自然对流与强制对流及计算实例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自然对流与强制对流及计算实例
热设计是电子设备开发中必不可少的环节。本连载从热设计的基础——传热着手,介绍基本的热设计方法。前面介绍的热传导具有消除个体内温差的效果。上篇绍的热对流,则具有降低平均温度的效果。
下面就通过具体的计算来分别说明自然对流与强制对流的情况。
首先,自然对流的传热系数可以表述为公式(2)。
热流量=自然对流传热系数×物体表面积×(表面温度-流体温度) (2)
很多文献中都记载了计算传热系数的公式,可以把流体的特性值带入公式中进行计算,可以适用于所有流体。但每次计算的时候,都必须代入五个特性值。因此,公式(3)事先代入了空气的特性值,简化了公式。
自然对流传热系数
h=2 .51C(⊿T/L)0.25(W/m2K) (3)
2.51是代入空气的特性值后求得的系数。如果是向水中散热,2.51需要换成水的特性值。
公式(3)出现了C、L、⊿T三个参数。C和L从表1中选择。例如,发热板竖立和横躺时,周围空气的流动各不相同。对流传热系数也会随之改变,系数C 就负责吸收这一差异。
代表长度L与C是成对定义的。计算代表长度的公式因物体形状而异,因此,在计算的时候,需要从表1中选择相似的形状。
需要注意的是,表示大小的L位于分母。这就表示物体越小,对流传热系数越大。
⊿T是指公式(2)中的(表面温度-流体温度)。温差变大后,传热系数也会变大。物体与空气之间的温差越大,紧邻物体那部分空气的升温越大。因此,风速加快后,传热系数也会变大。
公式(3)叫做“半理论半实验公式”。第二篇中介绍的热传导公式能够通过求解微分方程的方式求出,但自然对流与气流有关,没有完全适用的理论公式。能建立理论公式的,只有产生的气流较简单的平板垂直放置的情况。因为在这种情况下,理论上的温度边界线的厚度可以计算出来。
但是,如果发热板水平放置,气流就会变得复杂,计算的难度也会增加。这种情况下,就要根据原始的理论公式,通过实验求出系数。也就是说,在公式(3)中,理论计算得出的数值0.25可以直接套用,C的值则要通过实验求出。
自然对流传热系数无法大幅改变
图4:自然对流传热系数无法大幅改变
物体沿流动方向的尺寸越小,单位面积的散热量越大。自然对流的传热系数随斜率和面的曲率变化,但变化的幅度不大。而强制空冷可以通过提高风速和湍流化,大幅改变传热系数。
形状和配置对于自然对流的传热系数会产生多大的影响(图4)?举例来说,平面的传热系数h等于
2.51×0.56×((Ts-Ta)/H)0.25,
而圆筒面的传热系数h等于