纳米铜粉的制备及保存_于丽华

纳米铜粉的制备及保存_于丽华
纳米铜粉的制备及保存_于丽华

纳米铜粉.纳米铜粉的作用

纳米铜粉.纳米铜粉的作用 关键词: 纳米铜粉 时间:2011-11-18来源:金粉点击:25次 摘要:纳米铜粉的研制是一项可能带来铜及其合金革命性变化的关键技术,具有重要的理论意义和实用价值。纳米铜粉的研究还处于开发阶段,而其广泛的用途将使得纳米铜粉的研究具有更好的市场价值和市场前景。 超细颗粒材料是指其颗粒尺寸在1~1 00 nm之间的粉末,也称为纳米颗粒材料(在应用中有人将超细颗粒材料扩展到几微米)。纳米粒子具有小尺寸效应,大的比表面和宏观量子隧道效应,因而纳米微粉显示出许多优良的性能是微米级粉末所没有的。纳米铜粉的比表面大、表面活性中心数目多,在冶金和石油化工中是优良的催化剂。 在汽车尾气净化处理过程中,纳米铜粉作为催化剂可以用来部分地代替贵金属铂和钌,使有毒性的一氧化碳转化为二氧化碳,使一氧化氮转变为二氧化氮。 随着电子工业的发展,由纳米铜粉制备的超细厚膜浆料将在大规模集成电路中起着重要的作用,同时价格比贵金属银粉、钯粉低廉,具有广阔的应用前景。 在高分子聚合物的氢化和脱氢反应中,纳米铜粉催化剂有极高的活性和选择性,在乙炔聚合反应用来制作导电纤维的过程中,纳米铜粉是很有效的催化剂。 超细铜粉是导电率好、强度高的纳米铜材不可缺少的基础原料。由于其优异的电气性能,广泛应用于导电胶、导电涂料和电极材料,近年来研究发现可用于制作催化剂、润滑油添加剂,甚至可以用于治疗骨质疏松、骨折等。 纳米铜粉的研制是一项可能带来铜及其合金革命性变化的关键技术,具有重要的理论意义和实用价值。纳米铜粉的研究还处于开发阶段,而其广泛的用途将使得纳米铜粉的研究具有更好的市场价值和市场前景。 目前采用的还原剂包括甲醛、抗坏血酸、次磷酸钠、硼氯化钠、水合肼等,但是这些还原剂有的有剧毒,有的还原能力差,有的成本太高,还有的反应过程易引入其他杂质,因此,寻找更为合适的还原剂或复合还原剂,研究更为理想的反应体系成为纳米铜粉制备研究的重要课题。此外,由于纳米铜粉的粒径较小,表面活性较大,易于团聚,并且粉末表面易被氧化成Cu20,因此如何改善纳米铜粉的分散性及怎样防止铜粉被氧化也是一个重要研究方向。 目前,工业生产超细微材料方法有:冷冻干燥法、沉淀转化法、*相合成法、超声波法、水解法、机械合金化技术、均匀沉淀法、还原一保护法等。上述各法中,有的需要庞大的设备,有的复杂,有的制备成本高,有的合格率及产量低。而液相化学还原法制备纳米铜粉有其独到的优点,如设备简单、艺流程短、投资小、产量大、成本低、易工业化生产等。 纳米铜润滑油添加剂是以纳米摩擦学为理论指导、以纳米技术为支撑的一种新型的润滑油添加剂产品,它具有优良的抗磨减摩和节能环保功效。将纳米铜润滑油添加剂添加到汽车

电化学法制备纳米铜粉

文章编号:167325196(2008)0320009203 电化学法制备纳米铜粉 徐建林1,2,陈纪东1,2,张定军1,2,马应霞1,2,冉 奋1,2,龙大伟1,2 (1.兰州理工大学甘肃省有色金属新材料重点实验室,甘肃兰州 730050;2.兰州理工大学有色金属合金及加工教育部重点实验室,甘肃 兰州 730050) 摘要:在十二烷基硫酸钠、吐温80、苯、正丁醇、十二烷基硫醇和硫酸铜混合而成的乳液中,采用电化学合成的方法制备稳定的、粒径均匀的Cu 纳米颗粒.采用XRD 、TEM 及FT -IR 对所制备的Cu 纳米颗粒的结构、形貌、粒径大小及表面键合性质进行表征.结果表明,制备的纳米铜粉为球型颗粒,分散较好,尺寸较为均匀,约为60~80nm ,并且具有立方晶型结构;得到的纳米铜颗粒表面含有一层有机物质,形成了包覆层较薄的核壳结构,这种包覆层阻止了纳米铜粉在空气中或水中的团聚和氧化,起到提高纳米铜颗粒的分散性和稳定性的作用.关键词:纳米颗粒;Cu ;乳液;电化学中图分类号:TB383 文献标识码:A Preparation of copper nano 2powder by using electrochemical method XU Jian 2lin 1,2,C H EN Ji 2dong 1,2,ZHAN G Ding 2jun 1,2 MA Y ing 2xia 1,2,RAN Fen 1,2,LON G Da 2wei 1,2 (1.State Key Lab.of Gansu Advanced Non 2ferrous Metal Materials ,Lanzhou Univ.of Tech.,Lanzhou 730050,China ;2.Key Lab.of Non 2ferrous Metal Alloys ,The Ministry of Education ,Lanzhou Univ.of Tech.,Lanzhou 730050,China ) Abstract :Stable and uniform Cu nanoparticles was p repared wit h electrochemical met hod in emulsio ns containing of sodium dodecyl sulfate ,tween 80,benzene ,12butanol ,dodecyl mercaptan and CuSO4?5H 2O.The morp hology and struct ure of t he resulting copper nanoparticles were investigated wit h XRD ,TEM and F T 2IR.It was found t hat t he copper nano 2powder was of sp herical st ruct ure wit h a better dis 2persity ,uniform particlesize.t he average size being 60~80nm and cubic crystalline.A layer of organic compound was absorbed on t he surface of copper nanoparticles ,forming a shell 2core st ruct ure wit h t hin surface coating film ,which could be p revent t he Cu nano 2powder f rom aggregation and oxidation in t he at 2mo sp here or water ,and increase t he dispersibility and stability of t he Cu nanoparticles as well. K ey w ords :nanoparticles ;Cu ;emulsions ;elect rochemist ry 纳米铜颗粒的比表面积大,表面活性中心数多,在石油化工和冶金中是良好的润滑剂;此外,纳米铜颗粒具有极高的活性和选择性,可以用作高分子聚合物的氢化和脱氢化反应的催化剂[1,2].1995年,Pekka [3]等指出纳米铜由于其低电阻而可用于电子 连接,引起电子界的很大兴趣.纳米铜粉也可用于制 造导电浆料(导电胶、导磁胶等),广泛应用于微电子工业中的布、封装、连接等,对微电子器件的小型化生产起重要作用. 目前,常用的制备纳米铜粉的方法有:机械化学 收稿日期:2007201207 作者简介:徐建林(19702),男,陕西岐山人,博士,副教授. 法、气相蒸汽法、化学还原法、辐照还原法等.此外,Gedanken 等人报道了一种用自还原前驱体制备纳米铜的方法[4],Pileni 等人用表面活性剂囊泡技术制备了各种形状的铜纳米颗粒[5].机械化学法制备的粉体组成不易均匀,粉末易团聚,粒径分布宽,所以缺乏现实意义;气相蒸汽法所需原料气体价格昂贵,设备复杂,成本高.目前研究最多的是液相还原法,但是液相还原又需要用到一些剧毒的还原剂,这对研究者本身或者是环境都会造成危害.电化学合成方法具有反应条件温和、仪器设备简单、无毒无污染的优点,是合成纳米材料的有效手段之一[6,7]. 本文采用电化学电解法,在十二烷基硫酸钠、吐 第34卷第3期2008年6月兰 州 理 工 大 学 学 报 Journal of Lanzhou University of Technology Vol.34No.3 J un.2008

纳米铜粉

纳米铜粉指标: 颜色:紫红色 粒径:100纳米 纯度:99.5% 比表面积:6.67平方米/克 纳米铜粉应用领域: 1、导电浆料:用此方法生产的100纳米铜粉配成铜电子浆料,可以烧结出仅有0.6个微米厚的电极,用于MLCC,使MLCC器件小型化,优化微电子工艺,代替银电等贵金属电子浆料,大幅度降价成本。 2、高效催化剂:铜及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。 3、药物添加材料:纳米铜粉为原料制成药物(重量比为0.2~0.4%),具有明显降低MDA含量,改善由于氧自由基所造成的脂质过氧化损害,明显增加SOD含量,增强机体SOD水平,调节其功能活性表达的特性,从而达到延缓人体的老化过程,干预、推迟其机体组织结构向衰老转化,开辟了生命科学领域抗衰老的新途径。有研究者作为制备抗衰老和脑缺血、脑血栓后遗症等的治疗药物,且疗效确切,服用方便、安全。更有专家教授用于治疗癌症,取得了奇效后反过头来探索其机理。纳米铜粉也可以用于治疗骨质疏松,骨质增生等新特效药的添加材料。 4、纳米铜粉弥散强化铜合金等,大幅度提高铜合金的强度和硬度,大幅度提高铜合金的软化温度,同时大幅度提高铜合金的导电和导热能力。 5、油墨导电填料:此方法生产的100纳米铜粉具有纳米材料独有的场发射效应和量子隧道效应,在高导电油墨里替代银粉做高导电填料,大幅度降低成本。 6、金属和非金属的表面导电涂层处理:纳米铝、铜、镍粉体有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。此技术可应用于微电子器件的生产。 7、块体金属纳米材料用原料:采用惰性气体保护粉末冶金烧结制备大块铜金属纳米复合结构材料。 8、金属纳米润滑添加剂:添加0.1~0.6%至润滑油、润滑脂中,在摩檫过程中使摩檫副表面形成自润滑、自修复膜,显著提高摩檫副的抗磨减摩性能。 9、纳米金属自修复剂:添加至各种机械设备金属摩擦副润滑油中,实现金属摩擦已磨损部分自修复,节能降耗,提高设备使用寿命及维修周期。

液相还原法制备超细铜粉的研究进展

液相还原法制备超细铜粉的研究进展  谭 宁1,温晓云2,郭忠诚1,陈步明1 (1.昆明理工大学材料与冶金工程学院,云南 昆明 650093; 2.云南铜业集团有限公司,云南 昆明 650051) 摘 要:超细铜粉由于其特殊的性能,因而应用范围很广泛。其制备的工艺也引起了广泛的关注,其中液相还原法由于其特殊的优点,故研究的较多。文中阐述了液相还原法制备超细铜粉的工艺的研究进展以及铜粉表面改性的工艺,并提出了问题及对未来的展望。 关键词:超细铜粉;液相还原法;表面改性 中图分类号:TG144 文献标识码:A 文章编号:1006-0308(2009)02-0071-04 The D evelop m en t of Ultraf i n e Copper Powder Prepara ti on by L i qu i d Pha se Reducti ve Process T AN N ing1,W E N Xiao-yun2,G UO Zhong-cheng1,CHEN Bu-m ing1 (1.Faculty ofMaterials and Metallurgical Engineering, Kun m ing University of Science and Technol ogy,Kun m ing,Yunnan650093,China; 2.Yunnan Copper Gr oup Co.,L td.,Kunm ing,Yunnan650051,China) ABSTRACT:Due t o the excep ti onal perfor mance of the ultrafine power,and thus it has a wide range of app licati on.The p r ocess of ultrafine power p reparati on by liquid phase reductive p r ocess and the copper surface modificati on p r ocess are described,and the issue and the visi on f or the future of the ultrafine copper powder is put for ward. KEY WO R D S:ultrafine copper power;liquid phase reductive p r ocess;the surface modificati on p r ocess 超细铜粉由于其特殊的物理、化学性能,目前广泛应用于电学、涂料、催化、医学等领域。超细铜粉的研制是一项可能带来铜及其合金革命性变化的关键技术,具有重要的理论意义和实用价值,其广泛的用途将使得纳米铜粉的研究具有更好的市场价值和市场前景[1]。超细铜粉的制备方法很多,国内外均有不少的报道,大致可分为固相法、气相法和液相法。固相法是一种传统的粉化工艺,通过从固相到固相的变化来制造粉体,用于粗颗粒微细化[2,3],气相法制备的产品纯度较高,表面清洁,分散性好,粒径分布窄,但固相法和气相法制备工艺存在成本较高,设备昂贵,工艺复杂、易引入杂质等缺点[4];而液相还原法由于其具有设备简单,工艺流程短,产量大,易工业化生产等优点,得到了人们的青睐[5]。 1 液相化学还原法工艺 液相化学还原法是利用了氧化-还原反应的原理,采用具有一定还原能力的还原剂,在液相或非常接近液相的状态下,将二价铜离子还原至零价态,通过控制各种工艺参数来得到不同粒径、均匀的粉末。它是一种新型、高效的方法,该方法制备 17 3收稿日期:2008-10-17;修回:2008-11-26 作者简介:谭 宁(1983-),女,山东人,硕士,主要研究方向:金属粉体及导电材料。基金项目:本课题得到“教育部新世纪优秀人才支持计划”资助

纳米粉体制备方法

纳米粉体制备方法 纳米技术是当今世界各国争先发展的热点技术,纳米技术和材料的生产及其应用在中国已起步,可以产业化的只有为数不多的几个品种,纳米二氧化钛(TiO2)、纳米氧化锌(ZnO)、纳米碳酸钙(CaCO3)便是其中较具代表性的几个品种。纳米粉体的制备方法很多,可分为物理方法和化学方法。以下是对各种方法的分别阐述并举例。 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。1。金属烟粒子结晶法是早期研究的一种实验室方法。将金属原料置于真空室电极处,真空室抽空(真空度1P a)导入102到103 P a压力的氩气或不活泼性气体,然后像通常的真空蒸发那样,用钨丝蓝蒸发金属。在气体中,通过蒸发、凝聚产生的金属蒸气形成金属烟粒子,像煤烟粒子一样沉积于真空室内壁上。在钨丝篮上方或下方位置可以预先放置格网收集金属烟粒子样品,以备各类测试所用。2。流动油面上的真空蒸发沉积法(VEROS),VEROS法是将物质在真空中连续的蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,从而实现在短时间制备大量纳米粉体。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,有一种制备纳米粉体材料新方法,最适用于碳化物、氮化物及部分金属粉体的制备。其方法是先对反应器抽真空,然后充入保护气体或反应气体,在反应器中设置石墨电极,在石墨电极与反应器坩埚中的金属之间通电,使之产生高温碳电弧,由高温电弧产生金属蒸汽。采用保护气体可以生产出由石墨原子包覆的纳米镍粉、铜粉、铝粉等不易团聚的金属纳米粉末;采用反应气体可以生产碳化物、氮化物纳米粉末。与现有技术相比,生产的纳米粉末不易团聚,具有成本低,电弧功率大,可以实现规模化生产,具有广泛的实用性。用冲击波处理共沉淀法制备的氧化铁与氧化锌混合物合成了铁酸锌,用XRD、TEM 和电子衍射法对这种产品进行了鉴定.与传统的高温焙烧法相比,这种产品的特点是其颗粒尺寸为纳米级.主要原因可能在于冲击波的作用时间极短,因此生成的铁酸锌不会生长成为完整的晶粒.由此可以认为,冲击波处理可能是一种制备复合金属氧化物的纳米粉体的新方法. (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,一种钛合金纳米粉体制备方法,原料包括钛合金粗粉、助磨键合剂、分散剂、表面活性剂;制备方法是,将所述原料按配比投入反应釜,反应釜转速200-300mpr、温度50℃-60℃,反应釜旋转时间15-30分钟;反应釜转速升高至达1000mpr以上,维持该转速1.5-2.5小时,温度为180℃以上;反应釜转速降到300mrp以下,在0.5-1.0小时内降低温度至40℃-50℃,停机,即完成纳米粉体的制备。它稳定地对钛合金实现了纳米化加工;由此为利用纳米粉体的小尺寸效应、表面积效应而使它的耐蚀优点得到提升得以实现,使之可作为一种活性添加剂与各种优良树脂结合成一种新型复合材料。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。例,TiCl4气相氧化法,其基本化学反应式为:TiCl4(g)+O2(g)=TiO2(s)+Cl2(g) 施利毅、李春忠等利用

超细铜粉规模为10000吨年

超细铜粉规模为10000吨/年 一、产品概述 超细铜粉,是指粒径介于10~10-5m的微小铜粒子,常温下为棕 色或略带紫色的微细粉末。超细铜粉具有导电导热性能好、粒径小、耐腐蚀、表面光洁、流动性强等特点, 在力学、电学、化学和电极材 料的制造等领域有许多特异性能和极大的潜在应用价值。 超细铜粉大约55%用来制成青铜轴承,13%和铁混合用作粉末冶 金的工业零件,12%用作浸渗粉,10%加入黄铜,10%用作它用。我 国铜粉的消费结构主要在金刚石工具、粉末冶金零件和电碳行业三大 领域,占整个铜粉消费量的95%,另外5%用于其他行业,主要是高 催化活性和选择性催化剂、纳米铜润滑油、医药、黏结剂、导电涂料 等领域。 二、市场简析 a. 国际市场 2002年世界超细铜粉的产量高达59000-64000t,并且以每年5%以上的速度在递增,其生产和消费主要集中在在北美、西欧和东亚这三个地区,分别占全球总产能的30%、30%和40%。预计到2014年,全球总生产能力约为10万吨/年,其中欧美和日本等地区发展较慢,亚洲,主要是除日本外的东亚、东南亚发展较快,特别是中国大陆超过每年10%的增速。图30是日本和北美超细铜粉产量图。

图30 日本及北美铜粉及铜合金粉产量分布图 b. 国内市场 2008年,我国铜粉及铜合金粉的产量为22500t,年产2500t以上的企业有北京有研粉末、金川集团、衡水润泽、重庆华浩等4家,提供超细铜粉、片状铜粉、导电铜粉、银包铜粉等,主要生产工艺为电解法和雾化法。电解法生产的铜粉纯度高、呈树枝状、成形性好,但生产成本较高、环境污染较严重,电解粉末因其特有的性能还不能被其它工艺制备的粉末所替代。2008年电解铜粉产量约13500t,占全国总产量22500t 的60%;其它企业只有1000t甚至几百吨的生产能力,且技术设备条件落后、产品质量不稳定。雾化法具有生产工艺简单、成分易合金化、成本低、污染小等优点,正在取代部分电解铜粉工艺而得到应用。为了增加雾化粉末的表面积,完全取代电解铜粉,国外从20世纪60年代开始使

纳米铜粉催化活性研究【开题报告】

毕业设计开题报告 应用化学 纳米铜粉催化活性研究 一、选题的背景和意义 我国有机硅行业发展起步较晚,改革开放以后有机硅产品的需求量迅速增加,有机硅工业步入快速发展阶段。目前国内有机硅的市场规模约50亿元人民币。但由于国内的有机硅单体的产量严重不足,所以有机硅产品的中间体基本需要进口。虽然,,我国近年来有机硅的生产水平有了较大程度的提高, 如流化床反应器的单机生产能力已从原来的3 000吨发展到现在50 000吨;主产物二甲基二氯硅烷的收率由70 %提高到75 %~80 %;我国有机硅行业的发展有目共睹,但也应该清楚地意识到与国外先进生产水平的差距;我国的有机硅行业的发展任重而道远。 二、研究目标与主要内容(含论文提纲) 目前,甲基氯硅烷的合成主要以直接法实现,在理想情况下直接法的化学反应可简单地表述为:2CH3Cl+Si→(Cu/300℃)→(CH3)2SiCl2+280kJ/mol ,作为反应最常用的催化剂,三元铜催化剂具有其他催化剂所不具备的优点,但由于它成本较高,而且制备工艺比较复杂,如何得到成本低,催化活性高的铜催化剂将是本次实验研究的重点。研究内容: 以自制三元铜为催化剂催化氯甲烷合成二甲基二氯硅烷,确定工艺参数。 研究三元铜催化剂在不同温度、压力、时间下催化氯甲烷合成二甲基二氯硅烷的影响。 用GC检测二甲基二氯硅烷的产率,从而评价铜催化剂和最佳反应条件。 提纲: 引言 一、甲基氯硅烷合成技术进展 1 反应催化体系 1.1 主催化剂对反应的影响 1.2 助催化剂对反应的影响

1.3 催化剂的发展趋势 2 反应装置的进展 2.1固定反应床 2.2 搅拌床反应器 2.3 流化床反应器 3 反应条件的影响 3.1温度与时间对反应的影响 3.2 压力对反应的影响 三、结论 四、参考文献 二、拟采取的研究方法、研究手段及技术路线、实验方案等 2CH3Cl+Si→(Cu/300℃)→(CH3)2SiCl2+280kJ/mol 以自制三元铜为催化剂催化氯甲烷合成二甲基二氯硅烷,确定工艺参数。 研究三元铜催化剂在不同温度、压力、时间下催化氯甲烷合成二甲基二氯硅烷的影响。 用GC检测二甲基二氯硅烷的产率,从而评价铜催化剂和最佳反应条件。 三、中外文参考文献 [1] 冯圣玉,张洁,李美江,有机硅高分子及其应用[M],化学工业出版社,2004,1~ 12 [2] 王皖林,王涛,中国甲基氯硅烷合成技术进展[J],有机硅材料,2008,22(1), 9~13. [3] 王皖林,王涛,中国甲基氯硅烷合成技术进展[J],有机硅材料,2008,22(1), 16~20. [4] 陈其扬,幸松民,邹家禹,达文,张世海,李德芬,陈士珂,陈克强,王玉坤,直 接法合成甲基氯硅烷用铜催化剂及其制备,专利号:CN87104211A,1~4. [5] 张桂华,催化体系对直接法合成甲基氯硅烷的影响[J],化工新型材料,2004, 10,10(32),22~26. [6] 张桂华,催化体系对直接法合成甲基氯硅烷的影响[J],化工新型材料,2004,32 (10),21~23.

粉体材料的制备方法有几种

粉体材料的制备方法有几种?各有什么优缺点?(20分) 答:粉末的制备方法: 气相合成、湿化学合成、机械粉碎. 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。 (2)沉淀法 把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。 (3)水热合成法 高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。 (4)溶胶凝胶法 金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。 (5)微乳液法 两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备 2. 为什么要对粉体材料的表面进行改性?什么是物理吸附?什么是化学吸附?试举例说明。(20分) 答: 材料表面改性的目的 力学性能:表面硬化、防氧化、耐磨等 电学性能:表面导电、透明电极 光学性能:表面波导、镀膜玻璃 生物性能:生物活性、抗菌性 化学性能:催化性 装饰性能:塑料表面金属化 材料表面改性的意义 通过较为简单的方法使一个部件部件或产品产品具有更为综合的性能第一节材料表面结构的变化 粉体表面改性是指用物理、化学、机械等方法对粉体材料表面进行处理,根据应用的需要有目的改变粉体材料表面的物理化学性质,如表面组成、结构和官能团、

铜粉分类及报价

规格相近的超细铜粉报价: 1、中文别名:纳米铜;超微铜粉;纳米铜粉 英文别名:Copper powder; ultrafine copper powder;Superfine copper powder; nano-copper powder CAS 号:7440-50-8 海关编码:7406101000(HS编码) 最新价格:¥580 元/公斤 产品规格:0.2-1μm(大于10000目) 产品说明 分子式:C u 分子量:63.55 物化性质:紫褐色或褐色粉末 产品用途:用做微电子器件的生产,用于制造多层陶瓷电容器的终端。 也可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。还 可用做石油润滑剂及医药、电镀、涂料行业等。 包装运输:铝箔包装,500克、1公斤。要求包装密封。贮存于阴凉干 燥处。勿与氧化剂接触。按照普通货物运输。 结构式:无 执行标准:企标 |2、超微细高纯球型铜粉 质量指标: 超微细铜粉能够替代一般电解铜粉、雾化铜粉等在硬质合金、金刚石工具、焊接电极、摩擦材料、催化剂等领域,会带来产品质量明显的变化;

作为一种超细、高纯金属粉体材料,满足电子、医学和生物领域新品开发的需要,比如0.5~1.0um超微细铜粉可用于人体抗老化与治疗老年痴呆药物的研制; 与锌粉、锡粉、铝粉等按比例球磨合可生产高品质铜金粉、青铜粉,用于导电膏、导电涂料、抗电磁波干扰涂料、装饰涂料与导电油墨等领域。 报价:580.00元/公斤 3、其他铜粉分类及报价 品名:电解铜粉 产地:美国 单价:63元/公斤 铜不小于%:99.5 规格: -100目、-150目、-200目、-300目、-400目 品名:纯铜粉 产地:美国 单价:66元/公斤 铜不小于%:99.8 规格: -200目、-300目 品名:青铜粉(660、663) 产地:美国 单价:66元/公斤 规格: -100~-500目 品名:黄铜粉 产地:美国 单价:63元/公斤 规格: -100目、-200目、-300目 品名:白铜粉 产地:美国 单价:98元/公斤 规格: -100目、-200目、

超细铜粉的应用

超细铜粉的应用 铜粉在MLCC内电极上的应用前景 片式多层陶瓷电容器(MLCC),是表面安装电路中最重要的电子元器件之一。随着陶瓷电容器应用领域的不断扩展,以其微薄型化、大容量、宽温、高频、耐焊接、高可靠性等优势,占据了量大面广的中小容器市场的85%以上,被广泛应用在手机、计算机、液晶显示器、数码相机、便携式摄像机、DVD等产品。近几年,国际市场对片式MLCC的需求以年均15%~20%的速度增长。我国各主要厂家加大生产,目前产品仍供不应求。如此巨大的需求量使MLCC的研发趋势走向微型化、高比容、高电压、低成本(内电极的贱金属化)、高可靠性。其中,发展贱金属内电极势在必行。 MLCC是多个单层电容以叠层方式加以连接而成,它是由内电极、介质材料、端电极组成。铜具有电阻率小、电迁移速度小、价格优廉等优点,是银钯内电极的理想替代品之一,但其化学性质较活泼,在空气中,比表面积大的粉状铜极易被氧化,表面会形成Cu2O和CuO的薄膜,使其导电性迅速下降,甚至变为不导电。所以金属铜作为MLCC的内电极,需具备以下特点:分散性好、球形度高、粒度均匀。液相还原法制备的超细铜粉较接近上述要求。 铜粉在导电涂料中的应用 导电涂料是伴随着科学技术的进步而迅速发展的一种功能涂料,可广泛用于电子电器、建筑、航空、化工、印刷、军事等领域。如集成电路元件的导电连接、电磁屏蔽材料、导电或抗静电涂料等。尤其在电子仪器设备上,随着电子工业的不断发展和进步,各种电子仪器设备已经得到广泛应用,电磁干扰正在影响着人们的生活。在电子产品的表面涂覆一层导电涂料可以防止电磁泄露、抵御外来电磁干扰。 目前导电涂料的填料主要有碳系、银系、铜系和镍系及复合系等。作为电磁波屏蔽用涂料中的导电填料,铜粉以电导率高,价格相对便宜,材料易得,不存在银粉在涂层中发生“银迁移”而影响涂层性能等优点倍受青睐。但铜容易氧化,且其氧化物电导率低,造成涂层的电导率下降,所以低价格、耐金属迁移的铜粉复合导电涂料的研究和开发越来越受到重视。梁浩,谢芳在前期研究工作的基础上,采用树枝状微米级铜粉及球状亚微米级铜粉制备了新的镀银铜粉作为导电填料,制得了导电性能更好的导电涂料。闫军,崔海萍等以硬脂酸包覆的铜粉为导

粉体纳米材料制备方法及其应用前景

收稿日期:2000-03-14 作者介绍:李芳宇,1977—,南方冶金学院机械系98级研究生。 纳米粉体制备方法及其应用前景 李芳宇,刘维平 (南方冶金学院机械系,江西赣州341000) 摘 要:论述了纳米粉末材料的物理、化学及其他的一些特殊制备方法,并详述了纳米粉末材料在高强度、高韧性材料、电磁材料、光学材料、催化剂材料、传感器材料、医学和生物工程材料等领域的应用。关键词:纳米粉体;制备;应用 中图分类号:TQ029+.1 文献标识码:A 文章编号:1008-5548(2000)05-0029-04 近年来,随着科学技术的发展,世界各地许多科学家都在积极开展新材料尤其是纳米材料的研究。纳米材料包括零维颗粒材料、一维纳米针、二维纳米膜材料以及三维纳米晶体材料。纳米颗粒一般在1~100nm 之间,处于微观粒子和宏观物体之间的过渡区域。它具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等特性。这些特性使其呈现出一系列奇异的物理、化学性质,目前在国防、电子、化工、轻工、核技术、航空航天、医学和生物工程等领域中具有重要的应用价值。 在纳米粉体材料的研究中,它的制备、特性和应用是比较重要的方面,本文将着重介绍近期国内外的一些关于这些方面的研究现状。 1 纳米粉体材料的制备方法 1.1 物理法1.1.1 气体冷凝法 气体冷凝法(IGC ),其主要过程是在低压的氩、 氦等惰性气体中加热金属,使其蒸发,产生原子雾,经冷凝后形成纳米颗粒。纳米合金可通过同时蒸发数种金属物质得到;纳米氧化物可在蒸发过程中真空室内通以纯氧使之氧化得到。这种方法是制备清洁界面的纳米粉体的主要方法之一。1.1.2 测射法 用两块金属板分别作阳极和阴极,阴极为蒸发 用的材料,在两电极间充入氩气,在两电极之间施加适当电压,两电极间的辉光放电促使氩离子的形成,在电场作用下,氩离子冲击阴极材料,使靶材原子从其表面沉积下来。而且加大被溅射的阴阳表面可提高纳米微粒的获得量。该方法可有效制备多种高熔点和低熔点的纳米金属;能制备多组元的化合物纳米颗粒。 1.1.3 高能机械球磨法 高能球磨法是近年来发展起来的一种制备纳米粉体材料的方法,该方法尤其是在制备合金粉末方面具有较好的工业应用前景。它是将欲合金化的元素粉末混合起来[1],在高能球磨机长时间运转,将回转机械能传递给金属粉末,依靠球磨过程中粉末的塑性变形产生复合,并发生扩散和固态反应而形成合金粉末。由于该过程引入大量的粉末颗粒应变、缺陷以及纳米量级的微结构,使合金过程的热力学和动力学不同于普通的固态反应过程,有可能制备出用常规液态或气相法难以合成的新型合金。此外,通过高能机械球磨中气氛的控制与外部磁场的引入,使这一技术得到了较大的发展。1.2 化学法 1.2.1 固相配位化学法 固相配位化学法在物质合成方面特别是在利用固相配位化学反应合成金属簇合物和固相配合物等方面显示了极大的优势,是一种非常有前途的纳米粉体制备方法。用此法制备氧化物纳米粉体的主要过程[2],就是首先在室温或低温下制备可在较低温度分解的固相金属配合物,然后将固相产物在一定的温度下进行热分解,得到氧化物纳米粉体。与液相合成法相比,具有纯度高、工艺简单、可缩短制备时间等特点。在400℃热分解就可得到平均晶粒尺寸约为10nm 具有纤锌矿结构的ZnO 纳米粉体。1.2.2 溶胶-凝胶法(sol -gel ) 溶胶-凝胶法是指在高分子界面活性剂存在及 第6卷第5期2000年10月 中 国 粉 体 技 术 China Powder Science and T echnology Vol 16No 15 October 2000

纳米铜粉的制备进展

纳米铜粉的制备进展 黄 东,南 海,吴 鹤 (北京航空材料研究院,北京100095) 作者简介:黄东(1971-) ,男,工程师,主要从事金属材料的研究与开发工作。摘 要:本文较系统地介绍了用于制备纳米铜粉的各种方法,对这些方法的制备过程、优缺点及其应用情况进行了 评述,并指出了存在的问题及未来的发展方向。关键词:纳米铜粉;制备;进展中图分类号:T B 44;T F 123.72 文献标识码:A 文章编号:1005-$192(2004)02-0030-05 D eVel o p m ent on pre p arati on f or nanocr y st alli ne Co pp er powder ~UANG on g ,NAN ~ai ,W u ~e (B e i j i n g I nstitute o f A eronautical m aterials ,B e i j i n g 100095,Ch i na ) ABSTRACT :T he m et hods f or p re p ari n g nanocr y stalli ne co pp er p oW der are revieW ed s y nt heticall y .T he p rocess o f p re p ara-tion and t he ir advanta g es and d isadvanta g es are i ntroduced.A nd t he ir a pp lication s ituation is i ntroduced also.B es i des ,t he p rob le m and f uture deve lo p m ent o f m et hods are p o i nted out. KEY W ORD S :nanocr y stalli ne co pp er p oW der ;p re p aration ; deve lo p m ent 1 前言 纳米材料一般是指颗粒尺寸在1!100n m 之间的材料,由于存在着小尺寸效应、表面界面效应、量子尺度效应及量子隧道效应等基本特征,使其具有许多与相同成分的常规材料不同的性质,在力学、电学、磁学及化学等领域有许多特异性能和极大的潜 在应用价值〔1〕。纳米铜粉可用于高级润滑剂,其以 适宜的方式分散于各种润滑油中形成一种稳定的悬浮液,这种润滑剂每升含有数百万个超细的金属微粒,它们与固体表面结合形成一个光滑的保护层,同 时将微划痕填塞,可大幅度降低磨损和摩擦〔2〕,尤 其在重载、低速和高温振动情况下作用更加显著。1995年,I Bm 的Pekka 〔3〕 等指出纳米铜由于其低电 阻而可被用于电子连接后,其性质引起电子界的很大兴趣。纳米铜粉可用于制造导电浆料(导电胶、导磁胶等),广泛应用于微电子工业中的布、封装、连接等,对微电子器件的小型化起重要作用。P.G .s anders 〔4〕等得到了纳米铜材(晶粒尺寸 10! 100n m ) 的拉伸力学性能,发现其屈服强度是一般退火铜(晶粒尺寸20"m )的10倍,其延伸率也可达$%以上, 纳米铜粉是高导电率、高强度的纳米铜材不可缺少的基础原料。因此纳米铜粉的研制是一项可以带来铜及其合金革命性变化的关键技术,具有重要的理论意义和实用价值。 纳米铜粉的制备技术 近年来,有关纳米铜粉的制备研究,国内外都有不少报道,如气相蒸气法、#-射线法、等离子法、机械化学法等,但是制备纳米铜粉较为活跃的方法是液相还原法,现将对各种制备方法的制备过程、优缺点及其应用情况进行评述。 .1 气相蒸气法 〔5!6〕该方法是制备金属粉末最直接、最有效的方法,法国的Lairli C usd 公司采用感应加热法,用改进的气 相蒸气法制粉技术制备了铜超微粉末,产率为0.5k g /h 。感应加热法是将盛放在陶瓷坩埚内的金属材料在高频或中频电流感应下,靠自身发热而蒸 第11卷第2期2004年4月金属功能材料m etallic Functional m aterials V o l .11,N o.2 A p ril ,2004

【CN110125433A】一种室温下制备纳米铜粉的方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910367191.8 (22)申请日 2019.05.05 (71)申请人 上海交通大学 地址 200030 上海市徐汇区华山路1954号 (72)发明人 胡晓斌 洪立芝  (74)专利代理机构 上海科盛知识产权代理有限 公司 31225 代理人 陈亮 (51)Int.Cl. B22F 9/24(2006.01) B22F 1/00(2006.01) B33Y 30/00(2015.01) B33Y 40/00(2015.01) (54)发明名称 一种室温下制备纳米铜粉的方法 (57)摘要 本发明涉及一种室温下制备纳米铜粉的方 法,将可溶性铜盐和络合剂络合后,加入硫酸钾, 充分搅拌溶解后,加入水合肼作为还原剂,在室 温下反应制备得到纳米铜粉颗粒。与现有技术相 比,本发明操作简单,无需高温加热,可在室温下 得到粒径为10-200nm的铜粉颗粒,节省能源,有 效的降低了成本, 适合工业化生产。权利要求书1页 说明书3页 附图1页CN 110125433 A 2019.08.16 C N 110125433 A

权 利 要 求 书1/1页CN 110125433 A 1.一种室温下制备纳米铜粉的方法,其特征在于,将可溶性铜盐溶液与络合剂络合后,加入硫酸钾,充分搅拌溶解后,加入水合肼溶液作为还原剂,在室温下反应制备得到纳米铜粉颗粒。 2.根据权利要求1所述的一种室温下制备纳米铜粉的方法,其特征在于,可溶性铜盐为氯化铜、硝酸铜、硫酸铜、醋酸铜或磷酸铜中的一种或多种,可溶性铜盐溶液的浓度为0.4- 3.8mol/L。 3.根据权利要求1所述的一种室温下制备纳米铜粉的方法,其特征在于,所述络合剂为EDTA、EDTA二钠、氰化物、氨水、柠檬酸、8-羟基喹啉、DTPA、聚丙烯酸、氟化铵、海藻酸钠、酒石酸、1,10-邻二氮菲、二巯基丙醇、三乙撑四胺、磺基水杨酸、三乙醇胺、EGTA或乙二胺四丙酸中的一种或多种。 4.根据权利要求1所述的一种室温下制备纳米铜粉的方法,其特征在于,所述络合剂优选EDTA、EDTA二钠、氨水、1,10-邻二氮菲或三乙撑四胺中的一种或多种。 5.根据权利要求1所述的一种室温下制备纳米铜粉的方法,其特征在于,所述可溶性铜盐和络合剂的摩尔比为1:1.5-1:3.5。 6.根据权利要求1所述的一种室温下制备纳米铜粉的方法,其特征在于,所述溶质硫酸钾在可溶性铜盐溶液中的摩尔浓度为0.01-0.25mol/L。 7.根据权利要求1所述的一种室温下制备纳米铜粉的方法,其特征在于,所述水合肼与可溶性铜盐的摩尔比为1:0.5-1:2.0。 8.根据权利要求1所述的一种室温下制备纳米铜粉的方法,其特征在于,所述纳米铜粉颗粒的粒径为10-200nm。 2

纳米铜粉的设备制作方法与设计方案

一种纳米铜粉的制备方法,属于金属材料制备技术领域,将铜盐加入到含有还原剂、分散剂和抗氧化剂的溶剂中,搅拌的同时加热升温至100200℃,反应30分钟至200分钟后冷却、洗涤、离心、干燥即得到纳米铜颗粒,通过加入还原剂和抗氧化剂,采用一步还原法,在还原铜纳米颗粒的同时,在铜表面键合一层包覆层,直接制得抗氧化的铜纳米粒子,其粒子粒径尺寸在6090nm,键合的包覆层厚度为410nm,该制备方法克服了传统方法的多步低效,反应产率低,能耗高,无法在空气中制备,不适合工业生产的问题。 技术要求 1.一种纳米铜粉的制备方法,其特征在于包含步骤如下:将铜盐加入到含有还原剂、分散剂和抗氧化剂的溶剂中,搅拌的同时加热升温至100-200℃,反应30分钟至200分钟后冷却、洗涤、离心、干燥即得到纳米铜颗粒,其中: 溶液中铜盐浓度为0.05-10mol/L,分散剂浓度为10-80g/L,还原剂与铜盐的摩尔比为0.5:1-4:1,抗氧化剂与铜盐的摩尔比为0.1:1-2:1; 所述分散剂选自聚乙烯吡咯烷酮、十八烷基胺、三乙醇胺中的一种; 所述还原剂选自亚磷酸钠、抗坏血酸、硼氢化钠中的一种; 所述溶剂选自二甘醇、氢氧化铵、乙二醇中的一种; 所述抗氧化剂选自异丙醇或十八硫醇; 所述铜盐选自无水氯化铜、五水合硫酸铜、一水醋酸铜、草酸铜、硝酸铜中的一种。 2.根据权利要求1所述的一种纳米铜粉的制备方法,其特征在于抗坏血酸为L(+)-抗坏血 酸。 3.根据权利要求1所述的一种纳米铜粉的制备方法,其特征在于溶液中分散剂的浓度为40-50g/L。 4.根据权利要求1所述的一种纳米铜粉的制备方法,其特征在于溶液中铜盐浓度为0.25- 4mol/L。

ZnO纳米粉体材料的制备

实 验 2 ZnO 纳米粉体材料的制备 (一)实验类型:综合性 (二)实验类别:设计性实验 (三)实验学时数:16 (四)实验目的 (1)掌握沉淀法制备纳米粉体的工作原理。 (2)了解X-射线粉末衍射仪鉴定物相的原理。 (五)实验原理 纳米ZnO 是一种新型高功能精细无机材料, 其粒径介于1~ 100 nm 之间,又称为超微细ZnO 。由于颗粒尺寸的细微化,使得纳米ZnO 产生了其本体块状材料所不具备的表面效应、小尺寸效应、量子效应和宏观量子隧道效应等,因而使得纳米ZnO 在磁、光、电、敏感等方面具有一些特殊的性能, 主要用来制造气体传感器、荧光体、紫外线遮蔽材料、变阻器、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。合成纳米ZnO 的方法有多种,沉淀法工艺简单,成本低, 便于实现工业化生产。 合成纳米ZnO 的方法有多种,本实验采用化学沉淀法是在可溶性锌盐溶液中加入沉淀剂后,于一定条件下生成沉淀从溶液中析出,将阴离子洗去,经分离、干燥、热处理后,得到纳米氧化锌。该方法操作简单,对设备和技术要求不太苛刻,产品纯度高,不易引入杂质,成本低。 X-射线粉末衍射仪是分析材料晶体结构的重要工具。晶体的X射线衍射图象实质上是晶体微观结构形象的一种精细复杂的变换。由于每一种结晶物质,都有其特定的结构参数,包括点阵类型、晶胞大小、单胞中原子(离子或分子)数目及位置等,而晶体物质的这些特定参数,反映在衍射图上机表现出衍射线条的数目、位置及相对强度各不相同。因此,每种晶态物质与其X射线衍射图之间有着一一对应的关系。任何一种晶态物质都有自己独立的X射线衍射图,不会因为他种物质混聚在一起而产生变化。这就是X射线衍射物相定性分析的方法的依据。 根据粉体X-射线衍射图得到的相关数据,利用谢乐公式(如下),可以计算纳米粒子的晶粒尺寸。 0.89cos D λ βθ= (λ为X 射线的波长,β为最强峰的半峰宽,θ 为衍射角) (六)实验内容 1. 制备 以Zn(NO 3)2·6H 2O 与NH 4HCO 3为原料,聚乙二醇(PEG 600)为模板剂,采用直接沉淀法将制得的沉淀,洗涤后经煅烧制备纳米ZnO 。 2. 称量、计算产率 3. X-射线物相测定:计算晶粒尺寸 (七)实验要求 1、设计实验方案: (1)设计不同煅烧温度及时间 (2)设计不同原料比及模板剂 设计实验方案要求:方案必须切合实际,具有可操作性;尽量选择原料易得,反应条件温和,催化剂价廉,后处理方便,收率高及环境友好的方案。

相关文档
最新文档