题型一、 次序统计量及其分布
3-次序统计量
F ( z ) F ( y )
j i 1
n k
( X (1) , X ( 2 ) ,, X ( n ) )的联合密度函数为
p( n ) ( y1 , y2 ,, yn ) n! p( y1 ) p( y2 ) p( yn ), y1 y2 yn
二、与次序统计量相关的常用统计量
样本中位数m0.5的渐近分布为
m0.5
1 ~ N x , 0 . 5 2 4 n p ( x ) 0.5
例5 设总体分布为柯西分布 ,密度函数为
1 p( x; ) , x 2 (1 ( x ) )
若X 1 , X 2 ,, X n 来自该总体的样本,求 样本中位数 的渐近分布.
1、样本均值 X 总体均值
估计
2、样本中位数 估计 总体中位数
样本均值容易受离群值 的干扰,离群值会把样 本 均值拉向自己一侧,而 样本中位数不受此害 .
若有离群值时,可用截 尾均值代替样本均值 . 何为截尾均值? 把样本排序,并截去两 端一定比例的样本后求 得的 其余值的平均 .
m0.25 x([290.251]) x(8) 60
m0.5 x(15) 67 m0.75 x([290.751]) x(22) 73
五值 18 , 60 , ,67 , ,73 , 97
箱线图
18
60 67 73
97
1、样本中位数 设x(1) ,x(2) , , x( n) 是有序样本,则样本中 位数m0 .5为
m0 .5 x n 1 , n为奇数; ( ) 2 1 ( x n x n ), n为偶数. ( 1) 2 2 (2)
次序统计量及其分布
§5.3次序统计量及其分布次序统计量在近代统计推断中起着重要的作用,这是由于次序统计量有一些性质不依赖于母体的分布并且计算量很小,使用起来较方便。
因此在质量管理、可靠性等方面得到广泛的应用,现在我们在本节中扼要地介绍有关次序统计量的内容。
gjzsj设1ξ,2ξ,…,n ξ是取自分布函数为F (x )的母体ξ的一个子样,x 1,x 2,… ,x n 表示这子样的一组观测值。
这些观测值,由小到大的排列用x )1(,x )2(,… ,x )(n 表示,即x )1(≤x )2(≤… ≤x )(n ,若其中有两个分量x 1与x 2相等,它们先后次序的安排是可以任意的。
定义5.3 第i 个次序统计量ξ)(i 是上述子样1ξ,2ξ,…,n ξ这样的一个的一个函数,不论子样1ξ,2ξ,…,n ξ取得怎样一组观测值x 1,x 2,… ,x n ,它总是取其中的x )(i 为观测值。
显然,对于容量为n 的子样可以得到n 个次序统计量ξ)1(≤ξ)2(≤… ≤ξ)(n ,其中ξ)1(称做最小次序统计量,ξ)(n 称做最大次序统计量。
如果1ξ,2ξ,…,n ξ是来自同一母体的n 个相互独立随机变量,那么次序统计量1ξ,2ξ,…,n ξ是否也相互独立呢?这可以从下述例子中看出(例略)。
定理5.5 设母体ξ有密度函数f (x)>0,a ≤x ≤b ,并且1ξ,2ξ,…,n ξ为取自这母体的一个子样,则第i 个次序统计量的密度函数为g i (y)=⎪⎩⎪⎨⎧≤≤-----其他,0),()](1][)([)!()!1(!1b y a y f y F y F i n i n i n i(5.24) 例5.3 设母体ξ有密度函数⎩⎨⎧<<=其他,010,2)(x x x f 并且ξ)1(<ξ)2(<ξ)3(<ξ)4(为从ξ取出的容量为4的子样的次序统计量。
求ξ)3(的密度函数)(3x g 和分布函数)(3x G ,并且计算概率)21()3(>ξP 。
次序统计量及其分布通用课件
在大量独立同分布随机变量的样本中,任意一个样本的平均值(或 中位数)都将趋近于正态分布。
次序统计量
在给定样本中,按照大小排序后得到的顺序统计量。
关系
中心极限定理为次序统计量提供了理论基础,因为次序统计量是样本 中排序后的变量,其分布情况与中心极限定理密切相关。
次序统计量与大数定律的关系
次序统计量在统计学中的重要性
01
02
03
描述数据分布特征
次序统计量可以帮助我们 快速了解数据分布情况, 如数据的最大值、最小值 、中位数等。
进行统计分析
在统计分析中,次序统计 量常被用作描述变量或样 本的特性,如计算相关性 、进行回归分析等。
数据排序与筛选
通过次序统计量可以对数 据进行排序和筛选,以便 更好地理解和处理数据。
计算方法
通过概率密度函数或概率质量函 数积分得到。
03
次序统计量的应用场景
金融数据分析
风险评估
次序统计量可以用于评估投资组合的风险,通过分析历史收益率 数据,确定投资组合在不同市场环境下的风险水平。
市场趋势判断
利用次序统计量对市场数据进行排序,可以判断市场趋势,例如通 过分析股票价格指数的排序来判断市场的整体走势。
次序统计量及其分 布通用课件
目录
• 次序统计量的定义与性质 • 次序统计量的分布 • 次序统计量的应用场景 • 次序统计量的计算方法 • 次序统计量与其他统计量的关系 • 次序统计量在数据分析中的应用
01
次序统计量的定义与性质
次序统计量的定义
定义
次序统计量是指一组数 据中按照大小顺序排列
的统计量。
在数据异常值检测中的应用
总结词
次序统计量在异常值检测中具有重要应用,能够识别出离群 点,帮助分析者了解数据分布和潜在问题。
1-4 次序统计量
显然有
X (1) ≤ X (2) ≤ L ≤ X ( n )
称为最小次序统计量 它的值 x(1) 是样本 最小次序统计量, 其中 X (1) = min X i 称为最小次序统计量, 1≤i≤n 值中最小的一个; 称为最大次序统计量 最大次序统计量, 值中最小的一个;而 X (n) = max X i 称为最大次序统计量, 1≤i≤n 是样本值中最大的一个。 它的值 x(n) 是样本值中最大的一个。
米的小河中淹死了,他觉得不可思议。 平均水深为 1 米的小河中淹死了,他觉得不可思议。 这件事情是否是一个玩笑? 这件事情是否是一个玩笑?
8
思考2. 一位统计学家把一只脚放进 100℃ 的开水里, 思考 ℃ 的开水里, 另一只脚放进冰水中。然后宣布:现在, 另一只脚放进冰水中。然后宣布:现在,在平均值的 意义上,我感觉很舒服。 意义上,我感觉很舒服。
16
乙同学毕业后求职于一家公司。总经理说, 例 乙同学毕业后求职于一家公司。总经理说, 公司平均月薪是 3000 元。一个月后乙同学得到 工资1000元,据了解,公司共有21人,和自己 元 据了解,公司共有 人 工资 职位相同的业务员共有 10 人,每人的月薪都是 1000 元。应该如何理解乙同学的遭遇 ? 总经理 15,000 ;两个副总经理每人 8,000 ; , , 3 个部门经理每人 4000;5 个财务等行政人员 ; 每人 2000;10 个业务员每人 1000 。 ; 一共 21 人,每月支出工资 63,000。 , 。 平均值 3000,中位数 2000,众数 1000,极差 14,000 , , , ,
2
定义
样本 X 1 , X 2 ,L , X n 按由小到大的顺序重排为
X (1) ≤ X (2) ≤ L ≤ X ( n )
次序统计量及其分布通用课件
3. 健康状况评估:通过 对个体的多项生理指标 进行监测,并利用次序 统计量进行分析,可以 对个体的健康状况进行 综合评估。
环境科学领域应用案例
总结词:环境科学领 域中,次序统计量可 用于环境监测、污染 物排放评估、气候变 化研究等。
详细描述
1. 环境监测:通过在 环境中布置传感器, 并利用次序统计量分 析传感器数据,可以 实时监测环境的空气 质量、水质等情况。
次序统计量的特点
次序统计量具有简单直观、可操 作性强、易于理解等优点,是统 计分析中常用的一种方法。
次序统计量的种类
简单次序统计量
只对总体或样本的视察值进行排序, 不涉及其他数据处理。
加权次序统计量
将总体或样本的视察值进行加权处理 后再进行排序,可以更准确地反应数 据的散布特征。
次序统计量的应用场景
统计模型
参数统计模型
在这种模型中,次序统计量被视为一个随机变量,并假定其 具有某种已知或可估计的散布情势(例如正态散布、泊疏松 布等)。然后通过参数估计和假设检验等方法对总体参数进 行推断。
非参数统计模型
在这种模型中,总体被视为非参数的,并不假定其具有某种 特定的散布情势。然后通过核密度估计、分位数回归等方法 对总体散布进行推断。
未来应用前景展望
金融风险管理
次序统计量在金融风险管理领域有着广泛的应用。例如,可以利用次序统计量分析股票市场的波动性 ,为投资决策提供支持。未来,随着金融数据的日益复杂化,次序统计量的应用将更加重要。
环境监测与保护
次序统计量可以用于环境监测和保护领域。例如,可以利用次序统计量分析空气质量、水质等环境指 标的变化趋势,为制定环境保护政策提供根据。
07
参考文献
参考文献
数理统计5.3ppt
gi ( y)
(i
n! 1)!(n
i
)!
[F
(
y
)]i
1[1
F ( y)]ni
f
( y)
a yb
0
其他
y y= f (x)
P( x1 x2 )
x2 f ( x )dx
x1
f ( x1 )( x2 x1 ), x1 与 x2 充分接近时 .
0
求 (i )的密度函数即求 (i )落入无穷小区间
F ( y)]ni
f
( y)
a yb
0
其他
Cor 1 :最大次序统计量 (n)的密度函数为
gn(
y)
n[ F
( y )]n1 0
f
(
y)
a yb 其他
Cor 2 :最小次序统计量 (1)的密度函数为
g1 (
y)
Байду номын сангаас
n[1
F( 0
y )]n1
f
(
y)
a yb 其他
例 (P251) :
设母体
z)
y
F
( y)]ji zb
1
0
其他
作业: p.260 5.28
2.定理5.6 :设母体有密度函数 f ( x) 0, a x b(可设a , b ),
且1,2 ,,n为取自这一母体的一个 子样,则(i) ( j)的联合分布
密度函数为
gij ( y, z)
(i
1)!(
j
n! i 1)!(n
[1 F (
[ j)!
z)]n j
F ( y)]i1[F ( f ( y) f (z) a
1.4 次序统计量及其分布
1 , n!
二、单个次序统计量的分布
定理2 设总体X的密度函数为f(x), 分布函数为F(x), X1, X2,…, Xn为样本, 则第k个次序统计量X(k)的密度函 数为
n! k 1 n k fk ( x) ( F ( x )) (1 F ( x )) f ( x ) ( k 1)!( n k )!
F1n ( x , y ) P { X (1) x , X ( n ) y } P{ X ( n ) y } P{ x X (1) X ( n ) y } ( F ( y )) P{ x X i y } ( F ( y ))n ( F ( y ) F ( x ))n
1.4 次序统计量及其分布
一、次序统计量。
定义 设 ) 称为
该样本的第i 个次序统计量,它的取值是将样本观测
值由小到大排列后得到的第 i 个观测值。其中 X(1)=minX1, X2, …, Xn 称为该样本的最小次序统计量, X(n)=maxX1, X2, …, Xn
可给出的 X(1) , X(2), X(3) 分布列如下:
X (1)
0
19 27
1
7 27
2
1 27
X (2)
0
7 27
1
13 27
2
7 27
p
X (3)
p
0
1 27
1
7 27
2
19 27
p
这三个次序统计量的分布是不相同的。
进一步, 给出两个次序统计量的联合分布, 如:
X(1) 和X(2) 的联合分布列为
证明:k 1,n时,直接可得 F1 ( x ) P ( X (1) x ) 1 P (min( X i ) x ) 1 (1 F ( x ))n Fn ( x ) P ( X ( n ) x ) P (max( X i ) x ) ( F ( x ))
次序统计量
由于次序统计量的每一个分量X(k) 都是样本
X,X,, 12
X n
的函数,所以X(1),X(2),L
,X(n)
也都是随机
变量。样本X1,X2,,Xn是相互独立的,但其次序统
计量(X(1),X(2),L,X(n))一般不是独立的。
2
定义 样本X1,X2,,Xn按由小到大的顺序重排为 X(1) X(2) L X(n)
{ 1,1,3,3,4,2,3,8 } 3
11
Remark (1). 中位数比样本均值更为稳健,当二者相差不大时
常采用样本均值表示数据平均,否则应该用中位数。 (2). 样本的众数适用于离散的总体
12
2. 表示“变差”的统计量: 样本方差(或标准差)、极差
样本极差定义为
R X (n ) X ( 1 ) m 1 i a x nX i m 1 ii n nX i,
f(X (1 ),X (2 ))(x ,y )
0 ,x y ,
7
1. 表示“平均”的统计量: 样本均值、中位数、众数
例 关于平均值的理解 样本均值是人们采用最多的一种描述数据的方法,
它反映了一组数据整体上的一些信息,然而容易掩盖 一些极端的情况,所以有时候样本均值不一定合理 。
思考1. 甲同学听说,有个身高 1.75 米的成年人在 平均水深为 1 米的小河中淹死了,他觉得不可思议。
4
定理 1.19 设总体 X 的分布密度为 f(x)(分布函数为 F(x)), X1 , X 2 , , X n为样本,则第 k 个次序统计量 X(k) 的分布密度为
fX (k )( x ) ( k 1 ) n ! ( ! n k ) ! [ F ( x ) ] k 1 [ 1 F ( x ) ] n kf( x ) ,k 1 ,2 ,L ,n . 特 别 , 最 小 次 序 统 计 量 X (1 )和 最 大 次 序 统 计 量 X (n) 的 分 布 密 度 为
1.3--1.4 抽样分布,次序统计量
位数记为 Fa (n1, n2 ) ,它满足
P{F > Fa (n1, n2 )} = a
对 a = 0.05, 0.01 ,0.10 ,0.025 的 Fa (n1, n2 ) 的值,可由附表 5 查出。
P{X > ua} = 1 − P{X ≤ ua}= 1 − Φ(ua ) = a
即 Φ(ua ) = 1 − a
给定 a ,由附表 2 可查得 ua 的值,如 u0.05 = 1.64 ,u0.025 = 1.96 。由于 标准正态分布的对称性,显然有
ua = −u1−a
2、如果
χ
2 n
~
χ
2 (n)
)
=
E(
X
2 i
)
=
E
(
X
2 i
)
=
[D( X i ) + (E( X i ))2 ] =n
i =1
i =1
i =1
∫ 由于
D(
X
2 i
)
=
E
(
X
4 i
)
−
(
E
(
X
2 i
))2
=
+∞ −∞
x4
− x2
e 2 dx − 1 = 3 − 1 = 2
2π
n
n
∑ ∑ 所以
D(
χ
2 n
)
=
D(
X
2 i
)
=
D(
n→∞
ϕT
(t
)
=
1
−t2
e2
2π
此性质说明,当 n → ∞ 时, t 分布的极限分布是标准正态分布。
次序统计量的分布及其在数据分析中的应用
性即有
lim
△x→0
FX((i) x+△△xx)i -FX((i) x)=(i-1)(!n!n-i)!
[F(X x)(X x)][1-F(X x+△x)]n-i
圯fX((i) x)=(i-1)(!n!n-i)! [F(X x)]i-[1 1-F(X x)]n-if(X x),
n! -i-1)(! n-j)!
[F(X x)]i-[1 F(X x+△x)-F(X x)]
【作者简介】曲天尧,男,山东淄博人,硕士研究生,山东财经大学,研究方向:金融数学理论与方法、数理统计。
qiyekejiyufazhan 127
企业技术实践
×[F(X y)-F(X x+△x)]j-i-[1 F(X y+△y)
2018 年第 11 期(总第 445 期)
企业技术实践
次序统计量的分布及其在数据分析中的应用
曲天尧 (山东财经大学,山东 济南 250014)
【摘 要】次序统计量是数理统计中的一个重要概念。作为一个常用的统计量,无论是在参 数统计领域还是在非参数统计领域,次序统计量都有着广泛应用。在如今的大数据时代, 更需要借助次序统计量对数据进行整理、分析。文章主要就次序统计量及其分布、次序统 计量函数及其分布作简要总结,并介绍次序统计量在数据分析中的应用。 【关键词】简单随机样本;次序统计量;样本分位数;经验分布函数;箱线图 【中图分类号】O211.67 【文献标识码】A 【文章编号】1674-0688(2018)11-0127-03
△y>0,令 x+△x<y,则 x、y 将整个实数轴 (-肄,肄) 分成 如下 5 个部分: (-肄,x], (x,x+△x], (x,x+△y],
(y,y+△y], (y+△y,肄)。 并且有
次序统计量
的性质
次序统计量是充分统计量 证明: 由充分统计量的定义可知,只需要证明其条件分布与总体分布无关即可.由于样本具有独立性与同分布性,因 而 其中,是的一个置换,这样的置换共有,由此可见,此条件分布与总体无关,故次序统计量是充分统计量。
单个的分布
设总体X的密度函数为f(x),分布函数为F(x), X1, X2,…, Xn为样本,则第k个次序统计量X(k)的密度函数 为
次序统计量
统计学术语
目录
01 简介
03 单个的分布
02 的性质 04自总体X的样本,X(i)称为该样本的第i个次序统计量,它的取值是将样本观测值由 小到大排列后得到的第i个观测值。从小到大排序为x(1),x(2), …,x(n),则称X(1),X(2), …,X(n)为顺序统 计量。
简介
设 X1,X2,…, Xn是取自总体X的样本,X(i)称为该样本的第i个次序统计量,它的取值是将样本观测值由小 到大排列后得到的第i个观测值。从小到大排序为x(1),x(2), …,x(n),则称X(1),X(2), …,X(n)为顺序统计 量。
显然: (1)最小顺序统计量 (2)最大顺序统计量 (3)极差(Range) (4)四分位极差(iql) 样本X1,X2,…,Xn是独立同分布的,而次序统计量X(1),X(2),…,X(n)则既不独立,分布也不相同。
证明:k=1,n时,直接可得
多个的联合分布
对任意多个次序统计量可给出其联合分布,以两个为例说明: (1)次序统计量的联合分布密度函数为: (2)的联合分布密度(连续型)为:
感谢观看
数理统计第二章抽样分布2.3节次序统计量的分布
n 1
1 I[(0, )] ( x)
最大次序统计量X(n)的密度函数为
nx n1 f n ( x) n I[(0, )] ( x)
11
( X (1) , X (n ) )的联合密度函数为
n(n 1)( y x) n 2 , 0 x y , n f1,n ( x, y ) 0, 其它.
pq (2 q q )
n
n1
n1
n=1,2,…
22
n Fm ( x) P( X ( m) x) ( F ( x))i (1 F ( x)) ni i m i
n
5
因此
利用恒等式
n i n p m1 n i nm p (1 p ) i t (1 t ) dt 0 i m i i
极差R X ( n ) X (1)的密度函数为
n(n 1)( r )r n 2 , n f R (r ) 0, 0 r , 其它.
12
统 L1 , L2 例2 设系统 L 由两个相互独立的子系 联接而成, 连接的方式分别为 (i) 串联, (ii) 并联, 如图所示.
f n ( x) nF ( x)n1 f ( x)
7
二 次序(顺序)统计量的联合分布
(1)次序统计量( X (1) , X ( n) )的联合分布为
n n [ F ( y )] [ F ( y ) F ( x )] , 当x y, F1,n ( x, y ) n [ F ( y )] , 当x y.
βe ,x0 , fY ( y ) x0 0,
3-次序统计量解读
F ( z ) F ( y )
j i 1
n k
( X (1) , X ( 2 ) ,, X ( n ) )的联合密度函数为
p( n ) ( y1 , y2 ,, yn ) n! p( y1 ) p( y2 ) p( yn ), y1 y2 yn
二、与次序统计量相关的常用统计量
X ( n )称为该样本的最大次序 统计量
在一个简单随机样本中 ,X 1 ,X 2 , ,X n独立同分布, 注:
次序统计量X (1),X (2), ,X ( n )既不独立,分布也不相 同.
而且任何两个次序统计 量分布也不相同 .
1、单个次序统计量的分布 定理1 设X 1 ,X 2 , ,X n 是来自总体X的样本,且X的 密度函数为p( x ), 分布函数F ( x ), 则第k个次序统计 量x( k )的密度函数为 n! pk ( x ) ( F ( x )) k-1 (1 - F ( x )) n-k p( x ) ( k-1)! ( n-k )!
j2 -j1 1
[ F ( y jr ) - F ( y jr 1 )]
jr jr 1 1
1 F ( y )
jr
n jr
p( y j1 ) p( y j2 ) p( y jr ),
y j1 y j2 y jr
证明:
j1 1
1
y j1
j1 j2 1 y j1 y j1 yj
次序统计量和经验分布 函数
一、次序统计量(或称顺序统计量)及其分布 定义 设X 1 ,X 2 , ,X n是来自总体X的样本,将X 1 ,
X 2 , ,X n按从小到大的顺序排列 为 X (1) X ( 2 ) X ( n ) 则X ( i ) 称为该样本的第 i个次序统计量,
题型一、 次序统计量及其分布
其中k 1, 2,, n.
例1(p30例1.18) 设总体X 服从区间 [0,1] 上的均
匀分布,( X1 , X 2 , , X n )为总体X的样本, 试求X ( k )的 分布.
解
总体X的分布密度为 1, 0 x 1 f ( x) 0, 其他
X的分布函数为 0, x 0 F ( x ) x, 0 x 1 1, x 1
X (1)称为样本的最小次序统计量, X ( n)称为样本的 最大次序统计量.
Hale Waihona Puke 3、次序统计量的分布定理1.19 设总体X的分布密度为f ( x)(或分布函数
为F ( x ), X 1 , X 2 , , X n为来自总体X 的样本,则第k 个次序统计量X k的分布密度为
n! f X( k ) ( x ) [ F ( x )]k 1[1 F ( x )]n k f ( x ) ( k 1)!( n k )!
n! k 1 n k f X(k)( x ) = ( F ( x )) (1 F ( x )) f ( x ) ( k 1)!( n k )! n! = ( x )k 1 (1 x )n k , 0 x 1. (k 1)!( n k )!
特别地,X (1) min X i 称为最小次序统计量 .
1 i n
X ( n ) max X i 称为最大次序统计量 .
1 i n
注
由于每个X ( k )都是样本( X 1 , X 2 ,, X n )的函数,
所以, X (1) , X ( 2) ,, X ( n )也都是随机变量 , 并且它们 一般不相互独立 .
题型一、次序统计量
一、次序统计量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、次序统计量
1、 次序统计量
设( X1, X2 ,L , Xn )T 是从总体X中抽取的一个样本, ( x1, x2 ,L , xn )T 是其一个观测值, 将观测值按由小到 大的次序重新排列为
x(1) x(2) L x(n) 当( X1, X2 ,L , X n )T 取值为( x1, x2 ,L xn )T 时,定义 X(k)取值为x(k) (k 1, 2,L n),由此得到
f ( X(k) x)
=
(k
n! 1)!(n
(F ( x))k1(1 k)!
F ( x))nk
f
(x)
=
n!
( x)k1(1 x)nk , 0 x 1.
(k 1)!(n k)!
n
X(1) X(2) L X (n)
则称(X(1) , X(2) ,L , X(n) )T 为样本( X1, X 2 ,L , X n )T 的
次序统计量,X ( k )称为样本的第k个次序统计量,
X
(1)称为样本的最小次序统计量,
X(
n
称为样本的
)
最大次序统计量.
3、次序统计量的分布
( X(1) , X(2) ,L , X(n) )T 称为样本 ( X1, X2 ,L , Xn )T 的次序统计量.
对应的( x(1) , x(2) , x(n) )称为其观测值.
X(k) : 样本( X1, X2, , Xn )的第k个次序统计量.
特别地,X (1)
min
1 i n
定理1.19 设总体X的分布密度为f ( x)(或分布函数
为F ( x), X1, X2 ,L , Xn为来自总体X的样本,则第k
个次序统计量X
的分布密度为
k
fX(k) ( x)
(k
n! 1)!(n
[F ( x)]k1[1 k)!
F ( x)]nk
f
(x)
其中k 1, 2,L , n.
Xi
称为最小次序统计量.
X(n)
max
1 i n
Xi
称为最大次序统计量.
注 由于每个X(k)都是样本( X1, X2, , Xn )的函数, 所以, X(1), X(2), , X(n)也都是随机变量,并且它们 一般不相互独立.
定义1.12
设样本X1, X2 ,L
,
X
按由小到达的顺序重排为
例1(p30例1.18) 设总体X服从区间 [0,1] 上的均
匀分布, ( X1, X 2 ,L
,
X
n
)为总体X的样本,
试求X
(
k
的
)
分布.
解 总体X的分布密度为
1, 0 x 1 f ( x) 0, 其他 X的分布函数为
0, x 0
F
(
x)
x,
0 x1
1, x 1