利用角平分线构造全等三角形(最新整理)

合集下载

构造全等三角形的四种技巧

构造全等三角形的四种技巧

构造全等三角形的四种技巧在几何学中,全等三角形是一个非常重要的概念。

全等三角形是指两个或两个以上的三角形,它们的形状和大小完全相同。

理解并能够构造全等三角形,对于解决各种几何问题有着至关重要的作用。

以下是构造全等三角形的四种技巧:利用公理:全等三角形的公理是:如果两个三角形的三边对应相等,那么这两个三角形全等。

这个公理可以用来构造全等三角形。

确定你需要构造的全等三角形的所有边长,然后根据这些边长画出两个三角形。

这两个三角形的形状和大小将会完全相同。

利用角平分线:角平分线定理指出,一个角的平分线将对应的边分为两段,这两段与角的两边形成的两个小三角形是全等的。

通过这个定理,你可以通过一个角的平分线,构造出一个全等三角形。

利用中垂线:中垂线定理指出,一条中垂线将一个线段分为两段,这两段与线段的两端形成的两个小三角形是全等的。

这个定理可以用来构造全等三角形。

确定你需要构造的全等三角形的所有边长,然后通过中垂线将这些边分为两段。

这样,你就可以得到两个全等的三角形。

利用平行线:平行线定理指出,如果两条平行线被第三条直线所截,那么截得的对应线段成比例。

这个定理可以用来构造全等三角形。

确定你需要构造的全等三角形的所有边长,然后在两条平行线上画出对应的线段。

由于这些线段成比例,因此它们形成的两个小三角形是相似的。

如果这些相似三角形的对应边长度相等,那么它们就是全等的。

以上就是构造全等三角形的四种技巧。

理解和掌握这些技巧,对于解决各种几何问题有着重要的作用。

已知两个三角形全等,则它们对应边上的高也________;对应角平分线也________;对应边上的中线也________。

两个直角三角形全等,除了用定义外,还可以用以下________判定。

已知三角形ABC全等三角形DEF,且AB=18cm,BC=20cm,CA=15cm,则DE=________cm,DF=________cm,EF=________cm.做衣服需要依据身体部位的大小来选择布料,而教学则需要依据学生原有的知识基础来选择教学方法。

(完整版)利用角平分线构造全等三角形

(完整版)利用角平分线构造全等三角形

善于构造 活用性质安徽 张雷几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题.1.显“距离”, 用性质很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段)例:三角形的三条角平分线交于一点,你知道这是为什么吗? 分析:我们知道两条直线是交于一点的,因此可以想办法证明第三条角平分线通过前两条角平分线的交点.已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB 、IG ⊥AC 、IF ⊥BC ,垂足分别是点H 、G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC ∴IH=IG (角平分线上的点到角的两边距离相等) 同理 IH=IF ∴IG=IF (等量代换) 又IG ⊥AC 、IF ⊥BC∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点.【例2】已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,•它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F .求证:BP 为∠MBN 的平分线.【分析】要证BP 为∠MBN 的平分线,只需证PD=PF ,而PA 、PC 为外角平分线,•故可过P 作PE ⊥AC 于E .根据角平分线性质定理有PD=PE ,PF=PE ,则有PD=PF ,故问题得证.【证明】过P 作PE ⊥AC 于E .∵PA 、PC 分别为∠MAC 与∠NCA 的平分线.且PD ⊥BM ,PF ⊥BN ∴PD=PE ,PF=PE,∴PD=PF又∵PD ⊥BM ,PF ⊥BN,∴点P 在∠MBN 的平分线上,D C A EHI F G2DCBA35EF14即BP是∠MBN的平分线.2.构距离,造全等有角平分线时常过角平分线上的点向角两边引垂线,根据角平分线上的点到角两边距离相等,可构造处相应的全等三角形而巧妙解决问题.例3.△ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D点,问能否在AB•上确定一点E使△BDE的周长等于AB的长.请说明理由.解:过D作DE⊥AB,交AB于E点,则E点即可满足要求.因为∠C=90°,AC=BC,又DE⊥AB,∴DE=EB.∵AD平分∠CAB且CD⊥AC、ED⊥AB,∴CD=DE.由“HL”可证Rt△ACD≌Rt△AED.∴AC=AE.∴L△BDE=BD+DE+EB =BD+DC+EB =BC+EB=AC+EB =AE+EB =AB.例4.如图,∠B=∠C=90°,M是BC上一点,且DM平分∠ADC,AM平分∠DAB.求证:AD=CD+AB.证明:过M作ME⊥AD,交AD于E.∵DM平分∠ADC,∠C=90°.MC=ME.根据“HL”可以证得Rt△MCD≌Rt△MED,∴CD=ED.同理可得AB=AE.∴CD+AB=ED+AE=AD.即AD=CD+AB.3.巧翻折, 造全等以角平分线为对称轴,构造两三角形全等.即在角两边截取相等的线段,构造全等三角形.例5.如图,已知△ABC中∠BAC=90°,AB=AC,CD•垂直于∠ABC•的平分线BD 于D,BD交AC于E,求证:BE=2CD.分析:要证BE=2CD,想到要构造等于2CD的线段,结合角平分线,•利用翻折的方法把△CBD沿BD翻折,使BC重叠到BA所在的直线上,即构造全等三角形(△BCD ≌△BFD),然后证明BE和CF(2CD)所在的三角形全等.证明:延长BA、CD交于点F∵BD ⊥CF (已知) ∴∠BDC=∠BDF=90° ∵BD 平分∠ABC (已知) ∴∠1=∠2 在△BCD 和△BFD 中21()()()BD BD BDC BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩已知公共边已证∴△BCD ≌△BFD (ASA ) ∴CD=FD , 即CF=2CD∵∠5=∠4=90°,∠BDF=90° ∴∠3+∠F=90°,∠1+∠F=90°。

《角的平分线的性质》全等三角形

《角的平分线的性质》全等三角形
定义两个三角形全等
如果一个三角形的三个角分别等于另一个三角形的三个角,则这 两个三角形全等。
三角形全等的判定定理
SSS(边边边)、SAS(边角边)、ASA(角边角)、AAS(角角 边)和HL(直角三角形全等)。
角的平分线的性质
一个角的平分线将对应的边分成两段,其中较长的一段等于较短的 一段。
利用角的平分线的性质证明全等三角形的实例
《角的平分线的性质》全等 三角形
2023-11-08
目 录
• 全等三角形概述 • 角的平分线的性质 • 用角的平分线的性质证明全等三角形 • 全等三角形的应用 • 复习与巩固
01
全等三角形概述
全等三角形的定义
两个三角形全等
如果两个三角形的形状和大小完全相同,则这两个三角形全 等。
全等三角形的表示
解决实际问题
要点一
总结词
全等三角形在实际问题中有着广泛的应用,如建筑设 计、工程绘图等领域。利用全等三角形的性质可以解 决许多实际问题。
要点二
详细描述
全等三角形在实际问题中的应用可以通过许多实例来 加以说明,如利用全等三角形测量不可直接测量的距 离和角度、利用全等三角形解决对称问题等。此外, 全等三角形在物理学、化学等领域也有着广泛的应用 ,如解释力学原理、化学反应中的分子结构等。通过 全等三角形的应用,可以帮助我们更好地理解和解决 实际问题。
在全等三角形中,相等的边和角分别用对应符号表示,如 △ABC≌△DEF。
全等三角形的性质
对应边相等
全等三角形的对应边相等,即如果△ABC≌△DEF,则AB=DE,BC=EF, CA=FD。
对应相等
全等三角形的对应角相等,即如果△ABC≌△DEF,则∠A=∠D,∠B=∠E, ∠C=∠F。

由角平分线构造对称全等三角形解题

由角平分线构造对称全等三角形解题

由角平分线构造对称全等三角形解题
多年来,依据角平分线构造对称全等三角形这一数学、几何知识点一直是高中
数学教学的重点。

而其核心内容是根据规定的角和边,求一个等边三角形,以准确解答对称全等三角形题目。

第一步,要把题目中给定的角、边、绳子长度这些要素陈列出来。

确定绳子的
长度,是关键的步骤。

使用绳子绘制角平分线,然后根据角平分线的作用,计算出其它不同点的位置。

第二步,在第一步的基础上,要解决的是怎样构造一个对称全等三角形。

我们
可以根据前面步骤的结果,依次求出各边的长度。

当长度全部求出时,我们就可以依据角平分线将顶点连接起来,构造出一个对称全等三角形。

最后,结合题目给出的图形,通过比较来验证我们解答的准确性。

通过衡量等
边三角形各个边长度、外角大小等特征,可以判断出解决方案是否正确。

从而彰显出角平分线定理在构造对称全等三角形这一具有重要解题价值的应用。

总之,根据角平分线构造对称全等三角形的技巧是高中数学中的重要教学内容,对高中数学的学习有着积极、重要的意义。

只要认真按照所讲解的步骤做,加强理解,坚持练习,就能够较为轻松的应用角平分线构造对称全等三角形,解决一些有关此课题的考题。

利用角平分线构造全等三角形

利用角平分线构造全等三角形

A
3
N 4 D
1 2
B M C
∴ ∠4=∠C(全等三角形的对应角相等)
∵ ∠3+ ∠4=180°(平角定义), ∠A=∠3(已证) ∴∠A+ ∠C=180°(等量代换)
1 2 3 *
∴△NAD和△MCD是Rt△ 在Rt△NAD和Rt△MCD中 ∵ ND=MD (已证) AD=CD(已知) ∴Rt△NAD≌Rt△MCD(H.L)
问题:
如何利用三角形的角平分线来构 造全等三角形?
如图,在△ABC中,AD平分∠BAC。
A
可以利用角平分线所在直 线作对称轴,翻折三角形来 构造全等三角形。 方法二: 延 长 A C 到 F , 使 B
AF=AB,连结DF。
D
C F
必有结论: △ABD≌△AFD。
1 2 3 *
BD=FD , ∠B=∠F, ∠ADB=∠ADF。
例1
证明:
已知:如图,在四边形ABCD中,BD是∠ABC的 角平分线,AD=CD,求证:∠A+∠C=180°
作DM⊥BC于M,DN⊥BA交BA的延长线于N。
∵ BD是∠ABC的角平分线(已知)
DN⊥BA,DM⊥BC(已知)
∴ ND=MD(角平分线上的点到这 个角的两边距离相等) ∵ DN⊥BA,DM⊥BC(已知) ∴△NAD和△MCD是Rt△ 在Rt△NAD和Rt△MCD中 ∵ ND=MD (已证)
映山中学
汪强
复习:
如何利用三角形的中线来构造全等三角形? 可以利用倍长中线法,即把中线 延长一倍,来构造全等三角形。
如图,若AD为△ABC的中线,
1 A
延长AD到E,使DE=AD, 连结BE(也可连结CE)。

角平分线模型构造三角形全等

角平分线模型构造三角形全等

角平分线模型构造三角形全等
一、作垂线构造AAS型全等
1、如图,在四边形ABDC中,∠D=∠B=90°,O为BD 的中点,且AO平分∠BAC.
求证∶(1)CO平分∠ACD;(2)0A⊥OC;(3)AB+CD=AC.
2、如图,在四边形ABCD中,AC平分∠BAD,CD⊥AB于点E,∠B+∠ADC=180°.
求证:(1)BC=CD;(2)AB+AD=2AE.
3、如图,在正方形ABCD中,点E是BC的中点,点F在CD上,∠EAF=∠BAE.求证:AF=BC+FC.
二、截长补短构造SAS型全等
4、如图,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至点E,使DE=AD,连接EC,求证:AB+CE=BC.
5、如图,AD∥BC,E是CD上一点,且∠1=∠2,∠3=∠4,求证:AB=AD+BC.
三、角平分线+垂线——延长法构造ASA型全等
6、如图,在△ABC中,AD平分∠BAC,CE⊥AD于点E,探究∠ACE,∠B和∠ECD之间的数量关系.
7、如图,在△ABC中,AB<BC,BP平分∠ABC,AP⊥BP,连接PC,若△ABC的面积为4,求△BPC的面积.
8、如图,在△AOB中,AO=BO,∠AOB=90°,BD平分∠ABO,AE⊥BD交BD延长线于点E,求证:BD=2AE.。

专题07 利用角的平分线构造全等三角形(解析版)

专题07 利用角的平分线构造全等三角形(解析版)

专题07 利用角的平分线构造全等三角形参考答案与解析【例1】(2018秋•袁州区校级期中)如图,∠AOB=90°,OM是∠AOB的平分线,将三角尺的直角顶点P在射线OM上滑动,两直角边分别与OA,OB交于点C和D,证明:PC=PD.【答案】略【典例分析】【直击考点】【解答】证明:过点P点作PE⊥OA于E,PF⊥OB于F,如图,∴∠PEC=∠PFD=90°,∵OM是∠AOB的平分线,∴PE=PF,∵∠AOB=90°,∠CPD=90°,∴∠PCE+∠PDO=360°﹣90°﹣90°=180°,而∠PDO+∠PDF=180°,∴∠PCE=∠PDF,在△PCE和△PDF中,∴△PCE≌△PDF(AAS),∴PC=PD.【变式1】(2019秋•江北区期末)如图,D是∠EAF平分线上的一点,若∠ACD+∠ABD=180°,请说明CD=DB的理由.【答案】略【解答】解:过点D分别作AE,AF的垂线,交AE于M,交AF于N则∠CMD=∠BND=90°,∵AD是∠EAF的平分线,∴DM=DN,∵∠ACD+∠ABD=180°,∠ACD+∠MCD=180°,∴∠MCD=∠NBD,在△CDM和△BDN中,∠CMD=∠BND=90°,∠MCD=∠NBD,DM=DN,∴△CDM≌△BDN,∴CD=DB.【变式2】(2019秋•百色期末)如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.【答案】(1)略(2)BE=1,AE=4.【解答】(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.【例2】(2019秋•奉化区期末)如图,已知AC∥BD,AE,BE分别平分∠CAB和∠DBA,点E在线段CD上.(1)求∠AEB的度数;(2)求证:CE=DE.【答案】(1)∠AEB=90°(2)ED=CE【解答】解:(1)∵AC∥BD,∴∠CAB+∠ABD=180°.∵AE平分∠CAB,∴∠EAB=∠CAB.同理可得∠EBA=∠ABD.∴∠EAB+∠EBA=90°,∴∠AEB=90°;(2)如图,在AB上截取AF=AC,连接EF,在△ACE和△AFE中,∴△ACE≌△AFE(SAS).∴CE=FE,∠CEA=∠FEA.∵∠CEA+∠DEB=90°,∠FEA+∠FEB=90°,∴∠DEB=∠FEB.在△DEB和△FEB中∴△DEB≌△FEB(ASA).∴ED=EF.∴ED=CE.【变式1】(2020秋•渑池县期末)(1)如图①,在Rt△ABC中,∠C=90°,∠B=45°,AD平分∠BAC,交BC于点D.如果作辅助线DE⊥AB于点E,则可以得到AC、CD、AB三条线段之间的数量关系为;(2)如图,△ABC中,∠C=2∠B,AD平分∠BAC,交BC于点D.(1)中的结论是否仍然成立?若不成立,试说明理由;若成立,请证明.【答案】(1)AB=AC+CD(2)略【解答】解:(1)如图1,∵AD平分∠BAC,∴∠CAD=∠EAD,在△CAD和△EAD中,∴△CAD≌△EAD(AAS),∴CD=DE,AC=AE,∵∠B=45°,∠DEB=90°,∴DE=EB,∴DC=BE,∴AE+BE=AC+DC=AB;故答案为:AB=AC+CD.(2)成立.证明:如图2,在AB上截取AE=AC,连接DE.∵在△ACD和△AED中,∴△ACD≌△AED(SAS),∴CD=ED,∠C=∠AED,又∵∠C=2∠B,∴∠AED=2∠B,又∵∠AED=∠B+∠EDB,∴2∠B=∠B+∠EDB,∴∠B=∠EDB,∴ED=EB∵AB=AE+EB,ED=EB=CD,AE=AC,∴AB=AC+CD.【例3】(2019秋•广州期中)如图,在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点D.(1)求证:点D到三边AB、BC、CA所在直线的距离相等;(2)连接AD,若∠BDC=40°,求∠DAC的度数.【答案】(1)略(2)∠DAC=50°【解答】(1)证明:如图,过点D作三边AB、BC、CA所在直线的垂线,垂足分别是Q、M、N.则垂线段DQ、DM、DN,即为D点到三边AB、BC、CA所在直线的距离.∵D是∠ABC的平分线BD上的一点,∴DM=DQ.∵D是∠ACM的平分线CD上的一点,∴DM=DN.∴DQ=DM=DN.∴D点到三边AB、BC、CA所在直线的距离相等.(2)解:连接AD,∵∠DCG是△BCD的外角,∴∠DCG=∠DBC+∠BDC,∵∠ACG△ABC的外角∴∠ACG=∠ABC+∠BAC,∴2∠BDC=∠BAC,∵∠BDC=40°,∴∠BAC=80°,∠EAC=100°,由(1)可得DQ=DN,∴AD平分∠EAC,∴∠DAC=EAC=50°.【变式3】(2020秋•贵港期中)如图,BD和CD分别平分△ABC的内角∠EBA和外角∠ECA,BD交AC于点F,连接AD.(1)求证:∠BDC=;(2)若AB=AC,请判断△ABD的形状,并证明你的结论.【答案】(1)略(2)△ABD是等腰三角形【解答】(1)证明:∵BD和CD分别平分△ABC的内角∠EBA和外角∠ECA,∴∠ABC=2∠DBC,∠ACE=2∠DCE,∵∠ACE=∠BAC+∠ABC,∠DCE=∠BDC+∠DBC,∴2∠DCE=2∠BDC+2∠DBC,∴∠BAC=2∠BDC,即∠BDC=∠BAC;(2)△ABD是等腰三角形,证明:∵AB=AC,∴∠ABC=∠ACB,过D作DQ⊥AB于Q,DR⊥BC于R,DW⊥AC于W,∵BD和CD分别平分△ABC的内角∠EBA和外角∠ECA,∴DQ=DR,DW=DR,∴DQ=DW,∵DQ⊥AB,DW⊥AC,∴∠GAC=2∠GAD=2∠CAD,∵∠GAC=∠ABC+∠ACB,∴∠GAD=∠ABC,∴AD∥BC,∴∠ADB=∠DBC,∵∠ABD=∠DBC,∴∠ADB=∠ABD,∴AB=AD,即△ABD是等腰三角形.【跟踪训练】1.(2020秋•西城区校级期中)如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.【答案】略【解答】证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,∵BD平分∠ABC,∴DE=DF,∠DEC=∠F=90°,在RtCDE和Rt△ADF中,,∴Rt△CDE≌Rt△ADF(HL),∴∠F AD=∠C,∴∠BAD+∠C=∠BAD+∠F AD=180°.2.(2018秋•镇原县期中)如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.【答案】(1)略(2)略(3)略【解答】证明:(1)过点O作OE⊥AC于E,∵∠ABD=90゜,OA平分∠BAC,∴OB=OE,∵点O为BD的中点,∴OB=OD,∴OE=OD,∴OC平分∠ACD;(2)在Rt△ABO和Rt△AEO中,,∴Rt△ABO≌Rt△AEO(HL),∴∠AOB=∠AOE,同理求出∠COD=∠COE,∴∠AOC=∠AOE+∠COE=×180°=90°,∴OA⊥OC;(3)∵Rt△ABO≌Rt△AEO,∴AB=AE,同理可得CD=CE,∵AC=AE+CE,∴AB+CD=AC.3.(2020春•南岸区期末)在∠MAN内有一点D,过点D分别作DB⊥AM,DC⊥AN,垂足分别为B,C.且BD=CD,点E,F分别在边AM和AN上.(1)如图1,若∠BED=∠CFD,请说明DE=DF;(2)如图2,若∠BDC=120°,∠EDF=60°,猜想EF,BE,CF具有的数量关系,并说明你的结论成立的理由.【答案】(1)略(2)略【解答】解:(1)∵DB⊥AM,DC⊥AN,∴∠DBE=∠DCF=90°,在△BDE和△CDF中,∵∴△BDE≌△CDF(AAS).∴DE=DF;(2)EF=FC+BE,理由:过点D作∠CDG=∠BDE,交AN于点G,在△BDE和△CDG中,,∴△BDE≌△CDG(ASA),∴DE=DG,BE=CG.∵∠BDC=120°,∠EDF=60°,∴∠BDE+∠CDF=60°.∴∠FDG=∠CDG+∠CDF=60°,∴∠EDF=∠GDF.在△EDF和△GDF中,,∴△EDF≌△GDF(SAS).∴EF=GF,∴EF=FC+CG=FC+BE.4.(2020秋•常熟市期中)如图,△ABC中,点D在BC边上,∠BAD=100°,∠ABC的平分线交AC于点E,过点E作EF⊥AB,垂足为F,且∠AEF=50°,连接DE.(1)求∠CAD的度数;(2)求证:DE平分∠ADC;(3)若AB=7,AD=4,CD=8,且S△ACD=15,求△ABE的面积.【答案】(1)略(2)△ABE的面积=.【解答】(1)解:∵EF⊥AB,∠AEF=50°,∴∠F AE=90°﹣50°=40°,∵∠BAD=100°,∴∠CAD=180°﹣100°﹣40°=40°;(2)证明:过点E作EG⊥AD于G,EH⊥BC于H,∵∠F AE=∠DAE=40°,EF⊥BF,EG⊥AD,∴EF=EG,∵BE平分∠ABC,EF⊥BF,EH⊥BC,∴EG=EH,∵EG⊥AD,EH⊥BC,∴DE平分∠ADC;(3)解:∵S△ACD=15,∴×AD×EG+×CD×EH=15,即×4×EG+×8×EG=15,解得,EG=EH=,∴EF=EH=,∴△ABE的面积=×AB×EF=×7×=.5.(2013•长汀县校级模拟)观察、猜想、探究:在△ABC中,∠ACB=2∠B.(1)如图①,当∠C=90°,AD为∠BAC的角平分线时,求证:AB=AC+CD;(2)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【答案】(1)略(2)略(3)略【解答】解:(1)过D作DE⊥AB,交AB于点E,如图1所示,∵AD为∠BAC的平分线,DC⊥AC,DE⊥AB,在Rt△ACD和Rt△AED中,AD=AD,DE=DC,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∠ACB=∠AED,∵∠ACB=2∠B,∴∠AED=2∠B,又∵∠AED=∠B+∠EDB,∴∠B=∠EDB,∴BE=DE=DC,则AB=BE+AE=CD+AC;(2)AB=CD+AC,理由为:在AB上截取AG=AC,如图2所示,∵AD为∠BAC的平分线,∴∠GAD=∠CAD,∵在△ADG和△ADC中,,∴△ADG≌△ADC(SAS),∴CD=DG,∠AGD=∠ACB,∵∠ACB=2∠B,∴∠AGD=2∠B,又∵∠AGD=∠B+∠GDB,∴∠B=∠GDB,∴BE=DG=DC,则AB=BG+AG=CD+AC;(3)AB=CD﹣AC,理由为:在AF上截取AG=AC,如图3所示,∵AD为∠F AC的平分线,∴∠GAD=∠CAD,∵在△ADG和△ACD中,,∴△ADG≌△ACD(SAS),∴CD=GD,∠AGD=∠ACD,即∠ACB=∠FGD,∵∠ACB=2∠B,∴∠FGD=2∠B,又∵∠FGD=∠B+∠GDB,∴∠B=∠GDB,∴BG=DG=DC,则AB=BG﹣AG=CD﹣AC.。

人教版初中数学八上 微专题11 构造全等三角形的方法一——角平分线与垂线

人教版初中数学八上 微专题11 构造全等三角形的方法一——角平分线与垂线

(2)过点A作AD⊥x轴,垂足为D,过点C作CE⊥AD,垂足为E. 同(1)可证△ACE≌△BAD, ∴AE=BD,CE=AD. ∵点A,B的坐标分别为A(1,3),B(-1,0), ∴BD=2,AD=3, ∴CE=3,AE=2,∴DE=AD-AE=1, ∴点C的坐标为(4,1).
OM+ON的长是否发生变化?请说明理由. 解:OM+ON的长不变.理由如下: 由母题知△PEM≌△PFN,∴ME=NF. 易证△EPO≌△FPO,∴OE=OF, ∴OM+ON=OE+EM+ON=OE+NF+ON=OE+OF=2OE,∴OM+ON的长 不变.
类型二 利用垂线构造全等三角形 方法点拨:如图,若AB=AC,AB⊥AC,则可分别过斜边的两端点B,C向过点A 的直线作垂线构造△ABD≌△CAE.在平面直角坐标系中,过顶点A的直线常为x 轴或y轴.
2.已知在△ABC中,∠BAC=90°,AB=AC,将△ABC放在平面直角坐标系中.
(1)如图1,若点A,B的坐标分别为A(1,0),B(0,3),求点C的坐标; (2)如图2,若点A,B的坐标分别为A(1,3),B(-1,0),求点C的坐标.
图1
图2
解:(1)过点C作CD⊥x轴,垂足为D, ∴∠CDA=90°=∠AOB,∴∠CAD+∠ACD=90°. ∵∠BAC=90°,∴∠BAO+∠CAD=90°, ∴∠BAO=∠ACD. ∵AB=CA,∴△ABO≌△CAD(AAS), ∴BO=AD,OA=DC. ∵点A,B的坐标分别为A(1,0),B(0,3), ∴OA=1,OB=3, ∴AD=3,CD=1,∴OD=OA+AD=4, ∴点C的坐标为(4,1).
微专题11 构造全等三角形的方法 一——角平分线与垂线
类型一 利用角平分线构造全等三角形 方法点拨:因为角平分线本身已经具备全等三角形的三个条件中的两个(角相等 和公共边相等),故在处理角平分线问题时,常作以下辅助线构造全等三角形: (1)在角的两边截取两条相等的线段;(2)过角平分线上的一点作角两边的垂 线段.

中考数学总复习《借助角平分线构造全等三角形》专题(含答案)

中考数学总复习《借助角平分线构造全等三角形》专题(含答案)

借助角平分线构造全等三角形一 、填空题1.如图,ABC △中,AD 平分BAC ∠,AB BD AC +=,则:B C ∠∠= .二 、解答题2.如图,在ABC △中,AC BC =,90ACB ∠=︒,D 是AC 上一点,AE BD ⊥交BD 的延长线于E ,且12AE BD =.求证:BD 是ABC ∠的角平分线.3.在ABC ∆中,AB AC >,AD 是BAC ∠的平分线.P 是AD 上任意一点.求证:AB AC PB PC ->-.4.如图,P 是ABC ∆的外角EAC ∠的平分线AD 上的点(不与A 重合)求证:PB PC AB AC +>+ABDDCBAEDECBAF ABCEDDPCBAEDPCBAEDP CBAF EDP C BA5.如图,在ABC △中,2B C ∠=∠,AD 为BAC ∠的平分线.求证:AC AB BD =+.6.如图,已知ABC △中,90BAC ︒∠=,AB AC =,BE 平分ABC ∠,CE BD ⊥ 求证:2BD CE =.7.如图,AC 平分BAD ∠,CE AB ⊥,且180B D ∠+∠=︒,求证:AE AD BE =+.8.如图,ABC △中,AD 平分BAC ∠,DG BC ⊥且平分BC ,DE AB ⊥于E ,DF AC⊥于F .(1)说明BE CF =的理由;(2)如果AB a =,AC b =,求AE BE 、的长.9.如图,BC BA >,BD 平分ABC ∠,且AD CD =,求证:180A C ∠+∠=︒.D C B A EAB C D DCBAFEDCBAFEDCBAE DCBAFE D CBAGFE DC BAGFEDC BAC DABEDCBA借助角平分线构造全等三角形答案解析一 、填空题1.2:1;【解析】根据角平分线的对称性,将ABD ∆翻折,如图,则AC AE EC AB EC =+=+,BD DE =,结合已知条件“AB BD AC +=”,可得BD DE EC ==,∴DEC ∆为等腰三角形思路二,可将ADC ∆进行翻折,分析略二 、解答题2.延长BC 、AE 交于F 点,先证明AFC BDC ≌△△()SAS ,得2AF BD AE ==,则AE FE =,再证ABE FBE ≌△△.【解析】结论要证明:“BD 是ABC ∠的角平分线”,而且已知条件中有“12AE BD =”,即“2BD AE =”因此可以通过沿BD 翻折“AEB ∆”构造“2AE ”,但是,问题在于“BD 是ABC ∠的角平分线”是我们所需要证明的结论,而并非已知条件,所以辅助线的描述方式为:“延长AE 、BC 交于点F ” 3.AD 为角平分线,将APC ∆沿AD 翻折,点C 落在点E ,连接PE ,则AE AC =,PE PC =,∴可以将问题“AB AC PB PC ->-”转化为“AB AE PB PE ->-”,则用PBE ∆三边关系很容易能够解决 4.在AE 上截取一点F 使得AF AC =,其他略【解析】AD 为角平分线,将APC ∆沿AD 翻折,点C 落在点F ,连接PF ,则AF AC =,PF PC =,∴可以将问题“PB PC AB AC +>+”转化为“PB PF AB AF +>+”,则用PBF ∆三边关系很容易能够解决5.思路一、如图,在AC 上截取AE AB =,连接DE ,可证ABD AED ∆∆≌()SAS ,因此可得AB AE =,BD DE =,B AED ∠=∠,∵2B C ∠=∠ ∴2AED C ∠=∠ ∴D C ∠=∠ ∴DE EC = ∴BD EC = ∴AC AB BD =+ 思路二、略【解析】辅助线:有两个基本思路,一是将ABD ∆沿AD 进行翻折,点B 落在点E ,主要目的:构造AC AE EC AB EC =+=+,因此可将问题顺利转化为证明:“BD EC =” 二是将ADC ∆沿AD 进行翻折,基本思路同“思路一”6.延长CE 与BA 的延长线交于点F ,因为BE 为角平分线和垂线,所以显然CE EF =即2CF CE =;证ABD ACF ≌△△,所以2BD CF BD CE ==,所以 【解析】有垂直和角平分线想等腰三角形7.过C 作AD 的垂线交AD 延长线于F ,BCE DCF BE DF ⇒=≌△△EAC FAC AE AF AE AD DF AD BE ⇒==+=+≌,所以△△8.(1)连接BD 、CD ,显然=BD DF ,因为AD 为角分线,所以DE DF =,BDE CDF ≌△△,所以BE CF =(2)显然AED AFD ≌△△,所以AE AF =,所以22a b a bBE AE -+==, 【解析】构造全等9.BC 上取BE AB =所以ABD EBD BED A ∠=∠≌,所以△△,又可证180C DEC BED DEC ︒∠=∠∠+∠=,又,所以180A C ︒∠+∠=.。

通过角平分线构造全等洋葱数学

通过角平分线构造全等洋葱数学

通过角平分线构造全等洋葱数学摘要:1.角平分线的定义和性质2.全等三角形的判定条件3.构造全等洋葱的方法4.具体步骤和实例演示5.应用场景和实用性正文:在我们的数学学习中,角平分线和全等三角形是两个重要的概念。

它们在几何构造中起着关键作用,尤其是利用角平分线性质构造全等三角形,这种方法在解决几何问题时具有很高的实用性。

下面我们将详细介绍如何通过角平分线构造全等洋葱数学。

首先,我们来了解一下角平分线的定义和性质。

角平分线是指从一个角的顶点出发,将这个角平分成两个相等的角的射线。

根据角平分线的性质,我们可以知道:角平分线上的点到角的两边的距离相等,且这两个距离的比值等于角平分线上的两个角的比值。

接下来,我们要了解全等三角形的判定条件。

两个三角形全等,当且仅当它们的对应边和对应角分别相等。

在几何学习中,我们通常会用“ASA”(角-边-角)、“SAS”(边-角-边)、“SSS”(边-边-边)等条件来判定两个三角形全等。

现在,我们来探讨如何利用角平分线构造全等洋葱。

首先,画出一个任意的三角形ABC,并作角平分线AD。

然后,在AD上选取一点E,使AE=ED。

接着,连接BE和CE。

此时,我们得到了两个三角形ABE和ACD,它们具有以下性质:1.∠BAE = ∠CAD(因为AE是∠BAC的平分线)2.∠ABE = ∠ACD(同理,BE是∠ABC的平分线)3.AB = AC(因为AE = ED)根据上述性质,我们可以得出结论:三角形ABE和ACD是全等的(记为△ABE≌△ACD)。

这个构造过程就是通过角平分线得到全等三角形的一个实例。

那么,这种构造方法在实际应用中有什么好处呢?首先,利用角平分线构造全等三角形可以简化问题的处理过程,使得证明全等三角形变得更加直观。

其次,这种方法可以帮助我们更好地理解几何图形的性质,从而提高解题效率。

此外,角平分线性质在解决三角形问题中的应用非常广泛,如证明线段相等、角平分线定理等。

2023年中考数学常见几何模型全归纳之模型 角平分线的基本模型(一)全等类(解析版)

2023年中考数学常见几何模型全归纳之模型  角平分线的基本模型(一)全等类(解析版)

专题07 角平分线的重要模型(一)全等类角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各大模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,本专题就角平分线的全等类模型作相应的总结,需学生反复掌握。

模型1.角平分线构造轴对称模型(角平分线+截线段等)【模型解读与图示】已知如图1,OP为AOB∠的角平分线、PM不具备特殊位置时,辅助线的作法大都为在OB上截取ON OM=,连结PN即可.即有OMP∆≌ONP∆,利用相关结论解决问题.图1 图21.(2022·湖北十堰·九年级期末)在△ABC中,△ACB=2△B,如图①,当△C=90°,AD为△BAC的角平分线时,在AB上截取AE=AC,连结DE,易证AB=AC+CD.(1)如图②,当△C≠90°,AD为△BAC的角平分线时,线段AB,AC,CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(2)如图③,当AD为△ABC的外角平分线时,线段AB,AC,CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【答案】(1)AB AC CD=+;证明见解析;(2)AB AC CD+=;证明见解析.【分析】(1)首先在AB上截取AE=AC,连接DE,易证△ADE△△ADC(SAS),则可得△AED=△C,ED=CD,又由△AED=△ACB,△ACB=2△B,所以△AED=2△B,即△B=△BDE,易证DE=CD,则可求得AB=AC+CD;(2)首先在BA的延长线上截取AE=AC,连接ED,易证△EAD△△CAD,可得ED=CD,△AED=△ACD,又由△ACBAB∥CD⇒AB+CD=BCFDEBAC=2△B ,易证DE =EB ,则可求得AC +AB =CD .【详解】(1)猜想:AB AC CD =+. 证明:如图②,在AB 上截取AE AC =,连结DE ,△AD 为ABC 的角平分线时,△BAD CAD ∠=∠,△AD AD =,△()SAS ADE ADC ≌△△, △AED C ∠=∠,ED CD =,△2ACB B ∠=∠,△2AED B ∠=∠.△B EDB ∠=∠,△EB ED =,△EB CD =,△AB AE DE AC CD =+=+.(2)猜想:AB AC CD +=.证明:在BA 的延长线上截取AE AC =,连结ED .△AD 平分FAC ∠,△EAD CAD ∠=∠.在EAD 与CAD 中,AE AC =,EAD CAD ∠=∠,AD AD =,△EAD CAD ≌△△. △ED CD =,AED ACD ∠=∠.△FED ACB ∠=∠.又2ACB B ∠=∠,FED B EDB ∠=∠+∠,EDB B ∠=∠.△EB ED =.△EA AB EB ED CD +===.△AC AB CD +=.【点睛】此题考查三角形综合题、全等三角形的判定与性质、等腰三角形的判定、角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.2.(2022·山东烟台·九年级期末)已知在ABC 中,满足2ACB B ∠=∠,(1)【问题解决】如图1,当90C ∠=︒,AD 为BAC ∠的角平分线时,在AB 上取一点E 使得AE AC =,连接DE ,求证:AB AC CD =+.(2)【问题拓展】如图2,当90C ∠≠︒,AD 为BAC ∠的角平分线时,在AB 上取一点E 使得AE AC =,连接DE ,(1)中的结论还成立吗?若成立,请你证明:若不成立,请说明理由.(3)【猜想证明】如图3,当AD 为ABC 的外角平分线时,在BA 的延长线上取一点E 使得AE AC =,连接DE ,线段AB 、AC 、CD 又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明. 【答案】(1)证明见解析(2)成立,证明见解析(3)猜想AB AC CD +=,证明见解析【分析】(1)先根据SAS 定理证出AED ACD ≅,根据全等三角形的性质可得ED CD =,AED ACD ∠=∠,再根据三角形的外角性质可得45B BDE ∠=∠=︒,然后根据等腰三角形的判定可得EB ED =,从而可得EB CD =,最后根据线段和差、等量代换即可得证;(2)先根据SAS 定理证出AED ACD ≅,根据全等三角形的性质可得ED CD =,AED C ∠=∠,再根据三角形的外角性质可得B BDE ∠=∠,然后根据等腰三角形的判定可得EB ED =,从而可得EB CD =,最后根据线段和差、等量代换即可得证;(3)先根据SAS 定理证出AED ACD ≅,根据全等三角形的性质可得ED CD =,AED ACD ∠=∠,从而可得FED ACB ∠=∠,再根据三角形的外角性质可得B BDE ∠=∠,然后根据等腰三角形的判定可得EB ED =,从而可得EB CD =,最后根据线段和差、等量代换即可得证.证明:△AD 为BAC ∠的角平分线,△EAD CAD ∠=∠,在AED 与ACD △中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,△()AED ACD SAS ≅,△ED CD =,AED ACD ∠=∠,又△90ACB ∠=︒,2ACB B ∠=∠,△45B ∠=︒,90AED ∠=︒,△45AED BDE B ∠=∠=∠-︒,△B BDE ∠=∠,△EB ED =,△EB CD =,△AB AE EB AC CD =+=+.(2)解:(1)中的结论还成立,证明如下:△AD 为BAC ∠的角平分线时,△EAD CAD ∠=∠,在AED 与ACD △中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,△()AED ACD SAS ≅,△AED C ∠=∠,ED CD =,△2ACB B ∠=∠,△2AED B ∠=∠,又△AED B EDB ∠=∠+∠,△B EDB ∠=∠,△EB ED =,△EB CD =,△AB AE EB AC CD =+=+.解:猜想AB AC CD+=,证明如下:△AD平分EAC∠,△EAD CAD∠=∠,在AED与ACD△中,AE ACEAD CAD AD AD=⎧⎪∠=∠⎨⎪=⎩,△()AED ACD SAS≅,△ED CD=,AED ACD∠=∠,如图,△180180AED ACD︒-∠=︒-∠,即FED ACB∠=∠,△2ACB B∠=∠,△2FED B∠=∠,又△FED B EDB∠=∠+∠,△EDB B∠=∠,△EB ED=,△AB AE EB ED CD+===,△AB AC CD+=.【点睛】本题主要考查了三角形全等的判定与性质、等腰三角形的判定,熟练掌握三角形全等的判定方法是解题关键.3.(2022·浙江·九年级期中)(1)如图1,在△ABC中,△ACB=2△B,△C=90°,AD为△BAC的平分线交BC 于D,求证:AB=AC+CD.(提示:在AB上截取AE=AC,连接DE)(2)如图2,当△C≠90°时,其他条件不变,线段AB、AC、CD又有怎样的数量关系,直接写出结果,不需要证明.(3)如图3,当△ACB≠90°,△ACB=2△B ,AD为△ABC的外角△CAF的平分线,交BC的延长线于点D,则线段AB、AC、CD又有怎样的数量关系?写出你的猜想,并加以证明.【答案】(1)见解析;(2)AB=AC+CD;(3)AB=CD﹣AC【分析】(1)在AB上截取AE=AC,连接DE,根据角平分线的定义得到△1=△2.推出△ACD△△AED(SAS).根据全等三角形的性质得到△AED=△C=90,CD=ED,根据已知条件得到△B=45°.求得△EDB=△B=45°.得到DE=BE,等量代换得到CD=BE.即可得到结论;(2)在AC取一点E使AB=AE,连接DE,易证△ABD△△AED,所以△B=△AED,BD=DE,又因为△B=2△C,所以△AED=2△C,因为△AED是△EDC的外角,所以△EDC=△C,所以ED=EC,BD=EC,进而可证明AB+BD=AE+EC=AC;(3)在AB的延长线AF上取一点E,使得AE=AC,连接DE.证明△ACD△△AED,根据全等三角形的性质得到DE=BE,BE=CD,即可得出结论.【详解】(1)证明:在AB上取一点E,使AE=AC△AD为△BAC的平分线△△BAD=△CAD.在△ACD和△AED中,AE AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩△△ACD △△AED (SAS ).△△AED =△C =90°,CD =ED ,又△△ACB =2△B ,△C =90°,△△B =45°. △△EDB =△B =45°.△DE =BE , △CD =BE .△AB =AE +BE , △AB =AC +CD .(2)证明:在AB 取一点E 使AC=AE ,在△ACD 和△AED 中,AC AE BAD EAD AD AD ===⎧⎪∠∠⎨⎪⎩, △△ACD△△AED ,△△C=△AED ,CD=DE ,又△△C=2△B ,△△AED=2△B ,△△AED 是△EDC 的外角,△△EDB=△B ,△ED=EB ,△CD=EB ,△AB=AC+CD ;(3)猜想:AB =CD ﹣AC证明:在BA 的延长线上取一点E ,使得AE =AC ,连接DE ,在△ACD和△AED中,AC AECAD EADAD AD=⎧⎪∠=∠⎨⎪=⎩,△△ACD△△AED(SAS),△△ACD=△AED,CD=DE,△△ACB=△FED,又△△ACB=2△B△△FED=2△B,又△△FED=△B+△EDB,△△EDB=△B,△DE=BE,△BE=CD,△AB=BE-AE△AB=CD﹣AC.【点睛】本题考查全等三角形的判定和性质,关于线段和差关系的证明,通常采用截长补短法. 4.(2022·北京九年级专题练习)在四边形ABDE中,C是BD边的中点.(1)如图(1),若AC平分BAE∠,90ACE∠=︒,则线段AE、AB、DE的长度满足的数量关系为______;(直接写出答案)(2)如图(2),AC平分BAE∠,EC平分AED∠,若120ACE∠=︒,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明.【答案】(1)AE=AB+DE;(2)AE=AB+DE+12BD,证明见解析.【分析】(1)在AE上取一点F,使AF=AB,由三角形全等的判定可证得△ACB≌△ACF,根据全等三角形的性质可得BC=FC,∠ACB=∠ACF,根据三角形全等的判定证得△CEF≌△CED,得到EF=ED,再由线段的和差可以得出结论;(2)在AE上取点F,使AF=AB,连结CF,在AE上取点G,使EG=ED,连结CG,根据全等三角形的判定证得△ACB≌△ACF和△ECD≌△ECG,由全等三角形的性质证得CF=CG,进而证得△CFG是等边三角形,就有FG=CG=12BD,从而可证得结论.【详解】解:(1)如图(1),在AE上取一点F,使AF=AB.∵AC平分∠BAE,∴∠BAC=∠FAC.在△ACB和△ACF中,AB AFBAC FACAC AC⎧⎪∠∠⎨⎪⎩===∴△ACB≌△ACF(SAS).∴BC=FC,∠ACB=∠ACF.∵C是BD边的中点,∴BC=CD.∴CF=CD.∵∠ACE=90°,∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°.∴∠ECF=∠ECD.在△CEF和△CED中,CF CDECF ECDCE CE⎧⎪∠∠⎨⎪⎩===∴△CEF≌△CED(SAS).∴EF=ED.∵AE=AF+EF,∴AE=AB+DE.故答案为:AE=AB+DE;(2)AE=AB+DE+12BD.证明:如图(2),在AE上取点F,使AF=AB,连结CF,在AE上取点G,使EG=ED,连结CG.∵C 是BD 边的中点,∴CB =CD =12BD .∵AC 平分∠BAE ,∴∠BAC =∠FAC . 在△ACB 和△ACF 中,AB AF BAC FAC AC AC ⎧⎪∠∠⎨⎪⎩===∴△ACB ≌△ACF (SAS ).∴CF =CB ,∠BCA =∠FCA .同理可证:△ECD ≌△ECG ∴CD =CG ,∠DCE =∠GCE .∵CB =CD ,∴CG =CF .∵∠ACE =120°,∴∠BCA +∠DCE =180°−120°=60°.∴∠FCA +∠GCE =60°.∴∠FCG =60°.∴△FGC 是等边三角形.∴FG =FC =12BD .∵AE =AF +EG +FG ,∴AE =AB +DE +12BD .【点睛】本题主要考查了全等三角形的判定与性质的运用,能熟练应用三角形全等的判定和性质是解决问题的关键.模型2.角平分线垂两边(角平分线+外垂直)【模型解读与图示】已知如图1,OP 为OAB ∠的角平分线、PM OA ⊥于点M 时,辅助线的作法大都为过点P 作PN OB ⊥即可.即有PM PN =、OMP ∆≌ONP ∆等,利用相关结论解决问题.图1 图2 图3邻等对补模型:已知如图2,AP 是∠CAB 的角平分线,EP =DP辅助线:过点P 作PG ⊥AC 、PF ⊥AB结论:①︒=∠+∠180EPD BAC (D P E A 、、、四点共圆);②EG DF =;③DF AE AD 2+= 1.(2022·北京·中考真题)如图,在ABC ∆中,AD 平分,.BAC DE AB ∠⊥若2,1,AC DE ==则ACD S ∆=____. D B【答案】1【分析】作DF AC ⊥于点F ,由角平分线的性质推出1DF DE ==,再利用三角形面积公式求解即可.【详解】解:如图,作DF AC ⊥于点F ,△AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,△1DF DE ==, △1121122ACD S AC DF ∆=⋅=⨯⨯=.故答案为:1. 【点睛】本题考查角平分线的性质,通过作辅助线求出三角形ACD 中AC 边的高是解题的关键. 2.(2022·山东泰安·中考真题)如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =( )A .40°B .45°C .50°D .60°【答案】C 【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP =∠FAP ,即可得出答案.【详解】解:延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD =x °,∵CP 平分∠ACD ,∴∠ACP =∠PCD =x °,PM =PN ,∵BP 平分∠ABC ,∴∠ABP =∠PBC ,PF =PN ,∴PF =PM ,∵∠BPC =40°,∴∠ABP =∠PBC =∠PCD ﹣∠BPC =(x ﹣40)°,∴∠BAC =∠ACD ﹣∠ABC =2x °﹣(x °﹣40°)﹣(x °﹣40°)=80°,∴∠CAF =100°,在Rt △PFA 和Rt △PMA 中,{PA PAPM PF ==,∴Rt △PFA ≌Rt △PMA (HL ),∴∠FAP =∠PAC =50°.故选C .【点睛】本题考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM =PN =PF 是解题的关键.3.(2022·江苏扬州·中考真题)如图,在ABCD 中,BE 、DG 分别平分ABC ADC ∠∠、,交AC 于点E G 、.(1)求证:,BE DG BE DG =∥;(2)过点E 作EF AB ⊥,垂足为F .若ABCD 的周长为56,6EF =,求ABC ∆的面积. 【答案】(1)见详解(2)84【分析】(1)由平行四边形的性质证()ABE CDG ASA ∆≅∆即可求证;(2)作EQ BC ⊥,由ΔΔΔABC ABE EBC S S S =+即可求解;(1)证明:在ABCD 中,△//AB CD ,△BAE DCG ∠=∠,△BE 、DG 分别平分ABC ADC ∠∠、,ABC ADC ∠=∠,△ABE CDG ∠=∠,在ABE ∆和CDG ∆中,△ABCD的周长为AB BC+=BE平分∠EQ EF=ABCS S∆∆=4.(2022·河北·九年级专题练习)已知OP平分△AOB,△DCE的顶点C在射线OP上,射线CD交射线OA 于点F,射线CE交射线OB于点G.(1)如图1,若CD△OA,CE△OB,请直接写出线段CF与CG的数量关系;(2)如图2,若△AOB=120°,△DCE=△AOC,试判断线段CF与CG的数量关系,并说明理由.【答案】(1)CF =CG ;(2)CF =CG ,见解析【分析】(1)结论CF =CG ,由角平分线性质定理即可判断.(2)结论:CF =CG ,作CM △OA 于M ,CN △OB 于N ,证明△CMF △△CNG ,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF =CG ;证明:△OP 平分△AOB ,CF △OA ,CG △OB ,△CF =CG (角平分线上的点到角两边的距离相等);(2)CF =CG .理由如下:如图,过点C 作CM △OA ,CN △OB ,△OP 平分△AOB ,CM △OA ,CN △OB ,△AOB =120°,△CM =CN (角平分线上的点到角两边的距离相等),△△AOC =△BOC =60°(角平分线的性质),△△DCE =△AOC ,△△AOC =△BOC =△DCE =60°,△△MCO =90°-60° =30°,△NCO =90°-60° =30°,△△MCN =30°+30°=60°,△△MCN =△DCE ,△△MCF =△MCN -△DCN ,△NCG =△DCE -△DCN ,△△MCF =△NCG ,在△MCF 和△NCG 中,CMF CNG CM CNMCF NCG ∠=∠⎧⎪=⎨⎪∠=∠⎩△△MCF △△NCG (ASA ),△CF =CG (全等三角形对应边相等).【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等.模型3.角平分线垂中间(角平分线+内垂直)【模型解读与图示】已知如图1,OP 为AOB ∠的角平分线,PM OP ⊥于点P 时,辅助线的作法大都为延长MP 交OB 于点N 即可。

初中数学 如何利用角的平分线定理证明两个三角形全等

初中数学 如何利用角的平分线定理证明两个三角形全等

初中数学如何利用角的平分线定理证明两个三角形全等要利用角的平分线定理证明两个三角形全等,需要使用其他定理和性质来辅助证明。

以下是一种常见的方法:设有两个三角形ABC和DEF,我们要证明它们全等。

1. 首先,通过角的平分线定理,假设角A和角D的平分线相交于点G。

这意味着角AGB和角DGB是相等的,角AGC和角DGC也是相等的。

2. 接下来,我们需要找到三角形ABC和DEF中的其他相等角或相等边。

可以利用以下定理和性质来辅助证明:a. 三角形内角和定理:三角形的内角和等于180度。

通过计算角A、角B、角C和角D、角E、角F的和,可以确定它们是否相等。

b. 三角形的对应边比例:如果可以确定三角形ABC和DEF的某些边的比例,可以通过比较对应边的长度来判断它们是否相等。

c. 其他已知的三角形全等条件,如SSS、SAS、ASA、AAS等。

3. 利用已知的角和边的相等关系,结合三角形的全等条件,进行推理和证明。

例如,如果已知角A和角D相等,边AB和边DE相等,还可以找到其他相等的角或边,那么可以使用ASA或SAS条件来证明三角形ABC和DEF全等。

4. 在证明过程中,需要注意使用正确的推理步骤和准确的符号表示。

使用符号表示角相等、边相等等的关系,以及使用等号和全等号来表示相等和全等关系。

5. 最后,根据推理和证明的结果,得出结论:三角形ABC和DEF全等。

需要注意的是,证明两个三角形全等时,可能需要使用多个定理和性质,以及进行一系列的推理和计算。

在证明过程中,要注意严谨性和逻辑性,确保每个步骤都是可靠和正确的。

总结起来,利用角的平分线定理证明两个三角形全等,需要使用其他定理和性质来辅助证明,通过对角和边的相等关系进行推理和计算,最终得出结论:三角形ABC和DEF全等。

小专题(三) 构造全等三角形的常用方法

小专题(三)  构造全等三角形的常用方法
证明:在BC上截取BF=AB,连接EF. ∵BE平分∠ABC,CE平分∠BCD, ∴∠ABE=∠FBE,∠FCE=∠DCE. 在△ABE和△FBE中,
AB=FB, ∠ABE=∠FBE, BE=BE,
∴△ABE≌△FBE(SAS). ∴∠A=∠BFE.
∵AB∥CD, ∴∠A+∠D=180°. ∴∠BFE+∠D=180°. ∵∠BFE+∠CFE=180°, ∴∠CFE=∠D. 在△FCE和△DCE中,
方法2 利用“截长补短法”构造全等三角形
截长补短法的具体做法:在某一条线段上截取一条线 段与特定线段相等,或将某条线段延长,使之与特定线段 相等,再利用三角形全等的有关性质加以说明.这种方法 适用于证明线段的和、差、倍、分等题目.
2.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,点 E在AD上,求证:BC=AB+CD.
∠CFE=∠D, ∠FCE=∠DCE, CE=CE,
∴△FCE≌△DCE(AAS). ∴CF=CD. ∴BC=BF+CF=AB+CD.
3.(德州中考)问题背景: 如图1,在四边形ABCD中,AB=AD,∠BAD=120°, ∠B=∠ADC=90°.点E,F分别是BC,CD上的点,且 ∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系. (1)小王同学探究此问题的方法是:延长FD到点G,使 DG=BE,连接AG.先证明△ABE≌△ADG,再证明 △AEF≌△AGF,可得出结论,他的结论应是 EF=BE+DF;
(2) 如图 2,若在四边形 ABCD 中,AB=AD, ∠B+∠D=180°.E,F 分别是 BC,CD 上的点,
且∠EAF=12∠BAD,上述结论是否仍然成立?并说明理由. 解:EF=BE+DF仍然成立. 理由:延长FD到G,使DG=BE,连接AG, ∵∠B+∠ADC=180°,∠ADC+∠ADG=180°, ∴∠B=∠ADG. 在△ABE和△ADG中,

运用角平分线性质构造三角形全等

运用角平分线性质构造三角形全等

运用角平分线性质构造三角形全等'角平分线上的点到这个角两边距离相等'是角平分线一个简单而又重要的性质定理.运用用个性质定理可以解决许多具有一定难度的几何题.例如图1,已知△ABC中,AB>AC,∠BAC的外角平分线交外接圆于点D,过点D作DF⊥AB于F.求证:AB-AC=2AF.分析:此题曾经是全国初中数学联赛试题,初看似有一定的难度,但如果善于联想,问题解决并不难.首先注意到D是角平分线上的点,DF⊥AB,联想到定理:角平分线上的点到这个角两边距离相等.为了利用这个定理,作DE⊥直线CA,交CA延长线于点E,则DE=DF(如图2).再考虑到点A、B、C、D四点都在圆上,所以连接BD,可得圆内接四边形ACBD,从而可利用'圆内接四边形外角等于它的内对角',得∠DAE=∠DBC.因为∠DAE=∠DAB,所以∠DAB=∠DBC,所以弧BD=弧CD,因此,连接DC,可得BD=DC.注意到△BDF与△CDE中,BD=CD,DF=DE,根据'斜边直角边'定理,得△BDF≌△CDE,所以BF=CE,而BF=AB-AF,CE=AC+AE,所以AB-AF=AC+AE,所以AB-AC=AF+AE.显然,AE=AF,所以AB-AC=2AF.证明:连接DB、DC,作DE⊥直线CA,垂足为E.因为∠DAE=∠DAF,DF⊥AB,所以DE=DF,因为AD=AD,所以△ADE≌△ADF,所以AE=AF.因为四边形ACBD内接于圆,所以∠DAE=∠DBC,因为∠DAE=∠DAB,所以∠DAB=∠DBC,所以弧BD=弧CD,所以BD=DC.在Rt△BDF与Rt△CDE中,BD=CD,DF=DE,所以△BDF≌△CDE,所以BF=CE,因为BF=AB-AF,CE=AC+AE,所以AB-AF=AC+AE,所以AB-AC=AF+AE=AF+AF=2AF,所以AB-AC=2AF.从证明过程可以发现,本题获得解决的关键在于为了利用角平分线性质定理作出的辅助性DE,从而构造了全等三角形.这种思路方法在其他相关问题中都值得进行尝试.练习:1.如图3,△ABC中,AB>AC,∠ABC的外角平分线交外接圆于点D,DE⊥BC,交CB延长线于点E.BE=1,求AB-BC.(提示:过点D作DF⊥AB于F)2.如图4,圆内接△ABC中,AB=AC,D是弧BC上一点,DC>DB,AE⊥DC于E.求证:DC-DB=2CE.(提示:过点A作AF⊥BD交BD延长线于F)3. 如图5,△ABC中,∠BAC=60°,∠B、∠C的平分线BD、CE相交于点I,求证:ID=IE.(提示:连接I A,过点I分别作I P⊥AC于P,I Q⊥AB于Q)。

利用角平分线构造全等三角形典型题

利用角平分线构造全等三角形典型题

利用角平分线构造全等三角形典型题在数学的世界里,角平分线可真是个神奇的家伙。

你知道吗?它不仅仅是个线段,还能帮我们构造全等三角形,简直是数学界的“万金油”。

想象一下,有一天你在班里听到老师讲这个话题,心里可能会想:“这玩意儿跟我有什么关系?”但慢慢地,你就会发现,角平分线就像是一个聪明的小精灵,能把那些复杂的三角形问题变得简单易懂。

说到角平分线,首先得弄明白它是什么。

简单来说,角平分线就是从一个角的顶点出发,把这个角一分为二的那条线。

嘿,这可是个了不起的角色。

无论你是在解题,还是在做几何图形,角平分线总能让你变得轻松自如。

你可以把它想象成一个把复杂事物变简单的法宝,真的是一举两得。

当我们用角平分线来构造全等三角形时,别急,先来个小热身。

想象一下,两个三角形,A、B,分别有角A和角B。

我们只需要一条角平分线,把这个角平分成两个小角。

好啦,这时候就能看到两个小三角形在争先恐后地跑出来了,简直可爱得不行!这些小家伙的特征可多了:它们的边长一样,角度也相同,真是如同孪生兄弟。

想想看,这样的构造不仅好看,还特别实用。

咱们来聊聊具体的步骤。

找好一个角,拿起你的直尺,轻轻一划,就得到了那条神秘的角平分线。

然后,你可以利用这个角平分线分别连接角的两边,形成两条新的边,乖乖,这时候,你就会发现两个全等的三角形在眼前逐渐成型,简直像是魔术表演一样,令人目不暇接!这不就是数学中的“变魔术”吗?这个过程还不止于此。

我们可以用角平分线来解决很多问题,比如测量、绘图等等。

听着都觉得高大上,对吧?想象一下,今天你在做家庭作业,正遇到一道棘手的几何题,心里就像打翻了五味瓶,百感交集。

这时,突然想到用角平分线,哇,恍若拨云见日,前路明朗,简直就是“豁然开朗”啊!利用这条线,能把你的思路理顺,真是一箭双雕。

在做这些的时候,偶尔也会有些小插曲。

比如,手一抖,角平分线画得不太好,搞得自己“心烦意乱”。

这时候,你得提醒自己,慢慢来,别急。

专题06 全等模型-角平分线模型(解析版)

专题06 全等模型-角平分线模型(解析版)

专题06全等模型-角平分线模型角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各类模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,本专题就角平分线的几类全等模型作相应的总结,需学生反复掌握。

模型1.角平分线垂两边(角平分线+外垂直)【模型解读与图示】条件:如图1,OC 为AOB ∠的角平分线、CA OA ⊥于点A 时,过点C 作CA OB ⊥.结论:CA CB =、OAC ∆≌OBC ∆.图1图2常见模型1(直角三角形型)条件:如图2,在ABC ∆中,90C ∠=︒,AD 为CAB ∠的角平分线,过点D 作DE AB ⊥.结论:DC DE =、DAC ∆≌DAE ∆.(当ABC ∆是等腰直角三角形时,还有AB AC CD =+.)图3常见模型2(邻等对补型)条件:如图3,OC 是∠COB 的角平分线,AC =BC ,过点C 作CD ⊥O A 、CE ⊥OB 。

结论:①180BOA ACB ∠+∠=︒;②AD BE =;③2OA OB AD =+.例1.(2022·北京·中考真题)如图,在ABC ∆中,AD 平分,.BAC DE AB ∠⊥若2,1,AC DE ==则ACD S ∆=____.【答案】1【分析】作DF AC ⊥于点F ,由角平分线的性质推出1DF DE ==,再利用三角形面积公式求解即可.【详解】解:如图,作DF AC ⊥于点F ,∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,∴1DF DE ==,∴1121122ACD S AC DF ∆=⋅=⨯⨯=.故答案为:1.【点睛】本题考查角平分线的性质,通过作辅助线求出三角形ACD 中AC 边的高是解题的关键.例2.(2022·山东泰安·中考真题)如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =()A .40°B .45°C .50°D .60°【答案】C 【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP =∠FAP ,即可得出答案.【详解】解:延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD =x °,∵CP 平分∠ACD ,∴∠ACP =∠PCD =x °,PM =PN ,∵BP 平分∠ABC ,∴∠ABP =∠PBC ,PF =PN ,∴PF =PM ,∵∠BPC =40°,∴∠ABP =∠PBC =∠PCD ﹣∠BPC =(x ﹣40)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,∴∠CAF=100°,在Rt△PFA和Rt△PMA中,{PA PA PM PF==,∴Rt△PFA≌Rt△PMA(HL),∴∠FAP=∠PAC=50°.故选C.【点睛】本题考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM=PN=PF是解题的关键.例3.(2023·山东·七年级专题练习)如图,∠D=∠C=90°,点E是DC的中点,AE平分∠DAB,∠DEA =28°,求∠ABE的大小.【答案】28°【分析】过点E作EF⊥AB于F,根据角平分线上的点到角的两边距离相等可得DE=EF,根据线段中点的定义可得DE=CE,然后求出CE=EF,再根据到角的两边距离相等的点在角的平分线上证明即可得出BE平分∠ABC,即可求得∠ABE的度数.【详解】如图,过点E作EF⊥AB于F,∵∠D=∠C=90°,AE平分∠DAB,∴DE=EF,∵E是DC的中点,∴DE=CE,∴CE=EF,又∵∠C=90°,∴点E在∠ABC的平分线上,∴BE平分∠ABC,又∵AD∥BC,∴∠ABC+∠BAD=180°,∴∠AEB=90°,(1)填空:角平分线的性质定理:角平分线上的点到.符号语言:∵如图1,OP 为COD ∠上的平分线,且,∴.(2)解答:已知:如图2,60AOB ∠=︒,OP 为AOB ∠的平分线,以点P 为顶点的CPD ∠与角的两边相交于点C 、D ,且120CPD ∠=︒.求证:PC PD =.(3)作图:根据以上种情况,再次寻找其它情况,点P P 为AOB ∠的平分线上的点,请你用尺规作图作PE OA ⊥于E ,作PF OB ⊥于F ,90PEC PFD PEO PFO ∴∠=∠=∠=∠=︒,OP 平分AOB ∠,PE PF ∴=,在四边形EOFP 中,60AOB ∠=︒,90PEO PFO ∠=∠=︒,36060290120EPF ∴∠=︒-︒-⨯︒=︒,120CPD ∠=︒ ,CPD EPF ∴∠=∠,CPD EPD EPF EPD ∴∠-∠=∠-∠,CPE DPF ∴∠=∠,PEC PFD ∴≅ (ASA )PC PD ∴=;(3)证明:如图2,作射线PC ,交OA 于C ,作PCN AOB ∠=∠,反向延长NP ,交OB 于D ,则PC PD =;,(4)解:如图3,当ODP ∠和OCP ∠互补时,PC PD =,理由如下:作PE OA ⊥于E ,作PF OB ⊥于F ,90PEC PFD PEO PFO ∴∠=∠=∠=∠=︒,OP 平分AOB ∠,PE PF ∴=,在四边形EOFP 中,90PEO PFO ∠=∠=︒,360290180EPF AOB ∴∠+∠=︒-⨯︒=︒,180CPD AOB ∠+∠=︒ ,CPD EPF ∴∠=∠,CPD EPD EPF EPD ∴∠-∠=∠-∠,CPE DPF ∴∠=∠,PEC PFD ∴≅ (ASA)PC PD ∴=.【点睛】本题考查全等三角形的判定,角平分线的性质等知识,解决问题的关键是熟练掌握有关基础知识.模型2.角平分线垂中间(角平分线+内垂直)【模型解读与图示】条件:如图1,OC 为AOB ∠的角平分线,AB OC ⊥,结论:△AOC ≌△BOC ,OAB ∆是等腰三角形、OC 是三线合一等。

初中数学几何模型之角平分线模型,截取构造对称全等

初中数学几何模型之角平分线模型,截取构造对称全等

初中数学几何模型之角平分线模型,截取构造对称全等角平分线模型模型 2 截取构造对称全等如图,P 是∠MON 的角平分线上一点,点 A 是射线 OM 上任意一点,在 ON上截取 OB=OA,连接 PB。

结论:△OPB≌△OPA。

模型证明:∵OP 是∠MON 的角平分线∴∠AOP=∠BOP,OP=OP又OA=AB∴△OPB≌△OPA模型分析利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。

利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。

模型实例(1)如图①所示,在△ABC 中,AD 是△ABC 的外角平分线,P 是AD 上异于点A 的任意一点,试比较 PB+PC 与 AB+AC 的大小,并说明理由;(2)如图②所示, AD 是△ABC 的内角平分线,其他条件不变,试比较PC-PB 与 AC-AB 的大小,并说明理由。

解:(1)如图在BA的延长线上取点E使AE=AC,连接PC由角平分线模型2可证△APC≌△APE∴PC=PE∴在△PBE中有PC+PE>BE=AB+AE∴PB+PC>AB+AC(2)如图在AC上取一点E使AE=AB,连接PE∵∠BAP=∠EAP,AP=AP,AE=AB∴△BAP≌△EAP∴PB=PE在△PEC中,PC-PB=PC-PE>EC=AC-AE=AC-AB∴PC-PB>AC-AB模型练习1.已知,在△ABC 中,∠A=2∠B,CD 是∠ACB 的平分线,AC=16,AD=8。

求线段 BC 的长。

解:如图在CB上取一点E使CE=CA,则有CD=CD,∠ACD=∠ECD∴△ACD≌ECD∴AD=DE=8∴∠A=∠CED=2∠B又∠CED=∠B+∠BDE∴∠B=∠BDE∴△BDE为等腰三角形∴DE=BE=8又CE=CA=16∴BC=BE+EC=242.已知,在△ABC 中,AB=AC,∠A=108°,BD 平分∠ABC。

三角形全等角平分线模型例题及证明

三角形全等角平分线模型例题及证明

三角形全等角平分线模型例题及证明好嘞,今天咱们就来聊聊三角形全等和角平分线的那些事儿。

哎,你有没有发现,三角形真的是个神奇的东西,简简单单的三个点,连起来就是个图形,偏偏它的性质可多了。

全等三角形就是那种长得一模一样的三角形,形状、大小都不差分毫,简直就是双胞胎兄弟,走到哪儿都能被认出来。

这可不是光靠眼力就能看出来的,得用几何的法则来推理推理。

你想啊,要是我把一块巧克力分成两半,照样能做出两个一模一样的巧克力,谁能不爱呢?然后咱们聊聊角平分线,听这个名字就觉得高大上,其实它就是把一个角一分为二,像是把一个大蛋糕切成两个均匀的部分。

角平分线的妙处在于,无论你这角多么刁钻,切开后左右两边总是各占一半,这就好比是把一块肉分给两只小狗,谁都不委屈。

这个东西在三角形里特别重要,尤其是当我们要证明一些三角形全等的时候,角平分线可是个好帮手。

来来,咱们用个例子来看看,想象一下一个三角形ABC,A点是个大老板,B和C 是他的两个小弟。

假如我们在A点那儿划一条角平分线,直接把这个角一分为二,结果B和C两兄弟就被各自分到了一份相等的“收益”。

这条角平分线还可以引出一些神奇的性质,比如说,平分线上的每一点到两条边的距离是相等的,就像是公园里的秋千,两边的绳子一样长。

咱们再说说证明的过程,想想看,我们要证明这条平分线把角一分为二,其实就是要把三角形的两个小部分给比出来。

用个简单的三角形来举个例子,假设你有个A点,B点和C点连起来,就是个三角形。

然后,你在A点做一个角平分线,往下拉到BC边,假设叫做D点。

这时候,ABD和ACD这两个小三角形就是咱们的主角了。

要证明它们全等,就要用到一些三角形全等的公理,比如边角边、边边边,这些可是几何的“黄金法则”。

拿到这两个小三角形,咱们就得找出相等的部分。

AD就是它们共同的边,然后,角BAD和角CAD是相等的,因为你就是那条角平分线,没跑。

BD和CD这两个小边也是相等的,因为D点就在BC边上嘛,这可太简单了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

善于构造 活用性质
安徽 张雷
几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题.
1.显“距离”, 用性质
很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段)
例:三角形的三条角平分线交于一点,你知道这是为什么吗?
分析:我们知道两条直线是交于一点的,因此可以想办法证
明第三条角平分线通过前两条角平分线的交点.
已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB 、IG ⊥AC 、IF ⊥BC ,垂足分别是点H 、
G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC
∴IH=IG (角平分线上的点到角的两边距离相等)
同理 IH=IF ∴IG=IF (等量代换)
又IG ⊥AC 、IF ⊥BC
∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点.
【例2】已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线, 它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F .
求证:BP 为∠MBN
的平分线.
【分析】要证BP 为∠MBN 的平分线,只需证PD=PF ,而PA 、PC 为外角平分线, 故可过P 作PE ⊥AC 于E .根据角平分线性质定理有PD=PE ,PF=PE ,则有PD=PF ,故问题得证.
【证明】过P 作PE ⊥AC 于E .
∵PA 、PC 分别为∠MAC 与∠NCA 的平分线.且PD ⊥BM ,PF ⊥BN ∴PD=PE ,PF=PE,∴PD=PF
又∵PD ⊥BM ,PF ⊥BN,∴点P 在∠MBN 的平分线上,
D C B A
E H I
F G
2
D
C
B A
35E
F 1
4 即BP 是∠MBN 的平分线.
2.构距离,造全等
有角平分线时常过角平分线上的点向角两边引垂线,根据角平分线上的点到角两边距离相等,可构造处相应的全等三角形而巧妙解决问题.
例3.△ABC 中,∠C=90°,AC=BC ,DA 平分∠CAB 交BC 于D 点,问能否在AB 上确定一点E 使△BDE 的周长等于AB
的长.请说明理由.
解:过D 作DE ⊥AB ,交AB 于E 点,则E 点即可满足要求.
因为∠C=90°,AC=BC , 又DE ⊥AB ,∴DE=EB .
∵AD 平分∠CAB 且CD ⊥AC 、ED ⊥AB , ∴CD=DE .
由“HL”可证Rt △ACD ≌Rt △AED . ∴AC=AE .
∴L △BDE =BD+DE+EB =BD+DC+EB =BC+EB=AC+EB =AE+EB =AB .
例4.如图,∠B=∠C=90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB .
求证:AD=CD+AB

证明:过M 作ME ⊥AD ,交AD 于E .
∵DM 平分∠ADC ,∠C=90°.
MC=ME . 根据“HL”可以证得Rt △MCD ≌Rt △MED ,∴CD=ED .
同理可得AB=AE .∴CD+AB=ED+AE=AD . 即AD=CD+AB .
3.巧翻折, 造全等
以角平分线为对称轴,构造两三角形全等.即在角两边截取相等的线段,构造全等三角形.
例5.如图,已知△ABC 中∠BAC=90°,AB=AC ,CD 垂直于∠ABC 的平分线BD 于D ,BD 交AC 于E ,求证:BE=2CD .
分析:要证BE=2CD ,想到要构造等于2CD 的线段,结合角平分线, 利用翻折的方法把△CBD 沿BD 翻折,使BC 重叠到BA 所在的直线上,即构造全等三角形(△BCD ≌△BFD ),然后证明BE 和CF (2CD )所在的三角形全等. 证明:延长BA 、CD 交于点F
∵BD ⊥CF (已知) ∴∠BDC=∠BDF=90°
∵BD 平分∠ABC (已知) ∴∠1=∠2 在△BCD 和△BFD 中
21()()
()BD BD BDC BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩
公公公公公公公 ∴△BCD ≌△BFD (ASA )
∴CD=FD , 即CF=2CD
∵∠5=∠4=90°,∠BDF=90° ∴∠3+∠F=90°,∠1+∠F=90°。

∴∠1=∠3。

在△ABE 和△ACF 中 4513()AB AC
∠=∠⎧⎪=⎨⎪∠=∠⎩
公公 ∴△ABE ≌△ACF (ASA )∴BE=CF , ∴BE=2CD 。

例6.如图,已知AC ∥BD 、EA 、EB 分别平分∠CAB 和△DBA ,CD 过点E ,则AB 与AC+BD 相等吗?请说明理由.
【分析】要证明两条线段的和与一条线段相等时常用
的两种方法.
1.可在长线段上截取与两条线段中一条相等的一段, 然后证明剩余的线段与另一条线段相等.(割)
2.把一个三角形移到另一位置,使两线段补成一条线段,再证明它与长线段相等.(补)
34
D
C A B 65(1)F
E 1234
D
C
A B
65(2)E F
12 证法一:如图(1)在AB 上截取AF=AC ,连结EF .在△ACE 和△AFE 中
D C A B E
12
AC AF AE AE =⎧⎪∠=∠⎨⎪=⎩
∴△ACE ≌△AFE (SAS )∵,∴,又,∴∠6=∠D 在△EFB 和△BDE 中
634
D B
E BE ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴△EFB ≌△EDB (AAS ) ∴FB=DB ∴AC+BD=AF+FB=AB 证法二:如图(2),延长BE ,与AC 的延长线相交于点F
∠F=∠3434AC BD F ⇒∠=∠⎫⎬∠=∠⎭
A ⇒ 在△AEF 和△AE
B 中
312
F AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴△AEF ≌△AEB (AAS ), ∴AB=AF ,BE=FE
在△BED 和△FEC 中
564BE FE
F ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴△BED ≌△FEC (ASA ) ∴BD=FC, ∴AB=AF=AC+CF=AC+BD .。

相关文档
最新文档