;B、如图所示:﹣3<a<﹣2,故此选项错误;C、如图所示:1<b<2,则﹣2<﹣b<﹣1,故a<﹣b,故此选项错误;D、由选项C可得,此选项正确.故选:D.【点评】此题主要考查了实数与数轴,正确得出a以及﹣b的取值范围是解题关键.3.化简的结果是()A. B.C. D.2x+2【考点】6A:分式的乘除法.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=•(x﹣1)=.故选C.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.4.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为2,1,1,据此可得出图形,从而求解.【解答】解:观察图形可知,该几何体的主视图是.故选:A.【点评】本题考查由三视图判断几何体,简单组合体的三视图.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.5.下列命题是假命题的是()A.若|a|=|b|,则a=bB.两直线平行,同位角相等C.对顶角相等D.若b2﹣4ac>0,则方程ax2+bx+c=0(a≠0)有两个不等的实数根【考点】O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、若|a|=|b|,则a﹣b=0或a+b=0,故A错误;B、两直线平行,同位角相等,故B正确;C、对顶角相等,故C正确;D、若b2﹣4ac>0,则方程ax2+bx+c=0(a≠0)有两个不等的实数根,故D正确;故选:A.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.菱形具有而一般平行四边形不具有的性质是()A.对边相等 B.对角相等C.对角线互相平分D.对角线互相垂直【考点】L8:菱形的性质;L5:平行四边形的性质.【分析】由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.【解答】解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.【点评】此题考查了菱形的性质以及平行四边形的性质.注意菱形的对角线互相平分且垂直.7.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.11【考点】L3:多边形内角与外角.【分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【解答】解:360°÷36°=10,所以这个正多边形是正十边形.故选C.【点评】本题主要考查了多边形的外角和定理.是需要识记的内容.8.如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE【考点】KX:三角形中位线定理;KD:全等三角形的判定与性质.【分析】首先根据三角形的中位线定理得出AE=EC,然后根据CF∥BD得出∠ADE=∠F,继而根据AAS证得△ADE≌△CFE,最后根据全等三角形的性质即可推出EF=DE.【解答】解:∵DE是△ABC的中位线,∴E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵,∴△ADE≌△CFE(AAS),∴DE=FE.故选B.【点评】本题考查了三角形中位线定理和全等三角形的判定与性质,解答本题的关键是根据中位线定理和平行线的性质得出AE=EC、∠ADE=∠F,判定三角形的全等.9.若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.30【考点】4J:整式的混合运算—化简求值.【分析】原式利用完全平方公式,平方差公式化简,去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵x2+4x﹣4=0,即x2+4x=4,∴原式=3(x2﹣4x+4)﹣6(x2﹣1)=3x2﹣12x+12﹣6x2+6=﹣3x2﹣12x+18=﹣3(x2+4x)+18=﹣12+18=6.故选B【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.10.下列图案属于轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有,A有一条对称轴,由此即可得出结论.【解答】解:A、能找出一条对称轴,故A是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、不能找出对称轴,故D不是轴对称图形.故选A.【点评】本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.11.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD=()A.3 B.4 C.4.8 D.5【考点】KG:线段垂直平分线的性质;KQ:勾股定理;KS:勾股定理的逆定理;KX:三角形中位线定理.【分析】直接利用勾股定理的逆定理得出△ABC是直角三角形,进而得出线段DE是△ABC 的中位线,再利用勾股定理得出AD,再利用线段垂直平分线的性质得出DC的长.【解答】解:∵AB=10,AC=8,BC=6,∴BC2+AC2=AB2,∴△ABC是直角三角形,∵DE是AC的垂直平分线,∴AE=EC=4,DE∥BC,且线段DE是△ABC的中位线,∴DE=3,∴AD=DC==5.故选:D.【点评】此题主要考查了勾股定理以及其逆定理和三角形中位线的性质,正确得出AD的长是解题关键.12.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是()A.a2+b>0 B.a﹣b>0 C.a2﹣b>0 D.a+b>0【考点】FD:一次函数与一元一次不等式.【分析】首先判断a、b的符号,再一一判断即可解决问题.【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,a2+b>0,故A正确,a﹣b<0,故B错误,a+b不一定大于0,故D错误.故选A.【点评】本题考查一次函数与不等式,解题的关键是学会根据函数图象的位置,确定a、b 的符号,属于中考常考题型.13.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.B.2 C. +1 D.2+1【考点】LE:正方形的性质.【分析】由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF 是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.【解答】解:∵正方形ABCD的面积为1,∴BC=CD==1,∠BCD=90°,∵E、F分别是BC、CD的中点,∴CE=BC=,CF=CD=,∴CE=CF,∴△CEF是等腰直角三角形,∴EF=CE=,∴正方形EFGH的周长=4EF=4×=2;故选:B.【点评】本题考查了正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解决问题的关键.14.给出一种运算:对于函数y=x n,规定y′=nx n﹣1.例如:若函数y=x4,则有y′=4x3.已知函数y=x3,则方程y′=12的解是()A.x1=4,x2=﹣4 B.x1=2,x2=﹣2 C.x1=x2=0 D.x1=2,x2=﹣2【考点】A5:解一元二次方程﹣直接开平方法.【分析】首先根据新定义求出函数y=x3中的n,再与方程y′=12组成方程组得出:3x2=12,用直接开平方法解方程即可.【解答】解:由函数y=x3得n=3,则y′=3x2,∴3x2=12,x2=4,x=±2,x1=2,x2=﹣2,故选B.【点评】本题考查了利用直接开平方法解一元二次方程,同时还以新定义的形式考查了学生的阅读理解能力;注意:①二次项系数要化为1,②根据平方根的意义开平方时,是两个解,且是互为相反数,不要丢解.15.如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是()A.4 B.3 C.2 D.2+【考点】PA:轴对称﹣最短路线问题;KK:等边三角形的性质.【分析】连接CC′,根据△ABC、△A′BC′均为正三角形即可得出四边形A′BCC′为菱形,进而得出点C关于BC'对称的点是A',以此确定当点D与点B重合时,AD+CD的值最小,代入数据即可得出结论.【解答】解:连接CC′,如图所示.∵△ABC、△A′BC′均为正三角形,∴∠ABC=∠A′=60°,A′B=BC=A′C′,∴A′C′∥BC,∴四边形A′BCC′为菱形,∴点C关于BC'对称的点是A',∴当点D与点B重合时,AD+CD取最小值,此时AD+CD=2+2=4.【点评】本题考查了轴对称中的最短线路问题以及等边三角形的性质,找出点C关于BC'对称的点是A'是解题的关键.16.如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数y=(x>0)和y=(x>0)的图象于点P和Q,连接OP和OQ.则下列结论正确的是()A.∠POQ不可能等于90°B. =C.这两个函数的图象一定关于x轴对称D.△POQ的面积是(|k1|+|k2|)【考点】GB:反比例函数综合题.【分析】根据反比例函数的性质,xy=k,以及△POQ的面积=MO•PQ分别进行判断即可得出答案.【解答】解:A.∵P点坐标不知道,当PM=MQ时,并且PM=OM,∠POQ等于90°,故此选项错误;B.根据图形可得:k1>0,k2<0,而PM,QM为线段一定为正值,故=||,故此选项C.根据k1,k2的值不确定,得出这两个函数的图象不一定关于x轴对称,故此选项错误;D.∵|k1|=PM•MO,|k2|=MQ•MO,△POQ的面积=MO•PQ=MO(PM+MQ)=MO•PM+MO•MQ,∴△POQ的面积是(|k1|+|k2|),故此选项正确.故选:D.【点评】此题主要考查了反比例函数的综合应用,根据反比例函数的性质得出|k1|=PM•MO,|k2|=MQ•MO是解题关键.二、填空题(本大题共3小题,共10分)17.分式方程的解是x=﹣1 .【考点】B2:分式方程的解.【分析】根据解分式方程的方法可以求得分式方程的解,记住最后要进行检验,本题得以解决.【解答】解:方程两边同乘以2x(x﹣3),得x﹣3=4x解得,x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,故原分式方程的解是x=﹣1,故答案为:x=﹣1.【点评】本题考查分式方程的解,解题的关键是明确解分式方程的解得方法,注意最后要进行检验.18.如图,⊙O的直径AB过弦CD的中点E,若∠C=25°,则∠D= 65°.【考点】M5:圆周角定理.【分析】先根据圆周角定理求出∠A的度数,再由垂径定理求出∠AED的度数,进而可得出结论.【解答】解:∵∠C=25°,∴∠A=∠C=25°.∵⊙O的直径AB过弦CD的中点E,∴AB⊥CD,∴∠AED=90°,∴∠D=90°﹣25°=65°.故答案为:65°.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.19.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为(8052,0).【考点】D2:规律型:点的坐标.【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2013除以3,根据商为671可知第2013个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.【解答】解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2013÷3=671,∴△2013的直角顶点是第671个循环组的最后一个三角形的直角顶点,∵671×12=8052,∴△2013的直角顶点的坐标为(8052,0).故答案为:(8052,0).【点评】本题是对点的坐标变化规律的考查了,难度不大,仔细观察图形,得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.三、解答题(本大题共7小题,共68分)20.已知关于x的方程x2+x+n=0有两个实数根﹣2,m.求m,n的值.【考点】AB:根与系数的关系.【分析】利用根与系数的关系知﹣2+m=﹣1,﹣2m=n,据此易求m、n的值.【解答】解:∵关于x的方程x2+x+n=0有两个实数根﹣2,m,∴,解得,,即m,n的值分别是1、﹣2.【点评】本题考查了根与系数的关系,属于基础题.解题过程中,需要熟记公式x1+x2=﹣,x1•x2=.21.某同学要证明命题“平行四边形的对边相等.”是正确的,他画出了图形,并写出了如下已知和不完整的求证.已知:如图,四边形ABCD是平行四边形.求证:AB=CD,BC=DA(1)补全求证部分;(2)请你写出证明过程.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA..【考点】L5:平行四边形的性质.【分析】(1)根据题意容易得出结论;(2)连接AC,与平行四边形的性质得出AB∥CD,AD∥BC,证出∠BAC=∠DCA,∠BCA=∠DAC,由ASA证明△ABC≌△CDA,得出对应边相等即可.【解答】(1)已知:如图,四边形ABCD是平行四边形.求证:AB=CD,BC=DA;故答案为:BC=DA;(2)证明:连接AC,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA;故答案为:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形对边平行的性质,证明三角形全等是解决问题的关键.22.P n表示n边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P n与n的关系式是:P n=•(n2﹣an+b)(其中a,b是常数,n≥4)(1)通过画图,可得:四边形时,P4= 1 ;五边形时,P5= 5(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a,b的值.【考点】N4:作图—应用与设计作图;95:二元一次方程的应用;L2:多边形的对角线.【分析】(1)依题意画出图形,数出图形中对角线交点的个数即可得出结论;(2)将(1)中的数值代入公式可得出关于a、b的二元一次方程组,解方程组即可得出结论.【解答】解:(1)画出图形如下.由画形,可得:当n=4时,P4=1;当n=5时,P5=5.故答案为:1;5.(2)将(1)中的数值代入公式,得:,解得:.【点评】本题考查了多边形的对角线、作图以及二元一次方程组的应用,解题的关键是:(1)画出图形,数出对角线交点的个数;(2)代入数据得出关于a、b的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,依据题意画出图形,利用数形结合解决问题是关键.23.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m 进行分组统计,结果如表所示:(1)求a的值;(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).【考点】X6:列表法与树状图法;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)根据被调查人数为20和表格中的数据可以求得a的值;(2)根据表格中的数据可以得到分数在8≤m<9内所对应的扇形图的圆心角大;(3)根据题意可以写出所有的可能性,从而可以得到第一组至少有1名选手被选中的概率.【解答】解:(1)由题意可得,a=20﹣2﹣7﹣2=9,即a的值是9;(2)由题意可得,分数在8≤m<9内所对应的扇形图的圆心角为:360°×=162°;(3)由题意可得,所有的可能性如下图所示,故第一组至少有1名选手被选中的概率是: =,即第一组至少有1名选手被选中的概率是.【点评】本题考查列表法与树状图法、频数分布表、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件.24.(10分)(2016•漳州)某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).若师生均购买二等座票,则共需1020元.(1)参加活动的教师有10 人,学生有50 人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.①求y关于x的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?【考点】FH:一次函数的应用;C9:一元一次不等式的应用.【分析】(1)设参加活动的教师有a人,学生有b人,根据等量关系:师生共60人;若师生均购买二等座票,则共需1020元;列出方程组,求出方程组的解即可;(2)①根据购买一、二等座票全部费用=购买一等座票钱数+教师购买二等座票钱数+学生购买二等座票钱数,依此可得解析式;②根据不等关系:购买一、二等座票全部费用不多于1032元,列出方程求解即可.【解答】解:(1)设参加活动的教师有a人,学生有b人,依题意有,解得.故参加活动的教师有10人,学生有50人;(2)①依题意有:y=26x+22(10﹣x)+16×50=4x+1020.故y关于x的函数关系式是y=4x+1020(0<x<10);②依题意有4x+1020≤1032,解得x≤3.故提早前往的教师最多只能3人.故答案为:10,50.【点评】本题主要考查对一次函数,二元一次方程组,一元一次不等式等知识点的理解和掌握,此题是一个拔高的题目,有一定的难度.25.(10分)(2017•河北模拟)如图,AB是半圆O的直径,AB=2,射线AM、BN为半圆的切线,在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆的切线DP,切点为P,与BN相交于点Q.(1)求证:△ABC∽△OFB;(2)当△ABD与△BFO的面积相等时,求BQ的长;(3)求证:当D在AM上移动时(A点除外),点Q始终是线段BF的中点.【考点】S9:相似三角形的判定与性质;MC:切线的性质.【分析】(1)根据OE∥AC,得出∠BAC=∠FOB,进而得出∠BCA=∠FBO=90°,从而证明结论;(2)根据△ACB∽△OBF得出△ABD∽△BFO,从而得出DQ∥AB,即可得出BQ=AD;(3)首先得出AD=DP,QB=BQ,进而得出DQ2=QK2+DK2,得出BF=2BQ,即可得出Q为BF的中点.【解答】(1)证明:∵AB为半圆O直径,∴∠ACB=90°,即AC⊥BC,又OE⊥BC,∴OE∥AC,∴∠BAC=∠FOB,∵BN是半圆的切线,∴∠BCA=∠FBO=90°,∴△ABC∽△OFB.(2)解:连接OP,如图1所示:由△ACB∽△OBF得,∠OFB=∠DBA,∠BCA=∠FBO=90°,∵AM、BN是⊙O的切线,∴∠DAB=∠OBF=90°,∴△ABD∽△BFO,∴当△ABD与△BFO的面积相等时,△ABD≌△BFO,∴AD=OB=1,∵DP切圆O,DA切圆O,∴DP=DA,∵△ABD≌△BFO,∴DA=BO=PO=DP又∵∠DAO=∠DPO=90°,∴四边形AOPD是正方形,∴DQ∥AB,∴四边形ABQD是矩形,∴BQ=AD=1;(3)证明:由(2)知,△ABD∽△BFO,∴,∴BF===,∵DP 是半圆O 的切线,射线AM 、BN 为半圆O 的切线, ∴AD=DP ,QB=QP ,过Q 点作AM 的垂线QK ,垂足为K ,如图2所示: 在Rt △DQK 中,DQ 2=QK 2+DK 2, ∴(AD+BQ )2=(AD ﹣BQ )2+22.∴BQ=,∴BF=2BQ , ∴Q 为BF 的中点.【点评】此题主要考查了切线的性质、全等三角形的判定与性质、切线长定理、正方形的判定与性质、相似三角形的判定与性质、勾股定理等知识,本题综合性强,有一定难度.26.(12分)(2016•河南)如图1,直线y=﹣x+n 交x 轴于点A ,交y 轴于点C (0,4),抛物线y=x 2+bx+c 经过点A ,交y 轴于点B (0,﹣2).点P 为抛物线上一个动点,过点P 作x 轴的垂线PD ,过点B 作BD ⊥PD 于点D ,连接PB ,设点P 的横坐标为m . (1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图2,将△BDP绕点B逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.【考点】HF:二次函数综合题.【分析】(1)先确定出点A的坐标,再用待定系数法求出抛物线解析式;(2)由△BDP为等腰直角三角形,判断出BD=PD,建立m的方程计算出m,从而求出PD;(3)分点P′落在x轴和y轴两种情况计算即可.【解答】解:(1)∵点C(0,4)在直线y=﹣x+n上,∴n=4,∴y=﹣x+4,令y=0,∴x=3,∴A(3,0),∵抛物线y=x2+bx+c经过点A,交y轴于点B(0,﹣2).∴c=﹣2,6+3b﹣2=0,∴b=﹣,∴抛物线解析式为y=x2﹣x﹣2,(2)解法一:∵点P的横坐标为m,且点P在抛物线上,∴P(m, m2﹣m﹣2),∵PD⊥x轴,BD⊥PD∴点D坐标为(m,﹣2)∴|BD|=|m|,|PD|=|m2﹣m﹣2+2||,当△BDP为等腰直角三角形时,PD=BD.∴|m|=|m2﹣m﹣2+2|=|m2﹣m|∴m2=(m2﹣m)2解得:m1=0(舍去),m2=,m3=∴当△BDP为等腰直角三角形时,线段PD的长为或.解法二:∵点P的横坐标为m.∴P(m, m2﹣m﹣2),当△BDP为等腰直角三角形时,PD=BD.①当点P在直线BD上方时,PD=m2﹣m(i)若点P在y轴左侧,则m<0,BD=﹣m.∴m2﹣m=﹣m,解得m1=0(舍去),m2=(舍去)(ii)若点P在y轴右侧,则m>0,BD=m.∴m2﹣m=m,解得m1=0(舍去),m2=.②当点P在直线BD下方时,m>0,BD=m,PD=﹣m2+m.∴﹣m2+m=m,解得m1=0(舍去),m2=.综上所述,m=或即当△BDP为等腰直角三角形时,线段PD的长为或.(3)∵∠PBP'=∠OAC,OA=3,OC=4,∴AC=5,∴sin∠PBP'=,cos∠PBP'=,①当点P'落在x轴上时,过点D'作D'N⊥x轴,垂足为N,交BD于点M,∠DBD'=∠ND'P'=∠PBP',如图1,由旋转知,P'D'=PD=m2﹣m,在Rt△P'D'N中,cos∠ND'P'==cos∠PBP'=,∴ND'=(m2﹣m),在Rt△BD'M中,BD'=﹣m,sin∠DBD'==sin∠PBP'=,∴D'M=﹣m,∴ND'﹣MD'=2,∴(m2﹣m)﹣(﹣m)=2,∴m=(舍),或m=﹣,如图2,同①的方法得,ND'=(m2﹣m),MD'=mND'+MD'=2,∴(m2﹣m)+m=2,∴m=,或m=﹣(舍),∴P (﹣,)或P (,),②当点P'落在y 轴上时,如图3,过点D′作D′M⊥x 轴,交BD 于M ,过点P′作P′N⊥y 轴,交MD'的延长线于点N ,∴∠DBD′=∠ND′P′=∠PBP′,同①的方法得,P'N=(m 2﹣m ),BM=m , ∵P′N=BM,∴(m 2﹣m )=m ,∴m=,∴P (,).∴P (﹣,)或P (,)或P (,).【点评】此题是二次函数综合题,主要考查了待定系数法求函数解析式,锐角三角函数,等腰直角三角形的性质,解本题的关键是构造直角三角形.。
2017年河北省数学中考模拟试题(2)有答案
2017年河北省初中毕业生升学文化课模拟考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上. 考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果+30 m 表示向东走30 m ,那么向西走40 m 表示为( ▲ )A . +30 mB .-30 mC . +40 mD .-40 m2.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为( ▲ ) A .6.75×103吨 B . 6.75×104吨C .6.75×105吨D .6.75×10-4吨3. 已知点A (a ,2013)与点A ′(-2014,b )是关于原点O 的对称点,则b a +的值为( ▲ ) A . 1 B . 5 C . 6 D .4 4.如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯与地面所成的夹角为θ,则tan θ的值等于( ▲ ) A .125 B .512 C .135D .1312 5.一组数据2,4,x ,2,4,7的众数是2,则这组数据的平均数、中位数分别为( ▲ ) A .3,4 B .3,3.5 C . 3.5,3 D .4,3 6.反比例函数xm y 3-=(m ≠3)在图象所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( ▲ )A .3m <-B . 3m >-C .3m <D . 3m >7.已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是( ▲ )8.用棋子按下列方式摆图形,依此规律,第n 个图形比第(n-1)个图形多(▲ )枚棋子.A.4nB . 5n -4C .4n -3D . 3n -29. 如图,平行四边形ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC =54°,连接AE ,则∠AEB 的度数为( ▲ ) A .27° B .36° C . 46° D .63°ABCD10.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止,设点P 运动的路程为x ,△ABP 的面积为y ,y 关于x 的函数图象如图2所示, 则△ABC 的面积是( ▲ )A .4B .3C .2D .111.下列图形中,既是轴对称图形又是中心对称图形的是( ) A.菱形、正方形、平行四边形 B.矩形、等腰三角形、圆 C.矩形、正方形、等腰梯形 D.菱形、正方形、圆12.有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等. 正确命题的个数是( ) A.2个 B.3个 C.4个 D.5个 13.若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A.2a < B.2a = C.2a > D.2a ≥14.已知,△ABC 中,∠A =90°,∠ABC =30°.将△ABC 沿直线BC 平移得到△111C B A ,1B 为BC 的中点,连结1BA ,则tan BC A 1∠的值为( ) A .43 B .53C .63 D .73 15.一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是( ) A .15个 B .13个 C .11个 D .5个 16.给出以下命题:①已知8215-可以被在60~70之间的两个整数整除,则这两个数是63、65;②若,2=x a ,3=y a 则yx a -2=34; ③已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为6-≠->m m 或; ④若方程x 2-2(m +1)x +m 2=0有两个整数根,且12<m <60, 则m 的整数值有2个. 其中正确的是( )A .①②B .①②④C .①③④ D.②③④ 2015年河北省初中毕业生升学文化课模拟考试数 学 试 卷卷II (非选择题,共78分)注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.(第14题)(第15题)A B CD 图12.答卷II 时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.一个不透明的袋中装有除颜色外其他均相同的2个红球和3个黄球,从中随机摸出一个黄球的概率是 ▲ .18.若实数a 、b 满足a +b =5,a 2b +ab 2=-10,则ab 的值是 ▲ .19.如图,矩形ABCD 中,AB =8,AD=3.点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的右下方作正方形AEFG ,同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过 ▲ 秒时,直线MN 和正方形AEFG 开始有公共点?20.如图,Rt △ABC 的斜边AB 在x 轴上,OA =OB =6,点C 在第一象限,∠A =30°, P (m ,n )是线段BC 上的动点,过点P 作BC 的垂线a ,以直线a 为对称轴,将线段OB 轴对称变换后得线段O ′B ′, (1)当点B ′ 与点C 重合时,m 的值为 ▲ ;(2)当线段O ′B ′与线段AC 没有公共点时,m 的取值范围是 ▲ . 三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9分)如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(217x +)cm ,正六边形的边长为(22x x +)cm (0)x >其中.求这两段铁丝的总长. 22.(本小题满分10分)已知:图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).操作:将三角尺移向直径为6cm 的⊙O ,它的内Rt △ABC 的斜边AB 恰好等于⊙O 的直径,它的外Rt △A ′B ′C ′的直角边A ′C ′ 恰好与⊙O 相切(如图2)。
2017年河北省数学中考模拟试题(1)有答案
2017年河北省初中毕业生升学文化课模拟考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上. 考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2009)1(-的相反数是( ) A .1 B .1- C .2009 D .2009-2.函数y=+中自变量x 的取值范围是( )A.x ≤2B.x=3C.x 〈2且x ≠3D.x ≤2且x ≠33. 某校九年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( ) A .中位数 B .众数 C .平均数 D .极差4.如图所示,给出下列条件:①B ACD ∠=∠;②ADC ACB ∠=∠;③AC AB CD BC=;④. 其中单独能够判定 ABC ACD △∽△的个数为( )A .1B .2C .3D .45. 某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八,九月份平均每月的增长率为x,那么x 满足的方程是( )A. 50+50(1+x 2)=196B. 50+50(1+x)+50(1+x)²=196C. 50(1+x 2)=196D.50+50(1+x)+50(1+2x)=1966.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x =(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会( )A .逐渐增大B .不变C .逐渐减小D .先增大后减小7. 2013年12月15日,嫦娥三号着陆器、巡视器顺利完成互拍,把成像从远在地球38万km 之外的月球传到地面,标志着我国探月工程二期取得圆满成功,将38万用科学记数法表示应为( )A.0.38×106B.0.38×105 C .3.8×104 D .3.8×1058.如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA ,OB ,OC 的中点, 则△DEF 与△ABC 的面积比是( )A .1:2B .1:4C .1:5D .1:69. 已知二次函数y=ax 2+bx+c 的图像如图所示,下列五个结论中:①2a-b 〈0;②abc 〈0;③a+b+c 〈0;④a-b+c 〉0;⑤4a+2b+c 〉0,1 2 AC AD ·AB =x-3 - 2 x x yO AB6题 O y 第8题图 -1 1错误的有()A.1个B.2个C.3个D.4个10. 如图,在平面直角坐标系xOy 中,等腰梯形ABCD的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,……,重复操作依次得到点P 1,P 2,…, 则点P 2010的坐标是( ).A .(2010,2)B .(2012,-2 )C .(0,2)D .(2010,-2 ) 11.正方形ABCD 中,点P 是对角线AC 上的任意一点(不包括端点),以P 为圆心的圆与AB 相切,则AD 与P e 的位置关系是( B ) A .相离 B .相切 C .相交 D .不确定 12.已知ABC △的面积为36,将ABC △沿BC 平移到A B C '''△,使B '和C 重合,连结AC '交 A C '于D ,则C DC '△的面积为( D ) A .6 B .9 C .12 D .1813.给出三个命题:①点()P b a ,在抛物线21y x =+上;②点(13)A ,能在抛物线21y ax bx =++上;③点(21)B -,能在抛物线21y ax bx =-+上. 若①为真命题,则A .②③都是真命题B .②③都是假命题C .②是真命题,③是假命题D .②是假命题,③是真命题14.已知⊙O 1的半径是2cm ,⊙O 2的半径是3cm ,若这两圆相交,则圆心距d (cm )的取值范围是 ( ) A . d <1 B . 1≤d ≤5 C . d >5 D . 1<d <5 15.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC 是格点三角形(即顶点恰好是正方形的顶点),将△ABC 绕点A 逆时针旋转90°,则在△ABC 扫过的区域中(不含边界上的点),到点O 的距离为无理数的格点的个数是( )A. 3B. 4C. 5D. 616. 已知两直线11-+=k kx y 、k k x k y ()1(2++=为正整数),设这两条直线与x 轴所围成的三角形的面积为k S ,则1232013S S S S ++++L 的值是( )A .20122013 B .40242013 C .20142013 D .402820132015年河北省初中毕业生升学文化课模拟考试数 学 试 卷卷II (非选择题,共78分)注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.总 分 核分人A BC (B ')D A ' C '(第9题)2.答卷II 时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.当x ≤0时,化简1x--的结果是 .18. 如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .19.在面积为12的平行四边形ABCD 中,过点A 作直线BC 的垂线交BC 于点E ,过点A 作直线CD 的垂线交CD 于点F ,若AB =4,BC =6,则CE +CF 的值为 ; 20.将ABC △绕点B 逆时针旋转到A BC ''△使A B C '、、在同一直线上,若90BCA ∠=°,304cm BAC AB ∠==°,为 cm 2.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9分)关于的一元二次方程x 2+2x +k +1=0的实数解是x 1和x 2。
2017年河北省石家庄市长安二十一中中考数学模拟试卷(解析版)
2017年河北省石家庄市长安二十一中中考数学模拟试卷一、选择题:1.﹣的相反数是()A.B.﹣ C.5 D.﹣52.下列运算正确的是()A.x2+x3=x5B.(x﹣2)2=x2﹣4 C.2x2•x3=2x5D.(x3)4=x73.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.4.化简﹣的结果是()A.B.C.D.5.下列函数中,是一次函数的有()(1)y=πx (2)y=2x﹣1 (3)y=(4)y=2﹣3x (5)y=x2﹣1.A.4个 B.3个 C.2个 D.1个6.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD 上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对 B.3对 C.4对 D.5对7.下列等式不一定成立的是()A.(﹣)2=2 B.﹣=C.×= D.=(b≠0 )8.下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.9.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或910.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤311.数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是()A.4 B.﹣4 C.±8 D.±412.张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A.=B.=C.=D.=13.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是()A.0 B.1 C.2 D.314.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣315.如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=()A.B.C.D.16.已知抛物线和直线l在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=﹣1,P1(x1,y1)、P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线l上的点,且﹣1<x1<x2,x3<﹣1,则y1、y2、y3的大小关系为()A.y1<y2<y3B.y3<y1<y2C.y3<y2<y1D.y2<y1<y3二、填空题:17.一个数的立方根是4,那么这个数的平方根是.18.因式分解:(a+b)2﹣4b2=.19.△ABC中,AB=AC=4,BC=5,点D是边AB的中点,点E是边AC的中点,点P是边BC上的动点,∠DPE=∠C,则BP=.三、计算题:20.﹣32×﹣(+﹣)÷(﹣)21.2×(﹣3)2﹣5÷(﹣)×(﹣2)四、解答题:22.如图,已知△EFG ≌△NMH ,∠F 与∠M 是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm ,FH=1.1cm ,HM=3.3cm ,求MN 和HG 的长度.23.如图,△ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,求证:EF=BE +CF .24.某射击运动员在相同条件下的射击160次,其成绩记录如下:(1)根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01);(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由.25.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?26.如图,在一个坡角为40°的斜坡上有一棵树BC,树高4米.当太阳光AC与水平线成70°角时,该树在斜坡上的树影恰好为线段AB,求树影AB的长.(结果保留一位小数)(参考数据:sin20°=0.34,tan20°=0.36,sin30°=0.50,tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,tan70°=2.75)27.已知直线y=2x﹣5与x轴和y轴分别交于点A和点B,抛物线y=﹣x2+bx+c 的顶点M在直线AB上,且抛物线与直线AB的另一个交点为N.(1)如图,当点M与点A重合时,求抛物线的解析式;(2)在(1)的条件下,求点N的坐标和线段MN的长;(3)抛物线y=﹣x2+bx+c在直线AB上平移,是否存在点M,使得△OMN与△AOB相似?若存在,直接写出点M的坐标;若不存在,请说明理由.2017年河北省石家庄市长安二十一中中考数学模拟试卷参考答案与试题解析一、选择题:1.﹣的相反数是()A.B.﹣ C.5 D.﹣5【考点】14:相反数.【分析】求一个数的相反数,即在这个数的前面加负号.【解答】解:﹣的相反数是.故选:A.2.下列运算正确的是()A.x2+x3=x5B.(x﹣2)2=x2﹣4 C.2x2•x3=2x5D.(x3)4=x7【考点】4C:完全平方公式;35:合并同类项;47:幂的乘方与积的乘方;49:单项式乘单项式.【分析】A、本选项不是同类项,不能合并,错误;B、原式利用完全平方公式展开得到结果,即可作出判断;C、原式利用单项式乘单项式法则计算得到结果,即可作出判断;D、原式利用幂的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、本选项不是同类项,不能合并,错误;B、(x﹣2)2=x2﹣4x+4,本选项错误;C、2x2•x3=2x5,本选项正确;D、(x3)4=x12,本选项错误,故选C3.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:既是中心对称图形又是轴对称图形的只有A.故选A.4.化简﹣的结果是()A.B.C.D.【考点】6B:分式的加减法.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=﹣=故选(A)5.下列函数中,是一次函数的有()(1)y=πx (2)y=2x﹣1 (3)y=(4)y=2﹣3x (5)y=x2﹣1.A.4个 B.3个 C.2个 D.1个【考点】F1:一次函数的定义.【分析】根据一次函数的定义对各选项进行逐一分析即可.【解答】解:(1)y=πx是一次函数;(2)y=2x﹣1是一次函数;(3)y=是反比例函数,不是一次函数;(4)y=2﹣3x是一次函数;(5)y=x2﹣1是二次函数,不是一次函数.是一次函数的有3个.故选:B.6.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD 上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对 B.3对 C.4对 D.5对【考点】LE:正方形的性质;KB:全等三角形的判定.【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON ≌△M′ON′.由此即可得出答案.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.7.下列等式不一定成立的是()A.(﹣)2=2 B.﹣=C.×= D.=(b≠0 )【考点】79:二次根式的混合运算.【分析】根据二次根式的性质、化简乘除法进行计算即可.【解答】解:A、(﹣)2=2,正确;B、﹣=2﹣=,正确;C、×=,正确;D、=(a>0,b>0 ),错误;故选D.8.下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故A选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故B选项错误;C、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故C选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故D选项正确.故选:D.9.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【考点】L3:多边形内角与外角.【分析】首先求得内角和为1080°的多边形的边数,即可确定原多边形的边数.【解答】解:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选:D.10.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤3【考点】KF:角平分线的性质.【分析】作PM⊥OB于M,根据角平分线的性质得到PM=PE,得到答案.【解答】解:作PM⊥OB于M,∵OP是∠AOB的平分线,PE⊥OA,PM⊥OB,∴PM=PE=3,∴PN≥3,故选:C.11.数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是()A.4 B.﹣4 C.±8 D.±4【考点】13:数轴.【分析】根据绝对值的意义得:到原点的距离为4的点有4或﹣4,即可得到A 表示的数.【解答】解:∵|4|=4,|﹣4|=4,则点A所表示的数是±4.故选D.12.张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A.=B.=C.=D.=【考点】B6:由实际问题抽象出分式方程.【分析】根据每小时张三比李四多加工5个零件和张三每小时加工这种零件x个,可知李四每小时加工这种零件的个数,根据张三加工120个这种零件与李四加工100个这种零件所用时间相等,列出方程即可.【解答】解:设张三每小时加工这种零件x个,则李四每小时加工这种零件(x ﹣5)个,由题意得,=,故选B.13.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是()A.0 B.1 C.2 D.3【考点】KQ:勾股定理;26:无理数.【分析】根据图中所示,利用勾股定理求出每个边长.【解答】解:观察图形,应用勾股定理,得AB=,BC=,AC=,∴三个边长都是无理数;故选D.14.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣3【考点】AB:根与系数的关系.【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a 的值和另一根.【解答】解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.15.如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=A .B .C .D .【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】由平行四边形的性质易证两三角形相似,根据相似三角形的性质可解.【解答】解:∵ABCD 是平行四边形 ∴AD ∥BC ∴△BFE ∽△DFA ∴BE :AD=BF :FD=1:3∴BE :EC=BE :(BC ﹣BE )=BE :(AD ﹣BE )=1:(3﹣1) ∴BE :EC=1:2 故选A .16.已知抛物线和直线l 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=﹣1,P 1(x 1,y 1)、P 2(x 2,y 2)是抛物线上的点,P 3(x 3,y 3)是直线l 上的点,且﹣1<x 1<x 2,x 3<﹣1,则y 1、y 2、y 3的大小关系为( )A .y 1<y 2<y 3B .y 3<y 1<y 2C .y 3<y 2<y 1D .y 2<y 1<y 3 【考点】H5:二次函数图象上点的坐标特征.【分析】因为抛物线的对称轴为直线x=﹣1,且﹣1<x 1<x 2,当x >﹣1时,由图象知,y 随x 的增大而减小,根据图象的单调性可判断y 2<y 1;结合x 3<﹣1,即可判断y 2<y 1<y 3.【解答】解:对称轴为直线x=﹣1,且﹣1<x 1<x 2,当x >﹣1时,y 2<y 1, 又因为x 3<﹣1,由一次函数的图象可知,此时点P 3(x 3,y 3)在二次函数图象所以y2<y1<y3.故选D.二、填空题:17.一个数的立方根是4,那么这个数的平方根是±8.【考点】24:立方根;21:平方根.【分析】根据立方根的定义可知,这个数为64,故这个数的平方根为±8.【解答】解:设这个数为x,则根据题意可知=4,解得x=64;即64的平方根为±8.故答案为±8.18.因式分解:(a+b)2﹣4b2=(a+3b)(a﹣b).【考点】54:因式分解﹣运用公式法.【分析】原式利用平方差公式分解即可.【解答】解:原式=(a+b+2b)(a+b﹣2b)=(a+3b)(a﹣b).故答案为:(a+3b)(a﹣b)19.△ABC中,AB=AC=4,BC=5,点D是边AB的中点,点E是边AC的中点,点P是边BC上的动点,∠DPE=∠C,则BP=1或4.【考点】S9:相似三角形的判定与性质;KH:等腰三角形的性质.【分析】根据等腰三角形的性质得到BD=2,CE=2,∠B=∠C,根据相似三角形的性质即可得到结论.【解答】解:∵AB=AC=4,点D是边AB的中点,点E是边AC的中点,∴BD=2,CE=2,∠B=∠C,∵∠DPE=∠C,∴∠BPD=180°﹣∠B﹣∠DPE,∠CEP=180°﹣∠EPC﹣∠C,∴∠DPB=∠PEC,∴△BPD∽△CPE,∴,即,∴PB=1或4,故答案为:1或4.三、计算题:20.﹣32×﹣(+﹣)÷(﹣)【考点】1G:有理数的混合运算.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣9×(﹣)﹣(+﹣)×(﹣24)=+18+4﹣9=14.21.2×(﹣3)2﹣5÷(﹣)×(﹣2)【考点】1G:有理数的混合运算.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=2×9﹣5×(﹣2)×(﹣2)=18﹣20=﹣2.四、解答题:22.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.【考点】KA:全等三角形的性质.【分析】(1)根据△EFG≌△NMH,∠F与∠M是对应角可得到两个三角形中对应相等的三边和三角;(2)根据(1)中的对等关系即可得MN和HG的长度.【解答】解:(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm;∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.23.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.【考点】KH:等腰三角形的性质;JA:平行线的性质.【分析】根据平行线的性质和角平分线的性质,解出△BED和△CFD是等腰三角形,通过等量代换即可得出结论.【解答】解:∵△ABC中BD、CD平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠6,∵EF∥BC,∴∠2=∠3,∠4=∠6,∴∠1=∠3,∠4=∠5,根据在同一三角形中等角对等边的原则可知,BE=ED,DF=FC,故EF=ED+DF=BE+CF.24.某射击运动员在相同条件下的射击160次,其成绩记录如下:(1)根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01);(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由.【考点】X8:利用频率估计概率;W7:方差.【分析】根据频数的计算方法计算即可.【解答】解:(1)48,0.81;(2)P(射中9环以上)=0.8从频率的波动情况可以发现频率稳定在0.8附近,所以这名运动员射击一次时“射中9环以上”的概率是0.8.25.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?【考点】FH:一次函数的应用.【分析】(1)因为月用水量不超过20吨时,按2元/吨计费,所以当0≤x≤20时,y与x的函数表达式是y=2x;因为月用水量超过20吨时,其中的20吨仍按2元/吨收费,超过部分按2.8元/吨计费,所以当x>20时,y与x的函数表达式是y=2×20+2.8(x﹣20),即y=2.8x﹣16;(2)由题意可得:因为五月份缴费金额不超过40元,所以用y=2x计算用水量;四月份缴费金额超过40元,所以用y=2.8x﹣16计算用水量,进一步得出结果即可.【解答】解:(1)当0≤x≤20时,y与x的函数表达式是y=2x;当x>20时,y与x的函数表达式是y=2×20+2.8(x﹣20)=2.8x﹣16;(2)因为小颖家五月份的水费都不超过40元,四月份的水费超过40元,所以把y=38代入y=2x中,得x=19;把y=45.6代入y=2.8x﹣16中,得x=22.所以22﹣19=3吨.答:小颖家五月份比四月份节约用水3吨.26.如图,在一个坡角为40°的斜坡上有一棵树BC,树高4米.当太阳光AC与水平线成70°角时,该树在斜坡上的树影恰好为线段AB,求树影AB的长.(结果保留一位小数)(参考数据:sin20°=0.34,tan20°=0.36,sin30°=0.50,tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,tan70°=2.75)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】本题可通过构造直角三角形来解答,过B点作BD⊥AC,D为垂足,在直角三角形BCD中,已知BC的长,可求∠BCD的度数,那么可求出BD的长,在直角三角形ABD中,可求∠DAB=70°﹣40°=30°,前面又得到了BD的长,那么就可求出AB的长.【解答】解:过B点作BD⊥AC,D为垂足,在直角三角形BCD中,∠BCD=180°﹣70°﹣90°=20°,BD=BC•sin20°=4×0.34=1.36米,在直角三角形ABD中,∠DAB=70°﹣40°=30°,AB=BD÷sin30°=1.36÷≈2.7米.答:树影AB的长约为2.7米.27.已知直线y=2x﹣5与x轴和y轴分别交于点A和点B,抛物线y=﹣x2+bx+c 的顶点M在直线AB上,且抛物线与直线AB的另一个交点为N.(1)如图,当点M与点A重合时,求抛物线的解析式;(2)在(1)的条件下,求点N的坐标和线段MN的长;(3)抛物线y=﹣x2+bx+c在直线AB上平移,是否存在点M,使得△OMN与△AOB相似?若存在,直接写出点M的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A,B的值,根据顶点式,可得函数解析式;(2)根据函数图象上的点满足函数解析式,可得N点坐标,根据勾股定理,可得答案;(3)根据相似三角形的性质,可得关于m的方程,可得M点的坐标,要分类讨论,以防遗漏.【解答】解:(1)∵直线y=2x﹣5与x轴和y轴分别交于点A和点B,∴A(,0),B(0,﹣5).当点M与点A重合时,∴M(,0),∴抛物线的解析式为y=﹣(x﹣)2,即y=﹣x2+5x﹣;(2)N在直线y=2x﹣5上,设N(a,2a﹣5),又N在抛物线上,∴2a﹣5=﹣a2+5a﹣,解得a1=,a2=(舍去),∴N(,﹣4).过点N作NC⊥x轴,垂足为C,如图1,∵N(,﹣4),∴C(,0),∴NC=4.MC=OM﹣OC=﹣=2,∴MN===2.(3)设M(m,2m﹣5),N(n,2n﹣5).∵A(,0),B(0﹣,5),∴OA=,OB=5,则OB=2OA,AB==,如图2,当∠MON=90°时,∵AB≠MN,且MN和AB边上的高相等,因此△OMN与△AOB 不能全等,∴△OMN与△AOB不相似,不满足题意;当∠OMN=90°时,=,即=,解得OM=,则m2+(2m﹣5)2=()2,解得m=2,∴M(2,﹣1);当∠ONM=90°时,=,即=,解得ON=,则n2+(2n﹣5)2=()2,解得n=2,∵OM2=ON2+MN2,即m2+(2m﹣5)2=5+(2)2,解得m=4,则M点的坐标为(4,3),综上所述:M点的坐标为(2,﹣1)或(4,3).。
2017年河北省中考数学模拟试卷
2017年河北省中考数学模拟试卷一、选择题(本题共16个小题,共42分)1.(3分)计算(﹣3)×2的结果是()A.5 B.﹣5 C.6 D.﹣62.(3分)计算(﹣a2)3+(﹣a3)2的结果是()A.﹣2a5B.0 C.2a5D.﹣2a63.(3分)2017年1月,某公司新开发了一款智能手机,该手机的磁卡芯片直径为0.000001米,这个数据用科学记数法表示为()A.1×10﹣4米B.1×10﹣5米C.1×10﹣6米D.1×10﹣7米4.(3分)如图,在菱形ABCD中,∠DAC=25°,则∠B=()A.120°B.130°C.140° D.150°5.(3分)如图,数轴上有A,B,C,D四个点,其中到原点距离相等的两个点是()A.点B与点D B.点A与点C C.点A与点D D.点B与点C6.(3分)若a2﹣b2=﹣,a+b=﹣,则a﹣b的值为()A.B.﹣ C.2 D.47.(3分)若式子+(k﹣1)0有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A.B.C.D.8.(3分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外其它完全相同,小明通过多次摸球试验后发现其中摸到红色,黑色球的概率稳定在15%和40%,则口袋中白色球的个数很可能是()A.25 B.26 C.29 D.279.(3分)小明买书需用34元钱,付款时恰好用了1元和5元的纸币共10张,设所用的1元纸币为x张,根据题意,下面所列方程正确的是()A.x+10(x﹣50)=34 B.x+5(10﹣x)=34 C.x+5(x﹣10)=34 D.5x+(10﹣x)=3410.(3分)小明拿来n个形状大小完全相同的正方体木块,整齐地摆放在桌上,其三视图如图所示,则n的值是()A.7 B.8 C.9 D.1011.(2分)如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为()A.105°B.100°C.95°D.90°12.(2分)如图,已知矩形OABC面积为,它的对角线OB与双曲线相交于D且OB:OD=5:3,则k=()A.6 B.12 C.24 D.3613.(2分)如图,AB是⊙O的直径,DC是弦,若∠COB=68°,则∠BDC的度数等于()A.30°B.32°C.34°D.45°14.(2分)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC等于()A.B.C.D.15.(2分)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt﹣2(a,b是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可得到最佳加工时间为()A.3.75分钟B.4.00分钟C.4.15分钟D.4.25分钟16.(2分)如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE :S△BDE等于()A.2:5 B.14:25 C.16:25 D.4:21二、填空题(本大题共3小题,每小题3分,共9分)17.(3分)若分式的值为0,则x的值为.18.(3分)若x是整数,且满足不等式组,则x=.19.(3分)如图,直线l:y=x,点A1坐标为(0,1),过点A1作y轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交y轴于点A2,再过点A2作y轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交y轴于点A3,…,照此做法进行下去,点A2017的坐标为(,).三、解答题(本大题共7小题,共69分20.(9分)老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一部分多项式,形式如下:+(a﹣3b)2=2a2+5b2(1)求所捂的多项式;(2)当a=﹣2,b=时,求所捂的多项式的值.21.(9分)2014年,河北省委宣传部主办“河北节约之星”活动,表彰节水先进典型,省委宣传部号召全社会以节水先进典型为榜样,牢固树立节约用水理念,争做节俭美德的传承者,节约用水的践行者.小鹏想了解某小区住户月均用水情况,随机调查了该小区部分住户,并将调查数据绘制成如图所示的频数分布直方图(不完整)和如下的频数分布表.(1)求a,b,c的值,并将如图所示的频数分布直方图补充完整;(2)求月均用水量超过12吨的住户占所调查总住户的百分比;(3)若该小区有1000住户,根据所调查的数据,该小区月均用水量没有超过8吨的住户有多少?22.(9分)如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.23.(9分)如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.24.(11分)如图,长为120km的某段线路AB上有甲、乙两车,分别从南站A和北站B同时出发相向而行,到达B,A后立刻返回到出发站停止,速度均为40km/h,设甲车,乙车据南站A的路程分别为y甲,y乙(km)行驶时间为t(h).与t的函数图象,其中a=,b=,c=.(1)图2已画出y甲与时间t之间的函数关系式.(2)分别写出0≤t≤3及3<t≤6时,y乙(3)在图2中补画y与t之间的函数图象,并观察图象得出在整个行驶过程中乙两车相遇的次数.25.(10分)已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h ≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.26.(12分)如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.(1)线段BE与AF的位置关系是,=.(2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6﹣2,求旋转角a的度数.2017年河北省中考数学模拟试卷参考答案与试题解析一、选择题(本题共16个小题,共42分)1.(3分)(2017•邢台县模拟)计算(﹣3)×2的结果是()A.5 B.﹣5 C.6 D.﹣6【解答】解:∵(﹣3)×2=﹣6,∴(﹣3)×2的结果是﹣6.故选:D.2.(3分)(2017•邢台县模拟)计算(﹣a2)3+(﹣a3)2的结果是()A.﹣2a5B.0 C.2a5D.﹣2a6【解答】解:(﹣a2)3+(﹣a3)2=﹣a6+a6=0.故选:B.3.(3分)(2017•邢台县模拟)2017年1月,某公司新开发了一款智能手机,该手机的磁卡芯片直径为0.000001米,这个数据用科学记数法表示为()A.1×10﹣4米B.1×10﹣5米C.1×10﹣6米D.1×10﹣7米【解答】解:0.000001=1×10﹣6,故选:C.4.(3分)(2010•葫芦岛)如图,在菱形ABCD中,∠DAC=25°,则∠B=()A.120°B.130°C.140° D.150°【解答】解:∵在菱形ABCD中,∠DAC=25°,∴∠DAB=2∠DAC=50°,AD∥BC,∴∠DAB+∠B=180°,∴∠B=130°,故选B.5.(3分)(2017•邢台县模拟)如图,数轴上有A,B,C,D四个点,其中到原点距离相等的两个点是()A.点B与点D B.点A与点C C.点A与点D D.点B与点C【解答】解:由数轴可得:点A表示的数为﹣2,点D表示的数为2,根据数轴上表示数a的点与表示数﹣a的点到原点的距离相等,∴点A与点D到原点的距离相等,故选:C.6.(3分)(2017•邢台县模拟)若a2﹣b2=﹣,a+b=﹣,则a﹣b的值为()A.B.﹣ C.2 D.4【解答】解:∵a2﹣b2=(a+b)(a﹣b)=﹣,a+b=﹣,∴a﹣b=,故选A7.(3分)(2016•雅安)若式子+(k﹣1)0有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A.B.C.D.【解答】解:∵式子+(k﹣1)0有意义,∴,解得k>1,∴1﹣k<0,k﹣1>0,∴一次函数y=(1﹣k)x+k﹣1的图象过一、二、四象限.故选C.8.(3分)(2017•邢台县模拟)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外其它完全相同,小明通过多次摸球试验后发现其中摸到红色,黑色球的概率稳定在15%和40%,则口袋中白色球的个数很可能是()A.25 B.26 C.29 D.27【解答】解:∵摸到红色球、黑色球的频率稳定在15%和40%,∴摸到白球的频率为1﹣15%﹣40%=45%,故口袋中白色球的个数可能是60×45%=27个.故选D.9.(3分)(2017•邢台县模拟)小明买书需用34元钱,付款时恰好用了1元和5元的纸币共10张,设所用的1元纸币为x张,根据题意,下面所列方程正确的是()A.x+10(x﹣50)=34 B.x+5(10﹣x)=34 C.x+5(x﹣10)=34 D.5x+(10﹣x)=34【解答】解:设所用的1元纸币为x张,根据题意得:x+5(10﹣x)=34,故选B.10.(3分)(2017•邢台县模拟)小明拿来n个形状大小完全相同的正方体木块,整齐地摆放在桌上,其三视图如图所示,则n的值是()A.7 B.8 C.9 D.10【解答】解:综合三视图,第一行第1列有1个,第一行第2列有2个,第二行第1列有1个,第二行第2列有3个,一共有1+2+1+3=7(个).故选A.11.(2分)(2017•邢台县模拟)如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为()A.105°B.100°C.95°D.90°【解答】解:由题意可得:MN垂直平分BC,则DC=BD,故∠DCB=∠DBC=25°,则∠CDA=25°+25°=50°,∵CD=AC,∴∠A=∠CDA=50°,∴∠ACB=180°﹣50°﹣25°=105°.故选A.12.(2分)(2017•邢台县模拟)如图,已知矩形OABC面积为,它的对角线OB与双曲线相交于D且OB:OD=5:3,则k=()A.6 B.12 C.24 D.36【解答】解:由题意,设点D的坐标为(x D,y D),则点B的坐标为(x D,y D),矩形OABC的面积=|x D×y D|=,∵图象在第一象限,∴k=x D•y D=12.故选B.13.(2分)(2017•邢台县模拟)如图,AB是⊙O的直径,DC是弦,若∠COB=68°,则∠BDC的度数等于()A.30°B.32°C.34°D.45°【解答】解:∵∠COB=68°,∴∠BDC=∠COB=34°.故选C.14.(2分)(2017•邢台县模拟)如图,在四边形ABCD中,E、F分别是AB、AD 的中点,若EF=4,BC=10,CD=6,则tanC等于()A.B.C.D.【解答】解:连接BD,∵E、F分别是AB、AD的中点,∴EF∥BD,且EF=BD,∵EF=4,∴BD=8,∵BD=8,BC=10,CD=6,∴82+62=102,即BD2+CD2=BC2,∴△BDC是直角三角形,且∠BDC=90°,∴tanC===,故选:A.15.(2分)(2017•邢台县模拟)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt﹣2(a,b是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可得到最佳加工时间为()A.3.75分钟B.4.00分钟C.4.15分钟D.4.25分钟【解答】解:根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:,解得:,即p=﹣0.2t2+1.5t﹣2,当t=﹣=3.75时,p取得最大值,故选:A.16.(2分)(2017•邢台县模拟)如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于()A.2:5 B.14:25 C.16:25 D.4:21【解答】解:在Rt△BAC中,BC=6,AC=8,∴AB==10,∵把△ABC沿DE使A与B重合,∴AD=BD,EA=EB,∴BD=AB=5,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中,∵BE2=EC2+BC2,即x2=(8﹣x)2+62,∴x=,∴EC=8﹣x=8﹣=,=BC•CE=×6×=,∴S△BCE在Rt△BED中,∵BE2=ED2+BD2,∴ED==,∴S△BDE=BD•DE=×5×=,∴S△BCE :S△BDE=:=14:25.故选B.二、填空题(本大题共3小题,每小题3分,共9分)17.(3分)(2017•邢台县模拟)若分式的值为0,则x的值为4.【解答】解:∵分式的值为0,∴3x﹣12=0,解得:x=4.故答案为:4.18.(3分)(2017•邢台县模拟)若x是整数,且满足不等式组,则x= 3.【解答】解:,解①得x>2,解②得x<,所以不等式组的解为2<x<,所以整数x的值为3.故答案为3.19.(3分)(2017•邢台县模拟)如图,直线l:y=x,点A1坐标为(0,1),过点A1作y轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交y 轴于点A2,再过点A2作y轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交y轴于点A3,…,照此做法进行下去,点A2017的坐标为(0,22016).【解答】解:由A1坐标为(0,1),可知OA1=1,把y=1代入直线y=x中,得x=,即A1B1=,tan∠B1OA1==,所以,∠B1OA1=60°,则OA2=OB1=OA1÷cos60°=2OA1=2,OA3=2OA2=22,OA4=2OA3=23,故点A n(0,2n﹣1).因此A2017的坐标为(0,22016)故答案为:0,22016.三、解答题(本大题共7小题,共69分20.(9分)(2017•邢台县模拟)老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一部分多项式,形式如下:+(a﹣3b)2=2a2+5b2(1)求所捂的多项式;(2)当a=﹣2,b=时,求所捂的多项式的值.【解答】解:(1)原式=(2a2+5b2)﹣(a﹣3b)2=2a2+5b2﹣a2+6ab﹣9b2=a2+6ab ﹣4b2;(2)当a=﹣2,b=时,原式=4﹣12﹣20=﹣16﹣12.21.(9分)(2017•邢台县模拟)2014年,河北省委宣传部主办“河北节约之星”活动,表彰节水先进典型,省委宣传部号召全社会以节水先进典型为榜样,牢固树立节约用水理念,争做节俭美德的传承者,节约用水的践行者.小鹏想了解某小区住户月均用水情况,随机调查了该小区部分住户,并将调查数据绘制成如图所示的频数分布直方图(不完整)和如下的频数分布表.(1)求a,b,c的值,并将如图所示的频数分布直方图补充完整;(2)求月均用水量超过12吨的住户占所调查总住户的百分比;(3)若该小区有1000住户,根据所调查的数据,该小区月均用水量没有超过8吨的住户有多少?【解答】解:(1)根据题意得:=100(吨),则a==0.12;b=100﹣12﹣32﹣20﹣8﹣4=24;c==0.24;补图如下:(2)月均用水量超过12吨的住户占所调查总住户的百分比是:0.2+0.08+0.04=0.32=32%;(3)根据题意得:1000×(0.12+0.32)=440(户),答:该小区月均用水量没有超过8吨的住户有440户.22.(9分)(2016•达州)如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.【解答】解:(1)如图所示:(2)四边形ABEF是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,由(1)得:AF=AB,∴BE=AF,又∵BE∥AF,∴四边形ABEF是平行四边形,∵AF=AB,∴四边形ABEF是菱形.23.(9分)(2016•福州)如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∵===,∴=+=,∴的长=××4π=×4π=π.24.(11分)(2017•邢台县模拟)如图,长为120km 的某段线路AB 上有甲、乙两车,分别从南站A 和北站B 同时出发相向而行,到达B ,A 后立刻返回到出发站停止,速度均为40km/h ,设甲车,乙车据南站A 的路程分别为y 甲,y 乙(km )行驶时间为t (h ).(1)图2已画出y 甲与t 的函数图象,其中a= 120 ,b= 3 ,c= 6 . (2)分别写出0≤t ≤3及3<t ≤6时,y 乙与时间t 之间的函数关系式. (3)在图2中补画y 乙与t 之间的函数图象,并观察图象得出在整个行驶过程中两车相遇的次数.【解答】解:(1)由题意可和函数图象可得, a=120,b=120÷40=3,c=2×3=6, 故答案为:120,3,6;(2)当0≤t ≤3时,设y 乙与时间t 之间的函数关系式为:y 乙=kt +b ,,得,即当0≤t ≤3时,y 乙与时间t 之间的函数关系式为:y 乙=﹣40t +120; 当3<t ≤6时,设y 乙与时间t 之间的函数关系式为:y 乙=mt +n ,,得,即当3<t ≤6时,y 乙与时间t 之间的函数关系式为:y 乙=40t ﹣120; (3)y 乙与t 之间的函数图象如右图2所示, 由图象可知,整个行驶过程中两车相遇次数为2.25.(10分)(2016•福州)已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(x﹣1)2+2,∵抛物线经过原点,∴0=a(0﹣1)2+2,∴a=﹣2,∴抛物线解析式为y=﹣2x2+4x.(2)∵抛物线经过原点,∴设抛物线为y=ax2+bx,∵h=﹣,∴b=﹣2ah,∴y=ax2﹣2ahx,∵顶点A(h,k),∴k=ah2﹣2ah2=﹣ah2,抛物线y=tx2也经过A(h,k),∴k=th2,∴th2=ah2﹣2ah2,∴t=﹣a,(3)∵点A在抛物线y=x2﹣x上,∴k=h2﹣h,又k=ah2﹣2ah2,∴h=,∵﹣2≤h<1,∴﹣2≤<1,①当1+a>0时,即a>﹣1时,,解得a>0,②当1+a<0时,即a<﹣1时,解得a≤﹣,综上所述,a的取值范围a>0或a≤﹣.26.(12分)(2017•邢台县模拟)如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.(1)线段BE与AF的位置关系是互相垂直,=.(2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6﹣2,求旋转角a的度数.【解答】解:(1)如图1,线段BE与AF的位置关系是互相垂直;∵∠ACB=90°,BC=2,∠A=30°,∴AC=2,∵点E,F分别是线段BC,AC的中点,∴=;故答案为:互相垂直;;(2)(1)中结论仍然成立.证明:如图2,∵点E,F分别是线段BC,AC的中点,∴EC=BC,FC=AC,∴==,∵∠BCE=∠ACF=α,∴△BEC∽△AFC,∴===,∴∠1=∠2,延长BE交AC于点O,交AF于点M∵∠BOC=∠AOM,∠1=∠2∴∠BCO=∠AMO=90°∴BE⊥AF;(3)如图3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°过点D作DH⊥BC于H∴DB=4﹣(6﹣2)=2﹣2,∴BH=﹣1,DH=3﹣,又∵CH=2﹣(﹣1)=3﹣,∴CH=DH,∴∠HCD=45°,∴∠DCA=45°,∴α=180°﹣45°=135°.参与本试卷答题和审题的老师有:放飞梦想;gbl210;sd2011;sks;sdwdmahongye;CJX;wd1899;HLing;sjzx;王学峰;dbz1018;gsls;lantin;家有儿女;知足长乐;zgm666;弯弯的小河(排名不分先后)huwen2017年4月20日。
初中数学 河北省17年中考模拟数学模拟考试卷 含答案
xx 学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx 题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:﹣的倒数的绝对值是()A.﹣2017 B. C.2017 D.试题2:下列计算中,结果是a6的是()A.a2+a4 B.a2•a3 C.a12÷a2 D.(a2)3试题3:如图是一个正方体纸盒的外表面展开图,则这个正方体是()A. B. C. D.试题4:世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×108评卷人得分已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A. B.C. D.试题6:在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A.甲组 B.乙组 C.丙组 D.丁组试题7:如图,从①∠1=∠2 ②∠C=∠D ③∠A=∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.3试题8:如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.π B.π C. D.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x﹣1)(x﹣2)=18 D.x2+3x+16=0试题10:足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在()A.点C B.点D或点EC.线段DE(异于端点)上一点 D.线段CD(异于端点)上一点试题11:如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm试题12:已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A.1 B.2 C.3 D.4试题13:.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+10试题14:对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.4试题15:已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0) B.(1,) C.(,) D.(,)试题16:如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A. B. C.D.试题17:|﹣0.3|的相反数等于.试题18:把多项式a2﹣4a分解因式为.试题19:有一列式子,按一定规律排列成﹣3a2,9a5,﹣27a10,81a17,﹣243a26,….(1)当a=1时,其中三个相邻数的和是63,则位于这三个数中间的数是;(2)上列式子中第n个式子为(n为正整数).试题20:.一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x>9且x<26,单位:km)第一次第二次第三次第四次x x﹣5 2(9﹣x)(1)说出这辆出租车每次行驶的方向.(2)求经过连续4次行驶后,这辆出租车所在的位置.(3)这辆出租车一共行驶了多少路程?试题21:倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?试题22:在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.试题23:甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.试题24:如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°(1)求证:BD是该外接圆的直径;(2)连结CD,求证:AC=BC+CD;(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.试题25:如图,在平面直角坐标系中,抛物线y=mx2+4mx﹣5m(m<0)与x轴交于点A、B(点A在点B的左侧),该抛物线的对称轴与直线y=x相交于点E,与x轴相交于点D,点P在直线y=x上(不与原点重合),连接PD,过点P作PF⊥PD交y轴于点F,连接DF.(1)如图①所示,若抛物线顶点的纵坐标为6,求抛物线的解析式;(2)求A、B两点的坐标;(3)如图②所示,小红在探究点P的位置发现:当点P与点E重合时,∠PDF的大小为定值,进而猜想:对于直线y= x上任意一点P(不与原点重合),∠PDF的大小为定值.请你判断该猜想是否正确,并说明理由.试题26:综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC 和DC′交于点E,则四边形ACEC′的形状是;(2)创新小组将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的△AC′D,连接DB,C′C,得到四边形BCC′D,发现它是矩形,请你证明这个结论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:将△AC′D沿着射线DB方向平移acm,得到△A′C′D′,连接BD′,CC′,使四边形BCC′D恰好为正方形,求a的值,请你解答此问题;(4)请你参照以上操作,将图1中的△ACD在同一平面内进行一次平移,得到△A′C′D,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.试题1答案:C【考点】倒数;绝对值.【分析】根据倒数的定义可先求得其倒数,再计算其绝对值即可.【解答】解:∵﹣的倒数为﹣2017,∴﹣的倒数的绝对值为|﹣2017|=2017,故选C.试题2答案:D【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】A:根据合并同类项的方法判断即可.B:根据同底数幂的乘法法则计算即可.C:根据同底数幂的除法法则计算即可.D:幂的乘方的计算法则:(a m)n=a mn(m,n是正整数),据此判断即可.【解答】解:∵a2+a4≠a6,∴选项A的结果不是a6;∵a2•a3=a5,∴选项B的结果不是a6;∵a12÷a2=a10,∴选项C的结果不是a6;∵(a2)3=a6,∴选项D的结果是a6.故选:D.试题3答案:C【考点】几何体的展开图.【分析】根据几何体的展开图先判断出实心圆点与空心圆点的关系,进而可得出结论.【解答】解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选C.试题4答案:B【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000000076用科学记数法表示为7.6×10﹣8,故选:B.试题5答案:C【考点】关于原点对称的点的坐标;在数轴上表示不等式的解集.【分析】根据关于原点对称点的性质得出对应点坐标,再利用第四象限点的坐标性质得出答案.【解答】解:∵点P(a+1,﹣+1)关于原点的对称点坐标为:(﹣a﹣1,﹣1),该点在第四象限,∴,解得:a<﹣1,则a的取值范围在数轴上表示为:.故选:C.试题6答案:D【考点】模拟实验.【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.【解答】解:根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.故选:D.试题7答案:D【考点】命题与定理.【分析】直接利用平行线的判定与性质分别判断得出各结论的正确性.【解答】解:如图所示:当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当②∠C=∠D,故∠4=∠C,则DF∥AC,可得:∠A=∠F,即⇒③;当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当③∠A=∠F,故DF∥AC,则∠4=∠C,故可得:∠C=∠D,即⇒②;当③∠A=∠F,故DF∥AC,则∠4=∠C,当②∠C=∠D,则∠4=∠D,故DB∥EC,则∠2=∠3,可得:∠1=∠2,即⇒①,故正确的有3个.故选:D.试题8答案:C【考点】弧长的计算;切线的性质.【分析】由PA与PB为圆的两条切线,利用切线的性质得到两个角为直角,再利用四边形内角和定理求出∠AOB的度数,利用弧长公式求出的长即可.【解答】解:∵PA、PB是⊙O的切线,∴∠OBP=∠OAP=90°,在四边形APBO中,∠P=60°,∴∠AOB=120°,∵OA=2,∴的长l==π,故选C试题9答案:C【考点】由实际问题抽象出一元二次方程.【分析】可设原正方形的边长为xm,则剩余的空地长为(x﹣1)m,宽为(x﹣2)m.根据长方形的面积公式方程可列出.2·1·c·n·j·y【解答】解:设原正方形的边长为xm,依题意有(x﹣1)(x﹣2)=18,故选C.试题10答案:C【考点】角的大小比较.【分析】连接BC,AC,BD,AD,AE,BE,再比较∠ACB,∠ADB,∠AEB的大小即可.【解答】解:连接BC,AC,BD,AD,AE,BE,已知A,B,D,E四点共圆,同弧所对的圆周角相等,因而∠ADB=∠AEB,然后圆同弧对应的“圆内角“大于圆周角,“圆外角“小于圆周角,因而射门点在DE上时角最大,射门点在D点右上方或点E左下方时角度则会更小.故选C.试题11答案:D【考点】圆锥的计算.【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.【解答】解:过O作OE⊥AB于E,∵OA=OB=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.故选D.试题12答案:B【考点】二次函数图象与系数的关系.【分析】直接利用抛物线与x轴交点个数以及抛物线与方程之间的关系、函数图象与各系数之间关系分析得出答案.【解答】解:如图所示:图象与x轴有两个交点,则b2﹣4ac>0,故①错误;∵图象开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号,∴b<0,∵图象与y轴交于x轴下方,∴c<0,∴abc>0,故②正确;当x=﹣1时,a﹣b+c>0,故此选项错误;∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:﹣2,故二次函数y=ax2+bx+c向上平移小于2个单位,则平移后解析式y=ax2+bx+c﹣m与x轴有两个交点,此时关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,故﹣m<2,解得:m>﹣2,故④正确.故选:B.试题13答案:C【考点】待定系数法求一次函数解析式;矩形的性质.【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据题意可得到x、y之间的关系式,可得出答案.【解答】解:设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=﹣x+5,故选C.试题14答案:B【考点】分段函数.【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选B试题15答案:D【考点】菱形的性质;坐标与图形性质;轴对称﹣最短路线问题.【分析】如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.首先说明点P就是所求的点,再求出点B坐标,求出直线OB、DA,列方程组即可解决问题.【解答】解:如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.∵四边形OABC是菱形,∴AC⊥OB,GC=AG,OG=BG=2,A、C关于直线OB对称,∴PC+PD=PA+PD=DA,∴此时PC+PD最短,在RT△AOG中,AG===,∴AC=2,∵OA•BK=•AC•OB,∴BK=4,AK==3,∴点B坐标(8,4),∴直线OB解析式为y=x,直线AD解析式为y=﹣x+1,由解得,∴点P坐标(,).故选D.试题16答案:A【考点】动点问题的函数图象.【分析】根据直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形可知,当0≤t≤时,以及当<t≤2时,当2<t≤3时,求出函数关系式,即可得出答案.【解答】解:∵直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s,由勾股定理得,=∴s关于t的函数大致图象应为:三角形进入正方形以前s增大,当0≤t≤时,s=×1×1+2×2﹣=﹣t2;当<t≤2时,s=×12=;当2<t≤3时,s=﹣(3﹣t)2=t2﹣3t,∴A符合要求,故选A.试题17答案:﹣0.3 .【考点】绝对值;相反数.【分析】根据绝对值定义得出|﹣0.3|=0.3,再根据相反数的定义:只有符号相反的两个数互为相反数作答.【解答】解:∵|﹣0.3|=0.3,0.3的相反数是﹣0.3,∴|﹣0.3|的相反数等于﹣0.3.故答案为:﹣0.3.试题18答案:a(a﹣4).【考点】因式分解﹣提公因式法.【分析】原式提取a,即可得到结果.【解答】解:原式=a(a﹣4).故答案为:a(a﹣4).试题19答案:(1)﹣27 ;(2)【考点】单项式;规律型:数字的变化类.【分析】(1)将a=1代入已知数列,可以发现该数列的通式为:(﹣3)n.然后根据限制性条件“三个相邻数的和是63”列出方程(﹣3)n﹣1+(﹣3)n+(﹣3)n+1=63.通过解方程即可求得(﹣3)n的值;(2)利用归纳法来求已知数列的通式.【解答】解:(1)当a=1时,则﹣3=(﹣3)1,9=(﹣3)2,﹣27=(﹣3)3,81=(﹣3)4,﹣243=(﹣3)5,….则(﹣3)n﹣1+(﹣3)n+(﹣3)n+1=63,即﹣(﹣3)n+(﹣3)n﹣3(﹣3)n=63,所以﹣(﹣3)n=63,解得,(﹣3)n=﹣27,故答案是:﹣27;(2)∵第一个式子:﹣3a2=,第二个式子:9a5=,第三个式子:﹣27a10=,第四个式子:81a17=,….则第n个式子为:(n为正整数).故答案是:.试题20答案:【考点】整式的加减;绝对值.【分析】(1)根据数的符号说明即可;(2)把路程相加,求出结果,看结果的符号即可判断出答案;(3)求出每个数的绝对值,相加求出即可.【解答】(1)解:第一次是向东,第二次是向西,第三次是向东,第四次是向西.(2)解:x+(﹣x)+(x﹣5)+2(9﹣x)=13﹣x,∵x>9且x<26,∴13﹣x>0,∴经过连续4次行驶后,这辆出租车所在的位置是向东(13﹣x)km.(3)解:|x|+|﹣x|+|x﹣5|+|2(9﹣x)|=x﹣23,答:这辆出租车一共行驶了(x﹣23)km的路程.试题21答案:【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设购买A种型号健身器材x套,B型器材健身器材y套,根据:“A,B两种型号的健身器材共50套、共支出20000元”列方程组求解可得;(2)设购买A型号健身器材m套,根据:A型器材总费用+B型器材总费用≤18000,列不等式求解可得.【解答】解:(1)设购买A种型号健身器材x套,B型器材健身器材y套,根据题意,得:,解得:,答:购买A种型号健身器材20套,B型器材健身器材30套.(2)设购买A型号健身器材m套,根据题意,得:310m+460(50﹣m)≤18000,解得:m≥33,∵m为整数,∴m的最小值为34,答:A种型号健身器材至少要购买34套.试题22答案:【考点】众数;扇形统计图;条形统计图;加权平均数;中位数.【分析】(Ⅰ)用整体1减去其它所占的百分比,即可求出a的值;(Ⅱ)根据平均数、众数和中位数的定义分别进行解答即可;(Ⅲ)根据中位数的意义可直接判断出能否进入复赛.【解答】解:(Ⅰ)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图得:==1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(Ⅲ)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛.试题23答案:【考点】分式方程的应用;函数的图象.【分析】(1)根据函数图象可知甲2小时行驶的路程是km,从而可以求得甲的速度;(2)根据第(1)问中的甲的速度和甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,可以列出分式方程,从而可以求得a的值.【解答】解:(1)由图象可得,甲车的速度为:=80km/h,即甲车的速度是80km/h;(2)相遇时间为:=2h,由题意可得,=,解得,a=75,经检验,a=75是原分式方程的解,即a的值是75.试题24答案:【考点】圆的综合题.【分析】(1)要证明BD是该外接圆的直径,只需要证明∠BAD是直角即可,又因为∠ABD=45°,所以需要证明∠ADB=45°;(2)在CD延长线上截取DE=BC,连接EA,只需要证明△EAF是等腰直角三角形即可得出结论;(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于点F,证明△AMF是等腰三角形后,可得出AM=AF,MF=AM,然后再证明△ABF≌△ADM可得出BF=DM,最后根据勾股定理即可得出DM2,AM2,BM2三者之间的数量关系.【解答】解:(1)∵=,∴∠ACB=∠ADB=45°,∵∠ABD=45°,∴∠BAD=90°,∴BD是△ABD外接圆的直径;(2)在CD的延长线上截取DE=BC,连接EA,∵∠ABD=∠ADB,∴AB=AD,∵∠ADE+∠ADC=180°,∠ABC+∠ADC=180°,∴∠ABC=∠ADE,在△ABC与△ADE中,,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE=90°,∵=∴∠ACD=∠ABD=45°,∴△CAE是等腰直角三角形,∴AC=CE,∴AC=CD+DE=CD+BC;(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于点F,连接BF,由对称性可知:∠AMB=∠ACB=45°,∴∠FMA=45°,∴△AMF是等腰直角三角形,∴AM=AF,MF=AM,∵∠MAF+∠MAB=∠BAD+∠MAB,∴∠FAB=∠MAD,在△ABF与△ADM中,,∴△ABF≌△ADM(SAS),∴BF=DM,在Rt△BMF中,∵BM2+MF2=BF2,∴BM2+2AM2=DM2.试题25答案:【考点】二次函数综合题.【分析】(1)先提取公式因式将原式变形为y=m(x2+4x﹣5),然后令y=0可求得函数图象与x轴的交点坐标,从而可求得点A、B的坐标,然后依据抛物线的对称性可得到抛物线的对称轴为x=﹣2,故此可知当x=﹣2时,y=6,于是可求得m的值;(2)由(1)的可知点A、B的坐标;(3)先由一次函数的解析式得到∠PBF的度数,然后再由PD⊥PF,FO⊥OD,证明点O、D、P、F共圆,最后依据圆周角定理可证明∠PDF=60°.【解答】解:(1)∵y=mx2+4mx﹣5m,∴y=m(x2+4x﹣5)=m(x+5)(x﹣1).令y=0得:m(x+5)(x﹣1)=0,∵m≠0,∴x=﹣5或x=1.∴A(﹣5,0)、B(1,0).∴抛物线的对称轴为x=﹣2.∵抛物线的顶点坐标为为6,∴﹣9m=6.∴m=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)由(1)可知:A(﹣5,0)、B(1,0).(3)如图所示:∵OP的解析式为y=x,∴∠AOP=30°.∴∠POF=60°∵PD⊥PF,FO⊥OD,∴∠DPF=∠FOD=90°.∴∠DPF+∠FOD=180°.∴点O、D、P、F共圆.∴∠PDF=∠POF.∴∠PDF=60°.试题26答案:【考点】几何变换综合题.【分析】(1)利用旋转的性质结合菱形的性质得出:∠1=∠2,∠2=∠3,∠1=∠4,AC=AC′,进而利用菱形的判定方法得出答案;(2)利用旋转的性质结合菱形的性质得出,四边形BCC′D是平行四边形,进而得出四边形BCC′D是矩形;(3)首先求出CC′的长,分别利用①点C″在边C′C上,②点C″在C′C的延长线上,求出a的值;(4)利用平移的性质以及平行四边形的判定方法得出答案.【解答】解:(1)如图2,由题意可得:∠1=∠2,∠2=∠3,∠1=∠4,AC=AC′,故AC′∥EC,AC∥C′E,则四边形ACEC′是平行四边形,故四边形ACEC′的形状是菱形;故答案为:菱形;(2)证明:如图3,作AE⊥CC′于点E,由旋转得:AC′=AC,则∠CAE=∠C′AE=α=∠BAC,∵四边形ABCD是菱形,∴BA=BC,∴∠BCA=∠BAC,∴∠CAE=∠BCA,∴AE∥BC,同理可得:AE∥DC′,∴BC∥DC′,则∠BCC′=90°,又∵BC=DC′,∴四边形BCC′D是平行四边形,∵∠BCC′=90°,∴四边形BCC′D是矩形;(3)如图3,过点B作BF⊥AC,垂足为F,∵BA=BC,∴CF=AF=AC=×10=5,在Rt△BCF中,BF===12,在△ACE和△CBF中,∵∠CAE=∠BCF,∠CEA=∠BFC=90°,∴△ACE∽△CBF,∴=,即=,解得:EC=,∵AC=AC′,AE⊥CC′,∴CC′=2CE=2×=,当四边形BCC′D′恰好为正方形时,分两种情况:①点C″在边C′C上,a=C′C﹣13=﹣13=,②点C″在C′C的延长线上,a=C′C+13=+13=,综上所述:a的值为:或;(4)答案不唯一,例:如图4,画出正确图形,平移及构图方法:将△ACD沿着射线CA方向平移,平移距离为AC的长度,得到△A′C′D′,连接A′B,D′C,结论:∵BC=A′D′,BC∥A′D′,∴四边形A′BCD′是平行四边形.。
河北石家庄市裕华区四十三中 2017年九年级数学中考模拟试卷(含答案)
2017年九年级数学中考模拟试卷一、选择题:1.-0.5的绝对值是()A.0.5B.-0.5C.2D.﹣22.下列计算中,正确的是()A.a+a11=a12B.5a﹣4a=aC.a6÷a5=1D.(a2)3=a53.下列图形中既是轴对称图形,又是中心对称图形的是()4.化简的结果是()A. B. C.x+1 D.x﹣15.某市乘出租车需付车费y(元)与行车里程x(千米)之间函数关系的图象如图所示,那么该市乘出租车超过3千米后,每千米的费用是()A.0.71元B.2.3元C.1.75元D.1.4元6.下列三个命题中,是真命题的有()①对角线相等的四边形是矩形;②三个角是直角的四边形是矩形;③有一个角是直角的平行四边形是矩形.A.3个 B.2个 C.1个 D.0个7.在函数y=中,自变量x的取值范围是()A.x≤1且x≠﹣2B.x≤1C.x<1且x≠﹣2D.x>1且x≠2.8.如图所示的几何体是由5个大小相同的小正方体紧密摆放而成的,其三视图中面积最小的是()A.主视图B.左视图C.俯视图D.左视图和俯视图9.如图,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中错误的是( )A.△AGC中,CF是AG边上的高B.△GBC中,CF是BG边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高10.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.211.已知a,b,c三个数在数轴上对应点的位置如图所示,下列几个判断:①a<c<b;②-a<b;③a+b>0; ④c-a<0中,错误的个数是()个.A.1B.2C.3D.412.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. +=2B.﹣=2C. +=D.﹣=13.在下列四组数中,不是勾股数的一组数是( )A.a=15,b=8,c=17B.a=9,b=12,c=15C.a=7,b=24,c=25D.a=3,b=5,c=714.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x=-2,x2=4,则m+n的值是( )1A.-10B.10C.-6D.215.如图,在平行四边形ABCD中,点E在边DC上,DE∶CE=3∶1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为( )A.3:4 B.9:16 C.9:1 D.3:116.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a,b,c]称为“抛物线三角形系数”,若抛物线三角形系数为[﹣1,b,0]的“抛物线三角形”是等腰直角三角形,则b的值()A.±2B.±3C.2D.3二、填空题:17.一个数的立方根是4,那么这个数的平方根是.18.因式分解a2b﹣b的正确结果是19.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)三、计算题:20.计算:21.计算:四、解答题:22.已知:如图AC,BD相交于点O,∠A=∠D,AB=CD,求证:△AOB≌△DOC.23.已知,如图△ABC和△ADE均为等边三角形,BD、CE交于点F.(1)求证:BD=CE;(2)求锐角∠BFC的度数.24.可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.25.某移动通讯公司开设两种业务.“全球通”:先缴50元月租费,然后每通话1分钟,再付0.4元.“神州行”:不缴月租费,每通话1分钟,付费0.6元(通话均指市话)。
河北省中考数学结课小模拟试卷(A卷,含解析)-人教版初中九年级全册数学试题
12.将一X矩形纸片ABCD(如图)那样折起,使顶点C落在C'处,测量得AB=4,DE=8.则sin∠C'ED为( )
A.2B. C. D.
13.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( )
A. = ﹣5B. = +5C. =8x﹣5D. =8x+5
当x=3时,y=2,
∴当1<x<3时,2<y<6.
故选C.
6.在2016年某某市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是( )
A.平均数为160B.中位数为158
【考点】方差;算术平均数;中位数;众数.
【分析】分别利用平均数、中位数、众数及方差的定义求解后即可判断正误.
A.平均数为160B.中位数为158
7.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为( )
A.1:3B.1:4C.1:5D.1:9
8.如图,AB是⊙O的弦,已知∠OAB=30°,AB=4,则⊙O的半径为( )
A.4B.2C. D.
【解答】解:方程x2+1= 的解可看成抛物线y=x2+1与双曲线y= 的交点横坐标.
画出两函数图象,如图所示.
∵抛物线y=x2+1开口向上,且最低点为(0,1),
∴当x>0时,y=x2+1>0,
∴双曲线y= 在第一象限有图象,
∴k>0.
故选C.
12.将一X矩形纸片ABCD(如图)那样折起,使顶点C落在C'处,测量得AB=4,DE=8.则sin∠C'ED为( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年河北省中考数学一模试卷一、选择题:本大题共16小题,1-10小题,每小题3分,11-16小题,每题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给图形是中心对称图形但不是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.﹣2+|﹣2|=0 B.20÷3=0 C.42=8 D.2÷3×=23.有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.4.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.45.如图,DE是△ABC的中位线,若BC=8,则DE的长为()A.2 B.4 C.6 D.86.2016年4月6日22:20某市某个观察站测得:空气中PM2.5含量为每立方米23μg,1g=1000000μg,则将23μg用科学记数法表示为()A.2.3×10﹣7g B.23×10﹣6g C.2.3×10﹣5g D.2.3×10﹣4g 7.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.中位数B.众数C.平均数D.方差8.如果代数式﹣2a+3b+8的值为18,那么代数式9b﹣6a+2的值等于()A.28 B.﹣28 C.32 D.﹣329.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A. B.C.D.10.已知a=,b=,则=()A.2a B.ab C.a2b D.ab211.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′及CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.11 B.16 C.19 D.2212.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB 是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径13.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y及x的函数关系的图象大致是()A.B.C.D.14.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=()A.12 B.8 C.4 D.315.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.16.如图,在平面直角坐标系中,直线y=﹣3x+3及x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4二、填空题:本大题共3小题,共10分,17-18题各3分,19小题有2个空,每空2分.17.函数y=的自变量x的取值范围是.18.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边及两直线相交所形成的锐角分别为α、β,则α+β=.19.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB 上中线CD,得到第1个三角形ACD;DE⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于,第n个三角形的面积等于.三、解答题:本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤.20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数及1的和的平方,减去这个数及1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.21.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.22.如图,在平面直角坐标系中,一次函数y=kx+b及反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.23.阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.24.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.25.某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.26.如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)及x 轴相交于点B、C,及y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F 为顶点的三角形及△BCE相似?若存在,求m的值;若不存在,请说明理由.2017年河北省中考数学一模试卷参考答案及试题解析一、选择题:本大题共16小题,1-10小题,每小题3分,11-16小题,每题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给图形是中心对称图形但不是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够及原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解:A、此图形不是中心对称图形,不是轴对称图形,故A 选项错误;B、此图形是中心对称图形,也是轴对称图形,故B选项错误;C、此图形是中心对称图形,不是轴对称图形,故C选项正确;D、此图形不是中心对称图形,是轴对称图形,故D选项错误.故选:C.2.下列计算正确的是()A.﹣2+|﹣2|=0 B.20÷3=0 C.42=8 D.2÷3×=2【考点】零指数幂.【分析】根据绝对值的规律,及实数的四则运算、乘法运算.【解答】解:A、﹣2+|﹣2|=﹣2+2=0,故A正确;B、20÷3=,故B错误;C、42=16,故C错误;D、2÷3×=,故D错误.故选A.3.有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看,茶叶盒可以看作是一个圆柱体,圆柱从正面看是长方形.故选:D.4.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.4【考点】点的坐标.【分析】直接利用x轴上点的纵坐标为0,进而得出答案.【解答】解:∵点P(x+3,x﹣4)在x轴上,∴x﹣4=0,解得:x=4,故选:D.5.如图,DE是△ABC的中位线,若BC=8,则DE的长为()A.2 B.4 C.6 D.8【考点】三角形中位线定理.【分析】已知DE是△ABC的中位线,BC=8,根据中位线定理即可求得DE的长.【解答】解:∵DE是△ABC的中位线,BC=8,∴DE=BC=4,故选B.6.2016年4月6日22:20某市某个观察站测得:空气中PM2.5含量为每立方米23μg,1g=1000000μg,则将23μg用科学记数法表示为()A.2.3×10﹣7g B.23×10﹣6g C.2.3×10﹣5g D.2.3×10﹣4g【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,及较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:23μg=23÷1000000g=0.000 023g=2.3×10﹣5g.故选:C.7.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.中位数B.众数C.平均数D.方差【考点】统计量的选择.【分析】由于比赛取前3名进入决赛,共有5名选手参加,故应根据中位数的意义分析.【解答】解:因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入决赛了,故选:A.8.如果代数式﹣2a+3b+8的值为18,那么代数式9b﹣6a+2的值等于()A.28 B.﹣28 C.32 D.﹣32【考点】代数式求值.【分析】先求得代数式﹣2a+3b的值,然后将所求代数式变形为3(﹣2a+3b)+2,最后将﹣2a+3b的值整体代入求解即可.【解答】解:∵﹣2a+3b+8=18,∴﹣2a+3b=10.原式=3(﹣2a+3b)+2=3×10+2=32.故选:C.9.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A. B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得两个等量关系:①爸爸的身高+儿子的身高=3.2米;②父亲在水中的身高(1﹣)x=儿子在水中的身高(1﹣)y,根据等量关系可列出方程组.【解答】解:设爸爸的身高为x米,儿子的身高为y米,由题意得:,故选:D.10.已知a=,b=,则=()A.2a B.ab C.a2b D.ab2【考点】算术平方根.【分析】将18写成2×3×3,然后根据算术平方根的定义解答即可.【解答】解: ==××=a•b•b=ab2.故选D.11.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′及CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.11 B.16 C.19 D.22【考点】矩形的性质;翻折变换(折叠问题).【分析】首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.【解答】解:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°∵∠B′EC=∠DEA,在△AED和△CEB′中,,∴△AED≌△CEB′(AAS);∴EA=EC,∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,=AD+DE+EC+EA+EB′+B′C,=AD+DC+AB′+B′C,=3+8+8+3,=22,故选D.12.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB 是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径【考点】作图—复杂作图;勾股定理的逆定理;圆周角定理.【分析】由作图痕迹可以看出AB是直径,∠ACB是直径所对的圆周角,即可作出判断.【解答】解:由作图痕迹可以看出O为AB的中点,以O为圆心,AB 为直径作圆,然后以B为圆心BC=a为半径画弧及圆O交于一点C,故∠ACB是直径所对的圆周角,所以这种作法中判断∠ACB是直角的依据是:直径所对的圆周角是直角.故选:B.13.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y及x的函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y及x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C 的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选A.14.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=()A.12 B.8 C.4 D.3【考点】等边三角形的性质.【分析】过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.【解答】解:延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得,四边形PGBD,EPHC是平行四边形,∴PG=BD,PE=HC,又△ABC是等边三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,∴PF=PG=BD,PD=DH,又△ABC的周长为12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故选:C.15.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.【考点】平行线分线段成比例.【分析】由平行线分线段成比例定理得出=,再由角平分线性质即可得出结论.【解答】解:∵DE∥AB,∴=,∵AD为△ABC的角平分线,∴=;故选:B.16.如图,在平面直角坐标系中,直线y=﹣3x+3及x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4【考点】反比例函数综合题.【分析】作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F,易证△OAB≌△FDA≌△BEC,求得A、B的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a的值即可求解.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,∵在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4).代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把y=4代入y=得:x=1.即G的坐标是(1,4),∴CG=2.故选:B.二、填空题:本大题共3小题,共10分,17-18题各3分,19小题有2个空,每空2分.17.函数y=的自变量x的取值范围是x≤0.5且x≠﹣1 .【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,让被开方数大于等于0,分母不等于0,就可以求解.【解答】解:由题意得:1﹣2x≥0,1+x≠0,解得:x≤0.5且x≠﹣1.故答案为:x≤0.5且x≠﹣1.18.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边及两直线相交所形成的锐角分别为α、β,则α+β=90°.【考点】平行线的性质.【分析】根据平行线的性质即可得到结论.【解答】解:过C作CE∥m,∵m∥n,∴CE∥n,∴∠1=∠α,∠2=∠β,∵∠1+∠2=90°,∴∠α+∠β=90°,故答案为:90°.19.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于a2,第n个三角形的面积等于.【考点】相似三角形的判定及性质.【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,然后判定出△ACD是等边三角形,同理可得被分成的第二个、第三个…第n个三角形都是等边三角形,再根据后一个等边三角形的边长是前一个等边三角形的边长的一半求出第n个三角形的边长,然后根据等边三角形的面积公式求解即可.【解答】解:∵∠ACB=90°,CD是斜边AB上的中线,∴CD=AD,∵∠A=60°,∴△ACD是等边三角形,同理可得,被分成的第二个、第三个…第n个三角形都是等边三角形,∵CD是AB的中线,EF是DB的中线,…,∴第一个等边三角形的边长CD=DB=AB=AC=a,∴第一个三角形的面积为a2,第二个等边三角形的边长EF=DB=a,…第n个等边三角形的边长为a,所以,第n个三角形的面积=×a×(•a)=.故答案为a2,.三、解答题:本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤.20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数及1的和的平方,减去这个数及1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.【考点】整式的混合运算.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)根据题意列出关系式,化简得到结果,验证即可.【解答】解:(1)[(9+1)2﹣(9﹣1)2]×25÷9=18×2×25÷9=100;(2)[(a+1)2﹣(a﹣1)2]×25÷a=4a×25÷a=100.21.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.【考点】全等三角形的判定及性质.【分析】根据AB∥CD,得到∠B=∠C,推出△ABE≌△CDF,根据全等三角形的性质即可得到结论.【解答】解:添加条件为:∠A=∠D,理由:∵AB∥CD,∴∠B=∠C,在△ABE及△CDF中,,∴△ABE≌△CDF,∴AE=DF.22.如图,在平面直角坐标系中,一次函数y=kx+b及反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.【考点】反比例函数及一次函数的交点问题.【分析】(1)利用待定系数法即可求得函数的解析式;(2)首先求得AB及x轴的交点,设交点是C,然后根据S△ABP=S△ACP+S△BCP即可列方程求得P的横坐标.【解答】解:(1)∵反比例函数y=(m≠0)的图象过点A(3,1),∴3=∴m=3.∴反比例函数的表达式为y=.∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2).∴,解得:,∴一次函数的表达式为y=x﹣2;(2)令y=0,∴x﹣2=0,x=2,∴一次函数y=x﹣2的图象及x轴的交点C的坐标为(2,0).∵S△ABP=3,PC×1+PC×2=3.∴PC=2,∴点P的坐标为(0,0)、(4,0).23.阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.【考点】列表法及树状图法;根的判别式.【分析】(1)用列表法易得(a,b)所有情况;(2)看使关于x的一元二次方程x2﹣ax+2b=0有实数根的情况占总情况的多少即可.【解答】解:(1)(a,b)对应的表格为:ab1 2 31(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)4(4,1)(4,2)(4,3)(2)∵方程x2﹣ax+2b=0有实数根,∴△=a2﹣8b≥0.∴使a2﹣8b≥0的(a,b)有(3,1),(4,1),(4,2),∴.24.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.【考点】切线的判定.【分析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.【解答】(1)证明:连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为2,∴OB=2,AC=4,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=2.25.某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意列出方程组求解;(2)①据题意得,y=﹣50n+16500,②利用不等式求出n的范围,又因为y=﹣50x+16500是减函数,所以n取37,y取最大值;(3)据题意得,y=150+n,即y=(m﹣50)n+16500,分三种情况讨论,①当30<m<50时,y随n的增大而减小,②m=50时,m﹣50=0,y=16500,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【解答】解:(1)设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意,得:,解得:,答:每部A型手机的销售利润为150元,每部B型手机的销售利润为100元;(2)①设购进B型手机n部,则购进A型手机部,则y=150+100n=﹣50n+16500,其中,110﹣n≤2n,即n≥36,∴y关于n的函数关系式为y=﹣50n+16500 (n≥36);②∵﹣50<0,∴y随n的增大而减小,∵n≥36,且n为整数,∴当n=37时,y取得最大值,最大值为﹣50×37+16500=14650(元),答:购进A型手机73部、B型手机37部时,才能使销售总利润最大;(3)根据题意,得:y=150+n=(m﹣50)n+16500,其中,36≤n≤80,①当30<m<50时,y随n的增大而减小,∴当n=37时,y取得最大值,即购进A型手机73部、B型手机37部时销售总利润最大;②当m=50时,m﹣50=0,y=16500,即商店购进B型电脑数量满足36≤n≤80的整数时,均获得最大利润;③当50<m<100时,y随n的增大而增大,∴当n=80时,y取得最大值,即购进A型手机30部、B型手机80部时销售总利润最大.26.如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)及x 轴相交于点B、C,及y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F 为顶点的三角形及△BCE相似?若存在,求m的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将点(2,2)的坐标代入抛物线解析式,即可求得m的值;(2)求出B、C、E点的坐标,进而求得△BCE的面积;(3)根据轴对称以及两点之间线段最短的性质,可知点B、C关于对称轴x=1对称,连接EC及对称轴的交点即为所求的H点,如答图1所示;(4)本问需分两种情况进行讨论:①当△BEC∽△BCF时,如答图2所示.此时可求得m=+2;②当△BEC∽△FCB时,如答图3所示.此时可以得到矛盾的等式,故此种情形不存在.【解答】解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,∵m>0,∴m=+2.②当△BEC∽△FCB时,如解答图3所示.则,∴BC2=EC•BF.∵△BEC∽△FCB∴∠CBF=∠ECO,∵∠EOC=∠FTB=90°,∴△BTF∽△COE,∴,∴可令F(x,(x+2))(x>0)又∵点F在抛物线上,∴(x+2)=﹣(x+2)(x﹣m),∵x>0,∴x+2>0,∴x=m+2,∴F(m+2,(m+4)),EC=,BC=m+2,又BC2=EC•BF,∴(m+2)2=•整理得:0=16,显然不成立.综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F 为顶点的三角形及△BCE相似,m=+2.。