蛋白质翻译后修饰与加工精品课件
蛋白质泛素化修饰的技术路线PPT课件
![蛋白质泛素化修饰的技术路线PPT课件](https://img.taocdn.com/s3/m/e14e1c16814d2b160b4e767f5acfa1c7aa0082e1.png)
针对感染性疾病的治疗,一些研究关注利用泛素化系统来抑制病毒或细菌的复制。通过 调节泛素化修饰相关信号通路,可以抑制感染进程并改善疾病预后。
04
泛素化修饰的干预手段
药物干预
01
02
03
靶向药物
针对特定蛋白质的泛素化 修饰,开发靶向药物,以 调节蛋白质的稳定性、定 位或功能。
开发泛素化修饰相关药物
基于对泛素化修饰机制的理解,开发能够调节泛素化修饰的药物,用于治疗相关疾病。
THANK YOU
抑制酶活性
通过抑制泛素化修饰相关 酶的活性,调控蛋白质的 泛素化水平,进而影响其 生物学功能。
激活酶活性
激活泛素化修饰相关酶的 活性,增加特定蛋白质的 泛素化修饰,以调节其生 物学行为。
基因治疗
基因敲除
通过基因敲除技术,消除 与泛素化修饰相关的基因, 从而调控蛋白质的泛素化 状态。
基因过表达
过表达与泛素化修饰相关 的基因,增加特定蛋白质 的泛素化修饰,以调节其 生物学功能。
泛素化修饰在神经退行性疾病中的作用
泛素化修饰可以调控神经元的生长、突起和凋亡等过程。在神经退行性疾病中,异常的泛 素化修饰可能导致神经元功能障碍和死亡。
神经退行性疾病治疗中的泛素化修饰研究
针对神经退行性疾病的治疗,一些研究关注调节泛素化修饰相关信号通路。通过抑制某些 泛素化酶的活性或调节相关信号通路,可以延缓神经元死亡和疾病进展。
蛋白质泛素化修饰的技术路线ppt 课件
目录
• 泛素化修饰概述 • 泛素化修饰的检测技术 • 泛素化修饰相关疾病研究 • 泛素化修饰的干预手段 • 展望与未来研究方向
01
泛素化修饰概述
泛素化修饰的定义
蛋白质翻译及翻译后修饰课件.ppt
![蛋白质翻译及翻译后修饰课件.ppt](https://img.taocdn.com/s3/m/62e5ff7d2e60ddccda38376baf1ffc4fff47e242.png)
1.3 核糖体(ribosome)与核糖体rRNA
核糖体是rRNA 与几十种蛋白质的复合体,有大、小两个亚基构成。含有 合成蛋白质多肽链所必需的酶、起始因子(IF)、延伸因子(EF)、释放 因子(RF)等。
原核的核糖体(70S)= 30S小亚基 + 50S大亚基 30S小亚基: 16S rRNA + 21种蛋白质 50S大亚基: 23S,5SrRNA + 34种蛋白质
蛋白质翻译及翻译后修饰课件
tRNA的结构—“四环一臂”
倒L形的三级结构
蛋白质翻译及翻译后修饰课件
tRNA的功能是解读mRNA上的密码子和搬运氨基酸。 tRNA上至少有4 个位点与多肽链合成有关:即3’CCA氨基酸接受位
点、氨基酰-tRNA合成酶识别位点、核糖体识别位点和反密码子位点。 每一个氨基酸有其相应的tRNA携带, 氨基酸的羧基与tRNA的 3’
反应如下:
A A t R N A A T P 氨 酰 基 - t R N A 合 成 酶 A A - t R N A A M P P P i
氨基酸的羧基与tRNA 的3’端CCA-OH 以酯键相连,因此其氨基是自 由的。
蛋白质翻译及翻译后修饰课件
tRNAfmet fMet-tRNA合成酶
蛋白质翻译及翻译后修饰课件
分泌型蛋白质在翻译过程中通过信号肽协助转入内质网的机制
信号肽(signal peptide)是在新生的多肽链中,可被细胞识别系统识别的 特征性氨基酸序列,在蛋白质翻译过程中或翻译后的定位发挥引导的作用。
蛋白质翻译及翻译后修饰课件
本章结束
蛋白质翻译及翻译后修饰课件
氨酰基tRNA进入A位
新的氨基酸-tRNA的进位依赖Tu-Ts因子和GTP的协助
翻译后修饰 ppt课件
![翻译后修饰 ppt课件](https://img.taocdn.com/s3/m/a87cc634eff9aef8941e0678.png)
以和那一种糖基转移酶结合,发生特定的 糖基化修饰。
ppt课件
15
ppt课件
16
甲基化
蛋白质的甲基化( methylation)修饰是 在甲基转移酶催化下,在赖氨酸或精氨酸 侧链氨基上进行的甲基化.另外也有对天 冬氨酸或谷氨酸侧链羧基进行甲基化形成 甲酯的形式,这里主要关注前一种甲基化 形式
核小体发生作用,导致核小体构象紧凑及 染色质高度折叠。乙酰化使组蛋白与DNA
间的作用减弱,导致染色质构象松散,这
种构象有利于转录调节因子的接近,从而 可以和转录因子结合,促进基因的转录; 去 乙酰化则抑制基因转录。
ppt课件
21
不同翻译后修饰过程的互相协 调与影响
在体内,各种翻译后修饰过程不是孤立 存在的.在很多细胞活动中,需要各种翻 译后修饰的蛋白共同作用
对于同一个蛋白可以拥有一种以上的后 修饰过程.各种翻译后修饰形式相互影响、 相互协调
ppt课件
22
谢谢观赏
ppt课件
23
ppt课件
14
糖基化修饰的过程
• N-连接的糖链合成起始于内质网,完成于高 尔基体。在内质网形成的糖蛋白具有相似 的糖链,由Cis面进入高尔基体后,在各膜 囊之间的转运过程中,发生了一系列有序
的加工和修饰,原来糖链中的大部分甘露
糖被切除,但又被多种糖基转移酶依次加
上了不同类型的糖分子,形成了结构各异
ppt课件
17
组蛋白上的甲基化修饰
组蛋白上的甲基化修饰有赖氨酸的甲基化 和精氨酸的甲基化两种,它们同转录调节和异 染色体的形成有关。
组蛋白乙酰化水平增加与转录活性增强有 关,而组蛋白甲基化修饰的结果则相对复杂, 它可以是转录增强或转录抑制
蛋白质翻译后修饰【病理生理学教研室】 ppt课件
![蛋白质翻译后修饰【病理生理学教研室】 ppt课件](https://img.taocdn.com/s3/m/8a92ce2889eb172dec63b7a2.png)
Southern Medical University
泛素化
泛素化是指泛素(一类低分子量的蛋白 质)分子在一系列特殊的酶作用下,将细胞 内的蛋白质分类,从中选出靶蛋白分子,并 对靶蛋白进行特异性修饰(主要是降解)的 过程。
Southern Medical University
Thanks for your attention
Southern Medical University
(二)蛋白激酶的种类
真核细胞的蛋白激酶可分为五类:
丝氨酸/苏氨酸蛋白激酶,磷酸基团的受体是丝氨酸 /苏氨酸羟基; 酪氨酸蛋白激酶,磷酸基团的受体是酪氨酸的酚羟 基;
组/赖/精氨酸蛋白激酶,磷酸基团的受体是咪唑环 、胍基、氨基; 半胱氨酸蛋白激酶,磷酸基团的受体是巯基;
MEK5
MKK
ERK1/2
JNKs
p38s
ERK5
MAPK
生长
凋亡
炎症反应
?
细胞反应
Southern Medical University
MAPK的作用底物:
转录因子: ATF2、c-Jun、Chop10、 MEF2C、ELK1
胞内蛋白激酶:MAPKAPK2/3、MNK1/2、 PRAK、MSK1/2
骨架相关蛋白:MAPs、Tau、sHSP
离子通道蛋白:Na+通道蛋白
Southern Medical University
MAPK介导的细胞反应
Stress response
Inflammation
Apoptosis
Development Proliferation
MAP kinases Differentiation
Southern Medical University
蛋白质翻译后修饰与加工
![蛋白质翻译后修饰与加工](https://img.taocdn.com/s3/m/9c217893b04e852458fb770bf78a6529657d356b.png)
VS
信号转导
在信号转导过程中,蛋白质的翻译后修饰 可以影响蛋白质与其他信号分子或受体的 结合,从而调控信号转导通路的激活或抑 制。
蛋白质构象变化
构象变化
某些蛋白质在翻译后经过特定的化学修饰, 如磷酸化、乙酰化等,这些修饰可以改变蛋 白质的构象,从而影响蛋白质的功能。
结构域运动
蛋白质的结构域之间可以发生相对运动,这 种运动可以影响蛋白质与其他分子的结合或 构象变化,从而调控蛋白质的功能。
糖基化
总结词
糖基化是一种在蛋白质翻译后发生的修饰,通过将糖链连接到蛋白质的特定氨基酸残基上,影响蛋白质的结构和 功能。
详细描述
糖基化分为两种类型:N-糖基化和O-糖基化。N-糖基化发生在新生蛋白的N-端,而O-糖基化发生在丝氨酸或苏 氨酸残基上。糖基化可以影响蛋白质的稳定性、分泌和细胞间的相互作用,参与多种生物学过程,如细胞识别、 信号转导和免疫应答等。溶酶体途径Fra bibliotek溶酶体
是一种细胞器,内部含有多种水解酶,能够分解各种生物大分子。
溶酶体途径
是指通过溶酶体降解细胞内物质的过程。
04
蛋白质定位与转运
核定位信号
01
02
03
04
核定位信号(NLS)
是一种特殊的氨基酸序列,能 够引导蛋白质进入细胞核。
核输出信号(NES)
存在于某些蛋白质中,能够将 蛋白质从细胞核输出到细胞质 。
酶的激活
某些蛋白质在翻译后经过特定的化学 修饰,如磷酸化、乙酰化或甲基化等, 这些修饰可以改变酶的构象或电荷分 布,从而激活酶的活性。
酶的失活
某些蛋白质经过特定的化学修饰后, 如泛素化或糖基化等,会导致酶的活 性降低或完全失活,从而调控蛋白质 的降解或功能。
蛋白翻译后修饰(研究生高级生化)
![蛋白翻译后修饰(研究生高级生化)](https://img.taocdn.com/s3/m/23586e79ae1ffc4ffe4733687e21af45b307fe22.png)
蛋⽩翻译后修饰(研究⽣⾼级⽣化)蛋⽩翻译后修饰(齐以涛⽼师)上课⽼师没说重点1.蛋⽩的概念:由许多氨基酸通过肽键相连形成的⾼分⼦含氮化合物。
2.蛋⽩后修饰概念和意义(PPT4-5)3.蛋⽩后修饰种类1. 切除加⼯2. 糖基化3. 羟基化4. 甲基化5. 磷酸化6. ⼄酰化7. 泛素化8. 类泛素化9. …200. …磷酸化修饰1.概念:磷酸化是通过蛋⽩质磷酸化激酶将ATP的磷酸基转移到蛋⽩的特定位点上的过程。
⼤部分细胞过程实际上是被可逆的蛋⽩磷酸化所调控的,⾄少有30%的蛋⽩被磷酸化修饰2.作⽤位点:丝氨酸、苏氨酸和酪氨酸是主要的磷酸化氨基酸,⼤多数磷酸化蛋⽩质都有多个磷酸化位点,并且其磷酸化位点是可变的。
3.实例(MAPK途径):分裂原活化的蛋⽩激酶(MAPK)、分裂原活化的蛋⽩激酶的激酶(MAPKK)、分裂原活化的蛋⽩激酶的激酶之激酶(MAPKKK)。
在真核细胞中,这3种类型的激酶构成⼀个MAPK级联系统(MAPK cascade),通过MAPKKK-MAPKK-MAPK逐级磷酸化,将外来信号级联放⼤并传递下去。
具体过程如下:MAPKKK位于级联系统的最上游,能够通过胁迫信号感受器或者信号分⼦的受体,或者其本⾝就直接感受胞外信号刺激⽽发⽣磷酸化?MAPKKK磷酸化后变为活化状态,可以使MAPKK磷酸化?MAPKK始终存在于细胞质中,MAPKK磷酸化以后通过双重磷酸化作⽤将MAPK激活MAPK被磷酸化后有3种可能的去向:(1)停留在细胞质中,激活⼀系列其它的蛋⽩激酶(2)在细胞质中使细胞⾻架成分磷酸化(3)进⼊细胞核,通过磷酸化转录因⼦,调控基因的表达4.功能和意义:⼀:调节酶蛋⽩及⽣理代谢①糖分解代谢中糖原磷酸化酶活性的调节,被磷酸化的酶具有活性,去磷酸化的酶⽆活性②磷酸化或去磷酸化使胞内已存在酶的活性被激活或失活,调节胞内活性酶的含量⼆:调节转录因⼦活性转录因⼦通常包含DNA结合结构域和转录激活结构域.转录因⼦在转录激活结构域或调控结构域发⽣磷酸化,直接影响其转录活性. c-Jun转录激活结构域的两个丝氨酸残基磷酸化,正调控c-Jun的转录活性.三:调节转录因⼦核转位TGF-b与其I型、II型受体结合,结合后的TGF-b I型受体识别R-Smad包括Smad2和Smad3,作⽤于C末端的丝氨酸使其磷酸化⽽被激活,激活后的R-Smad与Smad4结合转⼊细胞核内,发挥转录调节活性NF-kB与其抑制因⼦IkB形成复合体时存在于胞质。
7蛋白质合成后的折叠与修饰加工.ppt.Convertor
![7蛋白质合成后的折叠与修饰加工.ppt.Convertor](https://img.taocdn.com/s3/m/6df7f8b0dc3383c4bb4cf7ec4afe04a1b071b0e5.png)
7蛋白质合成后的折叠与修饰加工.ppt.Convertor第三节蛋白质合成后的折叠与修饰加工加工过程包括前体加工(切除信号肽)、蛋白质的化学修饰(磷酸化、糖基化)和蛋白质的剪接等。
一. 蛋白质合成后的正确折叠是其行使功能的基础一般认为,多肽链自身氨基酸顺序储存着蛋白质折叠的信息,即一级结构是空间构象的基础。
新生肽链的折叠在肽链合成中、合成后完成,新生肽链N端在核蛋白体上一出现,肽链的折叠即开始。
可随着序列的不断延伸肽链逐步折叠,产生正确的二级结构、模序、结构域到形成完整的空间构象。
“蛋白质折叠异常与疾病”分子病(Pauling):蛋白质分子发生变异所导致的疾病举例----镰刀状红细胞性贫血:β亚基N端的第6号氨基酸残基发生了变异,Glu→Val,这种变异来源于基因上遗传信息的突变。
镰刀状细胞贫血病---反应了蛋白质氨基酸序列在决定其高级结构和生物学功能方面的重大作用;致死性疾病;红细胞数目为正常人一半,且形状不正常.谷氨酸被及氨酸替代,谷氨酸为酸性氨基酸, 而缬氨酸为疏水氨基酸;从三级结构看,等于在血红蛋白分子表面安了一个疏水侧链. 血红蛋白的氧亲和力其实不受这种变化的影响, 但是血红蛋白分子之间可依靠疏水作用相互聚集沉淀,沉淀压迫细胞膜使之变形.CJD: Creutzfeld-Jakob disease学名:克罗伊茨费尔德—雅各布氏症简称克雅氏症俗名:疯牛病临床症状:出现痴呆或神经错乱,视觉模糊,平衡障碍,肌肉收缩等。
神经病理检查:病人的脑神经发生海绵状变性朊病毒(Prion):不含核酸,完全由蛋白质构成的病毒。
最初推测朊病毒是像普通病毒一样的微粒,只是缺乏核酸。
但是实际与预期的相反,朊病毒很快被证明可由细胞自身染色体的基因编码。
这个基因称为PRNP,它可以表达正常的脑组织并且编码一种命名为PrPc的蛋白质,存在于神经细胞的表面。
PrPc精确的功能到现在仍未发现。
但是这种蛋白质的新的形式目前在人脑中发现,这就是CJD。
蛋白质翻译后加工及其生物学意义 ppt课件
![蛋白质翻译后加工及其生物学意义 ppt课件](https://img.taocdn.com/s3/m/26e3fbad453610661fd9f440.png)
伴侣蛋白与疾病
伴侣蛋白可以导致疾病的发生。如蛋白产物极细微的折 叠异常,虽然对活性影响不大,却可以被“质控系统”滞留 在内质网,不能实现正常的转位、转运或分泌,导致疾病发 生。
例:α-1抗胰蛋白酶缺陷病
由于ER的分子伴侣(钙联蛋白)介导了折叠异 常的突变蛋白的聚集,从而导致仅有15%的α-1抗胰 蛋白酶分泌出来,其余全部滞留在内质网(ER)。 而异常产物的聚集大大妨碍了细胞的正常活动,最 终导致肝硬化或肺气肿的发生。
• 二硫键的形成:加固空间结构,进一步稳 定蛋白质的构象
对于大多数蛋白质来说多肽链翻译后还要进 行不同方式的加工修饰才具有生理功能
伴侣蛋白与疾病
ER中的伴侣蛋白,不仅介导和辅助新生 肽链的正确折叠与组装,还组建成一个蛋白 质折叠调控的“质控系统”(quality control system),结合蛋白质的折叠中间 体、未完全折叠或组装的多肽链、错误折叠 的蛋白质或蛋白质聚集体/聚合体,使之滞 留在内质网,阻碍其转运至高尔基体,从而 防止非活性产物的产生;并通过激活蛋白水 解酶来降解这些未能正确折叠的中间产物。
糖基化
在多肽链合成过程中或在合成之后常以共价键与 单糖或寡糖侧链连接,生成糖蛋白。这些糖可连接 在天冬酰胺的酰胺上(N-连接寡糖)或连接在丝氨酸、 苏氨酸或羟赖氨酸的羟基上(O-连接寡糖)
方式:通过多萜醇作为寡聚糖供体把整个寡 聚糖转移到肽链上
4、新生肽链中非功能片段切除
不少多肽类激素和酶的前体 需要经过加工才能变为活性分 子
蛋白质翻译后加工 及其生物学意义
——第三组
一、翻译后加工
地点:内质网、高尔基体
1 N端fMet或Met切除 2 二硫键形成 3 特定氨基酸化学修饰 4 新生肽链中非功能片段切除 5 亚单位的聚合
蛋白质生物合成—翻译及翻译后过程ppt课件
![蛋白质生物合成—翻译及翻译后过程ppt课件](https://img.taocdn.com/s3/m/fd769bff64ce0508763231126edb6f1aff007106.png)
.
分子伴侣的分类及作用
1. 应激蛋白70家族(heat-shock protein 70):参与蛋白质的从头折 叠、跨膜运输、错误折叠多肽的降 解及其调控过程
2. 伴侣素系统(chaperonin system): 具有独特的双层环状结构的寡聚蛋 白,以依赖ATP的方式为非自发性 折叠蛋白质提供能折叠形成天然空 间构象的微环境
蛋白质
rpS 21种 rpL 34种
rpS 33种 rpL 49种
.
小亚基与mRNA的结合
.
大亚基
P位
A位
P位(peptidyl site) :结合肽酰tRNA的部位 A位(aminoacyl site) :结合氨基酰tRNA的部位 E位(exit site) :排出位 .
三、氨基酸的活化与转运—tRNA
输的。需要消耗能量
3. 小泡运输—蛋白质从内质网转运到
高尔基体以及从高尔基体转运到溶
酶体、分泌泡、细胞质膜、细胞外
等是由小泡介导的
.
细胞中蛋白质运输的方式
1. 翻译中运输:由与内质网结合的核糖 体完成。新生肽链在合成过程中, 插入到内质网上的特殊通道,然后 转移入内腔
2. 翻译后运输: 由游离核糖体完成。 在多肽链合成后,将蛋白质从细胞 质转移到线粒体或叶绿体细胞器 和细胞核中
.
二、生物合成的场所 — 核蛋白体 (Ribosomes)
.
核蛋白体蛋白及rRNA的组成特点
原核生物
真核生物
核蛋 白体
小亚基
大亚基
核蛋 白体
小亚基
大亚基
S 70S 30S
50S
80S 40S
蛋白质翻译后修饰的鉴定ppt课件
![蛋白质翻译后修饰的鉴定ppt课件](https://img.taocdn.com/s3/m/cc04064adf80d4d8d15abe23482fb4daa58d1dcd.png)
25
离子交换和等电聚焦 离子交换(strong aion exchange,SAX/ strong caion exchange,SCX ):离子强度 不同进行分离 IEF:等电点不同进行分离 主要用于复杂样本的预分离,降低样本复杂 程度 结合金属亲和等其他富集技术,可取得很好 的效果
磷酸化涉及细胞信号转导、神经活动、肌肉收 缩以及细胞的增殖、发育和分化等生理病理过 程
糖基化在许多生物过程中如免疫保护、病毒的 复制、细胞生长、炎症的产生等起着重要的作 用
脂基化对于生物体内的信号转导过程起着非常 关键的作用
组蛋白上的甲基化和乙酰化与转录调节有关
3
第一节 蛋白质翻译后修饰的鉴定
26
2、磷酸肽的识别 质谱技术 质谱技术结合磷酸酶水解
27
MALDI-TOF MS 可以通过肽指纹谱(PMF)鉴定蛋白质,与磷酸
酯酶处理相结合可以确定磷酸化位点 原理:
磷酸酯酶处理后,磷酸化的肽丢失磷酸基团 而产生特定质量数的变化,MALDI-TOF MS通过检测这种质量数的变化而确定磷酸 化位点
从带两个正电荷的[M+2H]2+肽混合物中寻找丢失中 性磷酸分子H3PO4的磷酸肽,则Q1和Q3的扫描电压 差所代表的质荷比应为m/z 49
只能分析磷酸化丝氨酸和磷酸化苏氨酸
36
3、磷酸化氨基酸位点的确定
用于确定磷酸化肽中磷酸化位点的质谱方法基 于两种不同原理
第一种方法取决于磷酸酯键的化学稳定性 如在ESI质谱仪的碰撞室或离子源中,或在
么每一个被分离的肽段相应的活度计数就表明这一组 分中磷酸肽的相对量,如果已知所用放射性标记物的 比活,就能容易算出磷酸肽的绝对量 放射性标记的磷酸肽的分离谱可以用来定量检测不同 时间或细胞状态下蛋白质磷酸肽状态的变化 肽分离方法也有效地除去了非肽类杂质,更有利检测 和分析低丰度磷酸肽
蛋白翻译后修饰
![蛋白翻译后修饰](https://img.taocdn.com/s3/m/3e7cb06e700abb68a882fb14.png)
蛋白翻译后修饰(齐以涛老师)上课老师没说重点1.蛋白的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物。
2.蛋白后修饰概念与意义(PPT4-5)3.蛋白后修饰种类1、切除加工2、糖基化3、羟基化4、甲基化5、磷酸化6、乙酰化7、泛素化8、类泛素化9、…200、…磷酸化修饰1、概念:磷酸化就是通过蛋白质磷酸化激酶将ATP的磷酸基转移到蛋白的特定位点上的过程。
大部分细胞过程实际上就是被可逆的蛋白磷酸化所调控的,至少有30%的蛋白被磷酸化修饰2、作用位点:丝氨酸、苏氨酸与酪氨酸就是主要的磷酸化氨基酸,大多数磷酸化蛋白质都有多个磷酸化位点,并且其磷酸化位点就是可变的。
3、实例(MAPK途径):分裂原活化的蛋白激酶(MAPK)、分裂原活化的蛋白激酶的激酶( MAPKK)、分裂原活化的蛋白激酶的激酶之激酶(MAPKKK)。
在真核细胞中,这3种类型的激酶构成一个MAPK级联系统(MAPK cascade),通过MAPKKK-MAPKK-MAPK逐级磷酸化,将外来信号级联放大并传递下去。
具体过程如下:•MAPKKK位于级联系统的最上游,能够通过胁迫信号感受器或者信号分子的受体,或者其本身就直接感受胞外信号刺激而发生磷酸化•MAPKKK磷酸化后变为活化状态,可以使MAPKK磷酸化•MAPKK始终存在于细胞质中,MAPKK磷酸化以后通过双重磷酸化作用将MAPK激活•MAPK被磷酸化后有3种可能的去向:(1)停留在细胞质中,激活一系列其它的蛋白激酶(2)在细胞质中使细胞骨架成分磷酸化(3)进入细胞核,通过磷酸化转录因子,调控基因的表达4、功能与意义:一:调节酶蛋白及生理代谢①糖分解代谢中糖原磷酸化酶活性的调节,被磷酸化的酶具有活性,去磷酸化的酶无活性②磷酸化或去磷酸化使胞内已存在酶的活性被激活或失活,调节胞内活性酶的含量二:调节转录因子活性转录因子通常包含DNA结合结构域与转录激活结构域、转录因子在转录激活结构域或调控结构域发生磷酸化,直接影响其转录活性、c-Jun转录激活结构域的两个丝氨酸残基磷酸化,正调控c-Jun的转录活性、三:调节转录因子核转位•TGF-b与其I型、II型受体结合,结合后的TGF-b I型受体识别R-Smad包括Smad2与Smad3,作用于C末端的丝氨酸使其磷酸化而被激活,激活后的R-Smad与Smad4结合转入细胞核内,发挥转录调节活性•NF-kB与其抑制因子IkB形成复合体时存在于胞质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 细胞表面的凝集素能专一地识别并结合 另一细胞的糖链。凝集素的这种特性, 在细胞与细胞,细胞与基质的粘附中起 一定作用。
最新 PPT
❖ 1990年11月,三个小组同时发现了血管 内皮细胞-白细胞黏附分子1(ELAM- 1),后改称E选择素(E-selectin),又 称为动物凝集素,能识别白细胞表面的 SLex(一种血型抗原)四聚糖。
最新 PPT
第一节 蛋白质的糖基化
❖ 大多数蛋白质以糖蛋白形式存在,它们包括酶、免疫球蛋白、 载体蛋白、激素、毒素、凝集素和结构蛋白,功能涉及细胞识 别、信息传递、激素调节、受精、发生、发育、分化、神经 系统和免疫系统恒态维持等各个方面。而且知道,病菌、病毒 的侵染,癌细胞的增殖及转移,自身免疫疾病等都与细胞表面 的糖密切相关。
最新 PPT
O-糖肽键连接
N-糖肽键连接
GalNAc 乙酰半乳糖胺
GlcNAc 乙酰葡萄糖胺
最新 PPT
Roles of oligosaccharides
in recognition and adhesion at the cell surface
最新 PPT
(2)凝集素的特异结合作用
❖ 凝集素是一类广泛存在于自然界的一大类非免疫来 源的蛋白质或糖蛋白,它能与糖专一性地、非共价 地可逆结合,并且有凝集血细胞的作用,故称为凝 集素。
❖ 在生物合成过程中新生的肽链N端由去甲酞基酶 去除甲酰甲硫氨酸残基的甲酰基,氨肽酶去除N 端甲硫氨酸或N端某些氨基酸残基。一些分泌性 蛋白质、激素及酶最初合成的是不具有生物活 性的前体,如白蛋白原、胰岛素原等。
❖ 蛋白质前体要经过蛋白酶切割,去除一部分肽 段后才具有活性。它可以分为两种类型:①蛋 白质前体在细胞内被加工成有生物活性的蛋白 质,然后分泌到胞外;②蛋白质前体被分泌到 胞外或消化道,被蛋白酶加工成有生物活性的 蛋白质,如前胶原分子活化为胶原分子,胰蛋 白酶原激活等。
最新 PPT
最新 PPT
Slex及其模拟物的结构
最新 PPT
(3)构成某些抗原的决定子
❖ 聚糖与细胞和生物分子的一个很重要的特性就是表型和抗 原性,据此细胞和分子能彼此区别,人类的ABO血型以及 相关血型抗原性是由糖链决定的。A型和B型抗原决定簇 的不同只是在于糖蛋白和糖脂中的糖链的非还原端的一个 糖残基:A型为N-乙酰氨基半乳糖(GalNAc);B型为半乳 糖(Gal)。
第七章 蛋白质翻译后修饰与加工
最新 PPT
❖ 蛋白质翻译后修饰, 是指在mRNA被翻译成蛋白质后, 对 蛋白质上个别氨基酸残基进行共价修饰的过程.
❖ 蛋白质翻译后修饰在生命体中具有十分重要的作用. 人类 基因组计划的完成是20世纪最伟大的科技成果之一。在 对人类基因组进行仔细研究后发现, 人类基因大约有 30000-50000 个,这仅仅是线虫和果蝇染色体基因数的 3-5倍. 而生命体内复杂生命过程的调控, 仅仅靠这样小数 目的基因远不能满足需要。
❖ 当组织受损或感染时,白细胞黏附于内皮 细胞,沿血管壁滚动并穿过管壁进入受损 组织,杀灭入侵病原物,但过多的白细胞 聚集,则会引起炎症及类风湿等自身免疫 疾病。
最新 PPT
最新 PPT
❖ 美籍华裔科学家王启辉首先用酶法合成了SLex,并 已由Cytel公司生产。Glycomed公司则从中药甘 草中,找到了SLex的类似物甘草素,可用于封闭血 管内皮细胞表面的E选择蛋白,从而达到抗炎的目 的。
❖ 糖基化在许多生物过程中如免疫保护、病毒的复制、 细胞生长、炎症的产生等起着重要的作用;
❖ 脂基化对于生物体内的信号转导过程起着非常关键 的作用;
❖ 组蛋白上的甲基化和乙酰化与转录调节有关。 在体 内,各种翻译后修饰过程不是孤立存在的。
最新 PPT
❖ 原核生物中肽链起始合成时,N端为甲酰甲硫氨 酸,真核肽链合成时N端是甲硫氨酸,但是成熟 的蛋白质中N端并无甲酰甲硫氨酸,大多数蛋自 质的N端也不是甲硫氨酸。
最新 PPT
❖ 在真核动物 细胞中有 20多种蛋 白质翻译后 修饰过程, 常见的有泛 素化、磷酸 化与去磷酸 化、糖基化 与去糖基化、 脂基化、甲 基化和乙酰
化等。
最新 PPT
❖ 近年来, 随着人类基因组和蛋 白质组学工作的开展, 关于蛋白质翻译后修饰的研究也取得一系列进展.
❖ 磷酸化涉及细胞信号转导、神经活动、肌肉收缩以 及细胞的增殖、发育和分化等生理病理过程;
❖ 糖蛋白是蛋白质通过共价键与糖类结合的复合物,其中的糖 基少则只有一个,多则可达数百个,后者的糖基常常连接成 寡糖链,又称为聚糖(glycan)。
最新一条寡糖链与蛋白质中氨基酸残基可通过多种 方式共价连接,从而构成糖蛋白的糖肽连接键 (简称糖肽键)。参与糖肽共价连接的氨基酸 种类较少,常见的是丝氨酸、苏氨酸、天冬酰 胺、羟赖氨酸、羟脯氨酸。
❖ 凝集素可与糖专一性地结合。目前按结合糖的类型, 凝集素可分为六类: D-甘露糖或D-葡萄糖;N-乙 酰氨基葡萄糖; N-乙酰氨基半乳糖; D-半乳糖; L-岩藻糖;唾液酸。
❖ 在植物凝集素中,只有麦胚凝集素(WGA)可专 一结合唾液酸。
最新 PPT
最新 PPT
❖ 细胞间的粘附是细胞间相互作用起决定 性作用的起始步骤。作为致病的微生物, 首先对宿主细胞进行粘着,然后才能感 染和致病。
❖ 因此, 蛋白质翻译后修饰过程尤为重要,它使蛋白质的结 构更为复杂, 功能更为完善, 调节更为精细, 作用更为专一。
❖ 细胞内许多蛋白质的功能,是通过动态的蛋白质翻译后修 饰来调控的; 细胞的许多生理功能, 例如细胞对外界环境 的应答, 也是通过动态的蛋白质翻译后修饰来实现的。人 类生命过程的复杂性不单是基因直接表达的结果, 正是蛋 白质翻译后修饰, 使得一个基因并不只对应一个蛋白质, 从而赋予人类生命过程更多的复杂性.