2017兰州理工大学自动控制原理MATLAB仿真实验报告完整版

合集下载

控制理论实验报告MATLAB仿真实验.doc

控制理论实验报告MATLAB仿真实验.doc

控制理论实验报告MATLAB仿真实验实验报告课程名称:控制理论(二)讲师:林峰结果:_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _实验名称:MATLAB仿真实验类型:_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _同一组学生的姓名:________一、实验的目的和要求(要求)二.实验内容和原则(要求)三.主要仪器和设备(必需)四.操作方法和实验步骤五、实验数据的记录和处理六.实验结果和分析(必需)7.控制系统时域分析实验9的探讨与体会首先,实验的目的:1.利用计算机辅助分析,掌握系统的时域分析方法。

2.熟悉Simulink仿真环境。

二、实验原理和方法:系统仿真本质上是系统模型的求解。

对于控制系统,一般模型可以转化为微分方程或差分方程。

因此,在仿真过程中,通过一些数值算法从初始状态开始逐步计算系统响应。

最后,画出系统的响应曲线,分析系统性能。

控制系统最常用的时域分析方法是当输入信号为单位阶跃和单位脉冲函数时,获得系统的输出响应,分别称为单位阶跃响应和单位脉冲响应。

在MATLAB中,提供了单位阶跃响应函数step、单位冲激响应函数impulse、零输入响应函数initial等来获得连续系统。

二、实验内容:二阶系统的状态方程模型是——控制理论(二)指导者:林峰结果:_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _实验名称:MATLAB仿真实验类型:_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _同一组学生的姓名:________一、实验的目的和要求(要求)二.实验内容和原则(要求)三.主要仪器和设备(必需)四.操作方法和实验步骤五、实验数据的记录和处理六.实验结果和分析(必需)7.控制系统时域分析实验9的探讨与体会首先,实验的目的:1.利用计算机辅助分析,掌握系统的时域分析方法。

2.熟悉Simulink仿真环境。

(最新版)自动控制原理MATLAB仿真实验报告

(最新版)自动控制原理MATLAB仿真实验报告

实验一 MATLAB及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、预习要点1、系统的典型响应有哪些?2、如何判断系统稳定性?3、系统的动态性能指标有哪些?三、实验方法(一)四种典型响应1、阶跃响应:阶跃响应常用格式:1、;其中可以为连续系统,也可为离散系统。

2、;表示时间范围0---Tn。

3、;表示时间范围向量T指定。

4、;可详细了解某段时间的输入、输出情况。

2、脉冲响应:脉冲函数在数学上的精确定义:其拉氏变换为:所以脉冲响应即为传函的反拉氏变换。

脉冲响应函数常用格式:①;②③(二)分析系统稳定性有以下三种方法:1、利用pzmap绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出的极点。

%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den) 运行结果: p =-1.7680 + 1.2673i -1.7680 - 1.2673i 0.4176 + 1.1130i 0.4176 - 1.1130i -0.2991P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。

自动控制原理 matlab实验报告

自动控制原理 matlab实验报告

自动控制原理实验(二)一、实验名称:基于MATLAB的控制系统频域及根轨迹分析二、实验目的:(1)、了解频率特性的测试原理及方法;(2)、理解如何用MATLAB对根轨迹和频率特性进行仿真和分析;(3)、掌握控制系统的根轨迹和频率特性两大分析和设计方法。

三、实验要求:(1)、观察给定传递函数的根轨迹图和频率特性曲线;(2)、分析同一传递函数形式,当K值不同时,系统闭环极点和单位阶跃响应的变化情况;(3)、K值的大小对系统的稳定性和稳态误差的影响;(4)、分析增加系统开环零点或极点对系统的根轨迹和性能的影响。

四、实验内容及步骤(1)、实验指导书:实验四(1)、“rlocus”命令来计算及绘制根轨迹。

会出根轨迹后,可以交互地使用“rlocfind”命令来确定点击鼠标所选择的根轨迹上任意点所对应的K值,K值所对应的所有闭环极点值也可以使用形如“[K, PCL] = rlocfind(G1)”命令来显示。

(2)、波特图:bode(G1, omga)另外,bode图还可以通过下列指令得出相位和裕角:[mag,phase,w] = bode(sys)(3)、奈奎斯特图:nuquist(G, omega)(2)课本:例4-1、4-2、4-7五实验报告要求(1)、实验指导书:实验四思考题请绘制下述传递函数的bode图和nyquist图。

1. 根据实验所测数据分别作出相应的幅频和相频特性曲线;2. 将思考题的解题过程(含源程序)写在实验报告中。

幅频特性曲线相频特性曲线Gs = zpk([10], [-5; -16; 9], 200)subplot(1, 2, 1)bode(Gs)gridsubplot(1, 2, 2)nyquist(Gs)grid(2)课本:例4-1、4-2、4-7图像结果:程序:Gs = zpk([-1], [0; -2; -3],1) rlocus(Gs)图像结果:程序:Gs = zpk([-2], [-1-j; -1+j],1) rlocus(Gs)程序:K=[0.5 1 2]for i=1:1:3num=[1,1,0,0]; den=[1,1,K(i)]; sys=tf(num,den); rlocus(sys); hold ongrid onend图像结果:目标:改变增益K和转折频率依次调节源程序:k1=[4.44,10,20];num=[1,2];den=conv([1,1],[1,2,4]);%一阶转折频率 1/T(wn1=2,wn2=1)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 num1=[1,1];den1=conv([1,2],[1,2,4]);%一阶转折频率 1/T(wn1=1,wn2=2)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 t=[0:0.1:7]; %for i=1:3g0=tf(k1(i)*num,den);g=feedback(g0,1);[y,x]=step(g,t);c(:,i)=y;g1=tf(k1(i)*num1,den1);g(1)=feedback(g1,1);[y1,x]=step(g(1),t);c1(:,i)=y1;endplot(t,c(:,1),'-',t,c(:,2),'-',t,c(:,3),'-',t,c1(:,1),'-',t,c1(:,2), '-',t,c1(:,3),'-');gridxlabel('Time/sec'),ylabel('out')结果分析:在本题中(1)改变k值:k值越大,超调量越大,调节时间越长,峰值时间越短,稳态误差越小(2)改变转折频率:超调量,调节时间,峰值时间,稳态误差同样有相应的变化。

自动控制原理MATLAB实验报告

自动控制原理MATLAB实验报告

实验一 典型环节的MATLAB 仿真一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、实验原理1.比例环节的传递函数为 K R K R R R Z ZsG 200,1002)(211212==-=-=-=其对应的模拟电路及SIMULINK 图形如图1所示。

2.惯性环节的传递函数为uf C K R K R s C R R R Z Z s G 1,200,10012.021)(121121212===+-=+-=-=其对应的模拟电路及SIMULINK 图形如图2所示。

图1 比例环节的模拟电路及SIMULINK 图形3.积分环节(I)的传递函数为uf C K R s s CR Z Z s G 1,1001.011)(111112==-=-=-=其对应的模拟电路及SIMULINK 图形如图3所示。

4.微分环节(D)的传递函数为uf C K R s s C R Z Z s G 10,100)(111112==-=-=-= uf C C 01.012=<<其对应的模拟电路及SIMULINK 图形如图4所示。

5.比例+微分环节(PD )的传递函数为)11.0()1()(111212+-=+-=-=s s C R R R Z Z s G uf C C uf C K R R 01.010,10012121=<<===其对应的模拟电路及SIMULINK 图形如图5所示。

图3 积分环节的模拟电路及及SIMULINK 图形图4 微分环节的模拟电路及及SIMULINK 图形6.比例+积分环节(PI )的传递函数为 )11(1)(11212sR s C R Z Z s G +-=+-=-= uf C K R R 10,100121=== 其对应的模拟电路及SIMULINK 图形如图6所示。

自动控制原理MATLAB仿真实验报告

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些2、 如何判断系统稳定性3、 系统的动态性能指标有哪些 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。

2、),(Tn sys step ;表示时间范围0---Tn 。

3、),(T sys step ;表示时间范围向量T 指定。

4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。

2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。

脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。

%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果: p =+ - + -P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。

自动控制原理MATLAB仿真实验报告

自动控制原理MATLAB仿真实验报告

实验一MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、预习要点1、系统的典型响应有哪些?2、如何判断系统稳定性?3、系统的动态性能指标有哪些?三、实验方法(一)四种典型响应1、阶跃响应:阶跃响应常用格式:1 、step ( sys ) ;其中 sys 可以为连续系统,也可为离散系统。

2 、step ( sys ,Tn ) ;表示时间范围0---Tn 。

3 、step ( sys ,T ) ;表示时间范围向量T 指定。

4 、Y step ( sys , T ) ;可详细了解某段时间的输入、输出情况。

2、脉冲响应:f (x)dx 1脉冲函数在数学上的精确定义:f ( x) 0, t 0f ( s) 1其拉氏变换为:Y ( s) G (s) f (s) G ( s)所以脉冲响应即为传函的反拉氏变换。

脉冲响应函数常用格式:①impulse ( sys ) ;impulse ( sys , Tn );②impulse ( sys , T );③Y impulse ( sys ,T )(二)分析系统稳定性有以下三种方法:1、利用 pzmap绘制连续系统的零极点图;2、利用 tf2zp 求出系统零极点;3、利用 roots 求分母多项式的根来确定系统的极点(三)系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容(一) 稳定性1.系统传函为4 3 23s 2s 5s 4s 6G s ,试判断其稳定性5 4 3 2s 3s 4 s 2s 7s 22.用 Matlab 求出2s 2 s 2G 的极点。

( s)4 3 2s 7 s 3s 5 s 2%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果:p =-1.7680 + 1.2673i-1.7680 - 1.2673i0.4176 + 1.1130i0.4176 - 1.1130i-0.2991Pole-Zero Map 1.510.5sixAyranigamI-0.5-1-1.5-2 -1.5 -1 -0.5 0 0.5Real Axis图 1-1 零极点分布图由计算结果可知,该系统的 2 个极点具有正实部,故系统不稳定。

《MATLAB与控制系统仿真》实验报告

《MATLAB与控制系统仿真》实验报告

《MATLAB与控制系统仿真》实验报告一、实验目的本实验旨在通过MATLAB软件进行控制系统的仿真,并通过仿真结果分析控制系统的性能。

二、实验器材1.计算机2.MATLAB软件三、实验内容1.搭建控制系统模型在MATLAB软件中,通过使用控制系统工具箱,我们可以搭建不同类型的控制系统模型。

本实验中我们选择了一个简单的比例控制系统模型。

2.设定输入信号我们需要为控制系统提供输入信号进行仿真。

在MATLAB中,我们可以使用信号工具箱来产生不同类型的信号。

本实验中,我们选择了一个阶跃信号作为输入信号。

3.运行仿真通过设置模型参数、输入信号以及仿真时间等相关参数后,我们可以运行仿真。

MATLAB会根据系统模型和输入信号产生输出信号,并显示在仿真界面上。

4.分析控制系统性能根据仿真结果,我们可以对控制系统的性能进行分析。

常见的性能指标包括系统的稳态误差、超调量、响应时间等。

四、实验步骤1. 打开MATLAB软件,并在命令窗口中输入“controlSystemDesigner”命令,打开控制系统工具箱。

2.在控制系统工具箱中选择比例控制器模型,并设置相应的增益参数。

3.在信号工具箱中选择阶跃信号,并设置相应的幅值和起始时间。

4.在仿真界面中设置仿真时间,并点击运行按钮,开始仿真。

5.根据仿真结果,分析控制系统的性能指标,并记录下相应的数值,并根据数值进行分析和讨论。

五、实验结果与分析根据运行仿真获得的结果,我们可以得到控制系统的输出信号曲线。

通过观察输出信号的稳态值、超调量、响应时间等性能指标,我们可以对控制系统的性能进行分析和评价。

六、实验总结通过本次实验,我们学习了如何使用MATLAB软件进行控制系统仿真,并提取控制系统的性能指标。

通过实验,我们可以更加直观地理解控制系统的工作原理,为控制系统设计和分析提供了重要的工具和思路。

七、实验心得通过本次实验,我深刻理解了控制系统仿真的重要性和必要性。

MATLAB软件提供了强大的仿真工具和功能,能够帮助我们更好地理解和分析控制系统的性能。

自动控制原理MATLAB分析与设计仿真实验报告(最终版)

自动控制原理MATLAB分析与设计仿真实验报告(最终版)

兰州理工大学《自动控制原理》MATLAB分析与设计仿真实验报告学院:电气工程与信息工程学院专业班级: 13级自动化3班姓名:学号:时间: 2015年12月Step ResponseTime (seconds)A m p l i t u d e1234567891000.511.5System: sys1Rise time (seconds): 1.17System: sys1P eak amplitude: 1.41Overshoot (%): 40.6At time (seconds): 2.86System: sys1Final value: 1第三章 线性系统的时域分析法一、教材第三章习题3.5设单位反馈系统的开环传递函数为G(s)=0.41(0.6)s s s ++(1)试求系统在单位阶跃输入下的动态性能。

(2)忽略闭环零点的系统在单位阶跃输入下的动态性能。

(3)对(1) 和(2)的动态性能进行比较并分析仿真结果。

(1)A :程序如下。

B :系统响应曲线如下图。

Step Response Time (seconds)A m p l i t u d e01234567891000.20.40.60.811.21.4System: sys1Final value: 1System: sys1Settling time (seconds): 8.08System: sys1P eak amplitude: 1.16Overshoot (%): 16.3At time (seconds): 3.63System: sys1Rise time (seconds): 1.64(2)A :程序如下。

B :系统响应曲线如下图。

(3) A :程序如下。

B 响应曲线如下图。

阶跃响应t (sec)c (t )0123456789100.20.40.60.811.21.4System: sysRise Time (sec): 1.46System: sys1Rise Time (sec): 1.64System: sys1P eak amplitude: 1.16Overshoot (%): 16.3At time (sec): 3.63System: sys P eak amplitude: 1.18Overshoot (%): 18At time (sec): 3.16System: sys1Final Value: 1System: sys1Settling Time (sec): 8.08System: sysSettling Time (sec): 7.74120,0.1ττ==120.1,0ττ==分析:忽略闭环零点时,系统的峰值时间,调节时间,上升时间均为增大的,而超调量减小。

2017兰州理工大学-自动控制原理-MATLAB仿真实验报告完整版

2017兰州理工大学-自动控制原理-MATLAB仿真实验报告完整版

兰州理工大学《自动控制原理》MATLAB分析与设计仿真实验报告院系:电气工程与信息工程学院班级:自动化一班姓名:路亦菲学号: 1505220185 时间: 2017 年 11月 16日电气工程与信息工程学院《自动控制原理》MATLAB 分析与设计仿真实验任务书(2017)一、仿真实验内容及要求1.MATLAB 软件要求学生通过课余时间自学掌握MATLAB 软件的基本数值运算、基本符号运算、基本程序设计方法及常用的图形命令操作;熟悉MATLAB 仿真集成环境Simulink 的使用。

2.各章节实验内容及要求1)第三章 线性系统的时域分析法对教材第三章习题3-5系统进行动态性能仿真,并与忽略闭环零点的系统动态性∙能进行比较,分析仿真结果;对教材第三章习题3-9系统的动态性能及稳态性能通过仿真进行分析,说明不同∙控制器的作用;在MATLAB 环境下选择完成教材第三章习题3-30,并对结果进行分析;∙ 在MATLAB 环境下完成英文讲义P153.E3.3;∙ 对英文讲义中的循序渐进实例“Disk Drive Read System”,在时,试采用∙100=a K 微分反馈控制方法,并通过控制器参数的优化,使系统性能满足%5%,σ<等指标。

3250,510s ss t ms d -≤<⨯2)第四章 线性系统的根轨迹法在MATLAB 环境下完成英文讲义P157.E4.5;∙ 利用MATLAB 绘制教材第四章习题4-5;∙ 在MATLAB 环境下选择完成教材第四章习题4-10及4-17,并对结果进行分析;∙ 在MATLAB 环境下选择完成教材第四章习题4-23,并对结果进行分析。

∙3)第五章 线性系统的频域分析法利用MATLAB 绘制本章作业中任意2个习题的频域特性曲线;∙4)第六章 线性系统的校正利用MATLAB 选择设计本章作业中至少2个习题的控制器,并利用系统的单位∙阶跃响应说明所设计控制器的功能;利用MATLAB 完成教材第六章习题6-22控制器的设计及验证;∙ 对英文讲义中的循序渐进实例“Disk Drive Read System”,试采用PD 控制并优化控∙制器参数,使系统性能满足给定的设计指标。

自动控制原理MATLAB仿真实验报告

自动控制原理MATLAB仿真实验报告

实验一 典型环节的MATLAB 仿真 一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、实验内容① 比例环节1)(1=s G 和2)(1=s G ;Simulink 图形实现:示波器显示结果:② 惯性环节11)(1+=s s G 和15.01)(2+=s s GSimulink 图形实现:示波器显示结果:③ 积分环节s s G 1)(1Simulink 图形实现:示波器显示结果:④ 微分环节s s G )(1Simulink 图形实现:波器显示结果:⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G1)、G1(s )=s+2Simulink 图形实现:示波器显示结果:2)、G2(s)=s+1 Simulink图形实现:示波器显示结果:⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=1)、G1(1)=1+1/sSimulink 图形实现:示波器显示结果:2)G2(s)=1+1/2s Simulink图形实现:示波器显示结果:三、心得体会通过这次实验我学到了很多,对课本内容加深了理解,熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法,加深对各典型环节响应曲线的理解,这为对课程的学习打下了一定基础。

实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和nω对二阶系统性能的影响。

3.熟练掌握系统的稳定性的判断方法。

二、实验内容1.观察函数step( )的调用格式,假设系统的传递函数模型为243237()4641s s G s s s s s ++=++++绘制出系统的阶跃响应曲线?2.对典型二阶系统222()2n n n G s s s ωζωω=++1)分别绘出2(/)n rad s ω=,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标,,,,p r p s ss t t t e σ。

《MATLAB与控制系统仿真》实验报告

《MATLAB与控制系统仿真》实验报告

《MATLAB与控制系统仿真》实验报告实验报告:MATLAB与控制系统仿真引言在现代控制工程领域中,仿真是一种重要的评估和调试工具。

通过仿真技术,可以更加准确地分析和预测控制系统的行为和性能,从而优化系统设计和改进控制策略。

MATLAB是一种强大的数值计算软件,广泛应用于控制系统仿真。

实验目的本实验旨在掌握MATLAB在控制系统仿真中的应用,通过实践了解控制系统的建模与仿真方法,并分析系统的稳定性和性能指标。

实验内容1.建立系统模型首先,根据控制系统的实际情况,建立系统的数学模型。

通常,控制系统可以利用线性方程或差分方程进行建模。

本次实验以一个二阶控制系统为例,其传递函数为:G(s) = K / [s^2 + 2ζω_ns + ω_n^2],其中,K表示放大比例,ζ表示阻尼比,ω_n表示自然频率。

2.进行系统仿真利用MATLAB软件,通过编写代码实现控制系统的仿真。

可以利用MATLAB提供的函数来定义传递函数,并通过调整参数来模拟不同的系统行为。

例如,可以利用step函数绘制控制系统的阶跃响应图像,或利用impulse函数绘制脉冲响应图像。

3.分析系统的稳定性与性能在仿真过程中,可以通过调整控制系统的参数来分析系统的稳定性和性能。

例如,可以改变放大比例K来观察系统的超调量和调整时间的变化。

通过观察控制系统的响应曲线,可以判断系统的稳定性,并计算出性能指标,如超调量、调整时间和稳态误差等。

实验结果与分析通过MATLAB的仿真,我们得到了控制系统的阶跃响应图像和脉冲响应图像。

通过观察阶跃响应曲线,我们可以得到控制系统的超调量和调整时间。

通过改变放大比例K的值,我们可以观察到超调量的变化趋势。

同时,通过观察脉冲响应曲线,我们还可以得到控制系统的稳态误差,并判断系统的稳定性。

根据实验结果分析,我们可以得出以下结论:1.控制系统的超调量随着放大比例K的增大而增大,但当K超过一定值后,超调量开始减小。

2.控制系统的调整时间随着放大比例K的增大而减小,即系统的响应速度加快。

自动控制原理实验报告MATHLAB建模.doc

自动控制原理实验报告MATHLAB建模.doc

自动控制原理实验报告学院:机电工程学院班级:姓名:学号:指导老师:实验一:在MATLAB中创建系统模型一、实验目的:1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

二、实验过程:1.传递函数模型的建立1)多项式形式的传递函数①课本例2.23上机操作过程如下:②课本P62,习题2-3上机操作过程如下:2)零、极点形式的传递函数课本例2.24上机操作过程如下:3)分子、分母为因式乘积形式的传递函数课本例2.25上机操作过程如下:2.Simulink 建模①课本例题上机操作如下:设单位反馈系统的开环传递函数为:)1(1)(+=s s s G将其转换成Simulink 框图,输入为阶跃信号,它的Simulink 框图如下所示:② 比例环节1)(1=s G 和2)(1=s G 的SIMULINK 图形建模操作如下;比例环节1)(1=s G 的SIMULINK 图形如下图所示:比例环节2)(1=s G 的SIMULINK 图形3.课后练习用matlab求下列函数的拉氏变换(习题2-1),上机操作过程如图所示:实验二:在MATLAB中算特征根及绘制根轨迹图一、实验目的:1.掌握MATLAB下的根轨迹绘制方法;2.学会利用根轨迹进行系统分析。

二、实验过程:1)例3-21 试利用MATLAB函数求例3.1中k=2.k=20时系统的特征根,并分别判定稳定性。

上机操作过程如下:>> num=[2];den=conv([1 0],conv([0.1 1],[0.25 1]));g=tf(num,den);sys=feedback(g,1);>> pzmap(sys)p=pole(sys)p =-11.0314-1.4843 + 2.2470i-1.4843 - 2.2470i2)例3-22 二阶系统如图3.13所示,设Wn=1,试研究系统的单位阶跃响应与参数ξ的关系。

自动控制原理matlab实验报告

自动控制原理matlab实验报告

自动控制原理matlab实验报告1.由题意得:C(s)=R(s)*(11s+K)/(s2+12s+K)-N(S)/(S2+12S+k)该系统显然是稳定的。

为了减少扰动的影响,希望增益K>0。

扰动引起的稳态误差e ssn=1/K,现使扰动引起的稳态误差小于0.05,最大超调量小于0.1,则K的取值范围是:20<k<100。

实验中,选取K=20,25,30,40,100进行五次实验,实验结果记录如下:由表中数据可得,使扰动引起的稳态误差较小,且使单位阶跃输入下超调量也相对小的情况下,本系统应选取K=25。

实验中K取不同值时的响应如下:K=20 K=25K=30 K=40K=1002.C(s)=R(s)*Ka/(s2+k1s+Ka)-N(S)/(S2+k1S+ka)(1)在阶跃指令r(t)作用下,系统输出的超调量小于或等于10%; 由解得:代入σ=0.1,求出 ζ=0.59,取ζ=0.6。

因而,在满足σ%≤10%指标要求下,应选(2)在斜坡输入作用下,稳态误差达到最小; 令斜坡输入为r(t)=Bt,可得斜坡输入作用下的稳态误差:结合要求(1)可得此式表明K a 应取尽可能大(3)减小单位阶跃扰动的影响。

阶跃扰动作用下的稳态误差22)(ln 11σπ+=ζaa 1K 2.1K 2K =ζ=a 1ssrK BK K B e ==assrK B 2.1e =)s (sC )s (sEe n 0s ns ssn l i m l i m →→-==aa 12s 00s K 1s1K s K s 1s)s (N )s (G 1)s (G s l i m l i m -=++-=+-=→→%e100%21 / ζ- πζ - =σ可见,增大K a可以同时减小e ssn及e ssr。

在实际系统中,K a的选取必须受到限制,以使系统工作在线性区。

实验中选取以下几组数据进行仿真。

KA=100,K1=12 KA=576,K1=30KA=625,K1=30 KA=900,K1=40KA=1000,K1=45由上表及仿真图分析可知应取K a =1000,K 1=45.3. 此系统的特征方程为:s 4+8s 3+17s 2+(10+K 1)s+aK 1=0 由题目要求可得: 斜坡输入下的稳态误差:K K )a 64116(12600aK 126K 21111>--+><令斜坡输入为r(t)=At令稳态误差等于输入指令幅度的24%。

自动控制原理Matlab实验1(初步认识MATLAB和系统仿真)

自动控制原理Matlab实验1(初步认识MATLAB和系统仿真)

《自动控制原理》课程实验报告实验名称初步认识MATLAB和系统仿真专业班级 ********* 学************号姓名**指导教师李离学院名称电气信息学院2012 年 11 月 5 日Lab1_1_1.m程序:y0=0.15;wn=sqrt(2);zeta=1/(2*sqrt(2));t=[0:0.1:10];c=(y0/sqrt(1-zeta^2));y=c*exp(-zeta*wn*t).*sin(wn*sqrt(1-zeta^2)*t+acos(zeta)); bu=c*exp(-zeta*wn*t);bl=-bu;plot(t,y,t,bu,'k--',t,bl,'k--'),gridxlabel('Time (sec)'),ylabel('y(t) (meters)')legend(['\omega_n=',num2str(wn),' \zeta=',num2str(zeta)])仿真结果:(1)零输入响应曲线理论分析:0<ζ<1,对于二阶响应,其瞬态响应应该是一个按照指数衰减的振荡过程,ζ越小,衰减越慢,该系统是欠阻尼系统。

从图中也可以看出,系统是零输入响应,是个震荡衰减的过程,符合理论判断。

Lab1_1_2.m程序:y0=0.15;wn=sqrt(2);zeta=1;t=[0:0.1:10];y=y0*(exp(-wn*t)+wn*t.*exp(-wn*t));plot(t,y),gridxlabel('Time (sec)'),ylabel('y(t) (meters)')legend(['\omega_n=',num2str(wn),' \zeta=',num2str(zeta)])仿真结果:(2)零输入响应曲线理论分析:在图中可以看到,随着时间的增加,响应在逐渐减小。

仿真试验报告封面及任务书

仿真试验报告封面及任务书

兰州理工大学《自动控制原理》MATLAB分析与设计仿真实验报告院系:班级:姓名:学号:时间:年月日电气工程与信息工程学院《自动控制原理》MA TLAB 分析与设计仿真实验报告兰州理工大学 电气工程与信息工程学院 共2页 第1页 《自动控制原理》MATLAB 分析与设计仿真实验任务书一.仿真实验内容及要求:1.MATLAB 软件要求学生通过课余时间自学掌握MATLAB 软件的基本数值运算、基本符号运算、基本程序设计方法及常用的图形命令操作;熟悉MATLAB 仿真集成环境Simulink 的使用。

2.各章节实验内容及要求1)第三章 线性系统的时域分析法∙ 对教材P136.3-5系统进行动态性能仿真,并与忽略闭环零点的系统动态性能进行比较,分析仿真结果;∙ 对教材P136.3-9系统的动态性能及稳态性能通过的仿真进行分析,说明不同控制器的作用;∙ 在MATLAB 环境下完成英文讲义P153.E3.3。

∙ 对英文讲义中的循序渐进实例“Disk Drive Read System ”,在100=a K 时,试采用微分反馈使系统的性能满足给定的设计指标。

2)第四章 线性系统的根轨迹法∙ 在MATLAB 环境下完成英文讲义P157.E4.5;∙ 利用MATLAB 绘制教材P181.4-5-(3); ∙ 在MATLAB 环境下选择完成教材第四章习题4-10或4-18,并对结果进行分析。

3)第五章 线性系统的频域分析法利用MATLAB 绘制本章作业中任意2个习题的频域特性曲线;4)第六章 线性系统的校正利用MATLAB 选择设计本章作业中至少2个习题的控制器,并利用系统的单位阶跃响应说明所设计控制器的功能。

5)第七章 线性离散系统的分析与校正∙ 利用MATLAB 完成教材P383.7-20的最小拍系统设计及验证。

∙ 利用MATLAB 完成教材P385.7-25的控制器的设计及验证。

二.仿真实验时间安排及相关事宜1.依据课程教学大纲要求,仿真实验共6学时,教师可随课程进度安排上机时间,学生须在实验之前做好相应的准备,以确保在有限的机时内完成仿真实验要求的内容;2.实验完成后按规定完成相关的仿真实验报告;3.仿真实验报告请参照有关样本制作并打印装订;4.仿真实验报告必须在本学期第15学周结束之前上交授课教师。

自动控制原理 - Matlab实验分析完整报告【优秀版】

自动控制原理 - Matlab实验分析完整报告【优秀版】

利用MATLAB 进行自动控制原理的一些分析来自:我是痕痕的弟弟1、已知三阶系统开环传递函数为G (S )=)232(2723+++s s s ,利用MATLAB 程序,画出系统的奈圭斯特图,求出相应的幅值裕量和相位裕量。

解: 程序如下:G=tf(3.5,[1,2,3,2]); %得到系统的传递函数 subplot(1,2,1);nyquist(G); %绘制奈圭斯特曲线gridxlabel('Real Axis')ylabel('Image Axis')[Gm,Pm,Weg,Wep]=margin(G) %求幅值和相角余度及对应的频率G_ c=feedback(G,1); %构造单位反馈系统subplot(1,2,2); %绘制单位阶跃响应曲线step(G_ c)gridxlabel('Time(secs)')ylabel('Amplitude')显示结果:Gm=1.1433 Pm=7.1688 Wcg=1.7323 Wcp=1.6541系统的奈圭斯特图如下(从MATLAB截图显示):2、绘制二阶环节的伯特图。

解:MATLAB程序如下:figure('pos',[30 100 260 400],'color','w');axes('pos',[0.15 0.2 0.7 0.7]);wn=1w=[0,logspace(-2,2,200)]; %得到对数频率数组for zeta=[0.1 0.5 1 2] %分别绘制阻尼系数为0.1、0.5、1、2的二阶环节bode 图G=tf(1,[wn^-2 2*zeta/wn 1]); bode(G ,w); hold on end;grid程序运行后得到如下图(MATLAB 截图显示):从图中可以看出,频率w 接近Wn 时产生谐振,阻尼比的大小确定谐振峰值的大小,阻尼比越小,谐振峰值越大。

Matlab仿真实验-自动控制原理

Matlab仿真实验-自动控制原理

实验一 典型环节的MATLAB 仿真一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、SIMULINK 的使用MATLAB 中SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。

利用SIMULINK 功能模块可以快速的建立控制系统的模型,进行仿真和调试。

1.运行MATLAB 软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK 仿真环境下。

2.选择File 菜单下New 下的Model 命令,新建一个simulink 仿真环境常规模板。

3.在simulink 仿真环境下,创建所需要的系统。

以图1-2所示的系统为例,说明基本设计步骤如下:图1-1 SIMULINK 仿真界面 图1-2 系统方框图1)进入线性系统模块库,构建传递函数。

点击simulink 下的“Continuous ”,再将右边窗口中“Transfer Fen ”的图标用左键拖至新建的“untitled ”窗口。

2)改变模块参数。

在simulink 仿真环境“untitled ”窗口中双击该图标,即可改变传递函数。

其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK ,即完成该模块的设置。

3)建立其它传递函数模块。

按照上述方法,在不同的simulink 的模块库中,建立系统所需的传递函数模块。

例:比例环节用“Math ”右边窗口“Gain ”的图标。

4)选取阶跃信号输入函数。

用鼠标点击simulink 下的“Source ”,将右边窗口中“Step ”图标用左键拖至新建的“untitled ”窗口,形成一个阶跃函数输入模块。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

兰州理工大学《自动控制原理》MATLAB分析与设计仿真实验报告院系:电气工程与信息工程学院班级: 自动化一班**: ***学号: 1505220185 时间: 2017 年 11月 16日电气工程与信息工程学院《自动控制原理》MATLAB 分析与设计仿真实验任务书(2017)一、仿真实验内容及要求1.MATLAB 软件要求学生通过课余时间自学掌握MATLAB 软件的基本数值运算、基本符号运算、基本程序设计方法及常用的图形命令操作;熟悉MA TLAB 仿真集成环境Simulink 的使用。

2.各章节实验内容及要求1)第三章 线性系统的时域分析法• 对教材第三章习题3-5系统进行动态性能仿真,并与忽略闭环零点的系统动态性能进行比较,分析仿真结果;• 对教材第三章习题3-9系统的动态性能及稳态性能通过仿真进行分析,说明不同控制器的作用;• 在MATLAB 环境下选择完成教材第三章习题3-30,并对结果进行分析; • 在MATLAB 环境下完成英文讲义P153、E3、3;• 对英文讲义中的循序渐进实例“Disk Drive Read System”,在100=a K 时,试采用微分反馈控制方法,并通过控制器参数的优化,使系统性能满足%5%,σ<3250,510s ss t ms d -≤<⨯等指标。

2)第四章 线性系统的根轨迹法• 在MATLAB 环境下完成英文讲义P157、E4、5; • 利用MA TLAB 绘制教材第四章习题4-5;• 在MATLAB 环境下选择完成教材第四章习题4-10及4-17,并对结果进行分析; • 在MATLAB 环境下选择完成教材第四章习题4-23,并对结果进行分析。

3)第五章 线性系统的频域分析法• 利用MA TLAB 绘制本章作业中任意2个习题的频域特性曲线;4)第六章 线性系统的校正• 利用MA TLAB 选择设计本章作业中至少2个习题的控制器,并利用系统的单位阶跃响应说明所设计控制器的功能;• 利用MA TLAB 完成教材第六章习题6-22控制器的设计及验证;• 对英文讲义中的循序渐进实例“Disk Drive Read System”,试采用PD 控制并优化控制器参数,使系统性能满足给定的设计指标ms t s 150%,5%<<σ。

5)第七章 线性离散系统的分析与校正• 利用MA TLAB 完成教材第七章习题7-19的最小拍系统设计及验证; • 利用MA TLAB 完成教材第七章习题7-24的控制器的设计及验证;• 对英文讲义中的循序渐进实例“Disk Drive Read System”进行验证,计算D(z)=4000时系统的动态性能指标,并说明其原因。

二、仿真实验时间安排及相关事宜1.依据课程教学大纲要求,仿真实验共6学时,教师应在第3学周下发仿真任务书,并按课程进度安排上机时间;学生须在实验之前做好相应的准备,以确保在有限的机时内完成仿真实验要求的内容;2.实验完成后按规定完成相关的仿真实验报告;3.仿真实验报告请参照有关样本制作并打印装订。

自动化系《自动控制原理》课程组2017年8月24日第三章 线性系统的时域分析法3-5单位反馈系统的开环传递函数为0.41()(0.6)s G s s s +=+该系统的阶跃响应曲线如下图所示,其中虚线表示忽略闭环零点时(即21()21G s s s =+=)的阶跃响应曲线。

解: MATLAB 程序如下:num=[0、4 1];den=[1 0、6 0]; G1=tf(num,den); G2=1; G3=tf(1,den);sys=feedback(G1,G2,-1); sys1=feedback(G3,G2,-1); p=roots(den) c(t)=0:0、1:1、5; t=0:0、01:20; figure(1)step(sys,'r',sys1,'b--',t);grid;xlabel('t');ylabel('c(t)');title('阶跃响应'); 程序运行结果如下:结果对比与分析:系统参数上升时间调节时间峰值时间峰值超调量有闭环零点(实线) 1、46 7、74 3、16 1、18 37、2 无闭环零点(虚线) 1、32 11、2 3、29 1、37 18由图可以瞧出,闭环零点的存在可以在一定程度上减小系统的响应时间,但就是同时也增大了超调量,所以,在选择系统的时候应该同时考虑减小响应时间与减小超调量。

并在一定程度上使二者达到平衡,以满足设计需求。

3-9对系统的动态性能及稳态性能通过仿真进行分析,并说明不同控制器的作用。

解:由题意可得系统的闭环传递函数,其中当系统为测速反馈校正系统时的闭环传递函数为G(s)=,系统为比例-微分校正系统时的闭环传递函数为G(s)=。

MATLAB程序如下:G1=tf([10],[1 1 0]);sys2=feedback(G1,1,-1);G2=tf([0、1 0],[1]);G3=feedback(G1,G2,-1);G4=series(1,G3);sys=feedback(G4,1,-1); G5=tf([0、1 0],[1]); G6=1;G7=tf([10],[1 1 0]); G8=parallel(G5,G6); G9=series(G8,G7); sys1=feedback(G9,1,-1); den=[1 2 10]; p=roots(den) t=0:0、01:7; figurestep(sys,'r',sys1,'b--',sys2,'g:',t);grid; xlabel('t');ylabel('c(t)');title('阶跃响应'); 不同控制器下的单位阶跃响应曲线如下图所示:00.20.40.60.811.21.41.61.8阶跃响应t (sec)c (t )结果分析:系统参数上升时间调节时间峰值时间峰值超调量原函数0、367 7、32 1、01 1、6 60、5测速反馈(实线) 0、425 3、54 1、05 1、35 35、1比例微分(虚线) 0、392 3、44 0、94 1、37 37、1从两个系统动态性能的比较可知:测速校正控制器可以降低系统的峰值与超调量的上升时间;而比例-微分控制器可以加快系统的上升时间与调节时间,但就是会增加超调量,所以针对不同的系统要求应采用不同的控制器,使系统满足设计需求。

P153、E3、3由题可知系统的开环传递函数为求:(1)确定系统的零极点;(2)在单位阶跃响应下分析系统的稳态性能;(3)试分析传递函数的实虚极点对响应曲线的影响。

解:利用MATLAB仿真进行分析MATLAB程序如下:num=6205;den=conv([1 0],[1 13 1281]);G=tf(num,den);sys=feedback(G,1,-1);figure(1);pzmap(sys);[z,k,p]=tf2zp(num,den);xlabel('j');ylabel('1');title(' 零极点分布图');grid;t=0:0、01:5;figure(2);step(sys,t);grid;xlabel('t');ylabel('c(t)');title(' 阶跃响应'); (1)求得系统的零极点为z=emptyk=0与-6、5+35、1959i 与-6、5-35、1959i p=6205(2)该系统的单位阶跃响应曲线与零极点分布图如下:阶跃响应t (sec)c (t )00.20.40.60.811.21.4-40-30-20-1010203040零、极点分布图j1由图可知:(1)特征方程的特征根都具有负实部,响应曲线单调上升,故闭环系统稳定,实数根输出表现为过阻尼单调上升,复数根输出表现为震荡上升。

(2)该系统的上升时间=0、405,峰值时间=2、11,超调量=0、000448,峰值为1。

由于闭环极点就就是微分方程的特征根,因此它们决定了所描述系统自由运动的模态,而且在零初始响应下也会包含这些自由运动的模态。

也就就是说,传递函数的极点可以受输入函数的激发,在输出响应中形成自由运动的模态。

4、对英文讲义中的循序渐进实例“Disk Drive Read System ”,在100=a K 时,试采用微分反馈控制方法,并通过控制器参数的优化,使系统性能满足:%5%,σ<3250,510s ss t ms d -≤<⨯等指标。

解:MATLAB 程序如下: G1=tf([5000],[1,1000]); G2=tf([1],[1 20]); Ga=series(100,G1); Gb=series(Ga,G2); G3=tf([1],[1 0]); Gc=series(Gb,G3); sys1=feedback(Gc,1); t=0:0、01:1;sys2=feedback(Gb,0、05); sys3=series(sys2,G3); sys=feedback(sys3,1);step(sys1,'r',sys,'b--',t);grid;xlabel('t');ylabel('c(t)');title('Disk Drive Read System');程序运行结果如下:系统动态性能如下:系统参数上升时间调节时间峰值时间峰值超调量原系统(实0、0684 0、376 0、16 1、22 21、8线)sys1加微分反馈的系0、15 0、263 1 1 0统(虚线)sys由图可知:添加微分反馈后系统扰动减小,自然频率不变,阻尼比变大,由欠阻尼变为过阻尼,使上升时间变大,超调量与调节时间变小,动态性能变好。

但闭环增益减小,加大了系统的稳态误差。

第四章线性系统的根轨迹法P157、E4、5已知一个控制系统的开环传递函数为求:(1)当时,画出系统的根轨迹图;(2)当画出系统根轨迹图,并确定系统稳定时K的值。

解:MATLAB 程序如下: G=tf([1],[1 -1 0]); figure(1)rlocus(G);title(‘第一题的根轨迹图’); num=[1 2]; den=[1 20]; Gc=tf(num,den); sys=series(Gc,G); figure(2)rlocus(sys);title(‘第二题的根轨迹图’); 程序运行结果如下:第一题的根轨迹图Real AxisI m a g i n a r y A x i s-20-15-10-505-30-20-10102030第二题的根轨迹图Real AxisI m a g i n a r y A x i s结果分析:在第一小题的根轨迹图中可以瞧出,系统的闭环极点都位于s 平面的右半平面,所以系统不稳定;在第二小题的根轨迹图中可以瞧出,系统的根轨迹图与虚轴有两个交点,对应的开环增益为20、6,系统稳定。

相关文档
最新文档