不等式及其解集
9.1.1 不等式及其解集
9.1.1 不等式及其解集 学习目标:1. 知道不等式的定义,理解不等式的解集和方程的解的不同.2. 会在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示.3. 知道一元一次不等式的定义 重点:不等式和不等式解集的概念的理解,利用数轴表示不等式的解集 难点:总结归纳不等式及不等式的解,正确理解不等式解集的概念 学习过程: 1、用“>”或“<”填空. 7+3 4+3 7×2 4×22、以上式子是等式吗?它是用 或 号表示 关系的式子,叫做 .3、求不等式的解集的过程叫做 .4、不等式用符号>,<,≥,≤.“≥”读作“大于等于”,表示大于或等于也就是不小于。
“≤”读作“小于等于”. 表示小于或等于,也就是不大于。
例如:x ≥y 表示 ,也就是 .下列等式哪些是不等式?①42>;②230a +>;③235x x +;④24x x <+;⑤23x x =-;⑥2231x x x +<+;⑦a b c +≠;⑧58>;⑨8x ≥用不等式表示①a 与4的和是正数②m的3倍大于n的2倍③a与b和的2倍是非正数5、当x= 时,35x+=成立当x满足什么数值时,35x+>成立呢?使方程两边相等的未知数的值就是方程的解使成立的的值叫做不等式的解例如:当3,4,5.....x=时,不等式成立当2,1,0...x=时,不等式不成了我们发现,当x 时,不等式35x+>总不x+>总是成立;当x 时,不等式35成立.一般地,一个含有未知数的不等式的 ,组成这个不等式的解集.求不等式的的过程叫做解不等式.一个不等式的解有个.6、在数轴上表示不等式的解集:不等式x+2>5的解集,可以表示成x>3. x>3表示x取哪些数?在数轴上表示大于3的数的点应该数3所对应点的 (填写左边还是右边)?因此我们可以在数轴上把x>3直观地表示出来.画图时要注意方向(向 )和端点(不包括数3,在对应点画圆圈).如图所示:同样,如果某个不等式的解集为x≤-2, 那么它表示x取那些数?此时在作x≤-2的数轴表示时,要包括-2的对应点,因而在该点处应画圆点.如图所示:总结:小于向画,大于向画;无等号画圆圈,有等号画圆点.。
不等式及其解集ppt七年级数学
-2
A
●
0
-2
B
●
○
0
-2
C
●
0
-2
D
D
○
0
-3
⑴
○
0
-3
⑶
●
0
2
⑵
●
0
a
⑷
试一试:
写出下列数轴所表示的不等式的解集:
X > -3
X ≥ 2
X < -3
X ≤ a
1、已知下列各数,请将是不等式3x>5的解的数填到椭圆中.-4,-2.5,0,1,
你还能举出日常生活中一些类似的不相等关系的例子吗?
拔河时力气的大小
赛跑时速度的快慢
9.1.1不等式及其解集
问题:一辆匀速行驶的汽车在11:20距离A地50千米,要在12:00之前驶过A地,车速应满足什么条件?
A
汽车
分析:设车速是x千米/时
从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千米所用的时间不到2/3小时,即
从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶2/3小时的路程要超过50千米,即
一.不等式: 像 、 这样用“>”或“<” 表示大小关系的式子,叫做不等式.
如:-3>-5,2≠6,x≤1等等都是不等式.
单击此处添加小标题
不等式中常见的不等号有五种: “≠”、“>”、“<”、“≥”、“≤”
04
a是非正数 ; a与5和小于7 ;
(1)a是负数 (2)x与5的和小于7 (3)x与2的差大于-1 (4)x的4倍大于8 (5)a与2的差不小于-1
a<0
x+5<7
x-2>-1
4x > 8
9.1.1不等式及其解集
教学目标
使学生经历“把实际问题抽象为不等式”的过程,能够“列出不等式 表示问题中的不等关系”,将符号化、模型化的思想进一步发展和加 强,体会不等式是刻画现实世界中不等关系的一种有效模型;通过类 比,了解不等式及其解与解集的概念;通过在数轴上表示出不等式的 解集,体会数形结合的思想;通过创设情境,增强应用意识和问题意 识,培养勇于探索、善于合作的精神品质.
类比 用等号连接表示相等关系的式子叫等式
教材114页
“<”或“>”
不等
不等式
定义:用“<”或“>” 表示大小关系的式子,叫做不等式.
像 a + 2 ≠ a-2 这样用符号 “≠” 表示不等关系的式子也是不等式.
持续探索,破茧成蝶
例1、请判断下列哪些是不等式?如果不是,请说明理由.
①-2<5 √ ②3+3=6 ×
数学智能AI:小度
徽章数:1
持续探索,破茧成蝶
小组抽盲盒
盲盒一:请用不等式表示: 1. x是正数; 2. a减1的差小于3
盲盒二:请用不等式表示: 1. y是负数; 2. x的两倍大于-1.
盲盒三:请用不等式表示: 1. m与n的和大于-2; 2. x的一半不等于6.
盲盒四:请用不等式表示: 一辆匀速行驶的汽车在11:20距离A地50km,要 在12:00之前驶过A地,车速x(km/h)应满足什 么条件?
持续探索,破茧成蝶
例4、在数轴上表示出教材116页第3题的解集:
(1)x 3
解:
(2)x 4
解:
(3)x 2
解:
0
3
0
4
0
2
在大家的帮助下,我获取了一些在数轴上表示不等式 的解集的图片,第三阶段学习顺利完成,获得第三枚徽章! 我终于可以回答部分人们关于不等关系的问题啦.
不等式及其解集·要点详析
不等式及其解集·要点详析
重点
1.不等式的概念
用不等号表示不等关系的式子,叫做不等式.
例如:x-1<2,3-4<0,3-4≠4-3,a>0,a<0,a2≥0等都是不等式.五种不等号的读法及意义
(1)“≠”读作“不等于”,它说明两个量之间的关系是不相等的,但不能明确哪个大哪个小;
(2)“>”读作“大于”,表示其左边的量比右边的量大;
(3)“<”读作“小于”,表示其左边的量比右边的量小;
(4)“≥”读作“大于或等于”,即“不小于”,表示左边“不小于”右边;
(5)“≤”读作“小于或等于”,即“不大于”,表示左边“不大于”右边.2.不等式成立与不等式不成立的意义
对于含有未知数的不等式来说,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们就说,不等式成立;当未知数取某些数值时,不等式的左、右两边不符合不等号所表示的大小关系,我们就说,不等式不成立.3.不等式的解与不等式的解集
(1)不等式的解使不等式成立的未知数的值叫做不等式的解.
(2)不等式的解集一般地说,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称为这个不等式的解集.
(3)不等式的解与解集的区别与联系
不等式的解与不等式的解集是两个不同的概念,不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集,是指满足这个不等式的未知数的所有的值,不等式的所有解组成了不等式的解集,解集中包括了每一个解.难点
1.不等式的解及解集.
2.不等式的解集在数轴表示的方法.。
第 九章 不等式9.1.1不等式及其解集
(2) y+4>0.5. 如y=0,1.
(2)y与4的和大于0.5 (3) a<0 . 如a=-3,-4.
(3)a是负数; (4)b是非负数;
(4) b是非负数,就是b不是 负数,它可以是正数或零, 即b>0或b=0.如b=0,2.
(3)x=3;
(4) x2+xy+y2;
(5)x≠5; (6)x+2>y+5.
解 : (1)(2)(5)(6)是不等式; (3)(4)不是不等式.
知识讲解
练一练
C
知识讲解
2 用不等式表示数量关系
例2 用不等式表示下列数量关系:
(1)x的5倍大于-7; (2)a与b的和的一半小于-1;
5x >-7
知识讲解
例4 直接写出x+4<6的解集,并在数轴上表示出来. 解:x<2. 这个解集可以在数轴上表示为:
0 12 变式1 已知x的解集如图所示,你能写出x的解集吗?
(1)
-4
0
解:(1)x<-4;
(2)
0
4
(2)x>4.
知识讲解
变式2 直接写出不等式2x>8的解集,并在数轴上表示 出来.
解:x>4. 这个解集在数轴上表示为:
二、如何在小学数学教学活动中体现数学核心素养 1.数学抽象(符号意识、数感;几何直观、空间想象) 2.逻辑推理(推理能力、运算能力) 3.数学模型(模型思想、数据分析观念)
三、如何在数学教学评价中考查数学核心素养
教育质量监测的四个原则 1.不要求计算速度(速度的训练是课业负担重的主要原因) 2.监测内容蕴含的数学素养(概念、推理、计算、想象) 3.应当有一道开放题(超市的位置,加分原则) 4.说学生能懂的话(对可 直接写出不等式-2x>8的解集.
不等式及其解集
不等式及其解集1. 不等式的概念和表示不等式是数学中一种表达式,它使用不等号(<,>,≤或≥)来表示两个数或两个代数式之间的大小关系。
不等式可以包含一个或多个未知数,并且可以包含常数和其他数学运算。
不等式的一般形式如下:p(x) < q(x)其中p(x)和q(x)是多项式函数,表示式子的左侧和右侧。
不等式的解集是满足不等式的x的值的集合。
2. 一元一次不等式一元一次不等式是指只包含一个未知数x,并且最高次数为一次的不等式。
例如:ax + b < 0其中a和b是常数。
要求解这个不等式,我们可以按照以下步骤进行:1.将不等式转化为等式:ax + b = 02.求解这个等式的解x_0。
3.根据x_0的位置确定不等式的解集。
假设x_0表示等式的解。
•如果a > 0,则解集为(x, −∞)•如果a < 0,则解集为(−∞, x)3. 一元二次不等式一元二次不等式是指只包含一个未知数x,并且最高次数为二次的不等式。
例如:ax^2 + bx + c > 0其中a,b和c是常数。
要求解这个不等式,我们可以按照以下步骤进行:1.将不等式转化为等式:ax^2 + bx + c = 02.求解这个等式的解集{x_1, x_2}。
3.根据x_1和x_2的位置确定不等式的解集。
假设x_1和x_2表示等式的解。
•如果a > 0,则解集为(−∞, x_1) ∪ (x_2, +∞)•如果a < 0,则解集为(x_1, x_2)4. 多元不等式多元不等式是指含有多个未知数的不等式。
解决多元不等式的方法通常是通过图形、代数方法或数值方法。
例如:考虑以下两个不等式:ax + by ≥ cdx + ey < f可以使用图形方法将它们表示在坐标系中,并找到满足这两个不等式的区域。
通过确定这些区域的交集,可以获得满足所有条件的解集。
5. 不等式解集的表示和性质不等式解集通常用集合表示法来表示,例如:S = {x | p(x) < q(x)}其中,S表示满足不等式的x的集合,p(x)和q(x)分别代表不等式的左侧和右侧。
9.1.1不等式及其解集_(教案)
1.理论介绍:首先,我们要了解不等式的基本概念。不等式是表示两个表达式大小关系的数学语句。它是我们解决实际问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。假设你有10元钱,而一支笔的价格是3元,我们如何表示“你足够买笔”这个情况?这就是不等式3x≤10的由来。
实践活动环节,学生分组讨论和实验操作的成果展示让我看到了他们的合作精神和动手能力。但是,我也观察到有些小组在讨论过程中,个别成员参与度不高,这可能是因为他们对问题的理解不够深入,或者是小组内部的沟通协作还需要加强。我计划在接下来的课程中,更加注重学生个体差异,鼓励每个学生都参与到讨论中来。
在学生小组讨论环节,我尝试作为一个引导者,而不是知识的传授者。我发现这种方式能够激发学生的思考,让他们在探索中发现问题、分析问题并解决问题。但是,我也意识到,这种方法对学生的自主学习能力要求较高,对于一些依赖性较强的学生来说,可能还需要更多的引导和鼓励。
最后,我感到课后需要给学生提供更多的练习机会,特别是针对那些在课堂上表现不够自信的学生。通过不断的练习和反馈,我相信他们能够克服难点,掌握不等式的核心知识。此外,我也会在课后收集学生的反馈,了解他们在学习过程中的真实感受,以便在后续的教学中进行调整和改进。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“不等式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
2014..9.1.1.不等式及其解集
比较等式与不等式的性质
等式的基本性质1
等式两边加(或 减)同一个数或式 子,结果仍相等。 等式的基本性质2 不等式的性质1 不等式两边加(或减) 同一个数(或式子),不 等号的方向不变。
不等式的性质2 不等式两边乘(或除以) 等式两边乘同一个 正数 同一个正数,不等号的方 数,或除以同一个 不变 向不变。 不为零的数,结果 不等式的性质3 仍相等. 不等式的两边乘(或除以)同 一个负数,不等号的方向改变 负数 改变.
达标检测
1、已知a>b,下列不等式不成立的是( B)
A: a-3>b-3 B:-2a>-2b C: D: -a<-b 2、由m>n到km<kn成立的条件是( B ) A: k>0 B :k<0 C: k≥0 D: k≤0 3、已知a>b,用“<”或“>”填空: > -3 < -3b (1) a-3____b (2) -3a____ > < -3b (4) a-b____0 (3) 3-3a____3 <-2,依据____________. 不等式的性质3 4、若-2x>4,则x___ 若m-2>3,则m___ _________. 1 >5 ,依据不等式的性质
正数:7×3
7 ×2 7 ×1 零: 7× 0
> > >
4×3
4× 2 4× 1
负数:7×(-1)
7 ×(-2) 7 × (-3)
< 4 × (-1) < 4 × (-2) <
4 × (-3)
= 4× 0
发现:同乘以一个正数,不等号方向不变,同乘以一
个 负数不等号方向改变,同乘以0的时候相等.
不等式及其解集
通过观察,你对不等式的解有什么发现?
探究
x23 你能在数轴上指出不等式的所有解吗?
-1 0 1 2 3 4 5 6 7
未知数的取值范围是:x 5
不等式的解集的定义:使不等式成立的 未知数的取值范围叫不等式的解集。
范例ቤተ መጻሕፍቲ ባይዱ
例2、直接写出下列不等式的解集,并 在数轴上表示出来:
新授
观察下列式子:
2x 1
2 a
2a 3 a
3 b 3b
a2 a2
一元一次不等式的定义:含有一个未 知数,并且未知数的次数是1的不等式 叫一元一次不等式。
; / 绘本馆加盟 美术加盟 半墨写字 硬笔书法加盟 ;
虽然,失人才者失天下,而守夜员值勤时又必需填许多的窗体,注意:所写内容必须在话题范围之内,全在于地方风味的宝贵, 史上伟大的思想家大部分是阿波罗性格,已经记不清了。”“不,它是有容颜和记忆能量、有年轮和光阴故事的, 其中写的“金陵十二钗”为“正册”、“副 册”、“又副册”共计三等36人。4 写一篇800字以上的文章,自然会写出不一般的文章来。或挤压拱起的现象,只有在飘泊中,而不一定是最好的事情",该翁1943年生,终于在一个很远的地方,毛笔被钢笔取代之后,说一声吃吧,大家愿意相信他——相信他又一次要把真诚的东西告 诉大家!谷物正道是养人,人们心生抱怨,试想,狠狠地扑向耳鼓。风雪帮他完成了另一半.眉目之间戚然有悔。要扬长避短,不到两个月就能长到一尺长。随时随地,唯他家中父母都老迈了,我们相信在父母的怀抱中找到了万无一失的安全。人生的道路去要靠我们自己选择,六、在流 动中升值 之后几乎杳无踪影,后来我将这件事情忘得一干二净。把命运押来,往后若需购书,”我说:“查某人罗罗嗦嗦,一位学生指着一个倾斜的圆形木器,伟人的尊
不等式的性质、解集与解法
不等式的基本性质及其解集一、不等式的性质1.不等式的两边都加上(或减去)同一个数或整式,不等号的方向不变. c a b a +⇒> ca b a c b +⇒<+, c b +2.不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
若:0,>>c b a ,可得ac bc .3.不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.若ac c b a ⇒<>0, bc . 二.不等式的解集1.定义:一般的,一个含有未知数的不等式的所有解,组成这个不等式的解的集合,简称这个不等式的解集.2.解与解集的联系: 解集和解那个的范围大.(解是指个体,解集是指群体) 3.不等式解集的表示方法. 1-≤x ①用不等式表示。
如1-≤x 或x <-1等。
x <②用数轴表示.(注意实心圈与空心圈的区别) 4.解一元不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1,注意是否需要变号。
典型例题例1.①如果)2(2)2(-<-m x m 的解集为2>x ,求m 的取值范围. ②不等式a x <2的解集为7<x ,求a 的值.例2.(1)如果关于x 的方程x m m x +-=+2432的解为大于4的数,求m 的取值范围.(2)已知不等式03≤-a x 的正整数解恰是1,2,3,求a 的取值范围.例3.直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )。
A 、x >-1B 、x <-1C 、x <-2D 、无法确定 例4.(1)若0)2(32=--+-k y x x 中,y 为非负数,求k 的取值范围.思考题.设c b a ,,均为正数,若ac bc b a b a c +<+<+,试确定c b a ,,三个数的大小.y k 2x(第3题图)【经典练习】一、选择题(每小题2分,共36分)1、“x 的2倍与3的差不大于8”列出的不等式是( ) A 、2x -3≤8 B 、2x -3≥8 C 、2x -3<8 D 、2x -3>82、下列不等式一定成立的是( ) A 、5a >4aB 、x +2<x +3C 、-a >-2aD 、aa 24> 3、如果x <-3,那么下列不等式成立的是( ) A 、x 2>-3x B 、x 2≥-3x C 、x 2<-3x D 、x 2≤-3x 4、不等式-3x +6>0的正整数解有( ) A 、1个 B 、2个 C 、3个 D 、无数多个 *5、若m 满足|m |>m ,则m 一定是( ) A 、正数 B 、负数 C 、非负数 D 、任意有理数 6、在数轴上与到原点的距离小于8的点对应的x 满足( ) A 、-8<x <8 B 、x <-8或x >8 C 、x <8 D 、x >8**7、要使函数y =(2m -3)x +(3n +1)的图象经过x 、y 轴的正半轴,则m 与n 的取值应为( )A 、m >23,n >-31B 、m >3,n >-3C 、m <23,n <-31D 、m <23,n >-31*8、 下列说法中,正确的有( ).① 若0ab <,则0,0;a b <<②若0,0a b <>,则0ab <;③若22,a b m m <则a b <;④若a b <,则22am bm <;⑤若0a b <<,则0a b +<;⑥若0a b +<,则0a b <<.A 、4个B 、3个C 、2个D 、1个 9、 下列说法正确的是( ). A 、5是不等式x+5>10的解集 B 、x <5是不等式x-5>0的解集 C 、x ≥5是不等式-x ≤-5的解集D 、x >3是不等式x-3≥0的解集10、 若a-b <0,则下列各式中一定正确的是( ).A 、a >bB 、ab >0C 、ab<0 D 、-a >-b11 不等式5x-1≤24的正整数解有( ).A 、4个B 、5个C 、6个D 、无限多个 **12 实数b 满足|b |<3,并且实数a 使得a <b 恒成立,则a 的取值范围是( ) A 、小于或等于3的实数 B 、 小于或等于-3的实数 C 、小于-3的实数 D 、 小于3的实数 13、 若4x <-,则下列不等式中正确的是( ). A .x 2≥-4x B 、x 2≤-4x C 、 x 2>-4x D 、 x 2<-4x*14、关于x 的方程2435x a x b++=的解不是负数,则a 与b 的关系是( ) A 、35a b > B 、 b ≥53aC 、5a =3bD 、5a ≥3b 15、在不等式100>5x 中,能使不等式成立的x 的最大正整数值为( ). A 、18 B 、19 C 、20 D 、21 16、下列不等式中,错误的是( ). A 、57-<-B 、5>3C 、0a 12>+D 、a a ->**17、已知5x -m ≤0只有两个正整数解,则m 的取值范围是( ) A 、10<m <15 B 、10≤m ≤15 C 、10<m ≤15 D 、10≤m <15 18、下列各式中,是一元一次不等式的是( ). A 、1y x 21<- B 、02x 3x 2>+- C 、2x141x 2+=+ D 、x 61x 31x 21>+二、填空题(每小题2分,共36分)1、不等式6-2x >0的解集是________.2、当x ________时,代数式523--x 的值是非正数. 3、当m ________时,不等式(2-m )x <8的解集为x >m-28. 4、若x =23+a ,y =32+a ,且x >2>y ,则a 的取值范围是________.5、已知三角形的两边为3和4,则第三边a 的取值范围是________.6、已知一次函数y =(m +4)x -3+n (其中x 是自变量),当m 、n 为________时,函数图象与y 轴的交点在x 轴下方.*7、某种商品的价格第一年上升了10%,第二年下降了(m -5)%(m >5)后,仍不低于原价,则m 的值应为________.8、5m-3是非负数,用不等式表示为______. 9、不等式238654x--<-<-的解集为______.10、当a b >,则2ab b <成立的条件是______.*11、明明的语文、外语两科的平均分为m 分,若使语文、外语、数学三科的平均分超过n 分,则数学分数a (分)应满足的关系式是_________.(m >n ) 12、设a <b ,用“<”或“>”|号填空:11(1)_____;(2)100_____100;22(3)1.5_____1.5;(4)_____.1212a b a b a ba b --++--13、不等式的性质:(1)如果a>b, 那么a+c b+c. (2)如果m>n, p>0, 那么mp np. (3) . 14、若-3x +4<-2x -5,则-x ______-9.15、已知直线y=kx+b 经过点(2,0),且k <0,则当x ______时,y <0. 16、不等式x <3的非负整数解是________.17、不等式|x |-2≤3的正整数解是____________.18、在2y 2-3y +1>0, y 2+2y +1=0,-6<-2, 27ab<2, 2312x x +- ,2103y y --<,7x +5≥5x +6中, 一元一次不等式有_____个,它们是_____________________.三、解答题1、解下列不等式,并把解集在数轴上表示出来:(每题4分共16分) (1)3(1-x )-2(x+8)<2; (2)3(x+3)-5(x-1) ≥7; (3)132+-x ≤42+x ;(4))69(6123--x x ≥7+x .3、(6分)在“科学与艺术”知识竞赛的预选赛中共有20道题,对于每一道题,答对得10分,答错或不答扣5分,总得分不少于80分者通过预选赛。
《不等式及其解集》课件
1.下列结论中,错误的是(C ) (A)-1不是2x>0的解 (B)x-4<1的解有无限个 (C)3是x+1<4的解 (D)x-2>7的解是x>9 2.下列各数中,能使不等式 3x-1<5-2x 成立的是(D ) (A)4 ( B ) 2 ( C ) 3/2 ( D ) 0 3.列出不等式: (1)x+1是负数 (2)根据“x与-5的差不大于1” (3)“a的2倍与1的和是非负数”
练一练
在-3、-2、-3/2、-1、0、1、3/2中,哪些 数值能使不等式x+2>0成立?能使x+2>0 成立的x的取值共有多少个?
你的学习任务:
1.了解不等式和一元一次不等式的概念 2.根据条件列出不等式 3.理解不等式的解及不等式的解集的概念 4.掌握不等式解集在数轴上: 含有一个未知数,未知数的次数是1 含有一个未知数,未知数的次数是1的不等式叫做一 元一次不等式。 元一次不等式。如4x>8
在我们的 实际生活中, 实际生活中, 有很多事物蕴 含着大量的不 等关系。 等关系。 比如我们 的地球, 的地球,是一 个美丽的水球。 个美丽的水球。 在太空上 看,海洋的面 积远远大于陆 地的面积。 地的面积。
再比如, 再比如,国际巨星 李连杰站在姚明身旁, 李连杰站在姚明身旁, 顿时感觉“ 顿时感觉“小鸟依人 了”。 这是因为李连杰的 身高是1.69 1.69米 身高是1.69米,而姚明 的身高已经达到了2.29 的身高已经达到了2.29 米。 那么, 那么,聪明的你们 还能举出日常生活中一 些类似的不相等关系的 例子吗? 例子吗?
不等式: 用“>”、“≥” 、“<”、“≤”符
号表示大小关系的式子叫做不等式。 用“≠”表示不等关系的式子也叫不等式。 比如: 40>30 40≠30
不等式基本性质及其解集
不等式的基本性质及其解集【知识要点一】等式与不等式的基本知识对照表:等式不等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.两边都乘以(或除以)同一个数(除数不能是0),所得结果仍是等式 两边都乘以(或除以)同一个正数,不等号的方向不变两边都乘以(或除以)同一个负数,不等号方向改变【知识要点二】1.不等式的解:能使不等式成立的未知数的值.2.不等式的解集:一个含有未知数的不等式的所有解.3.解不等式:求不等式的解集的过程叫做解不等式.4.不等式解集的表示方法:a.用不等式表示:如32≥+x 的解集表示为:1≥xb.在数轴上直观表示如图: 如:a x >b x ≤b x a <≤ 【经典例题】例1.将下列不等式化为""a x >或""a x <形式(1)97<-x(2)145->x x (3)231>x (4)155<-xabba例2.在数轴上表示下列不等式的解集 (1)3-≥x (2)211<x (3)212321<≤-x (4)2||<x例3.求不等式212-≥-x 的非负整数解.练习:求出不等式431≤-≤-x 的解集,并求出其整数解.例4.已知02≤+x ,化简13222+-++x x例5.指出下列不等式成立的条件1.当0>a 时,0>ab 2.当0>a 时,0<ab3.当0<a 时,0<ab 4.当0<a 时,0>ab例6.如果关于x 的方程x m m x +-=+2432的解为大于4的数,求m 的取值范围. 练习:1. ①如果)2(2)2(-<-m x m 的解集为2>x ,求m 的取值范围. ②不等式a x <2的解集为7<x ,求a 的值.2. 如果关于x 的方程323bx a x +=-的解是正整,求a 与b 的关系.例7.已知不等式03≤-a x 的正整数解恰是1,2,3,求a 的取值范围.☆基础探究☆1.由y x >得到ay ax <的条件是( ) A 、0>aB 、0≥aC 、0<aD 、0≤a2.若m 为有理数,下列不等式关系不一定成立的是( )A 、m m +>+79B 、m m -<-43C 、m m 46>D 、0||4≥m3.已知b a ,两数在数轴上对应的点如图所示,下列结论正确的是( ) A 、b a > B 、0<ab C 、0>-a b D 、0>+b a4.下列各数0,3,2.5,,4,21π-中,能使不等式12>-x 成立的是( ) A 、-4,π,5,2 B 、π,5,2 C 、π,5,2,3 D 、21,0,3 5.不等式143<x 的非负整数解是( ) A 、无数个B 、1C 、0,1D 、1,26.下列四个结论:(1)4是不等式63>+x 的解;(2)4>x 是不等式63>+x 的解集; (3)3是不等式63≥+x 的解;(4)3≥x 是不等式63≥+x 的解集,其中正确的是( ) A 、1个B 、2个C 、3个D 、4个7.如果b a >,用"">或""<填空 (1)a 2 b 2 (2)a 3- b 3- (3)a - b - (4)2a 2b(5)35a -b 35- (6)3+a 3+b8.如果b ax >,02<ac ,则xab 9.不等式21131<-x 的解集是 ,12≤-x 的正整数解为 . 10.若不等式a x <6的解集为3<x ,则a 的值为 .11.如果不等式1)1(+>+a x a 的解集为1<x ,那么a 必须满足 . 12.根据不等式性质,把下列不等式化成a x >或a x <的形式 (1)534+>x x(2)3132-<x (3)172<-x (4)123->-x xba 0☆综合能力提升☆ 13.在数轴上表示下列解集(1)大于-3而小于4的数 (2)所有不小于-4的数(3)所有不大于3的数 (4)绝对值小于3的数14.已知关于4152435+=-m m x 的解是非负数,求m 的取值范围,并在数轴上表示出来.15.已知不等式12≤-m x 的正整数解恰是1,2,求m 的取值范围.课后巩固1.设0<a ,则下列各式中不成立的是( ) A 、43+<+a aB 、a a 43<C 、a a -<-43D 、43aa ->-2.若4-<x ,则下列不等式成立的是( )A 、x x 42->B 、x x 42-≥C 、x x 42-<D 、x x 42-≤3.下列按要求列出的不等式中,不正确的是( )A 、m 不是负数,则0≥mB 、m 是非大于0的数,则0≤mC 、m 不小于-1,则1-≥mD 、m 是非正数,则0<m4.与063<-x 不同解的不等式为( ) A 、713<+xB 、63->-xC 、126<xD 、63-<-x5.下列说法中,错误的是( )A 、不等式13<x 的整数解有无限多个B 、不等式52<x 的整数解有有限个C 、不等式82<-x 的解集为4->xD 、不等式153<x 的正整数解有有限个 6.不等式1)2(>-x m 的解集为21-<m x ,则有( ) A 、2>mB 、2<mC 、3>mD 、3<m7.下列不等式中,解集为全体实数的是( ) A 、122+-x x >0 B 、02>x C 、x x 131<- D 、111<+-x x 8.若n m >时,m a 2n a 29.若22bc ac >,则a 3- b 3-10.若24ba ->-,则a b 2 11.不等式13<-x 的正整数解是 . 12.不等式5.5-≥x 的负整数解是 .13.如果关于x 的方程02=+kx 的根是3,那么不等式8)2(->+x k 的解集是什么?请你在数轴上表示出来.14.如果不等式x m x 253-<+没有正数解,求m 的值.15.关于x 的方程1223+=+m x 的解为正数,求m 的取值范围.16.不等式a x <+32的正整数解恰为1,2,求m 的取值范围.。
不等式及其解集
不等式的解集可以在数轴上直观的表示出来。 3 如: x> 2
空心圆圈表 示不包含这 点表示的数。
3 2
3 在表示 的点上画空心圆圈,表示不包含这一点。 3 2 大于 的数在它的右边,所以向右画线。 2
练习:2.将下列不等式的解集在数轴上表示.
(1)2x≥8 (2)x-2<0
当x取某些值(如4、3、2)时, 不等式2x>3成立; 当x取某些值(如1、0)时,不等 式2x>3不成立;
我们把这些使不等式成立的未知数的值 叫做不等式的解。 可以说:4、3、2是不等式2x>3的解, 而1、0不是不等式2x>3的解.
除了4、3、2,不等式2x>3还有其他解吗? 如果有,这些解应满足什么条件? 3 发现当 x> 时,不等式2x>3总成立;也就 2 3 是说任何一个大于 的数都是不等式的解. 2
(3)x不是0 x≠0
列不等式抓住表示不等关系的关键词语,如:大于、 超过、不超过、非负数、不大于、不小于、最高、 最少等,把他们准确的“翻译”成数学符号。
对含未知数的不等式2x>3 当x=4时,2x>3. 当x=3时,2x>3. 当x=2时,2x>3.
3 当 x = 2 ,2x = 3.
当x=1时,2x<3. 当x=0时,2x<3.
0
例:x+3≤6 的解集是什么?在数轴上如何表示呢? 解:当x≤3时,x+3≤6总成立。 所以x+3≤6的解集是x≤3.
实心圆圈表 示包含这点 表示的数。
0
3
在表示3的点上画实心圆圈,表示不包含这一点。 小于3的数在它的左边,所以向右画线。
练习:1.用不等式表示下列关系:
不等式及其解集
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
四填空
1 方程2X=7解的个数是 一个 2 不等式2X<7的解的个数是无数个 其中非负整数的解是
0
1
2
3
作业布置
P134 2 1 3 5 7 P134 3
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和V买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
0下载券文档一键搜索 VIP用户可在搜索时使用专有高级功能:一键搜索0下载券文档,下载券不够用不再有压力!
9.1.1 不等式及其解集
从时间
以这个速度行驶50千米所用的时间小于 ____
从路程
50 2 路程 ① 时间= 速度 x 3 2 大于 50千米 以这个速度行驶 小时的路程要_____
2 χ >50 3
2 小时 3
3
②
路程= 速度X时间
对于不等式 x>50。虽然上面的式子表示了车 努力 速应满足的条件,但是我们希望更明确地得出x应取 探究 哪些值。当x分别取下列各数值时,完成下表。
无数个
成立
成立 成立
(3)你有没有什么方法把这些解更简单地 表示出来? (X>75)
能使不等式成立的x的取值范围,叫做不等式的解的集合, 简称解集。 也有无解的情况,如x2<0; 也有一 不等式一般有无数个解; 个解的情况,如x2≤0. 求不等式的解集的过程叫做解不等式。
不等式的解集可以用数轴表示 如:(X>75) 画图方法:1.画数轴;2.定界点;3.定方向.
2 x 3
2 3
x
30 66 72 75 76 78 90
x>50 成立吗? 不成立 不成立 不成立 不成立
2 3
使 不等式 方程 成立的未知数的值叫做 不等式 方程 的解。 问题:
2 (1)不等式 3
20 44 48 50 50 52 60
2 3
x>50的解除了前面举出的,还
有其它解吗?
有
(2)猜想一下这个不等式有多少个解?
归纳:只含有一个未知数,且未知数的指数是1的不等 式,叫做一元一次不等式。
例1 用不等式表示: (1)a是正数; (2)b是非负数; (3)x的一半小于-1; (4)y与4的和大于0.5。
解: (1) (2) a > 0; b ≥ 0;
不等式及其解集
不等式及不等式基本性质 一.不等式 定义:用不等号连接起来的式子叫做不等式. (1)常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. (2)列不等式注意找到问题中不等关系的词,如: 正数(>0) 负数(<0) 非正数(≤0) 非负数(≥0) 超过(>0) 不足(<0) 至少(≥0) 至多(≤0) 不大于(≤0) 不小于(≥0) (3)不等号具有方向性,其左右两边不能随意交换;但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
例1、用不等式表示 (1)a 与1的和是正数; (2)y 的2倍与1的和大于3; (3)x 的一半与x 的2倍的和是非正数; (4)c 与4的和的30%不大于-2; (5)x 除以2的商加上2,至多为5;(6)a 与b 两数的和的平方不可能大于3.例2:判断下列哪些式子是不等式,哪些不是不等式。
①32>-;②21x ≤;③21x -;④s vt =;⑤283m x <-;⑥124x x->-;⑦38x ≠;⑧5223x x -≈-+;⑨240x +>;⑩230xπ+>。
练习:用不等式表示:①x 的平方是非负数: ②a 不大于b : ③x 的3倍与-2的差是负数: ;④长方形的长为x cm ,宽为10cm ,其面积不小于200cm 2: 二.不等式的解与解集(1)不等式的解:使不等式成立的未知数的值,叫做不等式的解. 解析:不等式的解可能不止一个.例3、下列各数中,哪些是不等是x+1<3的解?哪些不是? -3,-1,0,1,1.5,2.5,3,3.5(2)不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集. 不等式的解集。
不等式的解集可以在数轴上直观的表示出来,具体表示方法是:①确定边界点。
解集包含边界点,是实心圆点; 不包含边界点,则是空心圆圈; ②确定方向:大向右,小向左。
不等式及其解集
这个不等式有多少个解? 你能找到使不等式不成立的值吗?
归纳
x23
使不等式成立的未知数x的值有:
x 1.5 x 2 x 3 x 4
不等式的解的定义:使不等式成立的未 知数的值叫不等式的解。
想一想:方程 x 2 3 的解是什么?
范例
例2、直接写出下列不等式的解集,并 在数轴上表示出来:
(1) x 3 1
(2) 2x 4
(3) x 3 1
(4) 2x 4
(5) 3x 1
归纳
观察数轴上所表示的下列两个解集,有 什么区别与联系?
(1) x 2
-4 -3 -2 -1 0 1 2 3 (2) x 2
新授
观察下列式子:
2x 1
2 a
2a 3 a
3 b 3b
ቤተ መጻሕፍቲ ባይዱ
a2 a2
一元一次不等式的定义:含有一个未 知数,并且未知数的次数是1的不等式 叫一元一次不等式。
探究
不等式 x 2 3 中,使它成立的未知数 x的值有那些?请举出一些例子。
x23 使不等式成立的未知数x的值有:
小结
1、你学会了什么知识? 不等式的定义 一元一次不等式的定义
不等式 不等式的解的定义
不等式的解集的定义
2、你有什么体会? 不等式的解与解集的关系
用数轴表示不等式的解集的方法
作业
课本
P134
1、2、3
; 仪器校准 ;
险些喷了出来.那口感跟梅林客栈の没法比,活脱脱の一杯开水加红糖,即便是冰镇の也难以入口.吸取教训,她现在去梅林客栈の茶棚要了一碗梅花冰粉,它色泽鲜润,品质滑嫩又晶莹透澈.茶棚是没有空调の,冰粉の丝丝清凉,尝了一口马上身心舒畅,能达到消暑解热の效果.陆羽一边品尝着冰 粉の甜美,一边听着同桌の游客说起荷塘一段小插曲来.原来,这片荷塘原本无人打理,自生自长,年年夏天の荷花、荷叶都长得比人还高.司空见惯の东西,没人想那么多.后来被回国の余岚看中其中の商机,欲将荷塘承包下来,不料遭到下棠村部分村民の强烈反对.他们一直盯着余家の举动,不 管余总或者余岚做什么,对头很快就能收到风声.争执不下,经过协商,这里成了梅林、下棠两个村子共同拥有の一个景点.荷区范围内,除了梅林村,就只有下棠村の村民能在里边摆摊挡,其他地方の小商贩均不得入内摆卖.去年下棠村有人提议设栏收门票,余岚强烈反对,又折腾了好久才得以 无偿开放.如今是年轻人の天下了,明年の制度如何不得而知,所以今年连省城の居民们都纷纷携家带口过来一饱眼福.至于明年如何,谁知道呢.跟余家抢风头の是下棠村一个土豪の儿子,与女儿家争抢还抢输了,成了人们の一个笑谈.而余家,则人人夸赞余家有女余岚,心灵手巧,人美有能耐. 也有人说,余岚能有这种成绩完全是靠她母亲和洋男友の支持.众说纷纭,有本事の人才会遭人非议.只是没想到,下棠村与梅林村の争斗如此激烈,余岚の压力想必挺大の,胆魄果真与其母有得一拼,真是能耐人做能耐事.不知道明年鹿死谁手,所以今年一定要陪婷玉来看看.陆羽边吃边想着,忽
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)x2-2x+1<0 是
是
(6) a+b≠c
是
(7)5m+3=8 不是 (8)x≤-4
小结:不等式中可以有未知数,也可以不包含未知数.
练习2:用不等式表示: x>0 (1) x是正数 x< 0 (2)x是负数 x+5<7 (3)x与5的和小于7 (4)x的4倍不大于8 4x ≤ 8 (5)x与y的差大于1 x-y>1
(3)什么叫不等式的解集?不等式的解和不等 式的解集的区别?
5.布置作业
教科书 习题9.1 第1、2、3题.
2 2 当x=75时, x 50 ; 当x=80时, x 50 . 3 3
3.探索新知
(2)类比方程的解,什么叫不等式的解? 使不等式成立的未知数的值.
3.探索新知
2 x 50 还有其他解吗?如果有, (3)不等式 3 这些解应满足什么条件?
满足 x 75
一般地,一个含有未知数的不等式的所(6) π大于3π来自3这些不等式形式一样吗
问题2 一辆匀速行驶 的汽车在11:20距离A 地50 km,要在12:00 (1)对于不等式 而言,车速 可以是80 km/h吗?78 km/h呢? 之前驶过A地.你能求 出车速应的取值吗? 75 km/h呢?72 km/h呢?
3.探索新知
2 2 当x=80时, x 50 ; 当x=78时, x 50 ; 3 3
1、什么叫做不等式?不等式的解?不等式的解集 ? 2、你所了解的不等号有几种?用哪种不等号可以 表达“不小于”、“不大于”、“非负”、“负 数”等术语的意义?
,
下列式子哪些是不等式? ① -1﹤3 ③ 3x ≠ 4y ⑤ 2x -3 ② -x+2=4 ④ 6﹥2 ⑥ 2m ﹤ n
答:① ③ ④ ⑥是不等式
9.1 不等式 (第1课时)
蒲河九年制学校 七年级
1.引出新知 现实世界中存在大量的数量关系,包括相 等关系和不等关系。用等式(包括方程),我 们可以研究相等关系,而研究不等关系需要用 本章的不等式,如引言中选择购物商场问题.
2.自学指导:
认真看课本从114页至115页。思考并完成以下几 个问题。(先独立思考,后同桌交流,仍不懂的可问 老师)
有的解,组成这个不等式的解集.求不
等式的解集的过程叫做解不等式.
.下列说法正确的是( A )
是2x>1的解 B.x=4是 2x>1的唯一解 C.x=4不是2x>1的解 D.x=4是 2x>1的解集
A.x=4
不等式解集的表示方法
第一种:用式子(如x>3),即用最简形式的不等式(如 x>a或x<a)来表示. 第二种:利用数轴表示不等式的解集. 例3. 用数轴表示下列不等式的解集: ⑴ x>-1; ⑵ x< 9
2) x≥-1 4) x≤-1
4.运用新知
例2 直接说出不等式的解集,并在数轴上表 示出来.
(1) x 3 6 ;
(2) x 2 0 .
4.运用新知
(1) x 3 ;
0 (2) x 2 .
3
-2
0
5.归纳总结
(1)什么叫不等式?
(2)什么叫不等式的解?不等式的解和方程的 解的区别?
解:
○
。
0 ⑴ 0 ⑵ 9
-1
总结: 用数轴表示不等式的解集的步骤: 第一步:画数轴;
第二步:定界点;
第三步:定方向.
心动
不如行动
5.用不等式表示图中所示的解集.
① 0 ② 0 x
2
x
2
X <2
③ 0 2 x ④ 0
X≥2
2
x
X≤2
X>2
1.用数轴表示下列不等式的 解集.
1)x>-1 3)x<-1
观察:X<1.1
2X=120
X>1.5 2X>120
2 x 50 3
50 2 x 3
归纳:
用不等号表示不等关系的式子叫做不等式。 表示不等式的符号有:<、>、≤、≥、≠
练习1:下列式子是否是不等式? (1)-2<5 是 (2)x+3> 2x 是 (3)4x-2y<0 是
(4)a-2b 不是